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A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon
theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This so
photon amplitude is the first two-u-two-t special amplitude to satisfy all theoretical constraints. The conven-
tional Low amplitude can be obtained as a special case. It is demonstrated that previously proposed amplitu
for this process, both the~u,t! and~s,t! classes, violate the Pauli principle at some level. The origin of the Pauli
principle violation is shown to come from two sources:~i! For the ~s,t! class, the two-s-two-t amplitude
transforms into the two-s-two-u amplitude under the interchange of two initial-state~or final-state! protons.~ii !
For the~u,t! class, the use of an internal emission amplitude determined from the gauge-invariance constra
alone, without imposition of the Pauli principle, causes a problem. The resulting internal emission amplitud
can depend upon an electromagnetic factor which is not invariant under the interchange of the two proton
@S0556-2813~96!05909-2#
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I. INTRODUCTION

It has been known since the early work of Low@1# that
the soft-photon theorem applies to all nuclear bremsstrahlu
processes. This theorem states that, when the total bre
strahlung amplitude is expanded in powers of the phot
momentum~energy! K, the coefficients of the two leading
terms are independent of off-shell effects. Therefore, t
theorem implies that a soft-photon approximation~an on-
shell approximation based upon the first two terms! should
provide a good description of any bremsstrahlung proce
including proton-proton bremsstrahlung (ppg). The open
question has been how to construct a soft-photon amplitu
which satisfies all theoretical constraints.

During the past three decades, a variety of soft-phot
amplitudes have been proposed to describe theppg process.
Although most of these amplitudes are relativistic, gauge
variant, and consistent with the soft-photon theorem, th
violate the Pauli principle at some level. The requirement
fully satisfying the Pauli principle was heretofore neglecte
The purpose of this paper is to provide a derivation of
soft-photon amplitude that not only is consistent with th
soft-photon theorem, is valid relativistically, is manifestl
gauge invariant, but also satisfies the Pauli principle.

Recently, a prescription to generate two classes of so
photon amplitudes was discussed:~1! the two-u-two-t spe-
cial (TuTts) amplitudes from the class expressed in terms
the (u,t) Mandelstam variables and~2! the two-s-two-t spe-
cial (TsTts) amplitudes from the class expressed in terms
the (s,t) Mandelstam variables@2#. In Ref. @2#, simple cases
were used to demonstrate basic ideas and methods. The
particles involved in the scattering were assumed to be sp
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less and to have different masses and charges. The ela
scattering amplitude was defined as the sum of a direct a
plitude and an exchange amplitude. Under these assum
tions, the derived amplitudes are applicable to a descripti
of bremsstrahlung processes involving the scattering of tw
bosons, but not two fermions. Because the proton is a sp
1/2 particle and the two-proton amplitude must obey th
Pauli principle, thepp elastic amplitude must be antisym-
metric under interchange of the protons. That is, for thepp
case the scattering amplitude should be obtained as the dir
amplitude minus~not plus! the exchange amplitude. There-
fore, theTuTtsamplitude derived in Ref.@2# is not a proper
representation of theppg process, even though the argumen
regarding why theTuTts-type amplitude should be used to
describe thepp bremsstrahlung process is correct. Moreove
there is an additional problem which is related to the amb
guity in determining the internal emission amplitude. With
out imposing the fermion antisymmetry requirement, th
gauge invariant condition alone does not yield a unique e
pression for the internal amplitude. This important point, em
phasized here, was not imposed in Ref.@2#. As a result, the
internal amplitude obtained in Ref.@2# for the nonidentical
particles considered is not a proper choice for bremsstra
lung processes involving two identical nucleons. For the ca
of ppg the violation of the Pauli principle for theTuTts
amplitude introduced in Ref.@2# is not serious since such
violation is found only in the term of orderK.

A more realisticTuTts amplitude for theppg process
was proposed recently@3#. That amplitude is relativistic,
gauge invariant, and consistent with the soft-photon theore
However, it does not obey the Pauli principle at theK1 order
in the expansion in terms ofK. The problem arises from the
1574 © 1996 The American Physical Society
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54 1575PAULI PRINCIPLE IN THE SOFT-PHOTON APPROACH . . .
internal amplitude. It involves an electromagnetic fact
which is not invariant under the interchange of the tw
initial-state~incoming! or two final-state~outgoing! protons.
As we demonstrate below, this factor is but one of two po
sible choices that can be obtained by imposing gauge inv
ance. The second choice for the invariant factor was mis
in Ref. @3#, because the requirement that the Pauli princip
be satisfied was not imposed in the derivation.

Except for theTuTts amplitude discussed in Ref.@3#,
almost allppg soft-photon amplitudes considered in the li
erature belong to the (s,t) class. These amplitudes depen
upon thepp elastic amplitude, which is evaluated at th
square of the total center-of-mass energys and the square of
the momentum transfert. In fact, in most cases the averag
s and the averaget were used. The amplitudes obtained b
Nyman @4# and Fearing@5# are two well-known examples.
Such amplitudes are classified as Low amplitudes. Except
the Low amplitudes, all other amplitudes in the~s,t! class
violate the Pauli principle for the following reason: If on
interchanges the two initial-state~or final-state! protons, then
one converts the (s,t) class of amplitudes into the (s,u)
class of amplitudes. Because theppg process involves a
half-off-shell amplitude ~not an elastic amplitude!, the
(s,u) amplitude obtained by this procedure is complete
different from the original (s,t) amplitude. Therefore, it is
impossible to regain the original (s,t) amplitude with just a
sign change after interchanging the two protons.

This paper is structured as follows. In Sec. II we defin
the pp elastic scattering amplitude which will be used a
input to generate the bremsstrahlung amplitudes for
ppg process. We use the amplitude introduced by Go
berger, Grisaru, MacDowell, and Wong~GGMW! @6#, but
without incorporating the Fierz transformation. In Sec. III w
derive a relativisticTuTtsamplitude by imposing gauge in-
variance and the Pauli principle. In deriving the amplitude
straightforward and rigorous approach, slightly differe
from that employed in Ref.@2#, is utilized. We verify that the
resultingTuTtsamplitude is consistent with the soft-photo
theorem. Finally, a variety of other amplitudes, which viola
the Pauli principle, are discussed in Sec. IV.

II. THE PROTON-PROTON ELASTIC
SCATTERING AMPLITUDE

The Feynman amplitudeF for pp elastic scattering,

p~qi
m!1p~pi

m!→p~ q̄f
m!1p~ p̄f

m!, ~1!

can be written as@6#

F5F1~G12G̃1!1F2~G21G̃2!1F3~G32G̃3!

1F4~G41G̃4!1F5~G52G̃5!

5 (
a51

5

Fa@Ga1~21!aG̃a#, ~2!
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Ga5ū~ q̄f !lau~qi !ū~ p̄f !l
au~pi !,

G̃a5ū~ p̄f !lau~qi !ū~ q̄f !l
au~pi !, ~3!

and we define

~l1 ,l2 ,l3 ,l4 ,l5![S 1,smn

A2
,ig5gm ,gm ,g5D ,

~l1,l2,l3,l4,l5![S 1,smn

A2
,ig5g

m,gm,g5D .
Note that la and la are tensors. For example,
l2l25l2l

25 1
2smnsmn, where the summation overm and

n is implied. In Eq.~2!, Fa (a51, . . . ,5) are invariant func-
tions of the Mandelstam variabless, t, andu,

s5~qi1pi !
25~ q̄f1 p̄f !

2,

t5~ p̄f2pi !
25~ q̄f2qi !

2,

u5~ p̄f2qi !
25~ q̄f2pi !

2. ~4!

Because of energy-momentum conservation,

qi
m1pi

m5q̄f
m1 p̄f

m , ~5!

s, t, andu satisfy the following relation,

s1t1u54m2, ~6!

so that only two of them are independent.~Herem is the
proton mass.! The optimal choice of these two independen
variables will depend on the fundamental diagrams~or the
dominant tree diagrams! of a given process. In our case
guided by a meson-exchange theory of theNN interaction,
we chooseu and t to be the two independent variables, an
we write Fa5Fa(u,t). In Eq. ~2!, (a51

5 Fa(u,t)Ga repre-
sents a sum over the five direct amplitudes, whi
(a51
5 (21)aFa(u,t)G̃a represents a sum over the five ex

change amplitudes multiplied by the sign factor arising fo
two nucleons. The five direct amplitudes are depicted in F
1~a! and the five exchange amplitudes are exhibited in F

FIG. 1. Schematic representation of the proton-proton elas
scattering process:~a! corresponds to a sum over the five direc
amplitudes;~b! corresponds to a sum over the five exchange amp
tudes multiplied by the sign factor (21)a.
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FIG. 2. The external bremsstrahlung diagrams generated from Fig. 1:~a! and~b! represent photon emission from theqf leg; ~c! and~d!
from theqi leg; ~e! and ~f! from thepf leg; ~g! and ~h! from thepi leg.
e

1~b!. These ten elastic-scattering diagrams will be used
source graphs to generate bremsstrahlung diagrams.

The Pauli principle imposes some restrictions o
Fa(u,t). For isotopic triplet states, we require that

Fa~u,t !5~21!a11Fa~ t,u!. ~7!

If we interchangeq̄f
m with p̄f

m ~or qi
m with pi

m), then~i! u is
interchanged witht; ~ii ! Ga is interchanged withG̃a ; and
~iii ! the direct amplitudeFa(u,t)Ga will be interchanged
with the exchange amplitude@2(21)aFa(u,t)G̃a# but with
opposite sign. Thus, the amplitudeF given by Eq. ~2!
changes sign, and the Pauli principle is therefore satisfie
as

n

d.

III. PROTON-PROTON BREMSSTRAHLUNG
AMPLITUDES

A. External amplitudes

We can use Figs. 1~a! and 1~b! as source graphs to gen-
erate external emissionpp bremsstrahlung diagrams.

If the photon is emitted from theqf-leg, then we obtain
Figs. 2~a! and 2~b!. The amplitudes corresponding to thes
two diagrams can be written as
Mm
qf~u1 ,tp ,Dqf

!5e(
a51

5

Fa~u1 ,tp ,Dqf
!F ū~qf !Gm

1

q” f1K” 2m
lau~qi !ū~pf !l

au~pi !

1~21!aū~pf !lau~qi !ū~qf !Gm

1

q” f1K” 2m
lau~pi !G , ~8!
n,
rva-
where

u15~pf2qi !
25~pi2qf2K !2,

tp5~pf2pi !
25~qi2qf2K !2,

Dqf
5~qf1K !25m212qf•K,

and
Gm5gm2 i
k

2m
smnK

n ~9!

is the electromagnetic vertex. Heree.0 is the proton
charge,k is the anomalous magnetic moment of the proto
and we have used three-body energy-momentum conse
tion for theppg process,

qi
m1pi

m5qf
m1pf

m1Km. ~10!
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It is easy to show that

ū~qf !Gm

1

q” f1K” 2m
5ū~qf !S qfm1Rm

qf

qf•K
D , ~11a!

where

Rm
qf5 1

4 @gm,K” #1
k

8m
$@gm,K” #,q” f%, ~11b!

and we have used@A,B#[AB2BA and $A,B%[AB1BA.
If we expandFa(u1 ,tp ,Dqf

) aboutDqf
5m2,
Fa~u1 ,tp ,Dqf
!5Fa~u1 ,tp!1

]Fa~u1 ,tp ,Dqf
!

]Dqf
U

Dqf
5m2

3~2qf•K !1•••, ~12!

where

Fa~u1 ,tp![Fa~u1 ,tp ,m
2!,

then Eq.~8! becomes
m

Mm
qf~u1 ,tp ,Dqf

!5e(
a51

5 FFa~u1 ,tp!1~2qf•K !
]Fa~u1 ,tp ,Dqf

!

]Dqf
U

Dqf
5m2

1•••G
3F ū~qf !S qfm1Rm

qf

qf•K D lau~qi !ū~pf !l
au~pi !1~21!aū~pf !lau~qi !ū~qf !S qfm1Rm

qf

qf•K D lau~pi !G .
~13!

If the photon is emitted from theqi leg, then we get Figs. 2~c! and 2~d!, and the corresponding amplitudes have the for

Mm
qi~u2 ,tp ,Dqi

!5e(
a51

5

Fa~u2 ,tp ,Dqi
!F ū~qf !la

1

q” i2K” 2m
Gmu~qi !ū~pf !l

au~pi !

1~21!aū~pf !la

1

q” i2K” 2m
Gmu~qi !ū~qf !l

au~pi !G , ~14!

where

u25~qf2pi !
25~qi2pf2K !2,

and

Dqi
5~qi2K !25m222qi•K.

If we use the relation

1

q” i2K” 2m
Gmu~qi !52S qim1Rm

qi

qi•K
D u~qi !, ~15!

whereRm
qi is given by the same expression as Eq.~11b! but with qf replaced byqi , and expandFa(u2 ,tp ,Dqi

) about

Dqi
5m2,

Fa~u2 ,tp ,Dqi
!5Fa~u2 ,tp!1

]Fa~u2 ,tp ,Dqi
!

]Dqi
U

Dqi
5m2

~22qi•K !1•••, ~16!

where

Fa~u2 ,tp![Fa~u2 ,tp ,m
2!,

we obtain from Eq.~14!
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Mm
qi~u2 ,tp ,Dqi

!52e(
a51

5 FFa~u2 ,tp!2~2qi•K !
]Fa~u2 ,tp ,Dqi

!

]Dqi
U

Dqi
5m2

1•••GF ū~qf !laS qim1Rm
qi

qi•K D u~qi !ū~pf !l
au~pi !

1~21!aū~pf !laS qim1Rm
qi

qi•K D u~qi !ū~qf !l
au~pi !G . ~17!

Similarly, if the photon is emitted from thepf leg andpi leg, then we obtain Figs. 2~e! and 2~f! and Figs. 2~g! and 2~h!,
respectively. The amplitudes corresponding to these figures have the following expressions:

Mm
pf~u2 ,tq ,Dpf

!5e(
a51

5 FFa~u2 ,tq!1~2pf•K !
]Fa~u2 ,tq ,Dpf

!

]Dpf
U

Dpf
5m2

1•••GF ū~qf !lau~qi !ū~pf !S pfm1Rm
pf

pf•K D lau~pi !

1~21!aū~pf !S pfm1Rm
pf

pf•K D lau~qi !ū~qf !l
au~pi !G , ~18!

and

Mm
pi~u1 ,tq ,Dpi

!52e(
a51

5 FFa~u1 ,tq!2~2pi•K !
]Fa~u1 ,tq ,Dpi

!

]Dpi
U

Dpi
5m2

1•••GF ū~qf !lau~qi !ū~pf !l
aS pim1Rm

pi

pi•K D u~pi !

1~21!aū~pf !lau~qi !ū~qf !l
aS pim1Rm

pi

pi•K D u~pi !G . ~19!

Here,

tq5~qf2qi !
25~pi2pf2K !2,

Dpf
5~pf1K !25m212pf•K,

Dpi
5~pi2K !25m222pi•K, ~20!

andRm
pf andRm

pi are given by the same expressions asRm
qf in Eq. ~11b! but with qf replaced bypf andpi , respectively.

The external emission process is the sum of emission processes from the four proton legs. Therefore, the externa
strahlung amplitude,Mm

E , can be written as

Mm
E5Mm

qf~u1 ,tp ,Dqf
!1Mm

qi~u2 ,tp ,Dqi
!1Mm

pf~u2 ,tq ,Dpf
!1Mm

pi~u1 ,tq ,Dpi
!. ~21!

B. Internal amplitudes

The internal bremsstrahlung amplitude,Mm
I , can be obtained from the gauge-invariance condition,

~Mm
E1Mm

I !Km50. ~22!

However, this condition alone cannot give a unique expression for the amplitudeMm
I . The ambiguity can be removed if the

additional requirement of satisfying the Pauli principle is also imposed. BecauseRm
Q (Q5qf ,pf ,qi ,pi) are separately gauge

invariant,viz. Rm
QKm50, we find

Mm
I Km52Mm

EKm

52e(
a51

5 FFa~u1 ,tp!2Fa~u2 ,tp!1Fa~u2 ,tq!2Fa~u1 ,tq!1~2qf•K !
]Fa~u1 ,tp ,Dqf

!

]Dqf
U

Dqf
5m2
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1~2qi•K !
]Fa~u2 ,tp ,Dqi

!

]Dqi
U

Dqi
5m2

1~2pf•K !
]Fa~u2 ,tq ,Dpf

!

]Dpf
U

Dpf
5m2

1~2pi•K !
]Fa~u1 ,tq ,Dpi

!

]Dpi
U

Dpi
5m2

1•••G
3@ ū~qf !lau~qi !ū~pf !l

au~pi !1~21!aū~pf !lau~qi !ū~qf !l
au~pi !#. ~23!

Let us define

I a[Fa~u1 ,tp!2Fa~u2 ,tp!1Fa~u2 ,tq!2Fa~u1 ,tq! ~24a!

5 1
2 $@Fa~u1 ,tp!2Fa~u2 ,tp!#2@Fa~u1 ,tq!2Fa~u2 ,tq!#1@Fa~u1 ,tp!2Fa~u1 ,tq!#2@Fa~u2 ,tp!2Fa~u2 ,tq!#%.

~24b!

The choice of the expression given by Eq.~24b! is guided by the requirement that the Pauli principle be satisfied. Using
kinematic identities

u12u252~qf2pi !•K52~qi2pf !•K,

tp2tq52~qf2qi !•K52~pi2pf !•K, ~25!

and the mean-value theorem, we obtain

Fa~u1 ,tp!2Fa~u2 ,tp!52~qi2pf !•K
]Fa~um ,tp!

]um
, ~26a!

Fa~u1 ,tq!2Fa~u2 ,tq!52~qi2pf !•K
]Fa~um8 ,tq!

]um8
, ~26b!

Fa~u1 ,tp!2Fa~u1 ,tq!52~pi2pf !•K
]Fa~u1 ,tm!

]tm
, ~26c!

Fa~u2 ,tp!2Fa~u2 ,tq!52~pi2pf !•K
]Fa~u2 ,tm8 !

]tm8
, ~26d!

whereum andum8 lie betweenu1 andu2, andtm and tm8 lie betweentp and tq . Inserting Eqs.~26a!–~26d! into Eq. ~24b!, we
get

I a5~qi2pf !•K
]Fa~um ,tp!

]um
2~qi2pf !•K

]Fa~um8 ,tq!

]um8
1~pi2pf !•K

]Fa~u1 ,tm!

]tm
2~pi2pf !•K

]Fa~u2 ,tm8 !

]tm8
. ~27!

The expression forMm
I can now be generated if we substitute Eq.~27! into Eq. ~23!. We find

Mm
I 52e(

a51

5 F ~qi2pf !m

]Fa~um ,tp!

]um
2~qi2pf !m

]Fa~um8 ,tq!

]um8
1~pi2pf !m

]Fa~u1 ,tm!

]tm
2~pi2pf !m

]Fa~u2 ,tm8 !

]tm8

12qfm
]Fa~u1 ,tp ,Dqf

!

]Dqf
U

Dqf
5m2

12qim
]Fa~u2 ,tp ,Dqi

!

]Dqi
U

Dqi
5m2

12pfm
]Fa~u2 ,tq ,Dpf

!

]Dpf
U

Dpf
5m2

12pim
]Fa~u1 ,tq ,Dpi

!

]Dpi
U

Dpi
5m2

1•••G @ ū~qf !lau~qi !ū~pf !l
au~pi !1~21!aū~pf !lau~qi !ū~qf !l

au~pi !#. ~28!
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C. The two-u-two-t special amplitudeMµ
TuTts

„u1 ,u2 ; tp ,tq…

The amplitudeMm
TuTts can be obtained if we combine th

amplitudeMm
E given by Eq. ~21! with the amplitudeMm

I

given by Eq.~28!,

Mm
T5Mm

E1Mm
I

5Mm
TuTts1O~K !. ~29!

We observe that all off-shell derivative terms cancel p
cisely. The derivatives ofFa with respect toum , um8 , tm ,
andtm8 can be replaced by the finite differences by using E
~26a!–~26b!. For example, Eq.~26a! gives

]Fa~um ,tp!

]um
5
Fa~u1 ,tp!2Fa~u2 ,tp!

2~qi2pf !•K
.

If we use the finite differences and the following relations

~qf2pi !•«

~qf2pi !•K
5

~qi2pf !•«

~qi2pf !•K
,

~pi2pf !•«

~pi2pf !•K
5

~qf2qi !•«

~qf2qi !•K
, ~30!

the amplitudeMm
TuTts can be written as

Mm
TuTts5e(

a51

5

@ ū~qf !Xamu~qi !ū~pf !l
au~pi !

1ū~qf !lau~qi !ū~pf !Ym
au~pi !

1ū~pf !l
au~qi !ū~qf !Zamu~pi !

1ū~pf !Tm
au~qi !ū~qf !lau~pi !#, ~31!

where

Xam5Fa~u1 ,tp!Fqfm1Rm
qf

qf•K
2VmGla

2Fa~u2 ,tp!laFqim1Rm
qi

qi•K
2VmG ,

Ym
a5Fa~u2 ,tq!Fpfm1Rm

pf

pf•K
2VmGla

2Fa~u1 ,tq!l
aFpim1Rm

pi

pi•K
2VmG ,

Zam5~21!aFa~u1 ,tp!Fqfm1Rm
qf

qf•K
2VmGla

2~21!aFa~u1 ,tq!laFpim1Rm
pi

pi•K
2VmG ,
e

re-

qs.

:

Tm
a5~21!aFa~u2 ,tq!Fpfm1Rm

pf

pf•K
2VmGla

2~21!aFa~u2 ,tp!l
aFqim1Rm

qi

qi•K
2VmG , ~32!

with

Vm5
~qf2pi !m

2~qf2pi !•K
1

~qf2qi !m

2~qf2qi !•K
5

~qi2pf !m

2~qi2pf !•K

1
~pi2pf !m

2~pi2pf !•K
.

It is easy to verify thatMm
TuTts is gauge invariant; that is, one

can demonstrate thatMm
TuTtsKm50.

If pi is interchanged withqi , or if qf is interchanged with
pf , we find

Xam ↔
qi↔pi

2Zam ,

Ym
a ↔
qi↔pi

2Tm
a ,

Xam ↔
qf↔pf

2Tam ,

Ym
a ↔
qf↔pf

2Zm
a . ~33!

Equation ~33! assures one that the amplitudeMm
TuTts will

change sign ifqi↔pi or qf↔pf . Hence the Pauli principle
is still satisfied.

The amplitudeMm
TuTtsgiven by Eq.~31! can be separated

into an external contributionMm
TuTts(E) and an internal con-

tributionMm
TuTts(I ),

Mm
TuTts5Mm

TuTts~E!1Mm
TuTts~ I !, ~34!

where

Mm
TuTts~E!5e(

a51

5

@ ū~qf !Xam~E!u~qi !ū~pf !l
au~pi !

1ū~qf !lau~qi !ū~pf !Ym
a~E!u~pi !

1ū~pf !l
au~qi !ū~qf !Zam~E!u~pi !

1ū~pf !Tm
a~E!u~qi !ū~qf !lau~pi !#. ~35!

and

Mm
TuTts~ I !52e(

a51

5

Vm@Fa~u1 ,tp!2Fa~u2 ,tp!1Fa~u2 ,tq!

2Fa~u1 ,tq!#@Ga1~21!aG̃a# ~36a!

52eVm@F~u1 ,tp!2F~u2 ,tp!1F~u2 ,tq!

2F~u1 ,tq!#. ~36b!
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In Eq. ~35!, Xam(E), Ym
a(E), Zam(E), andTm

a(E) are given
by the following expressions:

Xam~E!5Fa~u1 ,tp!S qfm1Rm
qf

qf•K
D la

2Fa~u2 ,tp!laS qim1Rm
qi

qi•K
D ,

Ym
a~E!5Fa~u2 ,tq!S pfm1Rm

pf

pf•K
D la

2Fa~u1 ,tq!l
aS pim1Rm

pi

pi•K
D ,

Zam~E!5~21!aFa~u1 ,tp!S qfm1Rm
qf

qf•K
D la

2~21!aFa~u1 ,tq!laS pim1Rm
pi

pi•K
D ,

Tm
a~E!5~21!aFa~u2 ,tq!S pfm1Rm

pf

pf•K
D la

2~21!aFa~u2 ,tp!l
aS qim1Rm

qi

qi•K
D . ~37!

Note that we have used the definition of the elastic amp
tude, Eq.~2! ~with p̄f→pf and q̄f→qf), to obtain Eq.~36b!
from Eq. ~36a!.

The amplitudeMm
TuTts(I ) does not vanish in general. If

we use the following expansion,

Fa~u1 ,tp!2Fa~u2 ,tp!1Fa~u2 ,tq!2Fa~u1 ,tq!

51@2~qi2pf !•K#@2~pi2pf !•K#

3
]2Fa~u1 ,tq!

]tq]u1
1O~K3!, ~38!

then Eq.~36a! can be written as

Mm
TuTts~ I !52e(

a51

5

@2~pi2pf !•K~qi2pf !m

12~qi2pf !•K~pi2pf !m#
]2Fa~u1 ,tq!

]tq]u1

3@Ga1~21!aG̃a#1O~K2!, ~39!

which shows thatMm
TuTts(I ) is order ofK. This feature, to-

gether with the fact thatMm
TuTts is free of off-shell deriva-

tives, proves that the amplitudeMm
TuTts is consistent with the

soft-photon theorem. In order to obey charge conservati
the internal amplitudeMm

TuTts(I ) must vanish at the tree
level. To see this, let us consider a one-boson-excha
~OBE! model. For any OBE model, the elastic amplitude
F(ui ,t j ) can be expressed as follows:

F~ui ,t j !5FD~ t j !2FE~ui ! ~ i51,2;j5p,q!. ~40!
li-

on,

nge
s

Here,FD(t j ) andFE(ui) represent all direct amplitudes and
all exchange amplitudes, respectively. Inserting Eq.~40! into
Eq. ~36b!, we find

Mm
TuTts~ I !50. ~41!

IV. DISCUSSION

A. The two-u-two-t special amplitudes

The amplitudeMm
TuTts given by Eq.~31! is not the only

two-u-two-t special amplitude which can be constructe
from the external amplitude Eq.~21! by imposing gauge in-
variance. In Eq.~23!, the expression forMm

I Km involves a
factor I a defined by Eq.~24a!. If we rewrite I a in the form
shown in Eq.~24b!, and use the formulas given by Eqs
~26a!–~26d!, we obtain Eq.~27!. It is this expression forI a

that gives us the amplitudeMm
TuTts. This amplitude has many

good features: it is relativistic, gauge invariant, consiste
with the soft-photon theorem, and it satisfies the Pauli prin
ciple.

However, Eq.~27! is not a unique expression forI a . If
we substitute Eqs.~26a! and~26b! into Eq. ~24a!, we obtain

Ī a52~qi2pf !•K
]Fa~um ,tp!

]um
22~qi2pf !•K

]Fa~um8 ,tp!

]um8
,

~42!

which is different from Eq.~27!. If Eq. ~42! were used, we
would obtain a new amplitude,M̄m

TuTts, which is given by
the same expression asMm

TuTts defined in Eqs.~31! and~32!
but with Vm replaced byV̄m , with

V̄m5
~qi2pf !m

~qi2pf !•K
5

~qf2pi !m

~qf2pi !•K
. ~43!

If pi is interchanged withqi ~or if qf is interchanged with
pf), then we have

V̄m →
qi↔pi

~pi2pf !m

~pi2pf !•K
5

~qf2qi !m

~qf2qi !•K
ÞV̄m, ~44a!

while, on the other hand,

Vm →
qi↔pi

Vm . ~44b!

Thus, there is an important difference between the two am
plitudes,Mm

TuTtsandM̄m
TuTts, becauseMm

TuTtsdoes satisfy the
Pauli principle, whileM̄m

TuTts violates it. This is the main
reason why the amplitudeMm

TuTts, not M̄m
TuTts, should be

used for theppg process.
If we apply the Fierz transformation,

S G̃1

G̃2

G̃3

G̃4

G̃5

D 5
1

4 S 1 1 1 1 1

6 22 0 0 6

4 0 22 2 24

4 0 2 22 24

1 1 21 21 1

D S G1

G2

G3

G4

G5

D ,

~45!
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we can write Eq.~2! in the form

F5 (
a51

5

Fa
e~u,t !Ga , ~46!

or in the form

F5 (
a51

5

Fa
e~s,t !Ga , ~47!

where

S F1
e

F2
e

F3
e

F4
e

F5
e

D 5
1

4 S 3 6 24 4 21

21 2 0 0 21

21 0 6 2 1

21 0 22 2 1

21 6 4 24 3

D S F1

F2

F3

F4

F5

D .

~48!

Equation~46! is obtained when we choose (u,t) to be the
two independent variables; i.e., we useFa5Fa(u,t) in Eq.
~2!. On the other hand, Eq.~47! is obtained if the two inde-
pendent variables are (s,t). For thepp elastic case, the ex-
pressions forF given by Eqs.~2!, ~46!, and~47! are identi-
cal. However, if these expressions are used as input
generateppg amplitudes, then the constructed amplitud
will be different. The amplitude generated from Eq.~47! will
be discussed in the next subsection. Here, we would like
present, without showing the details of derivation, two mo
two-u-two-t special amplitudes that can be obtained fro
Eq. ~46!. We have

Mim
TuTts5e(

a51

5

@ ū~qf !Xiamu~qi !ū~pf !l
au~pi !

1ū~qf !lau~qi !ū~pf !Yim
a u~pi !#, ~49!

where (i51,2),

Xiam5Fa
e~u1 ,tp!Fqfm1Rm

qf

qf•K
2VimGla

2Fa
e~u2 ,tp!laFqim1Rm

qi

qi•K
2VimG ,

Yim
a 5Fa

e~u2 ,tq!Fpfm1Rm
pf

pf•K
2VimGla

2Fa
e~u1 ,tq!l

aFpim1Rm
pi

pi•K
2VimG , ~50!

with

V1m5Vm ,

V2m5V̄m ,

andVm and V̄m are defined by Eqs.~32! and ~43!, respec-
tively. In deriving M1m

TuTts, we have used Eqs.~24b! and
to
es

to
re
m

~26a!–~26d!. On the other hand, we have used Eqs.~24a!,
~26a!, and~26b! to deriveM2m

TuTts. It can be shown that the
amplitudeM1m

TuTts is identical to the amplitudeMm
TuTts. Let

us outline the proof as follows: If we write Eqs.~45! and~48!
in the form G̃a 5 (bCabGb andFa

e5(bC̄abFb , respec-
tively, thenCab andC̄ab can be defined. The first step is to
transform the exchange terms, the third and fourth terms
Eq. ~31!, into the same form as the direct terms by using th
Fierz identity, (la)ab(l

a)cd 5 (b51
5 Cab(lb)ad(l

b)cb . The
second step is to combine these transformed direct ter
obtained in the first step with the original direct terms of Eq
~31!. The amplitudeM1m

TuTts can be easily obtained if we use
the identityC̄ab 5 dab1(21)bCba . Clearly,M1m

TuTts satis-
fies the Pauli principle, because it is identical toMm

TuTts. The
proof can also be carried out starting directly fromM1m

TuTts.
This can be accomplished by using another identity
(a51
5 CagC̄ab 5 (21)bC̄gb .
The amplitudeM2m

TuTts ([M̄m
TuTts) has been used in Ref.

@3#. This amplitude violates the Pauli principle because it
internal amplitude depends uponV̄m . However, the violation
is only of orderK. To see this, one need only observe tha
the internal amplitude forM2m

TuTts is given by the same ex-
presssion as that in Eq.~36a! but with Vm replaced byV̄m ,
Fa replaced byFa

e and theG̃a omitted. If one then carries
out an expansion similar to that given by Eq.~38!, one sees
that the internal amplitude contributes only to the term o
orderK, the third term, in the soft-photon expansion.

The amplitudesMm
TuTtsandM2m

TuTtshave been numerically
studied. We found that theppg cross sections calculated
from the two amplitudes are not significantly different, ex
cept for those cases when both proton scattering angles
very small and the photon anglecg is around 180°. The
amplitudeMm

TuTts gives the expected symmetric angular dis
tribution for 0<cg<180° and 180°<cg<360°, while
M2m

TuTts yields angular distributions that are slightly distorted
around the pointcg5180o. Otherwise, both calculated cross
sections are in good agreement with the experimental da
and most of the potential model predictions.

Finally, it should be pointed out that the Low amplitude
can be derived from eitherMm

TuTtsorM1m
TuTts, and therefore it

satisfies the Pauli principle.

B. The two-s-two-t special amplitudesMµ
TsTts

„si ,sf ; tp ,tq…

Another class of amplitudes, the two-s-two-t special am-
plitudes, can be derived if (s,t) are chosen to be the inde-
pendent variables. The input~elastic-scattering amplitude!
used to generate this class of amplitudes can be either Eq.~2!
with Fa5Fa(s,t) ~without introducing the Fierz transforma-
tion! or Eq.~47!, which is obtained from Eq.~2! by applying
the Fierz transformation. In other words, two amplitudes ca
be constructed, but it can be shown that they are identic
The same procedure as outlined in the previous subsect
can be followed to obtain the proof. Here, we will just
present the expressions for these two amplitudes witho
derivation, because the procedures for deriving them are ve
similar to those used in the previous sections forMm

TuTts.
If Eq. ~2! with Fa5Fa(s,t) is used as input, the resulting

ppg amplitude assumes the form
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M1m
TsTts~si ,sf ;tp ,tq!5e(

a51

5

@ ū~qf !X̃1amu~qi !ū~pf !l
au~pi !

1ū~qf !lau~qi !ū~pf !Ỹ1m
a u~pi !

1ū~pf !lau~qi !ū~qf !Z̃1m
a u~pi !

1ū~pf !T̃1amu~qi !ū~qf !l
au~pi !#,

~51!

where

X̃1am5Fa~si ,tp!S qfm1Rm
qf

qf•K
2WmD la

2Fa~sf ,tp!laS qim1Rm
qi

qi•K
2WmD ,

Ỹ1m
a 5Fa~si ,tq!S pfm1Rm

pf

pf•K
2WmD la

2Fa~sf ,tq!l
aS pim1Rm

pi

pi•K
2WmD ,

Z̃1m
a 5~21!aFa~si ,tp!S qfm1Rm

qf

qf•K
2WmD la

2~21!aFa~sf ,tq!l
aS pim1Rm

pi

pi•k
2WmD ,

T̃1am5~21!aFa~si ,tq!S pfm1Rm
pf

pf•K
2WmD la

2~21!aFa~sf ,tp!laS qim1Rm
qi

qi•K
2WmD , ~52!

with

Wm5
~pi1qi !m

~pi1qi !•K
5

~pf1qf !m

~pf1qf !•K
.

On the other hand, if Eq.~47! is used to generate the two
s-two-t special amplitude, we obtain

M2m
TsTts~si ,sf ;tp ,tq!5e(

a51

5

@ ū~qf !X̃2amu~qi !ū~pf !l
au~pi !

1ū~qf !lau~qi !ū~pf !Ỹ2m
a u~pi !#,

~53!

where
-

X̃2am5Fa
e~si ,tp!S qfm1Rm

qf

qf•K
2WmD la

2Fa
e~sf ,tp!laS qim1Rm

qi

qi•K
2WmD ,

Ỹ2m
a 5Fa

e~si ,tq!S pfm1Rm
pf

pf•K
2WmD la

2Fa
e~sf ,tq!l

aS pim1Rm
pi

pi•K
2WmD . ~54!

Obviously, both amplitudes (M1m
TsTts[M2m

TsTts) are relativis-
tic, gauge invariant, and consistent with the soft-photon the
rem. The most serious theoretical arguments against the u
of these two amplitudes to describe theppg process are that
they are quite different from the amplitude constructed from
the OBE model and that they violate the Pauli principle. I
qi is interchanged withpi ~or qf with pf), thentp andtq will
be transformed intou1 andu2, and one obtains the amplitude
Mim

TsTts(si ,sf ;u1 ,u2) ( i51,2), which is completely different
from the amplitude2Mim

TsTts(si ,sf ;tp ,tq).

We have shown thatMm
TuTts ~or M1m

TuTts) is a suitable am-
plitude to use in describing theppg process, because it
meets all theoretical requirements. As we have noted abo
even though the amplitudeM2m

TuTts does not satisfy the Pauli
principle at the orderK, its numerical predictions are close to
the results calculated from the amplitudeMm

TuTts, potential
models @7–11#, and the OBE model@12#, for most cases.
That is, the violation of the Pauli principle is not serious, an
the amplitude describes theppg cross sections rather well.
The (s,t) class of amplitudes (M1m

TsTts[M2m
TsTts), on the other

hand,cannotreproduce the OBE result. The OBE amplitude
in fact, belongs to the (u,t) class of amplitudes. Moreover,
the violation of the Pauli principle for the (s,t) class of am-
plitudes is far more serious than it is for the (u,t) class of
amplitudes. This is the most compelling reason why th
(u,t) class of amplitudes should be used to describe th
ppg process, and why the optimal amplitude isMm

TuTtsgiven
by Eq. ~31!.
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