PHYSICAL REVIEW C VOLUME 54, NUMBER 4 OCTOBER 1996

Pauli principle in the soft-photon approach to proton-proton bremsstrahlung
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A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon

theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This soft-
photon amplitude is the first twotwo-t special amplitude to satisfy all theoretical constraints. The conven-
tional Low amplitude can be obtained as a special case. It is demonstrated that previously proposed amplitudes
for this process, both th@,t) and(s,? classes, violate the Pauli principle at some level. The origin of the Pauli
principle violation is shown to come from two sourcés: For the (s, class, the twa-two-t amplitude
transforms into the twa-two-u amplitude under the interchange of two initial-stéde final-state protons.(ii)
For the(u,} class, the use of an internal emission amplitude determined from the gauge-invariance constraint
alone, without imposition of the Pauli principle, causes a problem. The resulting internal emission amplitude
can depend upon an electromagnetic factor which is not invariant under the interchange of the two protons.
[S0556-28186)05909-3

PACS numbdps): 13.75.Cs, 13.406-f

[. INTRODUCTION less and to have different masses and charges. The elastic
scattering amplitude was defined as the sum of a direct am-
It has been known since the early work of LgW] that  plitude and an exchange amplitude. Under these assump-
the soft-photon theorem applies to all nuclear bremsstrahlungons, the derived amplitudes are applicable to a description
processes. This theorem states that, when the total bremet bremsstrahlung processes involving the scattering of two
strahlung amplitude is expanded in powers of the photorosons, but not two fermions. Because the proton is a spin-
momentum(energy K, the coefficients of the two leading 1/2 particle and the two-proton amplitude must obey the
terms are independent of off-shell effects. Therefore, thdauli principle, thepp elastic amplitude must be antisym-
theorem implies that a soft-photon approximati@m on-  metric under interchange of the protons. That is, for pipe
shell approximation based upon the first two termisould case the scattering amplitude should be obtained as the direct
provide a good description of any bremsstrahlung procesgmplitude minugnot plug the exchange amplitude. There-
including proton-proton bremsstrahlung{y). The open fore, theTuTtsamplitude derived in Ref2] is not a proper
question has been how to construct a soft-photon amplitudeepresentation of thppy process, even though the argument
which satisfies all theoretical constraints. regarding why theluTtstype amplitude should be used to
During the past three decades, a variety of soft-photorescribe thg p bremsstrahlung process is correct. Moreover,
amplitudes have been proposed to describepire process. there is an additional problem which is related to the ambi-
Although most of these amplitudes are relativistic, gauge inguity in determining the internal emission amplitude. With-
variant, and consistent with the soft-photon theorem, theyut imposing the fermion antisymmetry requirement, the
violate the Pauli principle at some level. The requirement ofgauge invariant condition alone does not yield a unique ex-
fully satisfying the Pauli principle was heretofore neglected.pression for the internal amplitude. This important point, em-
The purpose of this paper is to provide a derivation of aphasized here, was not imposed in R&fl. As a result, the
soft-photon amplitude that not only is consistent with theinternal amplitude obtained in R€df2] for the nonidentical
soft-photon theorem, is valid relativistically, is manifestly particles considered is not a proper choice for bremsstrah-
gauge invariant, but also satisfies the Pauli principle. lung processes involving two identical nucleons. For the case
Recently, a prescription to generate two classes of softef ppy the violation of the Pauli principle for th&uTts
photon amplitudes was discusséd) the twou-two-t spe- amplitude introduced in Ref2] is not serious since such
cial (TuTt9 amplitudes from the class expressed in terms ofiolation is found only in the term of ordé.
the (u,t) Mandelstam variables ar(@) the twos-two-t spe- A more realisticTuTts amplitude for theppy process
cial (TsTt9 amplitudes from the class expressed in terms ofvas proposed recentlf3]. That amplitude is relativistic,
the (s,t) Mandelstam variablel®2]. In Ref.[2], simple cases gauge invariant, and consistent with the soft-photon theorem.
were used to demonstrate basic ideas and methods. The twtmwever, it does not obey the Pauli principle at kxeorder
particles involved in the scattering were assumed to be spirin the expansion in terms &€. The problem arises from the
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internal amplitude. It involves an electromagnetic factor

which is not invariant under the interchange of the two

initial-state (incoming or two final-statgloutgoing protons.

As we demonstrate below, this factor is but one of two pos-
sible choices that can be obtained by imposing gauge invari-

ance. The second choice for the invariant factor was missed
in Ref.[3], because the requirement that the Pauli principle

G

3 e

o=1

be satisfied was not imposed in the derivation.

Except for theTuTts amplitude discussed in Ref3],
almost allpp+y soft-photon amplitudes considered in the lit-
erature belong to thes(t) class. These amplitudes depend
upon thepp elastic amplitude, which is evaluated at the
square of the total center-of-mass enesgnd the square of
the momentum transfer In fact, in most cases the average
s and the average were used. The amplitudes obtained by
Nyman[4] and Fearingd5] are two well-known examples.

FIG. 1. Schematic representation of the proton-proton elastic
scattering procesda) corresponds to a sum over the five direct
amplitudesyb) corresponds to a sum over the five exchange ampli-

Such amplitudes are classified as Low amplitudes. Except fdrdes multiplied by the sign factor1).

the Low amplitudes, all other amplitudes in tkg?! class
violate the Pauli principle for the following reason: If one
interchanges the two initial-stater final-statg protons, then
one converts thes(t) class of amplitudes into thesfu)
class of amplitudes. Because tpe@y process involves a
half-off-shell amplitude (not an elastic amplitude the

(s,u) amplitude obtained by this procedure is completely

different from the original $,t) amplitude. Therefore, it is
impossible to regain the originakt) amplitude with just a
sign change after interchanging the two protons.

This paper is structured as follows. In Sec. Il we define

the pp elastic scattering amplitude which will be used as
input to generate the bremsstrahlung amplitudes for th

G.=u(go u(g)u(po)Neu(p;),

ppy process. We use the amplitude introduced by Gold-

berger, Grisaru, MacDowell, and WorlGGMW) [6], but
without incorporating the Fierz transformation. In Sec. Il we
derive a relativisticTuTtsamplitude by imposing gauge in-

Go= (PN () u(ANNU(py), )
and we define
()\1’)\2’7\3:7\4:)\5)5(L%vi)’s)’w’}’w?’s)’
13233445 ot
i (NS NSNS AN )E(l,ﬁ,l'y5'y",'y",'y5).
Note that A, and A* are tensors. For example,

AN ,=N\2= 30,,0*", where the summation over and
v is implied. In Eq.(2), F, (e=1,...,5) are invariant func-

variance and the Pauli principle. In deriving the amplitude, &10ns of the Mandelstam variablest, andu,

straightforward and rigorous approach, slightly different
from that employed in Ref2], is utilized. We verify that the
resultingTuTtsamplitude is consistent with the soft-photon
theorem. Finally, a variety of other amplitudes, which violate
the Pauli principle, are discussed in Sec. IV.

Il. THE PROTON-PROTON ELASTIC
SCATTERING AMPLITUDE

The Feynman amplitude for pp elastic scattering,

p(ai)+p(p!)—p(af) +p(pf), (1)
can be written a$6]
F=F1(G;—Gy)+F(Gy+G,) +F3(G3—G3)
+F4(Gs+Gy) +Fs(Gs—Gs)
:,i Fo[Gu+(—1)°G,], ®)

where

s=(0i+p)?=(qr+pp)?,

t=(p¢—pi)?=(ar—aq)?

u=(ps—a)*=(ar—p)* €)
Because of energy-momentum conservation,
{'+pf'=af +pf . (5)
s, t, andu satisfy the following relation,
s+t+u=4m?, (6)

so that only two of them are independefitlere m is the
proton massg.The optimal choice of these two independent
variables will depend on the fundamental diagrafosthe
dominant tree diagramsof a given process. In our case,
guided by a meson-exchange theory of thl interaction,
we chooseu andt to be the two independent variables, and
we write F,=F ,(u,t). In Eq. (2), =3_,F,(u,t)G, repre-
sents a sum over the five direct amplitudes, while
Eizl(—l)“Fa(u,t)Ga represents a sum over the five ex-
change amplitudes multiplied by the sign factor arising for
two nucleons. The five direct amplitudes are depicted in Fig.
1(a) and the five exchange amplitudes are exhibited in Fig.
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FIG. 2. The external bremsstrahlung diagrams generated from Fig) 4nd (b) represent photon emission from theleg; (c) and(d)
from theq; leg; (e) and(f) from the ps leg; (g) and (h) from thep; leg.

1(b). These ten elastic-scattering diagrams will be used as lll. PROTON-PROTON BREMSSTRAHLUNG
source graphs to generate bremsstrahlung diagrams. AMPLITUDES
The Pauli principle imposes some restrictions on

F,(u,t). For isotopic triplet states, we require that A External amplitudes

We can use Figs.(& and Xb) as source graphs to gen-
erate external emissigmp bremsstrahlung diagrams.

If the photon is emitted from thg;-leg, then we obtain
Figs. 4a) and Zb). The amplitudes corresponding to these
two diagrams can be written as

Fa(u,t)=(=1)*"1F,(t,u). ()

If we interchangeq® with pf* (or gf* with p), then(i) u is
interchanged with; (ii) G, is interchanged withG,; and
(iii) the direct amplitudeF ,(u,t)G, will be interchanged
with the exchange amplitude- (—1)“F ,(u,t)G,] but with
opposite sign. Thus, the amplitudeé given by Eq. (2
changes sign, and the Pauli principle is therefore satisfied.

5

_ 1 _
MOf(uy,tp,Aq,) =eZl Fa(Up,ty,Aq) U(qf)FM—_mMU(qi)U(pf)k“U(pi)

di+ K
_ — 1
+(—1)”‘U(pf)MU(qi)U(qf)F,Lmk“umi) , 8
|
where K
F#=7M—iﬁ(r}wK” (9)

up=(ps—0)?=(pi—as—K)?,
is the electromagnetic vertex. He®>0 is the proton

tp=(ps—pi)*= (g —qs—K)?, charge,« is the anomalous magnetic moment of the proton,
and we have used three-body energy-momentum conserva-
Ag,= (s +K)?=m*+2q;-K, tion for the ppy process,
and qf + pf'=af+ pf + K~ (10)
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It is easy to show that aFa(ulatplAqf)
+ R FolUs.tp Ag) =F Uy, ty) + —— ——
— I 1 qf;L “ 11 A Aq =m?2
[E— f
u(qf) qu+K_m U(Qf) qu ’ ( @
X(20¢-K)+- -+, (12)
where
« where
R2f=711[7wK]+ am 7w K1 di, (11b ,
Fa(ulitp)EFa(ulltpam )1
and we have usepiA,B]=AB—BA and{A,B}=AB+BA.
If we expandFa(ul,tp,Aqf) aboutAqumz, then Eq.(8) becomes
|
5 IF ,(ug,ty,Aq)
M (uy,ty,Aq) =€ Fa(ug,tp) + (2 K)———— ..
1% f = (gAqf s
Aqf=m

_ _ _ q
—> )\aU(Qi)U(pf)X“U(pi)+(—1)“U(pf))\aU(Qi)U(Qf)< fg—

+RY
"

K )V‘U(pi)]-

(13

If the photon is emitted from thg; leg, then we get Figs.(2) and 2d), and the corresponding amplitudes have the form

5
Mii(Ua tp 8q) =€ X

_ 1 _
Fa(Uz,tp,44) U(qf)kamFMU(qi)U(pf)k“U(pi)

_ 1 _
(=D UPHN T ,u(@)u(a) A “u(pi) |, (14
4i—K-m
where
U= (qs—pi)*=(di—pr—K)?,
and
Ag=(qi—K)*=m’—2q;-K.
If we use the relation
)
i m
——Tu(g)=— u(g;), 15
e G @ (15
where RZ‘ is given by the same expression as Etlb) but with gq; replaced byq;, and expand:a(uz,tp,Aqi) about
Aqi=m2,
IF o(Uz,tp,Aq)
Fa(u21tp!Aql):Fa(UZIIp)+T (_quK)+1 (16)
4 A, =m2
G
where

we obtain from Eq(14)

Fa(UZItp)EFa(u2|tp ,mz)v
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. > IF o(U2,tp,A¢,) — g, + R _
Mj’;(uz,tp,Aqg:—egl[Fawz.tp)—(zqi«)Ti . 2+~~ [u(qu( qi,K“)u(qi)u(qu(po
qi_m
+(=1)U(prq aK u(g)u(go) A u(p;) |- (17

Similarly, if the photon is emitted from thp; leg andp; leg, then we obtain Figs.(@ and Zf) and Figs. 2g) and Zh),
respectively. The amplitudes corresponding to these figures have the following expressions:

5 IF ,(Up,tq,Ap) o o pr+Rpf
Mif(Uthqupf):e;l|:Fa(u21tq)+(2pf'K)Tpff Apmz+-~- u(gp)\ Lu(ai)u(py) TK“ Au(pi)

_ pr‘FRZf _

+(=1)“u(py) TPk A u(gu(anA“u(py) |, (18)

f
and
_ ° IF o(U1,tq,Ap) o o D+ R
MZ‘(ul,tq,ApiF—eazl[Fa(ul,tq)—(Zpi'K)Tpi ) :m2+-~- u(goA u(g)u(ps)r® ﬁ) u(p;)
P

ap Y7 a pi#+RZ’i

+(=D“u(ps)A u(ai)u(ap)r oK u(pi) |- (19

Here,
tq=(ar— )%= (pi—ps—K)?,

Ap=(ps+ K)2=m?+2p;-K,
Ap=(pi—K)?=m?-2p; K, (20

and sz and RZ‘ are given by the same expressionsﬂ;éin Eqg. (11b but with g; replaced byp; andp;, respectively.
The external emission process is the sum of emission processes from the four proton legs. Therefore, the external brems-
strahlung amplitudeME , can be written as

M= ij(ul,tp Ag )+ Mj(uz,tp Ag)+ sz(uz,tq Ap )+ Mzi(ul,tq Ap). (21

B. Internal amplitudes

The internal bremsstrahlung amplitudé,,, can be obtained from the gauge-invariance condition,

(M5 +M))K~=0. (22

However, this condition alone cannot give a unique expression for the ampMQdeThe ambiguity can be removed if the
additional requirement of satisfying the Pauli principle is also imposed. Be@}%séég:qf ,Ps.0;,P;) are separately gauge
invariant, viz. REK#=0, we find

[ _ _mE
ML K#=—MEK#

5 IF (U1, tp,Aq)
= _egl Fa(ulrtp)_Fa(UZItp)+ Fa(UZutq)_ Fa(ulatq)+(2qf' K)T

A¢ Aqf:mZ
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- K)&Fa(uz,tp,Aqi) - K)&Fa(uz,tq,Apf) - K)aFa(ul,tq,Api)
+(20;-K) ————— + K)Y—/— +(2p;-K) ——— +..
q A, \ Pt A, N P A, o
q; P P;
X[u(@o A u(@)u(p)Au(py) + (= 1) “u(pp) A u(g)u(g) A “u(p;)]. (23
Let us define
IaEFa(ulitp)_Fa(u21tp)+Fa(u2!tq)_Fa(ulltq) (243
:%{[Fa(ulvtp)_Fa(UZ!tp)]_[Fa(ulvtq)_Fa(uzvtq)]+[Fa(ulvtp)_Fa(ulitq)]_[Fa(u21tp)_Fa(u21tq)]}' ( )
24b

The choice of the expression given by EB4b) is guided by the requirement that the Pauli principle be satisfied. Using the
kinematic identities

Up—Upx=2(q;—p;)-K=2(q;—ps)- K,

tp—tq=2(0s—0;)- K=2(pi—ps) - K, (25)

and the mean-value theorem, we obtain

9F of U 1)
F Uy tp) = Fa(Uz tp) = 2(0i = py) K— 202, (263
m
JF ,(up,tg)
F Uz tg) = F o(Uz,t) = 2(0 = pp) - K—— 7=, (26b)
m
aFoz(ulrtm)
Fa(Un,tp) =Fo(Up tg) = 2(pi—pp) K———=—, (260
m
IF o(Uz,tr)
FalUz tp) = FolUz t) =2(p; = py) - K—" 7, (260)
m

whereu,, andu), lie betweenu; andu,, andt,, andt,, lie betweent, andt, . Inserting Eqs(268—(260) into Eq. (24b), we
get

_ IF o(Up,tp) IF o(Up,tg) IF 4(Ug,tm) IF o(Uz,t0)
l,=(gi—ps)-K 0. (di—ps)-K ul +(pi—ps)-K . (pi—ps)-K U 27
The expression foML can now be generated if we substitute E2j7) into Eq. (23). We find
IF (U ,tp) IF L(ug,ty) IF ,(uq,ty) IF ,(Uy,t/)
I _ a\¥m:=p m:=q @ m m
M,L——e;::l [(Qi—pf)MTm—(Qi—pf),LTJr(pi—pf),LT— Pi— P+ ”T
dF o(up,tpy,Ag) 9F 4(Uz,ty,Aqg) IF 4(Uz,tg,Ap)
+2quuT +2qi’U‘T +2prT
gt Ay =m2 Gi Ay =m2 P A, =m2
s g; Ps
9F ,(ug,tg,Ap) o _ _ _
R ey w— + - ul@oNu(@)up) A “u(pi) + (= 1) “u(poA u(g)u(@)N“u(p)].  (28)
Pi A, =m?
b
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C. The two-u-two-t special amplitude M [“T*%(uy,u,;t, ,ty)

The amplitudeM |“T* can be obtained if we combine the
amplitude M§ given by Eq.(21) with the amplitudeM’,

given by Eq.(28),
T_nE |
M,=M_+M,

=M, T O(K).

We observe that all off-shell derivative terms cancel pre- \%
cisely. The derivatives oF , with respect tou,, U/, tm,
andt,, can be replaced by the finite differences by using Egs.

(269—(26b). For example, Eq(26a gives

aFa(um rtp) _ Fa(ul utp) - Fa(UZ rtp)
U 2(gi—psp)-K
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. Pt Ry .
TM:(_l) Fa(uz,tq) pf—K_V# A
[e3 [e3 QIM+R7‘LI
_(_1) FQ(UZItp))\ q|K _V/,L 1 (32)
_ (A5 =Pi) (45— di) _ (4= Pty
Bo2(ge—p)-K o 2(gi—q)-K - 2(gi—pp)-K
(Pi—Pt)
2(pi—ps)-K’

Itis easy to verify thaM ,“T*®is gauge invariant; that is, one
can demonstrate that | "'K#=0.
If p; is interchanged withy; , or if g is interchanged with

If we use the finite differences and the following relations: Pt. we find

(dr—pi)-& :(Qi_Pf)'S
(gr—pi) K (gi—ps)-K’

(Pi—ps)-e :(Qf_Qi)'S
(pi—pe)-K  (di—q;)-K’

the amplitudeM ;“™* can be written as

5
M ;UTE: ezl [U_(Qf)xaﬂu(qi)u_(pf))‘“u( Pi)

+u(gp\ u(a)u(pe) Yau(p;)

+FU(P)N*U(g)u(gs) Z,,u(p;)

+u(p) Tou(g)u(goNu(p)],
where

as
qf/.l,+ m
Xa,u.:Fa(ulytp)|:qf—.K_V,u,

q
_Fa(UZ!tp))\a

gi-K ®

Zay,: ( - 1)aFa(u1 ltp)

_(_1)aFa(ulltq))\a

pi.K I

xa# — —Za#,
9i < Pj
Yz - —TZ,
9i < Pi
(30)
Xa# — —Ta#,
Af Pt
Yo = —Zy. (33
i Pt
Equation (33) assures one that the amplitudé, "™ will
change sign ifg;< p; or q;—p;. Hence the Pauli principle
is still satisfied.
The amplitudeM ;""" given by Eq.(31) can be separated
into an external contributioMZ”TtS(E) and an internal con-
(83D tribution M]"T\1),

M;UTIS: M;UTIS(E) + M;UTIS(I ), (34)

where

5

MTSE) = X, [U(d0) X u(E)u(a)UpN“U(p))

+u(a) A u(g)ulp) Y5 (E)u(p))
+u(p)N*u(g)u(an Z,,(E)u(p;)
+u(p) TR(E)u(g)u(goru(p)]. (35
and

5
M;I;uTts(l): _eazl V[Fo(ug,tg) —F o(Up,tp) +F (U, tg)

—F (U1t [Ga+ (—1)°G,] (363
= _eVM[F(Ul,tp)_ F(Uz,tp)+F(U2,tq)
—F(ug,tg)]. (36h)
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In Eq. (39), Xou(E), YL(E), Z,,(E), andT(E) are given
by the following expressions:

i, + R
M y23 )\

Xa/.L(E) = Fa(ul ytp) qf—K

a

a
Qi TR
gi-K

- Fa(u21tp))\a

Pt
tut R

- = )\CY
pi-K

YZ(E) = Fa(u2 !tq)

Pj
pi/.L+ Rl-"
pi-K

Fa(ul!

tA®

+RY

Zou(E)=(—1)F (uy,t,) B

— |\
gi-K

a

Pi
Pip TR,

_(_1)aFa(ul!tq))\a

pi-K
tut R
TL(E)=(=1)"F,(uz,tg) K A
i, +RY
_(_l)aFa(Uthp))\a( g--K# (37
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Here,Fp(tj) andFg(u;) represent all direct amplitudes and
all exchange amplitudes, respectively. Inserting @6€) into
Eq. (36b), we find

MM TS = (41)

IV. DISCUSSION
A. The two-u-two-t special amplitudes

The amplitudeM """ given by Eq.(31) is not the only
two-u-two-t special amplitude which can be constructed
from the external amplitude E§21) by imposing gauge in-
variance. In Eq(23), the expression foM'ﬂK" involves a
factor | , defined by Eq(249. If we rewritel, in the form
shown in Eq.(24b), and use the formulas given by Eqgs.
(26a9—(26d), we obtain Eq(27). It is this expression fof,
that gives us the amplitudd ;" "**. This amplitude has many
good features: it is relativistic, gauge invariant, consistent
with the soft-photon theorem, and it satisfies the Pauli prin-
ciple.

However, Eq.(27) is not a unique expression foy,. If
we substitute Eq9263 and(26b) into Eq. (248, we obtain

Fa(Upm,tp)
au},

— IF (U, tp) 1%
=2(qi—py)-K— === 2(g;—py)-K
m

(42)

which is different from Eq(27). If Eq. (42) were used, we

would obtain a new amplltudeM/TL“Tts which is given by

Note that we have used the definition of the elastic ampliyhe same expression at! "' defined in Eqs(31) and (32)

tude, Eq.(2) (with ps— p; andg;—q;), to obtain Eq.(36b)
from Eq. (36a.

The amplitudeM ;"'1) does not vanish in general. If
we use the following expansion,

Fa(ug,tp) = F(Uz,ty) +F (U, tg) —
=+[2(di—ps)-KI[2(p;—ps) - K]

9°F o(Ug,tg)
tqduy

Fa(ul -tq)

+0O(K3), (39

then Eq.(36a can be written as

5
MJTS) = —ea; [2(pi—ps)-K(Gi—P1),

(ulv q)

+2(ai- tqdUy

pr) - K(pi— IOf),L]

X[G,+(—1)G,]+O(K?), (39)

which shows thaM “T'{1) is order ofK. This feature, to-
gether with the fact tham 1'Tis free of off-shell deriva-
tives, proves that the amplltucM,TL”Tts is consistent with the

soft-photon theorem. In order to obey charge conservation,

the internal amplitudeM |“"'(1) must vanish at the tree

level. To see this, let us consider a one-boson-exchange

(OBE) model. For any OBE model, the elastic amplitudes
F(u;,t;) can be expressed as follows:

F(ui,t)=Fp(t)—Fg(u) (i=1,2j=p,q). (40

but with V, replaced bWM, with

(qi_pf),u, _ (qf_pi),u
(@i—pr)-K  (gr—pi)-K’
If p; is interchanged withy; (or if g; is interchanged with
ps), then we have

V_

w=

(43

— Pi=Pp)p (A=),
vV, #V,, 44
Hp,(p| p-K (=) K™~ 413
while, on the other hand,
V, = V,. (44b)

qi < Pi

Thus, there is an important difference between the two am-
plitudes,M ;“TandM ™", becausév ;" "** does satisfy the
Pauli prlnC|pIe WhlIeMTUTtS violates it. This is the main
reason why the amplitud® "™, not M ;“T*, should be

used for theppy process.
If we apply the Fierz transformation,

Gy 1 1 1 1 1 G,
G, 6 -2 0 0 6 G,
G, :% 4 0 -2 2 -—-4]||G;s]|,
G, 4 0 2 -2 -4|| G,
3. 1 1 -1 -1 1 Gs

(45
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we can write Eq(2) in the form (268—(26d). On the other hand, we have used E(&ta,
(263, and (26b) to deriveM;™*. It can be shown that the
amplitudeM ;™" is identical to the amplitud® "™, Let
us outline the proof as follows: If we write Eqigl5) and(48)
in the formG, = =4C,5G; and F§=EBCQBFB, respec-
tively, thenC,; andC,4 can be defined. The first step is to
5 transform the exchange terms, the third and fourth terms of
F=2, F(s,)G,, (47  Ed.(31), into the same form as the direct terms by using the
a=1 Fierz identity, &) an(A“)ca = =3=1Cap(Ap)ad(M?)cp. The
second step is to combine these transformed direct terms

5
F= 2_‘,1 Fe(u,t)G,, (46)

or in the form

where obtained in the first step with the original direct terms of Eq.
Fe 3 6 -4 4 -1 FL (31). The amplitudeM 1 ;" can be easily obtained if we use
ce the identityC,z = 8,5+ (—1)PCg,. Clearly,M 1" satis-
2 1 -1 2 0 -1 F2 fies the Pauli principle, because it is identicaMd" ™. The
FS =2 -1 0 6 2 1 Fs|. proof can also be carried out starting directly from{ ;™.
Fe -1 0 -2 2 1 = TP51is can_be accon;@shed by using another identity,
Fe -1 6 4 -4 3 Fs Za=1CarCap = (= 1) Cop.

49 The amplitudeM ;™" (EM_ITL“Ttﬁ has been used in Ref.
[3]. This amplitude violates the Pauli principle because its

Equation(46) is obtained when we choose,f) to be the internal amplitude depends updf, . However, the violation
two independent variables; i.e., we usg=F ,(u,t) in Eq. is only of orderK. To see this, one need only observe that
(2). On the other hand, Eq47) is obtained if the two inde- the internal amplitude foM;‘jTtS is given by the same ex-
pendent variables ares,t). For thepp elastic case, the ex- presssion as that in E¢369 but with V,, replaced by,
pressions fof= given by Egs(2), (46), and(47) are identi- £ _ replaced byr® and theG, omitted. If one then carries
cal. However, if these expressions are used as input tgyt an expansion similar to that given by Eg8), one sees
generateppy amplitudes, then the constructed amplitudesthat the internal amplitude contributes only to the term of
W|” b.e differen.t. The amplitude ge.nerated from Eq7) W|” OrderK' the third term’ in the Soft_photon expansion_
be dlscusged in the ngxt subsectlpn. Here., we would like to The amplitudesv T“T‘SandMEjTtShave been numerically
present, without §howmg_the details of derlvatlon,.two MOrésydied. We found that thepy cross sections calculated
two-u-two-t special amplitudes that can be obtained fromom the two amplitudes are not significantly different, ex-
Eq. (46). We have cept for those cases when both proton scattering angles are
5 very small :%mgt the photon angig, is around 180°. The
TuTts_ — vy TR amplitudeM """ gives the expected symmetric angular dis-
Mi eazl LU0 Xia,u(a) u(POA“UCPY) trit%ugon for O< ,<180° and 180%y,<360°, while
— — a M, YT yields angular distributions that are slightly distorted
Fu(aniqula)up) Yi,ulpl, (49) artz)ﬁnd the pointy,, = 18(°. Otherwise, both calculated cross
where (=1,2), sections are in good agreement With_ the experimental data
and most of the potential model predictions.
Finally, it should be pointed out that the Low amplitude
Y can be derived from eithévl ,“"**or M1\T*®, and therefore it
satisfies the Pauli principle.

a
(R v
i

X — €
Xlau Fa(ulatp) qu

qi,u.+ Ril
i K ~Viuls B. The two-s-two-t special amplitudesM [*"'(s; , st . tq)

- Fi(UZ ltp))\a

Another class of amplitudes, the tvgetwo-t special am-
N plitudes, can be derived ifs(t) are chosen to be the inde-

A pendent variables. The inpuelastic-scattering amplitugle
used to generate this class of amplitudes can be eithd2Eq.
with F,=F ,(s,t) (without introducing the Fierz transforma-

: (50) tion) or Eq.(47), which is obtained from Eq2) by applying
the Fierz transformation. In other words, two amplitudes can

with be constructed, but it can be shown that they are identical.

The same procedure as outlined in the previous subsection
Vi,=V,, can be followed to obtain the proof. Here, we will just
present the expressions for these two amplitudes without
derivation, because the procedures for deriving them are very

. similar to those used in the previous sectionsl‘ﬂ)M“TtS.

andV, andV, are defined by Eqg32) and (43), respec- If Eq. (2) with F,=F ,(s,t) is used as input, the resulting

tively. In deriving MLLjTtS, we have used Eq924b and ppy amplitude assumes the form

Pt
fu R/.L
_Vip.

P+ R
iu By

—F5(ug,ty\e oK Vi

V2 =V

w Vo
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5
MISTs,spitp ,tq)=ea§=)l [U() X1a UG UPON“U(P;)
+U(ge) A u(g)ulpy) Y§,u(p;)
+U(po\ u(a)u(a) Z5,u(p;)

+U(Pr) T 1a,U(G) UGN (P ],
(51)

where

s, TR
u_wﬂ Ao

Xla,u:Fa(si vtp) qu

N
Wt R

q —w)
gi-K .

- Fa(sf ltp)}\a

~. pr+RI'1f .
Y1,=Fa(si sty pf—_K—Wﬂ A
D
PiutR,
pi-K

—Fa(sf,tq)x“( —Wﬂ),

=4 N Qf’u‘f'R?Lf w
1M:(_1) Fa(Si ,tp) qf—-K_W" A

Pi
PiutR)

—(=1)F (st ,tq))\“(W—WM) ,

Pt
Prut R, B

Tla,u:(_l) Fa(si!tq) pr

di
Qi TR, B

qi-K

—(—DFa(st tph,

with

_ (pl+q|),u, _ (pf+qf),u
Bo(pi+ai) K (pit+gp)-K-

On the other hand, if Eq47) is used to generate the two-

s-two-t special amplitude, we obtain

5
M3Tsi St itp tg) = egl [U_(Qf)';(zaﬂu(Qi)U_(IOf)VU(IOi)

+ UG u(g)ulpy) Ys,u(p)l,
(53

where
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- Ot R
XZa#:FZ(Si1tp)(W_WM )\a

_Fi(sf,tp))\a( 4K _WM’
= pf”‘f'sz N
Y3, =Falsi 1tq)(pf—_K—Wﬂ A

. piM+RZ‘
_Fi(Sf,tq))\ piT—W# . (59

Obviously, both amplitudesM 15 "=M3>™ are relativis-

tic, gauge invariant, and consistent with the soft-photon theo-
rem. The most serious theoretical arguments against the use
of these two amplitudes to describe fhpy process are that
they are quite different from the amplitude constructed from
the OBE model and that they violate the Pauli principle. If
q; is interchanged witlp; (or g; with p¢), thent, andt, will

be transformed into, andu,, and one obtains the amplitude
M2 Tsi,s15u5,U,) (i=1,2), which is completely different
from the amplitude—M{>T'(s; ¢ty tg).

We have shown tha¥l " (or M1™) is a suitable am-
plitude to use in describing thepy process, because it
meets all theoretical requirements. As we have noted above,
even though the amplitudd ;\™* does not satisfy the Pauli
principle at the ordeK, its numerical predictions are close to
the results calculated from the amplitub}" ™, potential
models[7-11], and the OBE mode]12], for most cases.
That is, the violation of the Pauli principle is not serious, and
the amplitude describes thEpy cross sections rather well.
The (s,t) class of amplitudesM 1, “=M3>"™, on the other
hand,cannotreproduce the OBE result. The OBE amplitude,
in fact, belongs to theut) class of amplitudes. Moreover,
the violation of the Pauli principle for thes(t) class of am-
plitudes is far more serious than it is for the,{) class of
amplitudes. This is the most compelling reason why the
(u,t) class of amplitudes should be used to describe the
ppy process, and why the optimal amplitudeMi”Ttsgiven
by Eqg.(31).
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