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Solving the four-dimensionalNN-pNN equations for scalars below
the meson-production threshold
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The four-dimensionalNN-pNN equations are adapted to the case of scalar particles with af2s interaction
Lagrangian and solved for energies below thes-production threshold. This is achieved in the approximation
wherefs scattering is dominated by thes-channelf-pole term. The importance of the removal of double
counting is investigated and a detailed comparison of the results of a covariant coupled-channel formula
and the Bethe-Salpeter equation in the ladder and ladder plus crossed-box approximations is presented. A
discussion of the extension of the method to energies above thes-production threshold is given.
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I. INTRODUCTION

Quantum chromodynamics~QCD! is now the accepted
theory of the strong interaction. Its highly nonperturbati
character at hadronic mass scales means that effective
theories of the strong interaction are almost always us
when the properties of few-hadron systems are calculated
some such field theories~e.g., those based on chiral pertu
bation theory! the Lagrangian is organized so that a pertu
bative calculation of hadronic reactions is appropriate,
least for ‘‘small’’ momenta@1–3#. However, to examine the
scale at which quark-gluon degrees of freedom become
sential we need to use these field theories to calculate h
ronic reactions at medium to large momenta. The need
explicit quark-gluon degrees of freedom may then be d
duced from failures of effective hadronic field theories
explain the experimental data. It is in this regime that chi
perturbation theory fails and unitarity plays an importa
role.

The amplitudes for any hadronic reaction are, of cour
exactly given by the infinite hierarchy of Schwinger-Dyso
equations, which can be derived by functional techniqu
@4–6#. An alternative method of deriving a set of couple
equations for the amplitudes of a field theory was develop
by Taylor @7,8#. It involves taking the series of Feynma
diagrams for a particular amplitude and classifying ea
graph according to its topology. The result is an infinite s
of coupled equations for the amplitudes of the field theo
Some approximate truncation of this set of equations~e.g.,
one that preservess-channel unitarity! must be found. Since
these equations are derived directly from the field theory,
of the integrals present in them will be four dimensiona
Note that despite the use of the Feynman diagrammatic
ries, Taylor’s method is a nonperturbative technique, sinc
sums certain classes of graphs to all orders in the coup
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constant. The great advantage of this method is that the
sulting equations depend only on the topology of the allowe
vertices of the field theory. Hence this is a particularly usef
approach in hadronic field theories, where the best effecti
Lagrangian has not yet been derived from QCD.

When applied to the two-to-two amplitude the Taylo
method yields

T~1!5T~2!1T~2!d1d2T
~1!, ~1.1!

where the bracketed superscripts indicate the irreducibility
each amplitude. This is, of course, a Bethe-Salpeter equat
~BSE! for the two-to-two amplitude, withT(2) as the ‘‘driv-
ing term’’ @9,10#. We note that ifT(2) is the sum ofall
two-particle irreducible two-to-two Feynman diagrams, the
this equation is exact. If the Taylor method is applied to th
three-to-three amplitude, four-dimensional Faddeev-lik
equations may be derived@11#.

In hadronic physics one problem that one might try t
apply Eq.~1.1! to is nucleon-nucleon scattering. Before an
calculations can be performed the nature of the kernelT(2)

must be specified. One approach, pursued by Fleischer a
Tjon is to assumeT(2) consists of a sum of one-boson-
exchange Feynman diagrams. This approximation gives
reasonable fit to the nucleon-nucleon phase shifts@12,13#.
However, for energies above the pion-production thresho
one needs to include the thresholds for all of the physica
allowed channels. In particular, if a theory that gives consi
tent predictions forNN scattering and pion production is to
be developed, the fullNNp intermediate-state structure of
the amplitudeT(2) must be exposed. The Taylor method i
well suited to this task, and attempts to use it in order
expose theNNp intermediate-state structure of field-
theoretic amplitudes, such asT(2), were pursued by Avishai
and Mizutani@14,15#. They used Taylor’s method to classify
all of the covariant perturbation theory diagrams that contri
ute to theNN→NN, NN↔NNp, andNNp→NNp ampli-
tudes and contain one explicit pion. The result was a set
Faddeev-like coupled four-dimensional integral equations f
the processes

nd,
1542 © 1996 The American Physical Society
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N1N
N1N1pJ↔ H N1N

N1N1p . ~1.2!

These equations were formally equivalent to the thre
dimensionalNN-pNN equations previously obtained by a
number of groups using different techniques@14,16–22#.
However, a crucial difference was that Avishai and M
zutani’s equations contained four-dimensional, rather th
three-dimensional, integrals. Similar four-dimensional equ
tions, but for theBB-pBB system, where theB could be
either a nucleon or aD, were later obtained by Afnan and
Blankleider@23#. By explicit construction, both Avishai and
Mizutani’s and Afnan and Blankleider’s equations were c
variant. Furthermore, unlike the three-dimensionalNN-
pNN equations, they did not treat different time orders
the same physical process differently. Consequently, th
four-dimensional equations avoided the theoretical proble
of the three-dimensionalNN-pNN equations that were
pointed out by Sauer, Sawicki, and Furui@24# and Jennings
and Rinat@25,26#. ~For a more detailed discussion of thi
point see@27,28#.!

Unfortunately, these four-dimensionalNN-pNN equa-
tions were not correct, since they double counted cert
Feynman diagrams. This double counting occurred due t
problem with the original Taylor method. Indeed, suc
double counting will arise whenever one tries to deriv
coupled field-theoretic equations whose input is full su
amplitudes for subsystem interactions. While a decompo
tion in terms of subsystem interactions is possible for a
Feynman diagram, it is not necessarily unique. Therefo
when the perturbation series is reorganized in order to der
such coupled equations, some Feynman diagrams get in
rectly included more than once in the resummed series.~See
@29# for a brief discussion and@8# for details.! To overcome
this problem, we need a procedure for determining the co
ditions under which double counting occurs and a way
remove the offending diagrams from the equations.
‘‘modified Taylor method,’’ which gives a prescription for
the subtractions necessary to remove this double count
was recently developed by us@8#. We then used this modi-
fied Taylor method to derive revised four-dimensionalNN-
pNN equations that do not contain double counting@27,29#.
These equations are essentially equivalent to those obta
by Kvinikhidze and Blankleider using different mean
@30,31#. The resulting set of coupled four-dimensional two
fragment scattering equations obeyNN andNNp unitarity,
are free of double counting, and are covariant, not only
shell, but also off shell in the manner dictated by the Fey
man diagrammatic expansion.

Thus a set of equations that gives a complete and corr
summation of theNN andNNp sectors of any hadronic field
theory now exists. However, it remains to be seen wheth
this set of equations can be solved in order to yield pred
tions for experimental quantities. For a detailed program d
scribing how such a solution might be achieved, see Sec. 7
Ref. @27#. This paper reports on a preliminary study of th
numerical solution of these equations. The equations
solved, not in a field theory of nucleons and pions, but in
scalar field theory. Consequently, details of spin and isos
are removed from the problem. In addition, there is no ne
to introduce subtractions or form factors to obtain conve
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gent integrals. The simplified calculations described here im
ply that the numerical solution of the full four-dimensiona
NN-pNN equationsis feasible. The use of a scalar field
theory also makes for a clear discussion of issues such as
usefulness of a coupled-channel formulation and the impo
tance of double counting removal in such an approach.

A field theory describing two types of spin-0 particles
interacting via a Yukawa coupling is chosen. A contact in
teraction is also included in order to ensure the stability o
the classical vacuum. The Lagrangian density for th
‘‘ f2s field theory’’ is

L5 1
2 @~]mf!22m2f21~]ms!22m2s2#

2
g

2
f2s2

b

4
f2s2. ~1.3!

Because the modified Taylor method is Lagrangian ind
pendent, theNN-pNN equations for distinguishable par-
ticles derived in Ref.@27# apply to thef2s field theory. The
distinguishable-particle equations must be symmetrized,
thef ’s are bosons. This leads to a set of nine two-fragme
scattering equations for the processes

f1f
~fs!1f
~ff!d1s

J→H f1f
~fs!1f
~ff!d1s

, ~1.4!

where (ff)d is a bound state of theff system that plays
the role of the deuteron. Below the threshold fors produc-
tion these equations provide a way of calculating thef-f
amplitude that corresponds to including infinitely many dia
grams in the kernel of a single Bethe-Salpeter equation f
that amplitude. Above thes-production threshold these
coupled equations allow us to calculate amplitudes for th
reactions of Eq.~1.4! in a framework that, provided the input
amplitudes have two-body unitarity, maintainsff and
ffs unitarity. Note that as in calculations using a single
BSE, the kernel to these equations must be approximated
order to make them computationally tractable.

The inputs to theseff-sff equations are the one-
particle irreducibles-f amplitudetfs

(1) and theffs vertex
function f (1). Because theff→ff amplitude appears in
the kernel of these equations they are a set of nonlinear,
bootstrap, equations. Strictly speaking, the complete nonli
ear set of four-dimensional equations should be solved f
the amplitudes of interest. To snap the bootstrap, in this wo
we mimic the approach of previous three-dimensionalpN-
ppN calculations@32# and use an inputff amplitude that
is constructed as a separable approximation to the ‘‘true
f-f amplitude. The energy range used in the construction
this expansion must bem below the energy at which the
coupled equations are to be solved. Arguments from Re
@27# show that we expect such an approach to yield a re
sonable solution to the set of nonlinear coupled equations.
this work we take the predictions of the ladder Bethe
Salpeter equation as the truef-f amplitude. The consis-
tency of this procedure may be judged by comparing th
result of the coupled-channel calculation to the separable
put amplitude.
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In order to simplify matters as far as possible we assu
that the amplitudetfs

(2) is zero, i.e., thatfs scattering is
dominated by the pole diagram. The implications of impo
ing this restriction are discussed in Sec. II. This assumpt
implies that the vertex function fors absorption on a single
f is given by

f ~1!~p8,p,k!5 f ~2!~p8,p,k!52 ig~2p!4d~4!~p82p2k!,
~1.5!

where the Feynman rules of the field theory have been u
in order to evaluatef (2).

If the input amplitudes are chosen in this way then th
ff-sff equations become a set of four coupled equatio
describing the processes in~1.4! that do not involve the
(fs) ‘‘isobar.’’ In this paper we solve these equations fo
ff scattering up to thes-‘‘deuteron’’ threshold and com-
pare the results with those from the BSE. In so doing we l
the foundation for studies of the covariant, four-dimension
NN-pNN equations derived in Ref.@27#.

In Sec. II we consider the fullff-sff equations and
discuss the consequences of the approximations made to
the simplest form of the equations that includes the coupli
to the s(ff)d channel. In the process we see how th
double counting problem arises at each level of approxim
tion and how the content of the kernel compares with that
the BSE. We also examine the consequences of taking
ladder approximation for thef-f amplitude in the kernel of
the coupled integral equations.

Since the input to the equations derived in Sec. II is t
f-f amplitude, we proceed in Sec. III to discuss the nume
cal solution of the Bethe-Salpeter equation in the ladder
proximation. We demonstrate that, in the case when the
teraction supports a bound system with a binding ener
comparable to that of the deuteron, a valid separable
proximation to thef-f amplitude can be written.

In Sec. IV we examine the solution of the couple
integral equations for the reactions in Eq.~1.4!. At this stage
only the solution of these equations below the threshold
s production is explored. We then compare our results w
those from the BSE when the kernel is taken to be either
ladder or the ladder plus crossed-boxs exchange. The effect
of vertex dressing in the BSE is also investigated. In partic
lar, it is found that vertex dressing must be included in t
Bethe-Salpeter kernel in order to maintain consistency w
the coupled-channel results. Finally, in Sec. V we give
summary with some concluding remarks about future wor

II. ff-sff EQUATIONS

There are two central questions in the analysis of t
ff-sff equations. First, what additional features do the
equations have as compared to BSE formulations? In p
ticular, how does the physics content of these equatio
change as different approximations are made for the kern
Second, what numerical problems are encountered in solv
these equations? In this section we address the first of th
questions, by illustrating the origin of the double countin
problems and showing how subtractions remove them. T
NN-pNN equations reported in Ref.@27,29#, which are ba-
sically the same as the equations of Kvinikhidze and Bla
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kleider @30,31#, are also valid for the Lagrangian in Eq.~1.3!
since the derivation of the equations does not depend on
choice of Lagrangian. As a result, theff-sff equations
for distinguishablef ’s are of the form

Tff5V̄~ 11d1d2Tff!

1(
j ,a

f ~1!~ j !d̄ jad j̄ ds t̃
~1!†~a!da

21d1d2dsTaf,

~2.1!

Tlf5(
j

d̄l j f
~1!†~ j !dj

21~11d1d2Tff!

1(
a

d̄lat
~1!~a!da

21d1d2dsTaf

2(
i , j

vx~ i !dsd̄ i j f
~1!†~ j !~ 11d1d2Tff!, ~2.2!

where we have taken particles 1 and 2 to be thef particles,
while particle 3 is thes. Here d̄ i j512d i j and j̄52 for
j51, while j̄51 for j52. The roman indices run from 1 to
2, while the greek indices run from 1 to 3. These equatio
differ from the corresponding equations of Avishai and M
zutani @15# and Afnan and Blankleider@23# in that thef-f
potentialV̄ and the one-particle irreducible 2→2 amplitude
t̃ (1)†(a) in Eq. ~2.1! have subtractions to remove double
counting in thef-f amplitudeTff , while the last term in
Eq. ~2.2! is a subtraction to avoid double counting in th
ff→sff amplitudeTlf . f

(1)( i ) is the one-particle irre-
duciblef←fs amplitude with particlei as spectator, while
t (1)(a) is the one-particle irreducible 2→2 amplitude with
particlea as spectator. The single-particle Feynman prop
gator for particlea is da . Thes-f potentialvx in Eq. ~2.2!
corresponds to theu-channelf-pole diagram, i.e.,

vx~ i !5 f ~1!~ i !d ī f
~1!†~ i !. ~2.3!

The two-body amplitudet̃ (1) is chosen such that the subtrac
tion is present only in thes-f amplitudes~see Ref.@27#!,
with the subtraction basically removing any initia
u-channel pole, i.e.,

t̃ ff
~1!5tff

~1! , t̃ sf
~1!5~ tsf

~1!dfds11 !vsf
R ,

vsf
R 5tsf

~2!2vsf
x . ~2.5!

In Eq. ~2.1! thef-f potentialV̄ is given by

V̄5VOSE* 2D12D22Ds2X2B, ~2.6!

whereVOSE* is the one-s-exchange potential, i.e.,

VOSE* 5 f ~1!* ~1!ds f
~1!* †~2!, ~2.7!

with the modified one-particle irreduciblesff form factor
f (1)* having dressing with theu-channel pole diagram sub-
tracted, i.e.,

f ~1!*5 f ~2!~ 11dsdf t̃ sf
~1! !. ~2.8!
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The subtractionsD2, Ds , X, andB are illustrated in Fig. 1
and are given explicitly in Ref.@27#. D1 is merelyD2 with
the two nucleons interchanged. All subamplitudes in Fig.
are one-particle irreducible in thes channel.

Since we are ultimately interested in theNN-pNN equa-
tions, the first approximation we consider is that the tw
particle irreducibles-f amplitude is just theu-channel pole
diagram, i.e.,tsf

(2)5vsf
x In this approximation the subtrac-

tions D1 and D2 in ~2.6! become unnecessary. All of the
other double counting problems are still present and must
removed by the explicit subtraction terms. Sincevsf

R 50, the
form factors in thes-exchange potential are two-particle ir
reducible, while theu-channel subtracteds-f amplitude is
zero, i.e.,

f ~1!*5 f ~2!, t̃sf
~1!505 t̃sf

~1!† . ~2.9!

We could now approximate both thes-f andf-f ampli-
tudes by separable expansions, which, after partial-wave
pansion, would reduce the coupled-channel problem to a
of coupled integral equations in two dimensions. Howeve
since this is an initial piece of numerical work on this prob
lem, we have chosen to concentrate on the problem of
separable expansion for thef-f amplitude and the proce-
dure for linearization of the coupled nonlinear integral equ
tions. To this end we have chosentsf

(2)50. Such a choice
implies that all one-particle irreducible form factors in Eq
~2.1! and~2.2! be replaced by the corresponding two-partic
irreducible form factor and the one-particle irreducibles-f
amplitude tsf

(1) be set to zero, i.e.,f (1)→ f (2) and t (1)→0.
This reduces our coupled integral equations to two coup
equations of the form

Tff5V̄~ 11d1d2Tff!1(
j
f ~2!~ j !d j̄ dstff

~1!d1d2Tdf ,

~2.10!

Tdf5(
j
f ~2!†~ j !dj

21~11d1d2Tff!. ~2.11!

In writing these equations we have made use of the notat
Tdf[T3f . In these equations the correction required to r

FIG. 1. Subtractions inV̄ required to avoid double counting.
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move the double counting problem is restricted to thef-f
potential V̄. This is because all double counting due to
u-channel poles in thes-f t matrix has been, by definition,
removed from the problem.

At this stage we should recall that the one-particle irre-
ducible f-f amplitude tff

(1) is equal to the full amplitude
Tff , which is part of the solution to the coupled equations,
and so we have a nonlinear set of integral equations. In th
time-ordered, or nonrelativistic, version of these equations
the energy variable intff

(1) is lower than the energy in the
amplitudeTff by at least the mass of thes. This allows for
a bootstrap procedure, in which the lower-energy amplitude
is used to obtain the amplitude at higher energies, as illus
trated in work on thepN-ppN equations above the thresh-
old for pion production@32#. A similar situation prevails in
the covariant framework, but only approximately~see
@27,28# for details!. In the present analysis we will follow
this procedure for removing the nonlinearity. To simplify the
resulting bootstrap problem we will assume thattff

(1) is a
solution of the BSE in the ladder approximation. This final
approximation removes the bootstrap problem and ou
coupled-channel equations still satisfy two- and three-body
unitarity. Furthermore, we can test the validity of this solu-
tion to the bootstrap problem by comparing the phase shift
corresponding totff

(1) with the phase shifts resulting from the
solution of the coupled-channel problem.

Before we turn to further discussion of the input to the
coupled-channel equations, we should point out that the
above two coupled equations can be recast into a singl
equation for thef-f amplitude

Tff5Veff~11d1d2Tff!, ~2.12!

with an effective interaction of the form

Veff5V̄1(
i , j

f ~2!~ i !d ī dstff
~1!d j̄ f

~2!†~ j !. ~2.13!

Rewriting the coupled-channel problem in terms of a single
channel allows us to see how the double counting is remove
by subtractions inV̄. It also helps in discussions of the dif-
ference between the coupled-channel equations and the la
der, or ladder plus crossed-box, BSE.

In the event thattff
(1) is chosen to be the solution of the

ladder BSE, then the second term on the right-hand side~rhs!
of Eq. ~2.13! has two terms that correspond to crossed-box
s exchange. This double counting is removed by taking

V̄5VOSE* 2B, ~2.14!
FIG. 2. Lowest-order Feynman diagrams that
contribute toVeff if the input f-f amplitude is
the solution to the ladder BSE.
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1546 54D. R. PHILLIPS AND I. R. AFNAN
whereB is the crossed-box diagram~see Fig. 1!. In addition,
when i5 j , the second term on the rhs of Eq.~2.13! has
diagrams that contribute to vertex dressing of th
s-exchange potentialVOSE* @diagrams~a! and ~b! of Fig. 2#.
However, a careful examination of the series resulting fro
this term reveals that there are no contributions from d
grams in which both vertices are being dressed at the sa
time. This is a result of our elimination of the non-linearit
in the coupled integral equations. Finally, expanding thei
Þ j piece of the second term on the rhs of Eq.~2.13! shows
that some of the crossed-ladder diagrams required to get
correct one-body limit for the BSE@33# are included in the
solution of Eq.~2.12!. Indeed, the solution of the nonlinea
equation forT(1) will include more ~but not all! of the
crossed-ladder diagrams necessary for the correct one-b
limit.

In the event that the amplitude from the solution of E
~2.12! is not consistent with the solution of the ladder BSE
we could take the solution of Eq.~2.12! and substitute that
result into Eq.~2.13!. This in turn will give us a new effec-
tive potential that can be used in the BSE, Eq.~2.12!. How-
ever, in that case more diagrams are generated by the se
term on the rhs of Eq.~2.13! and therefore further subtrac
tions are needed. Consequently, the potentialV̄ is given by

V̄5VOSE* 2B2Ds2X. ~2.15!

This demonstrates very clearly that when the input to t
equations is approximated we need to be careful in calcu
ing the correction for the double counting problem. We r
turn to this point in Sec. IV D when we consider includin
vertex dressing in the BSE.

III. THE BETHE-SALPETER EQUATION

In most numerical analyses of theNN-pNN equations the
input two-body amplitudes were parametrized to fit the e
perimental data and no regard was given to the consiste
between the inputN-N amplitude and theN-N amplitude
resulting from the solution of the coupled-channel proble
In the present analysis there is no experimental data for
f-f system, and we would like to specifically maintai
some consistency between the inputf-f amplitude and that
resulting from the solution of the coupled-channel proble
Therefore, as we have detailed in the preceding section,
will consider the coupledff-sff equations with the only
input amplitude being thef-f amplitude in the ladder ap-
proximation. In this way the problem of the nonlinearity o
the coupled-channel equations is avoided. After partial-wa
expansion, the resultant coupled-channel problem is a se
coupled integral equations in four dimensions. To reduce
dimensionality of our equations we follow the procedure pr
viously implemented for thepN-ppN equations@32# and
construct a separable approximation to the solution of
ladder BSE. In this way we reduce the dimensionality of t
coupled integral equations from 4 to 2, at the possible cos
increasing the number of coupled integral equations.

Therefore, in this section we explain various aspects
the solution of the Bethe-Salpeter equation and the constr
tion of our two-body input. These include techniques for th
solution of the ladder BSE, calculation of bound-sta
e
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masses, construction of a separable approximation to the la
der amplitude, and inclusion of effects beyond the ladde
approximation. While all of the techniques described her
are explained elsewhere@34–38#, we give an outline of the
methods for two reasons. First, our solution procedures fo
the coupled-channel equations are extensions of those d
scribed here. Second, explaining the methods establish
some of the notation used in Sec. IV. Further details on th
work of this section may be found in Ref.@28#.

A. Ladder approximation

The BSE, Eq.~1.1!, is an equation for the invariant two-
particle scattering amplitude in a field theory. Of course, in
practice it is impossible to construct the sum of all graph
contributing toT(2) and solve the resulting integral equation
for T(1). Therefore, most work in the past has focused on th
so-called ‘‘ladder approximation,’’ in whichT(2) is taken to
consist solely of one-particle exchange.

Consider thef2s field theory. Define

T~1!~p18 ,p28 ;p1 ,p2!

52 i ~2p!4d~4!~p181p282p12p2!T~q8,q;P!. ~3.1!

If the total momentum isP5p181p285p11p2, then in the
kinematics specified by Fig. 3 the BSE in ladder approxima
tion is

T~q8,q;P!5V~q8,q!1
i

~2p!4
E d4q9V~q8,q9!df~q19 !

3df~q29 !T~q9,q;P!. ~3.2!

Here q69 5P/26q9, while the potential due tos exchange
and thef propagator are defined by

V~q8,q!5
g2

~q82q!22m2 ,

df~p!5
1

p22m2 . ~3.3!

Throughout this paper the massesm andm are regarded as
having an infinitesimal negative imaginary part. This define
the way poles should be negotiated, unless otherwise stat
in the text.

The BSE may also be used to extract information abou
bound-state properties. It is known that if a bound state o
the twof particles with massM exists then the invariant
scattering amplitude may be decomposed into a pole and
nonpole piece@39#. Inserting this decomposition into Eq.
~3.2! and taking the residue at the pole yields

FIG. 3. Pictorial representation of the ladder Bethe-Salpete
equation as given in Eq.~3.2!.
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G~q8;M2!5
i

~2p!4
E d4q9V~q8,q9!

3@df~q19 !df~q29 !#P25M2G~q9;M2!, ~3.4!

whereG is the bound-state vertex function. Thus the boun
state solutions of the ladder BSE may be found by search
for those values ofP2 for which the kernel of the BSE in the
ladder approximation has an eigenvalue of one.

The BSE in the ladder approximation is a singular integr
equation and as it stands is not amenable to numerical s
tion. One possible way of dealing with the singular nature
the equation is to perform a Wick rotation@40#, which in-
volves an analytic continuation of the two variablesq08 and
q09 in Eq. ~3.2! to the imaginary axis. In the center-of-mas

frame, whereP5(As,0W ), this analytic continuation requires
that we take into consideration the singularities of both t
kernel and the Bethe-Salpeter amplitude. The singularit

encountered depend on the total energy availableAs. As ex-
plained by Taylor and Paganamenta@41#, this straightfor-
ward analytic continuation to the imaginary axis is valid fo
0<As<2m12m. AboveAs52m12m the self-consistently
generatedfs production threshold cuts in the amplitudeT,
which begin atq0956(As/22m2m), enter the first and
third quadrants, thus pinching theq09 integration contour and
preventing a simple analytic continuation of Eq.~3.2!. Note
that for 2m<As<2m12m poles of thef propagators may
enter the first and third quadrants of theq09 plane. If this
occurs then the residue at these poles must be included in
Wick-rotated equations in order to ensure the correct analy
continuation.

To reduce the dimensionality of Eq.~3.2! from 4 to 2, and
so be able to turn the resultant equation into an algebr
equation, we need to partial-wave expand both the amplitu
T and the one-s-exchange potential. The partial-wave ex
pansion

A~qm8 ,qm ;s!5~28p3!(
l

~2l11!

2q8q

3Al~q08 ,q8,q0 ,q;s!Pl~cosu!, ~3.5!

where A is either the one-s-exchange potentialV or the
amplitudeT and cosu5q̂•q̂8, is used. In the present analysi
we take\5c51 and the unit of energy is chosen such th
m51. From this point all four-vectors have a subscriptm so
as to distinguish them from the magnitude of three-vecto
The partial-wave expansion converts Eq.~3.2! to

Tl~q08 ,q8,q0 ,q;s!

5Vl~q08 ,q8,q0 ,q!2 i E
2`

`

dq09E
0

`

dq9Vl~q08 ,q8,q09 ,q9!

3G~q09 ,q9;s!Tl~q09 ,q9,q0 ,q;s!, ~3.6!

where
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G~q09 ,q9;s!5
1

S As
2

1q09D 22Ef~q9!2

3
1

S As
2

2q09D 22Ef~q9!2

, ~3.7!

Vl~q08 ,q8,q0 ,q!5
2l

p
Ql S q821q21m22~q082q0!

2

2q8q
D , ~3.8!

Ef~q9!5Aq921m22 i e, l5
g2

16p2 , ~3.9!

andQl is a Legendre function of the second kind. The on-
shell partial-wave amplitudeTl

on can now be written in terms
of the phase shiftd l as

Tl
on~s!5Tl~0,q̄,0,q̄;s!5

2q̄As
p2 eid l ~s!sind l~s!, ~3.10!

where the on-shell relative momentum is given by
q̄5As/42m2.
Next we perform a Kowalski-Noyes~KN! @42–44# reduc-

tion in order to remove the two-body unitarity cut, i.e., we
write

Tl~q09 ,q9,0,q̄;s!5 f l~q09 ,q9;s!Tl
on~s!, ~3.11!

with the KN half-off-shell function being one at the on-shell
point, i.e.,f l(0,q̄;s)51. This is followed by a Wick rotation.
Since the twof particles have the same mass, we change th
q09 integration to one from zero to infinity and so obtain the
coupled equations derived by Levineet al. for f l( iq08 ,q8;s)
and gl(q8;s) @34,45#. The auxiliary equation forgl(q8;s)
must be written because of the presence off-propagator
poles in the first and third quadrants of theq09 plane.
gl(q;s) is defined by

FIG. 4. Coupling constant versus bound-state position for th
ladder BSE withm51 andm50.15.
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gl~q;s!5 f l„w̄~q!,q;s…, w̄~q!5
As
2

2Ef~q!.

~3.12!

The equations forf l andgl can be solved by discretizing the
integrals and using direct matrix inversion. We note tha
there is a termVl„w̄(q8),q8,2w̄(q9),q9… in the kernel of the
t

integral equations. For 2m1m,As,2m12m this term
may have a logarithmic branch point in the region of inte
gration. We found that the equations could still be solve
accurately in this energy regime provided enough quadr
tures were used for the discretization.

To calculate phase shifts, the equation
Tl
on~s!5

Vl
on~s!

11 i E
2`

`

dq09E
0

`

dq9Vl~0,q̄,q09 ,q9!G~q09 ,q9;s! f l~q09 ,q9;s!

. ~3.13!

is used to obtainTl
on(s). In order to deal with the singularities in the integrand the integral is written as@46#

i E
2`

`

dq09E
0

`

dq9Vl~0,q̄,q09 ,q9!G~q09 ,q9;s! f l~q09 ,q9;s!52a~s!1b~s!, ~3.14!

where the factorsa(s) andb(s) are given by

a~s!52E
0

`

dq09E
0

`

dq9G~ iq09 ,q9;s!@Vl~0,q̄,iq09 ,q9! f l~ iq09 ,q9;s!2Vl
on~s!#

1pE
0

q̄
dq9

1

2Asw̄~q9!Ef~q9!
@Vl„0,q̄,w̄~q9!,q9…gl~q9;s!2Vl

on~s!#, ~3.15!

b~s!5Vl
on~s!E

2`

`

dq09E
0

`

dq9G~q09 ,q9;s!. ~3.16!
ite

y

-

To test the accuracy of our numerical procedure, we com
pared our results with those reported by Levineet al. @34#
and found agreement. Varying the quadrature distributio
then shows that with 14 and 22 Gauss-Legendre quadratu
for theq09 andq9 integration in the Wick rotated integral and
60 in the auxiliary residueq9 integral, the real part of the
phase shift is accurate to three significant figures, while t
imaginary part is accurate to two significant figures. Th
large number of quadratures is necessary in the auxilia
integral because of the presence of logarithmic branch poin
in the kernel ifAs.2m1m.

Since we hope to have in theff-sff system a simple
model for theNN-pNN system, we have chosen to construc
the inputf-f amplitude to have a bound state with a bindin
comparable to that of the deuteron. To achieve this we co
sider the homogeneous BSE in ladder approximation aft
partial-wave expansion

G l~q08 ,q8;s!52 i E
2`

`

dq09E
0

`

dq9Vl~q08 ,q8,q09 ,q9!

3G~q09 ,q9;s!G l~q09 ,q9;s!, ~3.17!

whereG l(q08 ,q8;s) is the vertex function for relative four-
momentum qm8 with its angular dependence given by
Pl(q̂8• ẑ). This may be rewritten as an eigenvalue equatio
with a symmetric kernelK̃ l . Note that becauseK̃ l is linear in
-

n
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he
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t
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the couplingl it is not actually necessary to calculate the
eigenvalue at a number of energies. Instead we merely wr
K̃ l5lK̃ l8 The largest eigenvalue ofK̃ l8(s) is then the inverse
of the couplingl required to produce a bound state of energ
s with angular momentuml . Using this technique we ob-
tained, for the casem50.15, the plot of bound-state energy
againstl shown in Fig. 4. If a result accurate to three deci
mal places is desired theq09 andq9 integrations require 12
and 22 quadratures, respectively.

FIG. 5. Comparison of the separable approximation~dashed
line! to the ladder calculation with undressed particles~solid line!
for m50.15 andl50.13.
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The couplingl is chosen so that theS-wavef-f bound
state has the same binding energy as the deuteron. In
unitsmd

253.9905. The valuel50.131 yields a bound state
of this mass. The value of the ‘‘deuteron’’ binding energy
only accurate to 5%; however, for our purposes this is mo
than adequate.

B. Separable approximation

Having determined the Bethe-Salpeter amplitude in t
ladder approximation, we now need to get a separable rep
sentation of this amplitude, so that we can solve theff-
sff equations numerically. Ideally, a separable expans
of the one-s-exchange amplitude in terms of the eigenstat
of the kernel or the half-off-mass-shell solution to the BSE
the ladder approximation@47# should be used. However, as
first attempt at a solution of theff-sff equations we con-
sider the phase shifts from the ladder BSE as data and
these data with a rank-one separable potential.

In a given partial wave, we can write a covariant versio
of a rank-one separable potentialVl as @36#

Vl~q08 ,q8,q0 ,q!52
1

4p3q8x l~q08 ,q8!j lx l~q0 ,q!q. ~3.18!

The factors ofq andq8 are introduced into the potential to
maintain consistency with our BSE, Eq.~3.6!. Since we will
be restricting our analysis toS-wave scattering, we have cho
sen the form factorx l for l50 to be a function of the four-
momentum square

x0~q0 ,q!5
1

q0
22q22b2 . ~3.19!

The solution of the the BSE for this potential is also sep
rable, being of the form

Tl~q08 ,q8,q0 ,q;s!52
1

4p3q8x l~q08 ,q8!t l~s!x l~q0 ,q!q,

~3.20!

where

t l
21~s!5

1

j l
2E

2`

`

dq09E
0

`

dq9@q9x l~q09 ,q9!#2G~q09 ,q9;s!.

~3.21!

Note that, assuming the existence of only one bound stat
the channel with angular momentuml , t l may be rewritten

t l~s!5
Sl~s!

s2md
2 , ~3.22!

wheremd
2 is the bound-state mass, to be determined by d

manding thatt l(s) has a pole ats5md
2 and Sl(s) is the

residue oft l(s) at that point. In Eq.~3.21! theq09 integration
is performed analytically using the residue theorem@48#. For
the scattering case, to remove the pinch atq0950, q95q̄, we
rotate the contour of integration into the third quadrant of t
q9 plane. An angle of rotation ofp/8 and 32 quadratures for
the q9 integration gives sufficient accuracy to fit the phas
shifts resulting from the solution of the ladder BSE.
our
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The parameterj0 is adjusted to guarantee that the bindin
energy is identical to that predicted by the BSE equation
the ladder approximation withm50.15 andl50.13, while
the parameterb is adjusted to get a best fit to the phase shif
below the production threshold. The final values for the tw
parameters in our choice of units arej05215.33 and
b50.473 86. Despite our use of only two parameters, the
to the ‘‘data’’ is very good, as demonstrated in Fig. 5.

C. Beyond the ladder approximation

In this section we consider two improvements to the sta
dard ladder approximation, which will be used when we a
comparing single-BSE calculations with results from th
coupled-channel calculation. First, we examine the inclusi
of f propagator dressing, which is necessary ifffs unitar-
ity is not to be violated. Second, we explain how to includ
crossed-boxs exchange in the kernel of the BSE.

The first improvement is to include the lowest-orde
dressing for thef propagators. This effect was included in
the derivation of theff-sff equations by implicitly as-
suming that all propagators were dressed. In addition, t
dressing of the propagators gives a contribution to thre
body unitarity that complements the contribution of one-s
exchange. Indeed, Levineet al. @34# have shown that such
propagator dressing must be included in order to guaran
an inelasticity less than one above the threshold fors pro-
duction. They found that form5m51 and sufficiently large
coupling, the dressing of thef propagator plays an impor-
tant role.

The inclusion of the minimal dressing in thef propagator
takes the form~see Fig. 6!

d~p2!5
1

p22m22S~p2!1 i e
, ~3.23!

where to lowest order in the coupling

S~p2!5g2E d4q

~2p!4
1

~p2q!22m2

1

q22m2 . ~3.24!

Note that we have not included the full one-loop self-energ
term here since in order to satisfyffs unitarity it is only
necessary to use bare propagators in the expression forS.
We now write a dispersion relation for this propagator. Sinc
we wish to examine the propagator after mass and couplin
constant renormalization this is a twice-subtracted dispers
relation. Algebraic manipulations in the manner of Saeng
@49# and Janus@50# yield

d~p!5
1

p22m21 i e

1

11~p22m2!A~p2!
, ~3.25!

with

FIG. 6. Schwinger-Dyson equation for thef-particle propaga-
tor. Heavy lines represent dressed propagators and the lighter li
represent bare propagators.
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A~p2!5lE
~m1m!2

`

ds8
A@s82~m1m!2#@s82~m2m!2#

s8~s82m2!2~s82p22 i e!
.

~3.26!

The integral~3.26! may be evaluated numerically. We find
that 18 quadratures are more than sufficient to ensure th
is accurately calculated.

Previously, Levine et al. @34# have shown that for
m5m51 and a large coupling constant, the effect of th
dressing on the phase shifts is substantial. Although we ag
with their numerical results, we find that form51 and
m50.15, which correspond to the mass of the nucleon a
pion, and a coupling strength that gives a binding energy
thef-f state that is comparable to the deuteron binding, t
effect of the dressing on the phase shifts is small. This
particularly the case for energies below thes-production
threshold, as demonstrated in Fig. 7, where we present
real part of the phase shifts. In fact, with dressed propaga
a coupling ofl50.13 yields a bound-state of massmd

2—a
very small change from the result for undressed propagat

Despite this dressing having very little effect on th
bound-state position and the real part of the phase shifts
does have a substantial impact on the imaginary part of
phase shifts, as seen in Fig. 8. However, the imaginary p

FIG. 7. Real part of theS-wave phase shifts in the ladder ap
proximation, with ~solid curve! and without ~dashed curve! one-
loop dressing for the casel50.13.

FIG. 8. Imaginary part of theS-wave phase shifts in the ladde
approximation, with~solid curve! and without~dashed curve! one-
loop dressing for the casel50.13.
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of the phase shifts is still small. This result is consistent wit
observations inN-N scattering above the pion-production
threshold, where the contribution to pion production is dom
nated by the production of aD that then decays by pion
emission and the equivalent mechanism via the nucleon
comparatively small.

A more interesting addition to the ladder approximation i
the inclusion of the crossed-boxs-exchange diagram in the
potential. In particular, the coupled-channel equations wi
the ladder approximation for the inputf-f amplitude in-
clude such crossed diagrams, as pointed out in Sec. II. F
thermore, the inclusion of the crossed-box graph in the ke
nel partially corrects the failure of the ladder BSE in the
one-body limit. If the BSE is written for two particles with
unequal masses, then when the mass of one particle is ta
to infinity we expect to recover an equation for the othe
lighter, particle, which represents it moving in the static po
tential generated by the heavy particle. If the ladder BSE
used this does not occur. This one-body limit is restored o
including all ladders and crossed ladders in the perturbati
series for the amplitude@33#. Although the inclusion of the
crossed diagram in the potential is not equivalent to includ
ing all crossed-ladder diagrams, the fact that our couplin
constant is small implies that including this one extra dia
gram in the kernel will give us an indication of the contribu
tion of higher-order crossed-ladder graphs.

Adding the crossed-box diagram~diagramB of Fig. 1! to
the kernel introduces no analytic structure into the proble
beyond that discussed above and therefore the Wick rotati
may proceed exactly as for the ladder BSE. Indeed, the on
change that needs to be made to our discussion of the lad
BSE is thatVl now includes a piece from the crossed-bo
diagram.

In the case of thef2s field theory the value of the
crossed-box diagram may be calculated using the usu
Feynman parametrizations@39# and the result is an amplitude

X~qm8 ,qm ;s!

5E
0

1

daE
0

12a

dbE
0

12a2b

dg
16p2l2

D2~a,b,guqm8 ,qm ,s!
,

~3.27!

where

D~a,b,guqm8 ,qm ;s!

5ags111b~12a2b2g!s221a~12a2b2g!s33

1bgs441abu1g~12a2b2g!t2~a1b!m2

2~12a2b!m2, ~3.28!

with

s115SAs2 1q0D 22q2, s225SAs2 2q0D 22q2, ~3.29!

s335SAs2 1q08D 22q82, s445SAs2 2q08D 22q82, ~3.30!

-
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t5~q02q08!22q22q8212qq8q̂•q̂8, ~3.31!

u5~q01q08!22q22q8222qq8q̂•q̂8. ~3.32!

The amplitudeX can thus be calculated numerically fo
any value of the parametersAs, q08 , q8, q0, q, and q̂•q̂8.
There are no complications forAs,2m1m, since in that
region the functionD is negative for all relative energies fo
which the kernel must be evaluated. On the other ha
aboveAs52m1m, singularities in the integrand are pos
sible.

The result of the integrations in~3.27! can be partial-wave
expanded according to

Xl~q08 ,q8,q0 ,q;s!52
qq8

8p3E
21

1

dx X~qm8 ,qm ;s!Pl~x!,

~3.33!

wherex5q̂8•q̂, using another numerical integration. To ob
tain a phase shift of the same accuracy as in the ladder c
four quadratures in each of the Feynman parameter integ
tions and three quadratures in the partial-wave projection
required. There is no need to change any of the quadra
numbers from the ladder solution.

In the casem5m our results agree with those of Levine
and Wright @38#. In the case of interest to us,m50.15,
l50.13, the crossed-box diagram has a notable contributi
This is illustrated in Fig. 9, where we plot the phase shif
when including both dressing of the propagator and t
crossed-box diagram~dotted line!. For comparison the phase
shifts resulting from the solution of the BSE in the ladde
approximation with dressedf propagators are also included
~dashed line!. Comparing the results in Figs. 7 and 9 dem
onstrates very clearly the relative importance of the cross
box diagram and the dressing of thef propagators. The con-
tribution of the crossed-box diagram is significant in th
case despite the small coupling used in the calculation. T
suggests that the solution of theff-sff equations will be
substantially different from the ladder result, even below t
s-production threshold.

FIG. 9. Real part of theS-wave phase shifts with~dotted curve!
and without~dashed curve! the crossed-box diagram, for the case o
dressed particles withl50.13.
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IV. NUMERICAL SOLUTION
OF THE ff-sff EQUATIONS

The main motivation for examining the numerical solu
tion of theff-sff equations is to develop the numerica
approximations needed for the solution of theNN-pNN
equations, where spin and isospin are an additional comp
cation. However, solving theff-sff equations will also
allow a comparison of their solution with the results of the
BSE with dressedf propagators and either a one-
s-exchange or a one-s-exchange plus crossed-box diagram
as its kernel. The analysis of Sec. II shows that the solutio
of the BSE is not going to be identical to that of the coupled
channel problem. However, a comparison may give us som
insight into the relative content of the two equations and
measure of how important this difference is. This might ti
the balance in favor of one or the other approach when co
sideringNN scattering above the threshold for pion produc
tion. Even below the pion-production threshold, recen
nucleon-nucleon interactions based on meson exchange h
included the crossed pion exchange within the framework
two-body equations rather than in a coupled-channel a
proach @51,52#. The results of this section might help us
determine which of these two methods is best suited for i
cluding such crossed diagrams.

In order to simplify matters as far as possible we hav
assumed thatfs scattering is dominated by the pole dia-
gram, i.e., tsf

(1)50. This yielded the two coupled integral
equations~2.10! and ~2.11! with the potential V̄ of Eq.
~2.14!. If we also assume that thef-f interaction is given by
one-s exchange and this in turn is represented by a
S-wave rank-one separable potential, then the inputf-f am-
plitude tff

(1) in Eq. ~2.10! can be written as in Eq.~3.20!. We
may therefore recast the coupled equations Eqs.~2.10! and
~2.11! as

T̃ff5Zff~11 1
2 d1d2T̃ff!1 1

2 ZfdtddsT̃df , ~4.1!

T̃df5Zdf1 1
2 Zdfd1d2T̃ff , ~4.2!

wheref refers to theff channel, whiled refers to the
s(ff)d channel. Heretd is the propagator for a correlated
ff system. In writing the above coupled-channel equation
we have taken into consideration the fact that thef is a
boson and the equations need to be symmetrized. Althou
Eqs. ~4.1! and ~4.2! can be combined into a single BSE for
T̃ff , we have chosen to solve the equations as a couple
channel problem, in anticipation of the fact that iftsf

(1)Þ0 the
coupled equations cannot be reduced to a single BSE.

In what follows all vectors are four-vectors unless other
wise stated. We define the relative four-momentumq of the
d-s state of total four-momentumP via

pd5ndP1q, ps5nsP2q, ~4.3!

where

nd5
s1md

22m2

2s
, ns5

s1m22md
2

2s
. ~4.4!

f
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This choice for the relative momentum is made to ensure t
when both thed ands particles are on mass shell,q050.
This in turn guarantees that the pinching of theq09 integration
contour in the BSE for (ff)ds scattering will occur at the
pointq0950, q95q̄, whereq̄ is the magnitude of the on-shel
three-momentum. The four-vectorq that is defined by~4.3!
and ~4.4! is known as the Wightman-Ga˚rding relative mo-
mentum@53#.

With this choice of kinematics we can write the inpu
amplitudesZ as

Zff~p18 ,p28 ,p1 ,p2!52 i ~2p!4d~4!~p181p282p12p2!

3@Vs~q2q8!1Vs~q1q8!

2X~q8,q;P!2X~q8,2q;P!#,

~4.5!

Zdf~p18 ,p28 ,p1 ,p2!52 i ~2p!4d~4!~p181p282p12p2!

32@Vdf~q8,q;P!1Vdf~q8,2q;P!#,

~4.6!

Zfd~p18 ,p28 ,p1 ,p2!5Zdf~p1 ,p2 ,p18 ,p28!. ~4.7!

In Eqs.~4.5! and~4.6!, the potentialsVs for s exchange and
Vdf for f exchange are given by
hat

l

t

Vs~k!5
g2

k22m2 ,

Vdf~q8,q;P!

5g
1

F S nd2
1

2DP1q82qG22m2

xS ns

2
P1q2

q8

2 D .
~4.8!

The (ff)d ands propagators are

td~q;P!5
iSd„~ndP1q!2…

~ndP1q!22md
2 ,

ds~q;P!5
i

~nsP2q!22m2 . ~4.9!

We now define

T̃ff52 i ~2p!4d~4!~p181p282p12p2!Tff~11P12!,

T̃df52 i ~2p!4d~4!~p181p282p12p2!Tdf~11P12!,
~4.10!

whereP12 is the permutation operator for the twof ’s and
the factor of 11P12 ensures that scattering takes place in
symmetric states only. In particular, no scattering can tak
place in a state with odd angular momentum. By contrast,
acting on a state with positive parity 11P12 merely gives a
factor of 2. The equations for these unsymmetrized ampl
tudesTff andTdf are then
Tff~q8,q;P!5Vff~q8,q;P!1 i E d4q9

~2p!4
Vff~q8,q9;P!Gf~q9;P!Tff~q9,q;P!

1 i E d4q9

~2p!4
Vfd
S ~q8,q9;P!Gd~q9;P!Tdf~q9,q;P!, ~4.11!

Tdf~q8,q;P!5Vdf
S ~q8,q;P!1 i E d4q9

~2p!4
Vdf
S ~q8,q9;P!Gf~q9;P!Tff~q9,q;P!, ~4.12!
-

y
is
be
a-
in
whereGf is defined in Eq.~3.7! and Gd52tdds is the
propagator for thes(ff)d system. The ‘‘potentials’’ in Eqs.
~4.11! and ~4.12! are given by

Vff~q8,q;P!5Vs~q82q!2X~q8,q;P!, ~4.13!

Vfd
S ~q8,q;P!5Vfd~q8,q;P!1Vfd~2q8,q;P!,

Vdf
S ~q8,q;P!5Vdf~q8,q;P!1Vdf~q8,2q;P!.

~4.14!
If we remove the coupled-channel termVdf and the double
counting subtractionX Eq. ~4.11! reduces to the Bethe-
Salpeter equation solved forff scattering in Sec. III A, thus
justifying our use of the distinguishable-particle BSE to de
termine theff→ff amplitude in the allowed two-body
channels.

Having derived these coupled integral equations the
must be recast into a form convenient for computation. Th
requires three steps. First, a partial-wave expansion must
performed in order to reduce the dimensionality of the equ
tions from 4 to 2. Second, any pinches causing difficulties
the energy range of interest must be removed.~Note that
such pinches arenot removed by Wick rotation.! Once this is
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done Wick rotation can be performed, thus moving the
gion of integration away from the poles of thef propagators
and exchange diagrams.

A. Partial-wave expansion

The partial-wave expansion is performed exactly as
fined in Sec. III A. The amplitudesTff and Tdf and the
potentialsVs , X, Vdf, andVfd , are expanded according t
Eq. ~3.5!. This produces the results given in Eqs.~3.8! and
~3.33! for Vs andX. ForVdf partial fractions may be used t
split the integration, leading to

Vdf; l~q08 ,q8,q0 ,q;s!5
Al

p2

1

D
@Ql~gdf!2Ql~gb!#, ~4.15!

D52q8q~gdf2gb!, ~4.16!

gdf5

q21q821m22Fq082q01S nd2
1

2DAsG
2

2q8q
,

gb5

q82

4
1q21b22S nsAs

2
1q02

q08

2 D 2
q8q

. ~4.17!

With this result in hand it is easy to computeVfd; l since

Vfd; l~q08 ,q8,q0 ,q;s!5Vdf; l~q0 ,q,q08 ,q8;s!. ~4.18!
re-

de-

o

o

The use of these partial-wave expansions leads to a se
coupled two-dimensional integral equations for the half-of
shell partial-wave amplitudesTff; l andTdf; l . These equa-
tions must then have all pinches removed.

B. Kowalski-Noyes reduction

Although the main interest in a coupled-channel approa
is to investigate scattering in the energy region where thre
body unitarity plays a central role, at this stage we are goi
to restrict our analysis to the energy region below the thre
body unitarity cut. This is partly because in this energy d
main we can use the Kowalski-Noyes approach, discussed
Sec. III A, to remove the two-body unitarity cut.

Since the coupled-channel equations do not couple am
tudes of different angular momentum, we now simplify th
notation by dropping the angular momentum label on a
amplitudes. The Kowalski-Noyes reduction is carried out fo
the two amplitudes in question by making the factorization

Tff~q08 ,q8,0,q̄;s!5 f ff~q08 ,q8!Tff
on ~s!,

Tdf~q08 ,q8,0,q̄;s!5 f df~q08 ,q8!Tff
on ~s!, ~4.19!

where the dependence of the Kowalski-Noyes half-off-sh
functions ons has been suppressed. Using these factoriz
tions, the partial-wave-expanded coupled-channel equatio
for the KN half-off-shell functions become
f ff~q08 ,q8!5
Vff~q08 ,q8,0,q̄;s!

Vff
on 2 i E

2`

`

dq09E
0

`

dq9Ṽff~q08 ,q8,q09 ,q9;s!Gf~q09 ,q9;s! f ff~q09 ,q9!

2 i E
2`

`

dq09E
0

`

dq9Ṽfd~q08 ,q8,q09 ,q9;s!Gd~q09 ,q9;s! f df~q09 ,q9!, ~4.20!

f df~q08 ,q8!5
Vdf
S ~q08 ,q8,0,q̄;s!

Vff
on 2 i E

2`

`

dq09E
0

`

dq9Ṽdf~q08 ,q8,q09 ,q9;s!Gf~q09 ,q9;s! f ff~q09 ,q9!

2 i E
2`

`

dq09E
0

`

dq9Ṽdd~q08 ,q8,q09 ,q9;s!Gd~q09 ,q9;s! f df~q09 ,q9!, ~4.21!

where

Ṽff~q08 ,q8,q0 ,q;s!5Vff~q08 ,q8,q0 ,q;s!2
Vff~q08 ,q8,0,q̄;s!Vff~0,q̄,q0 ,q;s!

Vff
on , ~4.22!

Ṽfd~q08 ,q,q0 ,q;s!5Vfd
S ~q08 ,q8,q0 ,q;s!2

Vff~q08 ,q8,0,q̄;s!Vfd
S ~0,q̄,q0 ,q;s!

Vff
on , ~4.23!

Ṽdf~q08 ,q,q0 ,q;s!5Vdf
S ~q08 ,q8,q0 ,q;s!2

Vdf
S ~q08 ,q8,0,q̄;s!Vff~0,q̄,q0 ,q;s!

Vff
on , ~4.24!

Ṽdd
L ~q08 ,q,q0 ,q;s!52

Vdf
S ~q08 ,q8,0,q̄;s!Vfd

S ~0,q̄,q0 ,q;s!

Vff
on . ~4.25!
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It is clear from the structure of theseṼ’s that the pinch inGf(q09 ,q9;s) is now always ameliorated by a zero inṼ. In order
to obtain phase shifts it is necessary to calculate the on-shellt matrix Tff(s) via

Tff
on ~s!5

Vff
on ~s!

11 i I f~s!1 i I d~s!
, ~4.26!

with

If~s!5E
2`

`

dq09E
0

`

dq9Vff~0,q̄,q09 ,q9;s!Gf~q09 ,q9;s! f ff~q09 ,q9!, ~4.27!

I d~s!5E
2`

`

dq09E
0

`

dq9Vfd~0,q̄,q09 ,q9;s!Gd~q09 ,q9;s! f df~q09 ,q9!. ~4.28!

C. Wick rotation

By writing coupled integral equations for the KN functions we have overcome the problem of the pinching betwee
poles of thef propagator. However, to convert the equations to matrix equations we have to avoid the other singularit
the kernel. This can be achieved by performing a Wick rotation in theq09 integrals. Such a rotation requires that we take into
consideration the singularities of both the kernel and the amplitude in the first and third quadrant of theq09 plane. These
singularities have been examined in detail@28# with the result that for 2m,As,md1m the only analytic structure that may
cause problems during the rotation are the two poles from the Green’s functionGf .

The final equations after Wick rotation can thus be written as

f ff~ iq08 ,q8!5
Vff
S ~ iq08 ,q8,0,q̄;s!

Vff
on 1E

0

`

dq09E
0

`

dq9Ṽff
S ~ iq08 ,q8,iq09 ,q9;s!Gf~ iq09 ,q9;s! f ff~ iq09 ,q9!

2pE
0

q̄
dq9Ṽff

S
„iq08 ,q8,w̄~q9!,q9;s…

1

2Asw̄~q9!Ef~q9!
gff~q9!

1E
2`

`

dq09E
0

`

dq9Ṽfd~ iq08 ,q8,iq09 ,q9;s!Gd~ iq09 ,q9;s! f df~ iq09 ,q9!, ~4.29!

f df~ iq08 ,q8!5
Vdf~ iq08 ,q8,0,q̄;s!

Vff
on 1E

0

`

dq09E
0

`

dq9Ṽdf
S ~ iq08 ,q8,iq09 ,q9;s!Gf~ iq09 ,q9;s! f ff„iq09 ,q9…

2pE
0

q̄
dq9Ṽdf

S
„iq08 ,q8,w̄~q9!,q9;s…

1

2Asw̄~q9!Ef~q9!
gff~q9!

1E
2`

`

dq09E
0

`

dq9Ṽdd~ iq08 ,q8,iq09 ,q9;s!Gd~ iq09 ,q9;s! f df~ iq09 ,q9!, ~4.30!

where in order to simplify the equations we have assumed undressed particles in taking the residue ofGf , but the appropriate
modification for dressed particles may easily be made. Also

Ṽff
S ~q08 ,q8,q09 ,q9;s!5Ṽff~q08 ,q8,q09 ,q9;s!1Ṽff~q08 ,q8,2q09 ,q9;s!, ~4.31!

Ṽdf
S ~q08 ,q8,q09 ,q9;s!5Ṽdf~q08 ,q8,q09 ,q9;s!1Ṽdf~q08 ,q8,2q09 ,q9;s!52Ṽdf~q08 ,q8,q09 ,q9;s!. ~4.32!

Note thatgff(q8)[ f ff„w̄(q8),q8… obeys the equation
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gff~q8!5
Vff„w̄~q8!,q8,0,q̄;s…

Vff
on 1E

0

`

dq09E
0

`

dq9Ṽff
S
„w̄~q8!,q8,iq09 ,q9;s…Gf~ iq09 ,q9;s! f ff~ iq09 ,q9!

2pE
0

q̄

dq9Ṽff
S
„w̄~q8!,q8,w̄~q9!,q9;s…

1

2Asw̄~q9!Ef~q9!
gff~q9!

1E
2`

`

dq09E
0

`

dq9Ṽfd„w̄~q8!,q8,iq09,q9;s…Gd~ iq09,q9;s! f df~ iq09,q9!. ~4.33!
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Wick rotation is also necessary to remove the poles in t
integrals in Eq.~4.26!. Above we saw that

If~s!52a~s!1b~s!, ~4.34!

wherea(s) andb(s) are given by Eqs.~3.15! and~3.16!, but
with Vff and f ff replacingVand f . As for I d , by Wick
rotating theq09 integration in Eq.~4.28! the result

i I d~s!52E
2`

`

dq09E
0

`

dq9Vfd~0,q̄,iq09 ,q9;s!

3Gd~ iq09 ,q9;s! f df~ iq09 ,q9;s! ~4.35!

is found. In contrast to the BSE equation, where we had t
coupled integral equations for the KN functions, here w
have three coupled integral equations, with thes(ff)d
channel being the source of the extra equation.

D. Numerical results

Equations~4.29!, ~4.30!, and~4.33! are in a form suitable
for computation, having had almost all poles and cuts
moved from the kernel. The only remaining pole is that
q0950, q95q̄, due to the zero inṼ at that point being only
first order, while the pole inG at that point is second order
However, as in the ladder BSE case, this pole may be de
with by making a change of integration variable and choo
ing appropriate quadratures.

Equations~4.29!, ~4.30!, and ~4.33! are solved for the
Kowalski-Noyes half-off-shell functions and the results us
to calculate phase shifts according to Eqs.~3.10!, ~4.26!,
~3.15!, ~3.16!, and ~4.35!. The equations are solved by dis
cretizing the integrals using Gauss-Legendre quadratures
then applying matrix inversion. In order to guarantee pha
shift accuracy to three significant figures 14 and 22 quad
tures are necessary for theq09 andq9 ff intermediate-state
integration, while 44 and 14 quadratures are necessary in
q09 andq9 integrations over the (ff)ds intermediate state.
@Note that theq09 integration is from2` to ` in the
(ff)ds case.# Eight quadratures are needed for theq9 inte-
gration over@0,q̄#.

As a first step in the application of the coupled-chann
equations, we examine the contribution of the double cou
ing subtraction. In Fig. 10 we present the phase shifts
f-f scattering with~solid line labeled CC2X) and without
~dash-dot line labeled CC! this subtraction. Included for
comparison are the phase shifts resulting from the solution
the BSE with~dotted line labeled Ladder1X) and without
he

wo
e

re-
at

.
alt
s-

ed

-
and
se-
ra-

the

el
nt-
for

of

~dashed line labeled Ladder! the crossed-box diagram. All
four curves are calculated with thef propagators dressed as
described in Sec. III C.

First, observe that the double counting subtraction has
notable but not substantial effect on the phase shifts. This
a measure of the contribution of the crossed-box diagram a
the results are consistent with the difference between t
ladder and ladder plus crossed-box diagram BSE calcu
tions. Second, it is easily seen from Fig. 10 that there is
considerable gap between the phase shifts given by the la
der plus crossed-box calculation~Ladder1 X) and those
produced by the coupled-channel calculation with the doub
counting subtraction~CC2X). The difference between these
two calculations is that CC2X contains the complete cou-
pling to the (ff)ds channel in its kernel, whereas Ladder1
X includes only two Feynman graphs in its kernel. Thus w
would expect some gap between the phase shifts predic
by these two calculations. However, at first sight it is od
that such a large difference could occur below th
s-production threshold and with the small coupling strengt
l50.13.

E. Effects of vertex dressing

The explanation of the large difference could be due t
the two diagrams~a! and ~b! of Fig. 2. These graphs are

FIG. 10. Comparison of four different ways of calculating the
real part of theS-wave phase shifts. The dashed curve is the resu
of the ladder calculation, the dotted curve includes the crossed-b
diagram, the dot-dashed curve is the straightforward couple
channel result, and the solid curve is the coupled-channel res
with the crossed-box diagram subtracted so as to remove dou
counting.
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effectively included in the coupled-channel calculation, th
partially dressing theffs vertices. By contrast, the vertices
used in the ladder and ladder plus crossed-box calculati
were undressed.

To gauge the size of this effect, we introduce verte
dressing in the ladder BSE and adjust the coupling stren
l to get a binding for thef-f state that is comparable with
the deuteron binding energy. We then use a separable
proximation to this new ladder BSE amplitude as input to t
coupled-channel equations. In this way diagrams~a! and~b!
of Fig. 2 are included in both the BSE and coupled-chann
us

ons

x
gth

ap-
he

el

equations. The effect of this on the coupled-channel eq
tions is that some vertices in Fig. 2 are now bare vertices
some are dressed vertices.

We begin by seeking a self-consistent equation for
one-s-exchange piece of the CC2X calculation. In other
words, we must determine what form thesff vertex func-
tion must have if it is to be the vertex in both the inp
ff ladder interactionand the one-s-exchange piece of the
ff interaction that results from the coupled-channel a
proach. It is easily demonstrated that for this to be the c
the vertex functionf must obey
f ~pn8 ,pn ,kn!5gb1 igb
2E d4k8

~2p!4
1

kn8k8
n2m2

1

~p82k8!n~p82k8!n2m2 f ~pn82kn8 ,pn2kn8 ,kn!
1

~p2k8!n~p2k8!n2m2 .

~4.36!
n-
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~This equation is given in diagrammatic form in Fig. 11.! In
general, Eq.~4.36! is difficult to solve. On the other hand, a
reasonable approximation is obtained by arguing that thef in
the integrand may be approximated byg, the dressed cou-
pling constant. Such an approximation includes the one-lo
dressing of the vertex exactly and higher-loop dressings
proximately. Its use may be justified by appeal to the sa
argument that validated our use of one-loop propaga
dressing above. Higher-loop dressings make contributions
ffss and higher-state unitarity. The one-loop result
therefore all we need to enforceffs unitarity. Moreover,
due to the small value of the coupling being used we mig
expect that any error in such an approximation is small.

The integration over four-momentumkn8 may now be
done via the Feynman technique and the result is

f ~pn8 ,pn ,kn!5gb2glbE
0

1

daE
0

12a

db
1

D~a,bupm8 ,pm ,km!
,

~4.37!

D~a,bupm8 ,pm ,km!5b~12a2b!pm8 p8m1abkmk
m

1a~12a2b!pmp
m

2~m22m2!~a1b!2m2, ~4.38!

wherepm is the initial nucleon four-momentum,pm8 is the
final nucleon four-momentum,km is the pion four-
momentum, andlb5 gb

2/16p2, with gb the bare coupling
constant.

FIG. 11. Nonlinear equation for the vertex functionf .
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me
tor
to
is

ht

Defining I to be the value of the integral for
p25p825m2 and k25m2 ~without the factors ofg andgb
included! suggests that the dressed and bare coupling co
stants are related by

g5
gb

11gb
2 I

16p2

. ~4.39!

When the integralI is evaluated numerically we find
I521.719.

To include such dressing for the vertices in any of ou
previous BSE calculations only requires a change in the de
nition of the potentialV. The additional vertex dressing does
not interfere with the Wick rotation since none of its cuts
intrude into the first and third quadrants forAs,2m1m.
The momentum dependence of the vertices may be calc
lated straightforwardly up toAs52m1m since at these en-
ergies the integrand in Eq.~4.37! is regular for all four-
momenta used in the kernel of the integral equations for th
KN functions.

Numerical partial-wave expansion is used to evaluate th
one-s-exchange interaction with dressed vertices. To obta
an accuracy of three significant figures in the phase shifts a
four significant figures in the squares of the bound-sta
masses, eight quadratures in this partial-wave integration a
four quadratures in the Feynman integral is sufficient. Th
dressing of thef propagator is done as before but with a
strengthAllb, rather thanl, in order to simulate the effect
of dressing one of the two vertices in the dressing loop.

First we consider the bound-state calculation. Tests sho
that the discretization of the integral equation can be carrie
out with the same number of quadratures without the acc
racy diminishing. It is found that the bare coupling require
for the scalar ‘‘deuteron’’ to have the desired mass i
lb50.0935, corresponding tol50.133.

To examine the importance of the momentum dependen
of the vertex dressing, in Fig. 12 we compare the phase shi
with dressed propagators and vertices~solid line! with a lad-
der calculation in which there is no vertex dressing and th
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strength of the bare coupling is taken to belb5l50.133
~dashed line!. These results show clearly that the momentu
dependence introduced as a result of the dressing has on
small effect on the final phase shifts. In fact, it reduces t
phase shifts and to that extent increases the difference
tween these results and the results of the coupled-chan
calculation reported in Fig. 10. The small effect of the m
mentum dependence on the phase shifts provides justifica
for the approximation used in solving~4.37!.

We can now use the results of the BSE with dressed v
tices and propagators as input to the coupled-channel eq
tions. To do this, we need to fit the solution of the BSE in th
ladder approximation with dressed vertices and propaga
with a separable potential. The result of this fit is present
in Fig. 13. The best fit is achieved withb50.467 60, which
is not very different from theb found in the undressed-
vertex case.

This separable expansion of the ladder BSE with dress
vertices can now be used as the input to the coupled-chan
calculation. However, if this is done additional double coun
ing is introduced, since the Feynman graph in Fig. 14

FIG. 12. Real part of theS-wave phase shifts for the case
lb50.0935 with vertex dressing included~solid line!, compared
with the casel50.133 with no vertex dressing~dashed line!.

FIG. 13. Real part of theS-wave phase shifts for the case
lb50.0935 with vertex dressing included~solid line!, compared
with a separable approximation to this result~dashed line!.
m
ly a
he
be-
nel
o-
tion

er-
ua-
e
tors
ed

ed
nel
t-
is

double counted, and so a further subtraction inVff is re-
quired.

Other complications arise because the vertices that p
duce the coupling to thes(ff)d channel should be dressed
However, there is nofs nonpolet-matrix and therefore no
way for these vertices to be dressed in the coupled-chan
theory derived above. To cover this deficiency of our calc
lation we arbitrarily replacegb by g everywhere inVfd and
Vdf .

The problem with thisad hoc solution is that the
(ff)ds coupling vertices that lead to vertex dressing for th
one-s-exchangeff interaction are now also dressed. There
fore corrections are made to the interactionVff in order to
remove allg’s that lead to vertex dressing and replace the
with gb’s once again.

Note that dressed vertices in the crossed-box diagram,
f propagator dressing loop, and the ‘‘true’’ coupling to th
(ff)ds channel all haveno momentum dependence; they
merely contain the coupling constantg rather thangb . We
think this is a reasonable approximation to the full resu
since the ladder results show that, for the values of the co
pling of interest here, it is the overall strength of the couplin
that is the major effect, not its momentum dependence.

Once these corrections toVff , Vfd , andVdf are made
the calculation proceeds exactly as above. The number
quadratures required for three significant figure accuracy
mains unchanged. The results of these calculations
shown in Fig. 15. Coupled-channel calculations both wi
and without the crossed-box diagram subtraction are co
pared to the ladder calculation with dressed vertices and
same calculation with the crossed-box diagram added. N
that graphs such as~a! and ~b! of Fig. 2, but with bare ver-
tices, are included in the kernel of the BSE, theCC2X and
Ladder 1 X calculations contain the same second- an
fourth-order Feynman graphs. Therefore, it is the two midd
curves of Fig. 15 that should be compared. These two curv
are much closer together than was the case in Fig. 10, t
indicating that the discrepant vertex dressing was the m
reason for the large gap between the same curves in that p

So we conclude that if the vertex dressing is done a
proximately consistently in the Ladder1 X and CC2X cal-
culations, then the resultant phase shift curves lie very clo
together. The double counting subtraction is crucial to o
obtaining this agreement.

FIG. 14. Feynman graph that is double counted in the couple
channel calculation if an inputf-f amplitude with dressed vertices
is used.
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V. CONCLUSION

In this paper a coupled-channel formulation offf scat-
tering in af2s field theory was investigated. In particular
we found that theff-sff equations can be solved usin
an extension of the method developed by Levineet al. @45#
for the ladder Bethe-Salpeter equation. This may be done
a moderate amount of computer time on a SUN workstatio
Since these equations are just theNN-pNN equations of
Ref. @27# adapted to a scalar field theory withtfs

(1)50 this
indicates that it is feasible to solve the four-dimensional c
variantNN-pNN equations numerically. It also yields phas
shifts forff scattering up to the (ff)ds threshold, thereby
showing that theff-sff equations can be used to effec
tively include in the BSE kernel the infinitely many diagram
involving one explicits. So it allows a comparison betwee
such a coupled-channel~CC! approach toff scattering and
descriptions using a single BSE, which allow only a fini
number of Feynman graphs to be included in the kernel.

As discussed at length in Refs.@8,27,28#, in most previous
four-dimensionalNN-pNN equations some diagrams are in
cluded more than once in the kernel of the coupled-chan
equations. In the first calculation of Sec. IV D the onl
double counting removal required is that of the crossed-b
diagram. Its subtraction is found to make a significant diffe
ence to the phase shifts obtained from the coupled-chan
calculation.

However, the gap between the phase shifts produced
this, CC2X, calculation and those obtained when th
crossed-box diagram is added to the kernel of the ladder B
~Ladder1 X) is surprisingly large. Closer examination re
veals that theffs vertices in the two approaches are no
dressed in the same way. The coupling to the (ff)ds chan-
nel in the CC formulation introduces some dressing of t
vertices. If a direct comparison is to be made this dress
must be included in the ordinary BSE calculations. Once t
consistent dressing is implemented a striking decrease in
gap between the CC2X and Ladder1 X calculations occurs.

It is then seen that the ‘‘true’’ coupling to the (ff)ds
channel makes little difference to the phase shifts. In oth
words, if all of the second- and fourth-order diagrams th
are effectively included in the CC2X calculation’s kernel

FIG. 15. Comparison of single-BSE approach, with vertices a
proximately dressed to all loop orders, against coupled-channel
proach. The legend is the same as in Fig. 10.
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are summed in the kernel of the single BSE then the resu
of the two calculations are very similar. It is worth noting
that the agreement between the single and coupled BSE
proaches is destroyed by the omission of any fourth-ord
diagram from the Ladder1 X calculation and by the over-
counting of the fourth-order crossed-box graph in the C
calculation. Whether this close agreement persists above
(ff)ds threshold remains to be investigated.

It is only because the true (ff)ds channel is relatively
unimportant that we can claim to have summed the fie
theory correctly. If this were not the case our use of th
ladder BSE as the basis for the inputff interaction would
be open to criticism. Strictly speaking in order to ‘‘boot
strap’’ the theory up we should construct a parametrizati
of the ff amplitude resulting from our CC2X calculation
and use this as input to anewCC2X calculation, repeating
this process until convergence is obtained. However, if th
procedure were implemented additional double counti
would be introduced into the equations. This would have
be explicitly removed. As the true (ff)ds coupling appears
fairly small in our calculation, we do not pursue such a boo
strapping procedure here.

In this paper we have only calculatedff scattering up to
the s ‘‘deuteron’’ threshold. In modifying the methods of
this paper for work aboveAs5md1m three issues arise.
First, once this energy is reached thes and d poles pinch
each other, thus generating the elastic (ff)ds threshold.
This pinch and threshold may be removed by modifying th
Kowalski-Noyes method so that it applies to coupled
channel problems. Second, the validity and efficacy of Wic
rotation must be examined. The discussion of analytic stru
ture in Appendix G of Ref. @28# shows that, for
md1m<As,2m12m, the only cut that threatens Wick ro-
tation is the one that represents the process (ff)d→f1f.
However, even ifAs is large enough for this deuteron
breakup cut to intrude into the third quadrant the cut ma
still be avoided by Wick rotating about a point on the nega
tive q09 axis in (ff)ds intermediate states. Provided this
point is suitably chosen, the only structure that can obstru
such a rotation is thes-propagator pole. Hence an auxiliary
equation for the Kowalski-Noyes functions a
q095nsAs2Es(q9) must be written when the Wick rotation
is performed. Once the rotation is completed the only ne
analytic structure in the kernel occurs in that part of th
kernel corresponding to the transition (ff)d1s→f1f. In
the auxiliary equation forf ff at v̄(q8) that piece of the
kernel acquires logarithmic branch points, due to the pos
bility of real s production via the diagram shown in Fig. 16
Thus Wick rotation is permitted and succeeds in eliminatin
most of the troublesome analytic structure from the kern

p-
ap-

FIG. 16. Diagram that, above thes-production threshold, leads
to logarithmic branch points in the kernel of the Wick-rotate
coupled integral equations.
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Finally, the increase in available energy leads to complic
tions in the calculation of Feynman integrals. In both th
crossed-box graph and the vertex loop some of t
intermediate-state particles can propagate on shell onceAs
reaches 2m1m. So singularities occur in the integrands o
the Feynman integrals and the integrals can no longer
done in a straightforward way.

Another point for future investigation is the inclusion of
nonpolefs interaction in the theory. This might be done b
solving the ladder BSE for unequal mass particles using
driving term shown in Fig. 17. The resultant amplitude cou
then be parametrized by a separable interaction and use
input to theff-sff equations. This obviously increase
the amount of physics summed in the theory, but also h
three other effects. First, by introducing an additional cha
nel (fs)1f, the computer time required is raised. Secon
the vertex dressing problem no longer needs to be remed
‘‘by hand’’ since all vertex dressing will be done in a con
sistent way. Finally, further double counting corrections ne
to be introduced, as discussed in Sec. II. However, since
of these further double counting corrections involve the r
moval of the crossed diagram from thefs interaction this
third point should not complicate matters greatly.

FIG. 17. Possible driving term for the ladder BSE forfs scat-
tering.
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Few changes will be needed in order to apply the metho
of this paper to theNN-pNN system. The first step in such a
calculation will be to perform the spin and isospin algeb
involved in the partial-wave decomposition of the four
dimensionalNN-pNN equations. Once this is done a set o
coupled partial-wave expanded equations of the form solv
in this paper is obtained. Questions remain about the valid
of Wick rotation in theNN-pNN case, since some of the
propagators now are proportional to 1/q, rather than the
1/q2 of the scalar case. However, the presence of form fa
tors in our equations will ensure that the integrands go
zero fast enough to validate the use of Wick rotation. Thu
once a set of coupled equations for theNN-pNN system has
been obtained the approach described here may be app
The computing time required for such a calculation will ob
viously be much longer than for those in the scalar fie
theory. It should also be pointed out that if results for th
NN-pNN system above the two-pion threshold are needed
method that is more sophisticated than our ‘‘naive’’ Wic
rotation should be used. However, for calculations up to t
second production threshold the work of this paper sho
that the numerical solution of the coupled field-theoret
equations derived in Ref.@27# is entirely possible.
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