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Solving the four-dimensional NN-7NN equations for scalars below
the meson-production threshold
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The four-dimensionaN N-NN equations are adapted to the case of scalar particles wiftoanteraction
Lagrangian and solved for energies below th@roduction threshold. This is achieved in the approximation
where ¢o scattering is dominated by treechannelg-pole term. The importance of the removal of double
counting is investigated and a detailed comparison of the results of a covariant coupled-channel formulation
and the Bethe-Salpeter equation in the ladder and ladder plus crossed-box approximations is presented. A brief
discussion of the extension of the method to energies aboveotipeoduction threshold is given.
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[. INTRODUCTION constant. The great advantage of this method is that the re-
sulting equations depend only on the topology of the allowed
Quantum chromodynamic&QCD) is now the accepted Vvertices of the field theory. Hence this is a particularly useful
theory of the strong interaction. Its highly nonperturbativeapproach in hadronic field theories, where the best effective
character at hadronic mass scales means that effective fielkgrangian has not yet been derived from QCD.
theories of the strong interaction are almost always used When applied to the two-to-two amplitude the Taylor
when the properties of few-hadron systems are calculated. Ifethod yields
some such field theorig®.g., those based on chiral pertur-
bation theory the Lagrangian is organized so that a pertur-
bative calculation of hadronic reactions is appropriate, at
least for “small” momentg 1-3]. However, to examine the

scale at which quark-gluon degrees of freedom become egyhere the bracketed superscripts indicate the irreducibility of
sential we need to use these field theories to calculate hagach amplitude. This is, of course, a Bethe-Salpeter equation
ronic reactions at medium to large momenta. The need fo{BSE) for the two-to-two amplitude, witif® as the “driv-
explicit quark-gluon degrees of freedom may then be deing term” [9,10. We note that ifT(®) is the sum ofall
duced from failures of effective hadronic field theories totwo-particle irreducible two-to-two Feynman diagrams, then
explain the experimental data. It is in this regime that chiralthis equation is exact. If the Taylor method is applied to the
perturbation theory fails and unitarity plays an importantthree-to-three amplitude, four-dimensional Faddeev-like
role. equations may be derivdd1].

The amplitudes for any hadronic reaction are, of course, In hadronic physics one problem that one might try to
exactly given by the infinite hierarchy of Schwinger-Dyson apply Eq.(1.1) to is nucleon-nucleon scattering. Before any
equations, which can be derived by functional techniquesalculations can be performed the nature of the kefi@l
[4—6]. An alternative method of deriving a set of coupled must be specified. One approach, pursued by Fleischer and
equations for the amplitudes of a field theory was developedjon is to assumeT® consists of a sum of one-boson-
by Taylor [7,8]. It involves taking the series of Feynman exchange Feynman diagrams. This approximation gives a
diagrams for a particular amplitude and classifying eachreasonable fit to the nucleon-nucleon phase shif513.
graph according to its topology. The result is an infinite setHowever, for energies above the pion-production threshold,
of coupled equations for the amplitudes of the field theoryone needs to include the thresholds for all of the physically
Some approximate truncation of this set of equatiteg., allowed channels. In particular, if a theory that gives consis-
one that preserveschannel unitarity must be found. Since tent predictions foNN scattering and pion production is to
these equations are derived directly from the field theory, albe developed, the fulNN7 intermediate-state structure of
of the integrals present in them will be four dimensional.the amplitudeT® must be exposed. The Taylor method is
Note that despite the use of the Feynman diagrammatic sevell suited to this task, and attempts to use it in order to
ries, Taylor's method is a nonperturbative technique, since iexpose the NN# intermediate-state structure of field-
sums certain classes of graphs to all orders in the couplintheoretic amplitudes, such @, were pursued by Avishai

and Mizutani[14,15. They used Taylor's method to classify
all of the covariant perturbation theory diagrams that contrib-
*Present address: Department of Physics, University of Marylandyte to theNN— NN, NN« NN, andNN7— NN7 ampli-

T(l):T(2)+T(2)dld2T(l), (11)

College Park, MD 20742. tudes and contain one explicit pion. The result was a set of
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N+ N N+ N gent integrals. The simplified calculations described here im-
N+N+7T}H[ N+N+° (1.2 ply that the numerical solution of the full four-dimensional
NN-77NN equationsis feasible. The use of a scalar field
These equations were formally equivalent to the threelheory also makes for a clear discussion o_f issues such as the
dimensionalNN-7NN equations previously obtained by a usefulness of a couplgd—channel fprmulatlon and the impor-
number of groups using different techniquiist,16—-22.  tance _of double counting removal in such an approach.
However, a crucial difference was that Avishai and Mi- A field theory describing two types of spin-O particles
zutani’'s equations contained four-dimensional, rather thaifiteracting via a Yukawa coupling is chosen. A contact in-
three-dimensional, integrals. Similar four-dimensional equaf€raction is also included in order to ensure the stability of
tions, but for theBB-7BB system, where th& could be thezclq33|cal vacuum. The Lagrangian density for this
either a nucleon or &, were later obtained by Afnan and =~ ¢“o field theory” is
Blankleider[23]. By explicit construction, both Avishai and
Mizutani’s and Afnan and Blankleider's equations were co- L= 3[(3,¢)*—m2¢?+(d,0)2— n20?]
variant. Furthermore, unlike the three-dimensionéN-
7NN equations, they did not treat different time orders of
the same physical process differently. Consequently, these
four-dimensional equations avoided the theoretical problems
of the three-dimensionaNN-7NN equations that were  Because the modified Taylor method is Lagrangian inde-
pointed out by Sauer, Sawicki, and Fuf@#4] and Jennings pendent, theNN-7NN equations for distinguishable par-
and Rinat[25,26. (For a more detailed discussion of this ticles derived in Ref[27] apply to the¢?s field theory. The
point see[27,28].) distinguishable-particle equations must be symmetrized, as

~ Unfortunately, these four-dimension&IN-7NN equa-  the ¢'s are bosons. This leads to a set of nine two-fragment
tions were not correct, since they double counted certaiBcattering equations for the processes

Feynman diagrams. This double counting occurred due to a

- gd)za— §¢202. (1.3

problem with the original Taylor method. Indeed, such b+ b b+ b

double counting will arise whenever one tries to derive (bo)+d bt ] (dpo)+ ¢ (1.4
coupled field-theoretic equations whose input is full sub- ' :
amplitudes for subsystem interactions. While a decomposi- (pp)ato (pp)ato

tion in terms of subsystem interactions is possible for any _
Feynman diagram, it is not necessarily unique. ThereforeVhere (@¢)q is a bound state of thé¢ system that plays
when the perturbation series is reorganized in order to deriv1€ role of the deuteron. Below the threshold éoproduc-
such coupled equations, some Feynman diagrams get incdfon these equations provide a way of calculating #hep
rectly included more than once in the resummed sef&se amplitude that corresponds to including infinitely many dia-
[29] for a brief discussion anfB] for details) To overcome drams in the kernel of a single Bethe-Salpeter equation for
this problem, we need a procedure for determining the conthat amplitude. Above ther-production threshold these
ditions under which double counting occurs and a way tocoupled equations allow us to calculate amplitudes for the
remove the offending diagrams from the equations. Areactions of Eq(1.4) in a framework that, provided the input
“modified Taylor method,” which gives a prescription for amplitudes have two-body unitarity, maintains¢$ and
the subtractions necessary to remove this double counting?¢o unitarity. Note that as in calculations using a single
was recently developed by (i8]. We then used this modi- BSE, the kernel to these equations must be approximated in
fied Taylor method to derive revised four-dimensiohgl-  order to make them computationally tractable.
7NN equations that do not contain double countid,29. The inputs to thesepg-op¢ equations are the one-
These equations are essentially equivalent to those obtain@drticle irreducibles-¢ amplitudet'}) and the¢po vertex
by Kvinikhidze and Blankleider using different means function ). Because thep¢p— ¢¢ amplitude appears in
[30,31. The resulting set of coupled four-dimensional two- the kernel of these equations they are a set of nonlinear, or
fragment scattering equations obkyN and NN7 unitarity,  bootstrap, equations. Strictly speaking, the complete nonlin-
are free of double counting, and are covariant, not only orear set of four-dimensional equations should be solved for
shell, but also off shell in the manner dictated by the Feynthe amplitudes of interest. To snap the bootstrap, in this work
man diagrammatic expansion. we mimic the approach of previous three-dimensional-
Thus a set of equations that gives a complete and correatN calculationg32] and use an inpu$¢ amplitude that
summation of theNN andN N sectors of any hadronic field is constructed as a separable approximation to the “true”
theory now exists. However, it remains to be seen whethes-¢ amplitude. The energy range used in the construction of
this set of equations can be solved in order to yield predicthis expansion must bg below the energy at which the
tions for experimental quantities. For a detailed program deeoupled equations are to be solved. Arguments from Ref.
scribing how such a solution might be achieved, see Sec. 7 $27] show that we expect such an approach to yield a rea-
Ref. [27]. This paper reports on a preliminary study of the sonable solution to the set of nonlinear coupled equations. In
numerical solution of these equations. The equations arthis work we take the predictions of the ladder Bethe-
solved, not in a field theory of nucleons and pions, but in aSalpeter equation as the truk ¢ amplitude. The consis-
scalar field theory. Consequently, details of spin and isospitency of this procedure may be judged by comparing the
are removed from the problem. In addition, there is no needesult of the coupled-channel calculation to the separable in-
to introduce subtractions or form factors to obtain converput amplitude.
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In order to simplify matters as far as possible we assuméleider[30,31], are also valid for the Lagrangian in Ed..3
that the amplitudet'?) is zero, i.e., thatpo scattering is ~ since the derivation of the equations does not depend on the
dominated by the pole diagram. The implications of impos-choice of Lagrangian. As a result, thip-o¢¢ equations
ing this restriction are discussed in Sec. Il. This assumptioffor distinguishables’s are of the form
implies that the vertex function far absorption on a single

¢ is given by Tye=V( 1+d1d,T44)

f<1><p',p.k>=f<2><p'.p,k)=—ig(zm“a“)(p'—p—lz).s) + 2 1)) 81,07d,t V(@) d; 'd1dad, Tug,
1. Jhe
. (2.9)

where the Feynman rules of the field theory have been used
in order to evaluaté(®, — a1

If the input amplitudes are chosen in this way then the Tho= 2 STV T()d M (1+d1d,T4)
dP-op¢ equations become a set of four coupled equations .
describing the processes ii1.4) that do not involve the — . .
(¢o) “isobar.” In this paper we solve these equations for +§ ot (a)d, "d1dod, Ty
¢ ¢ scattering up to ther-“deuteron” threshold and com-
pare the results with those from the BSE. In so doing we lay E iy st
the foundation for studies of the covariant, four-dimensional, T A vi()de6; (1) (14d1daTyy), (2.2
NN-7NN equations derived in Ref27]. ’

In Sec. Il we consider the fullb¢-o¢¢ equations and where we have taken particles 1 and 2 to bedghgarticles,
discuss the consequences of the approximations made to gghijle particle 3 is thes. Here 5, =1—6, and j=2 for
the simplest form of the equations that includes the couplinq -1, whilej_zl for j=2. The rorrj1an indic]:es run from 1 to
to the ‘T(d’d’).d channel. In.the process we see how .theZ, while the greek indices run from 1 to 3. These equations
Soubledc;)untltnhg protllerr: a:crltieskat ea}ch level of a%ﬁrto;('rtnagiffer from the corresponding equations of Avishai and Mi-
ion and how the content of the kernel compares wi ato ; . : )
the BSE. We also examine the consequences of taking theutam[lS]_and Afnan and Blankleidgi23] in that the ¢-¢

ladder approximation for the-¢ amplitude in the kernel of E?lt)(?nnaly and the one-particle |rreQUC|bIe—22 amplitude
the coupled integral equations t'*Y7(a) in Eqg. (2.1) have subtractions to remove double
; counting in theg-¢ amplitudeT ,,, while the last term in

Since the input to the equations derived in Sec. Il is the

-6 amplitude, we proceed in Sec. Il to discuss the numeriEd- (2.2 is a subtraction to avoid double counting in the

. o i @iy i _ i irre-
cal solution of the Bethe-Salpeter equation in the ladder ap ¢__’U¢¢ amphtud_eTM,. f (1) IS t_he one-particle Irre
proximation. We demonstrate that, in the case when the in(-jlfc'ble,¢H ¢o amplitude with particle as spectator, while

(M)(a) is the one-particle irreducible-22 amplitude with

teraction supports a bound system with a binding energ)t/

comparable to that of the deuteron, a valid separable ag@'ticle « as spectator. The single-particle l:_eynman propa-
proximation to theg-¢ amplitude can be written. gator for particlex isd, . Theo-¢ po;entlalv in Eq. (2.2

In Sec. IV we examine the solution of the coupled cOrresponds to tha-channelg-pole diagram, i.e.,
integral equations for the reactions in Ed.4). At this stage Xy f(1)/ (Dt
only the solution of these equations below the threshold for v =12, 23
o production is explored. We then compare our results withr,, two-body amplitud&® is chosen such that the subtrac-
those from the BSE when the kernel is taken to be either the j, is present only in ther-¢ amplitudes(see Ref[27])
ladder or the ladder plus crossed-h@xexchange. The effect with the subtraction basically removing any initial
of vertex dressing in the BSE is also investigated. In particus

- . i X u-channel pole, i.e.,
lar, it is found that vertex dressing must be included in the P

Bethe-Salpeter kernel in order to maintain consistency with T%:t%’ Tf,lq)5=(t§,l¢)sd¢dg+ 1 )v(qus,
the coupled-channel results. Finally, in Sec. V we give a
summary with some concluding remarks about future work. U(Rr¢:t57'2q)5_v)(§'¢‘ 2.5
Il. -0 EQUATIONS In Eq. (2.1) the ¢-¢ potentialv_is given by
There are two central questions in the analysis of the V_:VBSE_DI_DZ_DG_X_Ba (2.6)

dP-op¢p equations. First, what additional features do these

equations have as compared to BSE formulations? In paiwhereV§q,is the ones-exchange potential, i.e.,

ticular, how does the physics content of these equations

change as different approximations are made for the kernel? Ese=T1*(1)d, fV*1(2), 2.7
Second, what numerical problems are encountered in solving

these equations? In this section we address the first of theyéth the modified one-particle irreducibles ¢ form factor
guestions, by illustrating the origin of the double countingf(l)* having dressing with the-channel pole diagram sub-
problems and showing how subtractions remove them. Th#acted, i.e.,

NN-7NN equations reported in Ref27,29, which are ba- (D _ ¢ =

sically the same as the equations of Kvinikhidze and Blan- =190 1+d,dyt 54). (2.8
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move the double counting problem is restricted to e

° . ® “ S potential V. This is because all double counting due to
—e—o— e e u-channel poles in the-¢ t matrix has been, by definition,
D, D X B removed from the problem.

L At this stage we should recall that the one-patrticle irre-
FIG. 1. Subtractions iV required to avoid double counting.  ducible ¢-¢ amplitudet% is equal to the full amplitude
T44, Which is part of the solution to the coupled equations,
The subtraction®,, D,,, X, andB are illustrated in Fig. 1 and so we have a nonlinear set of integral equations. In the
and are given explicitly in Ref.27]. D, is merelyD, with  time-ordered, or nonrelativistic, version of these equations,
the two nucleons interchanged. All subamplitudes in Fig. lthe energy variable imfﬁl{} is lower than the energy in the
are one-particle irreducible in treechannel. amplitudeT ,, by at least the mass of the This allows for
Since we are ultimately interested in tNeN-7NN equa- 3 hootstrap procedure, in which the lower-energy amplitude
tions, the first approximation we consider is that the two-js used to obtain the amplitude at higher energies, as illus-
particle irreducibleo-¢ amplitude is just thei-channel pole  trated in work on therN-7#N equations above the thresh-
diagram, i.e.t%)=v%, In this approximation the subtrac- old for pion production32]. A similar situation prevails in
tions D; and D, in (2.6) become unnecessary. All of the the covariant framework, but only approximatekgee
other double counting problems are still present and must bg27,28 for detailg. In the present analysis we will follow
removed by the explicit subtraction terms. Simxﬁ%=0, the this procedure for removing the nonlinearity. To simplify the
form factors in thes-exchange potential are two-particle ir- resulting bootstrap problem we will assume thgﬁ is a
reducible, while theu-channel subtracted-¢ amplitude is  solution of the BSE in the ladder approximation. This final

zero, i.e., approximation removes the bootstrap problem and our
coupled-channel equations still satisfy two- and three-body

fb* =£(2) T%ZOZT(;&T- (2.9  unitarity. Furthermore, we can test the validity of this solu-
tion to the bootstrap problem by comparing the phase shifts

We could now approximate both the-¢ and ¢-¢ ampli-  corresponding to}) with the phase shifts resulting from the

tudes by separable expansions, which, after partial-wave explytion of the coupled-channel problem.
pansion, would reduce the coupled-channel problem to a set pefore we turn to further discussion of the input to the
of coupled integral equations in two dimensions. Howevercoupled-channel equations, we should point out that the

Since ﬂﬂSiS an "“ﬁalrﬂece Of|1un1eﬂcaJVVOrk on ﬂﬂS prob'Eﬂaove two Courned ec“Janons can be recastinto a Single
lem, we have chosen to concentrate on the problem of thggyation for thep-¢ amplitude

separable expansion for thg-¢ amplitude and the proce-
dure for linearization of the coupled nonlinear integral equa- Tpp=Ver(1+d1d;T ), (2.12
tions. To this end we have choseé}f)=0. Such a choice
implies that all one-particle irreducible form factors in Egs.with an effective interaction of the form
(2.1) and(2.2) be replaced by the corresponding two-particle
irreducible form factor and the one-particle irreduciblep — v @) (iyAer +(1) 4—F (21
amplitudet() be set to zero, i.efM—f? andtM—0. Vet V+i§,j: FEdrd,ty,di Toia). (213
This reduces our coupled integral equations to two coupled
equations of the form Rewriting the coupled-channel problem in terms of a single
channel allows us to see how the double counting is removed
— s (1 by subtractions irV. It also helps in discussions of the dif-
Tye=V( 1+d1d2T¢¢)+; ()] d"t(‘f’;’dldsz‘ﬁ’ feyrence between the coupled—(r:)hannel equations and the lad-
(2.10 der, or ladder plus crossed-box, BSE.
In the event that{}) is chosen to be the solution of the
B Dty q-1 ladder BSE, then the second term on the right-hand (shee
Tdaﬁ_; f (l)dj (1+d1doTyy). (211 of Eq. (2.13 has two terms that correspond to crossed-box
o exchange. This double counting is removed by taking

In writing these equations we have made use of the notation —
Tay=Ta,. In these equations the correction required to re- V=Vose~ B, (2.14

|
-———
.

FIG. 2. Lowest-order Feynman diagrams that
contribute toVg if the input ¢-¢ amplitude is
the solution to the ladder BSE.

¥
-—d

P yupny

(e) (1] (8) ()
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whereB is the crossed-box diagrataeee Fig. 1 In addition,
wheni=j, the second term on the rhs of E.13 has .
diagrams that contribute to vertex dressing of the = : +
o-exchange potential s [diagrams(a) and (b) of Fig. 2]. :
However, a careful examination of the series resulting from
this term re\(eals that thgre areé no .contrlbutlons from dia- FIG. 3. Pictorial representation of the ladder Bethe-Salpeter
grams in which both vertices are being dressed at the SaM@uation as given in Eq3.2).

time. This is a result of our elimination of the non-linearity

in the coupled integral equations. Finally, expanding ithe masses, construction of a separable approximation to the lad-
#| piece of the second term on the rhs of 213 shows  ger amplitude, and inclusion of effects beyond the ladder
that some of the crossed-ladder diagrams required to get thgyproximation. While all of the techniques described here
correct one-body limit for the BSE33] are included in.the are explained elsewhef84—38, we give an outline of the
solution of Eq.(12.12_). Indeed, the solution of the nonlinear yethods for two reasons. First, our solution procedures for
equation for T will include more (but not al) of the  the coupled-channel equations are extensions of those de-
crossed-ladder diagrams necessary for the correct one-bodyrined here. Second, explaining the methods establishes

limit. ] . some of the notation used in Sec. IV. Further details on the
In the event that the amplitude from the solution of Eq.\york of this section may be found in ReR8].

(2.12 is not consistent with the solution of the ladder BSE,
we could take the solution of Eq2.12 and substitute that
result into Eq.(2.13. This in turn will give us a new effec-
tive potential that can be used in the BSE, E2)12. How- The BSE, Eq(1.1), is an equation for the invariant two-
ever, in that case more diagrams are generated by the secoparticle scattering amplitude in a field theory. Of course, in
term on the rhs of Eq(2.13 and therefore further subtrac- practice it is impossible to construct the sum of all graphs
tions are needed. Consequently, the poteiidd given by ~ contributing toT(® and solve the resulting integral equation
o for T, Therefore, most work in the past has focused on the
V=Vi—B-D,—X. (2.15  so-called “ladder approximation,” in whicfi®) is taken to
consist solely of one-particle exchange.

This demonstrates very clearly that when the input to the Consider thep®o field theory. Define

equations is approximated we need to be careful in calculati_u) -

ing the correction for the double counting problem. We re- (P1.P2:P1.P2)

turn to this point in Sec. IV D when we consider including = i(21)489 (0 + 0.~ D — D) T(a’ . P 31
vertex dressing in the BSE. (2m)" 07 (Pr+ P2~ P1=P2)T(A".GiP). @)

PR+q  PR+gq PR+q PR+g P2+q PR+q" P2+q

P2-q P2-g P2-q P2-q PR-q P2-q" PR2-q

A. Ladder approximation

If the total momentum iP=p;+p,=p;+p,, then in the
ll. THE BETHE-SALPETER EQUATION kinematics specified by Fig. 3 the BSE in ladder approxima-
In most numerical analyses of thiN-7NN equations the tion is

input two-body amplitudes were parametrized to fit the ex- |
perimental data and no regard was given to the consistency T(q’,q;P)=V(q’,q) + 4] d4q”V(q’,q”)d¢(q’;)
between the inpulN-N amplitude and theN-N amplitude (2m)
resulting from the solution of the coupled-channel problem. <d (A" VT(d".q: P 32
In the present analysis there is no experimental data for the JA2)T(A", G P). 32
¢-¢ SySteT“' and we would I|!<e to spemﬂcally maintain oo gL =P/2=q", while the potential due ter exchange
some consistency between the ingtg amplitude and that and the_qb propagator are defined by
resulting from the solution of the coupled-channel problem.
Therefore, as we have detailed in the preceding section, we

2

will consider the coupled ¢-o¢¢p equations with the only V(q',q)=-— 9 —>,

input amplitude being the-¢ amplitude in the ladder ap- Q' —a)—n

proximation. In this way the problem of the nonlinearity of

the coupled-channel equations is avoided. After partial-wave d(p)= 3.3
expansion, the resultant coupled-channel problem is a set of ¢ pz—mz' ’

coupled integral equations in four dimensions. To reduce the
dimensionality of our equations we follow the procedure pre-Throughout this paper the massasand n are regarded as
viously implemented for therN-77N equations[32] and  having an infinitesimal negative imaginary part. This defines
construct a separable approximation to the solution of théhe way poles should be negotiated, unless otherwise stated
ladder BSE. In this way we reduce the dimensionality of thein the text.
coupled integral equations from 4 to 2, at the possible cost of The BSE may also be used to extract information about
increasing the number of coupled integral equations. bound-state properties. It is known that if a bound state of
Therefore, in this section we explain various aspects ofhe two ¢ particles with masdV exists then the invariant
the solution of the Bethe-Salpeter equation and the construscattering amplitude may be decomposed into a pole and a
tion of our two-body input. These include techniques for thenonpole piece[39]. Inserting this decomposition into Eq.
solution of the ladder BSE, calculation of bound-state(3.2) and taking the residue at the pole yields
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1
2

- Eqs(ql')z

i
I'(q';M?)= (277)4f d*q"V(q’,q") G(q5.9";s) =

S
—+qf
> do

X[dy(a})dg(a”) p2—m2l'(q";M?), (3.9

wherel is the bound-state vertex function. Thus the bound- 1

state solutions of the ladder BSE may be found by searching X 2 , (3.7

for those values oP? for which the kernel of the BSE in the —E,(q")2

ladder approximation has an eigenvalue of one. ¢
The BSE in the ladder approximation is a singular integral

equation and as it stands is not amenable to numerical solu-

7_%

tion. One possible way of dealing with the singular nature ofy, (o' g, q)= 2—)\Q| q'%+g°+u®—(do—Qo)’ 3.9
the equation is to perform a Wick rotatigA0], which in- T 29'q '
volves an analytic continuation of the two variablglsand

g in Eg. (3.2 to the imaginary axis. In the center-of-mass g2

frame, whereP=(4/s,0), this analytic continuation requires Es(q")=Vq"?+m?—ie, A= 162" (3.9

that we take into consideration the singularities of both the

kernel and the Bethe-Salpeter amplitude. The singularitiegnd Q, is a Legendre function of the second kind. The on-
encountered depend on the total energy availglsleAs ex-  shell partial-wave amplitud&™ can now be written in terms
plained by Taylor and Paganameritl], this straightfor-  of the phase shif; as

ward analytic continuation to the imaginary axis is valid for

0< s<2m+2u. Above \s=2m+ 2y the self-consistently 29

generatedpo production threshold cuts in the amplitudie T°(s)=T,(0,,0,g;s)= i2_ei 3(9sins|(s), (3.10
which begin atq6=t(\/§/2—m—,u), enter the first and m

third quadrants, thus pinching tlog integration contour and where the on-shell relaive momentum is given by
preventing a simple analytic continuation of E§.2). Note 9= JSIA—m?
that for 2m= Js=<2m+2u poles of thej propagators may Next we perform a Kowalski-Noye&N) [42—44] reduc-

enter the first and third quadrants of thg plane. If this o in order to remove the two-body unitarity cut, i.e., we
occurs then the residue at these poles must be included in thgite
Wick-rotated equations in order to ensure the correct analytic
continuation. ; _ , on

To reduce the dimensionality of E¢B.2) from 4 to 2, and T(dp.9",0,0;8)=f1(05,9":9) T} (s), (3.11
so be able to turn the resultant equation into an algebraic . . .
equation, we need to partial-wave expand both the amplitud\é”th the KN half-off-shell function being one at the on-shell

T and the oner-exchange potential. The partial-wave ex- point, i.e.,f;(0,g;S)=1. This is followed by a Wick rotation.
Since the twap particles have the same mass, we change the

ansion
P qp integration to one from zero to infinity and so obtain the
coupled equations derived by Levieg¢al. for f(iqq,q’;s)
, L 3 (21+1) and g,(q’;s) [34,45. The auxiliary equation foig,(q’;s)
A(Q,,9,;8)=(—87 )Z 2q9'q must be written because of the presence¢epropagator
poles in the first and third quadrants of thg plane.
XA(do,q',d0,9;8)Pi(cost), (3.5  0i(q;s) is defined by
where A is either the oner-exchange potential/ or the 06 : , : ,
amplitudeT and co®=q-q’, is used. In the present analysis :
we takefi=c=1 and the unit of energy is chosen such that 05
m=1. From this point all four-vectors have a subscyipso o4 b
as to distinguish them from the magnitude of three-vectors. T
The partial-wave expansion converts E8.2) to < 03
, 02 |
T1(d0.9".9o.4;:5) [
0.1 |
N _°° //w/I I N NN OA‘“II'III’I‘III‘}II“IIIﬂ
=Vi(do.9 aQan)_lf_ qufo dq"V(dy.9',90.9") 35 3.6 3.7 3.8 3.9 4
)
XG(qp,9";8)Ti(dg,9",d0,9:S), (3.6 ’

FIG. 4. Coupling constant versus bound-state position for the
where ladder BSE withm=1 andu=0.15.
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o o s integral equations. For A+ u<.s<2m+2u this term
gi(a;s)=fi(w(a),q;s), w(q)=——Eq). may have a logarithmic branch point in the region of inte-
(3.12 gration. We found that the equations could still be solved
accurately in this energy regime provided enough quadra-
The equations fof; andg, can be solved by discretizing the tyres were used for the discretization.
integrals and using direct matrix inversion. We note that Tq calculate phase shifts, the equation
there is a ternv;(w(q'),q’,—w(qg"),q") in the kernel of the

VP'(s)
T(s)= — — : (3.13
1+iJf dqgfo dq"Vi(0,4,do,q")G(do.q";8)fi(do,q";S)

is used to obtaif{"(s). In order to deal with the singularities in the integrand the integral is writtd@@ls

if_ dqﬁfo dg"Vi(00,95,9")G(dg,q":9)fi(dg,a";s) = 2a(s) +b(s), (3.14
where the factorsi(s) andb(s) are given by
a(s)=- fo dqsfo dg"G(igg,q";s)[Vi(0a.iag,q") fi(idg.a";8) = Vi"(s)]
+ qu” - [Vi(0,0,w(q"),d")9i(q";8) = V"(s)] (3.19
v — | ™M ’ | 3 - ’ .
0 2sW(q")EQ") |

b(s)=V|°”(S)f_ dqﬁfo dq"G(do,q";s)- (3.16

To test the accuracy of our numerical procedure, we comthe coupling\ it is not actually necessary to calculate the
pared our results with those reported by Leveteal. [34]  eigenvalue at a number of energies. Instead we merely write
and found agreement. Varying the quadrature distributiork,=\K, The largest eigenvalue &/ (s) is then the inverse
then shows that with 14 and 22 Gauss—Legendre quadratur@f, the Coup“ng}\ required to produce a bound state of energy
for theqg andq” integration in the Wick rotated integral and s with angular momentuni. Using this technique we ob-
60 in the auxiliary residueg” integral, the real part of the tained, for the casg=0.15, the plot of bound-state energy
phase shift is accurate to three significant figures, while thegainst\ shown in Fig. 4. If a result accurate to three deci-
imaginary part is accurate to two significant figures. Themal places is desired thg;, andq” integrations require 12
large number of quadratures is necessary in the auxiliargng 22 quadratures, respectively.
integral because of the presence of logarithmic branch points
in the kernel ifys>2m+ . 180 ————— 11—

Since we hope to have in the¢p-od ¢ system a simple
model for theNN-77NN system, we have chosen to construct
the inputg-¢ amplitude to have a bound state with a binding
comparable to that of the deuteron. To achieve this we con-

135

(deg)

sider the homogeneous BSE in ladder approximation after —~ g I
partial-wave expansion E I
. . as |
F.(qa,q’;s)=—iﬁxdqﬁfo dq"Vi(90.9",d5.9") [
0 | " 1 . 2 ) | " L L | " " i
X G(qg,9";5)T'(0g.9";9), (3.17 0 75 150 225 300

E_ (MeV)
whereT'|(q4,9';s) is the vertex function for relative four- e
mOKn,erJtum g, With its angular dependence given by g 5 Comparison of the separable approximatidashed
Pi(d’-2). This may be rewritten as an eigenvalue equationine) to the ladder calculation with undressed partidleslid line)
with a symmetric kerneK, . Note that becaudg, is linearin ~ for ©=0.15 and\ =0.13.
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The couplingh is chosen so that th&-wave ¢-¢ bound
state has the same binding energy as the deuteron. In our _ +
units m3=3.9905. The valua =0.131 yields a bound state -
of this mass. The value of the “deuteron” binding energy is  FIG. 6. Schwinger-Dyson equation for tlgeparticle propaga-
only accurate to 5%; however, for our purposes this is mordor. Heavy lines represent dressed propagators and the lighter lines
than adequate. represent bare propagators.

B. Separable approximation The parametef, is adjusted to guarantee that the binding

) _ _ ) energy is identical to that predicted by the BSE equation in
Having determined the Bethe-Salpeter amplitude in thgne |adder approximation witi.=0.15 and\ =0.13, while

ladder approximation, we now need to get a separable reprene parameteg is adjusted to get a best fit to the phase shifts
sentation of this amplitude, so that we can solve #-  pejow the production threshold. The final values for the two
o¢¢ equations numerically. Ideally, a separable expansioarameters in our choice of units ag&=—15.33 and

of the oneeg-exchange amplitude in terms of the eigenstates’B:O_473 86. Despite our use of only two parameters, the fit
of the kernel or the half-off-mass-shell solution to the BSE inyg the “data” is very good, as demonstrated in Fig. 5.

the ladder approximatiof#7] should be used. However, as a
first attempt at a solution of thé ¢-o ¢ ¢ equations we con-

sider the phase shifts from the ladder BSE as data and fit C. Beyond the ladder approximation

these data with a rank-one separable potential. In this section we consider two improvements to the stan-
In a given partial wave, we can write a covariant versiondard ladder approximation, which will be used when we are
of a rank-one separable potentigl as[36] comparing single-BSE calculations with results from the

coupled-channel calculation. First, we examine the inclusion
(3.18 of ¢ propagator dressing, which is necessarg o unitar-
' ity is not to be violated. Second, we explain how to include
crossed-boxr exchange in the kernel of the BSE.
The factors ofg andq’ are introduced into the potential to  The first improvement is to include the lowest-order
maintain consistency with our BSE, E@.6). Since we will  dressing for thep propagators. This effect was included in
be restricting our analysis ®-wave scattering, we have cho- the derivation of thep$-od¢é equations by implicitly as-
sen the form factoy, for | =0 to be a function of the four- suming that all propagators were dressed. In addition, the
momentum square dressing of the propagators gives a contribution to three-
1 body unitarity that complements the contribution of ane-
] (3.19  exchange. Indeed, Levinet al. [34] have shown that such
Qo—9°— 8 propagator dressing must be included in order to guarantee
i , o an inelasticity less than one above the thresholdofquro-
The solution of the the BSE for this potential is also sepa(,ction. They found that for=m=1 and sufficiently large

rable, being of the form coupling, the dressing of theé propagator plays an impor-

1
Vi(d0,4",do, @)=~ 739" x1(do,d") & x1(do,A) G-

Xo(do, )=

tant role.
1
Ti(06.9".90.9:S) = — 39" x1(dg.q") 71(S) x1(d0,9)q, The inclusion of the minimal dressing in tigepropagator
4m takes the forn{see Fig. 6
(3.20
where d(p?) = ! 3.2
(p )_ p2_m2_2(p2)+i61 ( . 3
— l * " * " n 14 n n n
7 N(s)= g wd%fo da"[9"xi(dg.9")1°G(dg.a";9). where to lowest order in the coupling
3.29 S (02— Zf d*q 1 a0
Note that, assuming the existence of only one bound state in (P)=9 2m)* (p—q)°—u? g°—m?’ (324

the channel with angular momentumr, may be rewritten
Note that we have not included the full one-loop self-energy
_ S term here since in order to satisfy¢o unitarity it is only
m(8)=—=, (3.22 - -
s—mg necessary to use bare propagators in the expressiol.for
We now write a dispersion relation for this propagator. Since
wheremfj is the bound-state mass, to be determined by dewe wish to examine the propagator after mass and coupling-
manding thatr,(s) has a pole as=mj3 and S(s) is the  constant renormalization this is a twice-subtracted dispersion
residue ofr(s) at that point. In Eq(3.22) theqy integration ~ relation. Algebraic manipulations in the manner of Saenger
is performed analytically using the residue theofe®]. For ~ [49] and Janu$50] yield
the scattering case, to remove the pinclyg@t 0, q”=q, we
rotate the contour of integration into the third quadrant of the d(p) = 1 1
g” plane. An angle of rotation of/8 and 32 quadratures for p°—m’+ie 1+ (p°—m?)A(p?)’
the g” integration gives sufficient accuracy to fit the phase
shifts resulting from the solution of the ladder BSE. with

(3.29
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O e — of the phase shifts is still small. This result is consistent with
I j observations inN-N scattering above the pion-production
threshold, where the contribution to pion production is domi-

188 nated by the production of A that then decays by pion

g emission and the equivalent mechanism via the nucleon is
~ 90 | comparatively small.

E I A more interesting addition to the ladder approximation is

the inclusion of the crossed-bax-exchange diagram in the
potential. In particular, the coupled-channel equations with
the ladder approximation for the input-¢ amplitude in-

A I T T clude such crossed diagrams, as pointed out in Sec. Il. Fur-
0 100 200 300 400 500 600 thermore, the inclusion of the crossed-box graph in the ker-
nel partially corrects the failure of the ladder BSE in the
one-body limit. If the BSE is written for two particles with
o unequal masses, then when the mass of one particle is taken

FIG. 7. Real part of th&swave phase shifts in the ladder ap- 1, infinity we expect to recover an equation for the other,
Froxur;atlo_n, V‘f"th (ﬁOI'd Cuivg fénd without(dashed curveone- jiahter narticle, which represents it moving in the static po-
oop dressing for the case=0.13. tential generated by the heavy particle. If the ladder BSE is
. — 5 used this does not occur. This one-body limit is restored on

A(p2)=)\jw ds’ JIs' = (w+m)?][s" = (u—m)?] including all ladders and crossed ladders in the perturbation
(M )2 s'(s'—m?)?(s'—p?—ie) series for the amplitudg33]. Although the inclusion of the
(3.26 crossed diagram in the potential is not equivalent to includ-
ing all crossed-ladder diagrams, the fact that our coupling
The integral(3.26 may be evaluated numerically. We find constant is small implies that including this one extra dia-
that 18 quadratures are more than sufficient to ensure that §iram in the kernel will give us an indication of the contribu-
is accurately calculated. tion of higher-order crossed-ladder graphs.

Previously, Levineetal. [34] have shown that for Adding the crossed-box diagrafdiagramB of Fig. 1) to
m=u=1 and a large coupling constant, the effect of thethe kernel introduces no analytic structure into the problem
dressing on the phase shifts is substantial. Although we agrdgeyond that discussed above and therefore the Wick rotation
with their numerical results, we find that fon=1 and may proceed exactly as for the ladder BSE. Indeed, the only
w=0.15, which correspond to the mass of the nucleon ang¢hange that needs to be made to our discussion of the ladder
pion, and a coupling strength that gives a binding energy foBSE is thatV| now includes a piece from the crossed-box
the ¢-¢ state that is comparable to the deuteron binding, theliagram.
effect of the dressing on the phase shifts is small. This is In the case of thep?c field theory the value of the
particularly the case for energies below theproduction crossed-box diagram may be calculated using the usual
threshold, as demonstrated in Fig. 7, where we present tHeeynman parametrizatiof89] and the result is an amplitude
real part of the phase shifts. In fact, with dressed propagators
a coupling ofA =0.13 yields a bound-state of mam%—a X(qL,q#;s)
very small change from the result for undressed propagators.

Despite this dressing having very little effect on the 1 1—a 1-a-B 1672\ 2
bound-state position and the real part of the phase shifts, it =J daf dﬂf dy— - ,
does have a substantial impact on the imaginary part of the 0 0 0 D*(a,8,71d,,0,,5)
phase shifts, as seen in Fig. 8. However, the imaginary part (3.27

45

E_, (MeV)

where
01 ;' T L N L
: D(a.B,7|d},.9,:9)
0.01 :
5 : =aysptB(l-a—B-y)spta(l-a—L~7y)Ss3
L]
> o001 | +Bysa+ aBu+ y(1— a— = y)t—(a+p)m’
E —(1-a—B)u? (3.28
0.0001
with
0 PSR S (NN ST T S N SN ST ST S N SO ST S S O I IR
300 350 400 450 500 550 600 \/5 2 5 S 2 )
E,, (MeV) Su=| % Tdo| —4% Sp=|% ~Go| —0% (3.29
FIG. 8. Imaginary part of th&wave phase shifts in the ladder \/— 2 \/— 2
approximation, with(solid curve and without(dashed cunjeone- Saa= _S+q, —q’ S= _S q. _q72 (3.30
loop dressing for the case=0.13. w2 0 R W I ’ '
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IV. NUMERICAL SOLUTION
OF THE ¢ -0 EQUATIONS

180 T T T T
— — -Re (8) - Ladder
""" Re (3) - Ladder + X I The main motivation for examining the numerical solu-

) — tion of the ¢ p-o ¢ equations is to develop the numerical
A | approximations needed for the solution of thEN-7NN

90 - N'- N equations, where spin and isospin are an additional compli-
I ~ e ] cation. However, solving theé¢-oc¢¢ equations will also

L

3
135

v

Re (3) (deg)

e S T 1 allow a comparison of their solution with the results of the
BSE with dressed¢ propagators and either a one-
i ] o-exchange or a one-exchange plus crossed-box diagram
0 ol e as its kernel. The analysis of Sec. Il shows that the solution
0 50 100 150 200 250 300 of the BSE is not going to be identical to that of the coupled-
E_ (MeV) channel problem. However, a comparison may give us some
insight into the relative content of the two equations and a
FIG. 9. Real part of th&wave phase shifts wittdotted curvg ~ measure of how important this difference is. This might tip
and without(dashed curvethe crossed-box diagram, for the case of the balance in favor of one or the other approach when con-
dressed particles with=0.13. sideringNN scattering above the threshold for pion produc-
tion. Even below the pion-production threshold, recent
nucleon-nucleon interactions based on meson exchange have
included the crossed pion exchange within the framework of
two-body equations rather than in a coupled-channel ap-
u=(do+9y)>—9>-q'>-29q9'q-q’. (3.32  proach[51,52. The results of this section might help us
determine which of these two methods is best suited for in-
cluding such crossed diagrams.
In order to simplify matters as far as possible we have

There are no complications fofs< 2m+ 4, since in that assumed thatpo scattering is dominated by the pole dia-
i g . Ko . gram, i.e.,tY)=0. This yielded the two coupled integral
region the functiorD is negative for all relative energies for ) o _ =
which the kernel must be evaluated. On the other handfduations(2.10 and (2.11 with the potentialV of Eg.
above \s=2m-+ u, singularities in the integrand are pos- (2.14. If we also assume that thg¢ interaction is given by
sible. ' oneuv exchange and this in turn is represented by an
The result of the integrations if8.27) can be partial-wave > Wave (rle;qk—one separable potential, then the input am-
expanded according to plitudety; in Eq. (2.10 can be written as in Ed3.20. We
may therefore recast the coupled equations E24.0 and
(2.1) as

t=(do—dy)’—9?—q'?+299'q-q’, (3.3

The amplitudeX can thus be calculated numerically for
any value of the parametesss, q;, q’, qo, 9, andq-q’.

" ri

Xi(do.0",Go,0:8) = — %f dxX(d,,,0,:8)Pi(x), - - -
-t (333 Tos=Zpg(1+ 30d10,T 5p) + 5 Zya7alyTay, (4.
wherex=@’ - g, using another numerical integration. To ob- Tag=2Zay ™ %Zd¢dld2T¢¢* (4.2)
tain a phase shift of the same accuracy as in the ladder case
four quadratures in each of the Feynman parameter integravhere ¢ refers to the¢¢ channel, whiled refers to the
tions and three quadratures in the partial-wave projection are(¢¢)4 channel. Herery is the propagator for a correlated
required. There is no need to change any of the quadratur¢¢ system. In writing the above coupled-channel equations
numbers from the ladder solution. we have taken into consideration the fact that thdas a

In the casew=m our results agree with those of Levine boson and the equations need to be symmetrized. Although
and Wright[38]. In the case of interest to ug,=0.15, [EQgs.(4.1) and(4.2) can be combined into a single BSE for
A=0.13, the crossed-box diagram has a notable contributiorT ,,, we have chosen to solve the equations as a coupled-
This is illustrated in Fig. 9, where we plot the phase shiftschannel problem, in anticipation of the fact that{ff)# 0 the
when including both dressing of the propagator and theoupled equations cannot be reduced to a single BSE.
crossed-box diagrarfuotted ling. For comparison the phase  |n what follows all vectors are four-vectors unless other-

shifts resulting from the solution of the BSE in the ladderyjse stated. We define the relative four-momentymof the
approximation with dresse@ propagators are also included (-4 state of total four-momentur® via

(dashed ling Comparing the results in Figs. 7 and 9 dem-
onstrates very clearly the relative importance of the crossed-
box diagram and the dressing of tthepropagators. The con-
tribution of the crossed-box diagram is significant in this
case despite the small coupling used in the calculation. Thi¥
suggests that the solution of tlgep-o ¢ ¢ equations will be > 2 s
substantially different from the ladder result, even below the L S L
o-production threshold. d 2s '

pa=v¢P+0a, p,=v,P—q, 4.3

here

T (4.4
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This choice for the relative momentum is made to ensure that g?
when both thed and o particles are on mass shetlp=0.  Vo(K)=17— >,
This in turn guarantees that the pinching of tffgintegration H
contour in the BSE for ¢¢)qo scattering will occur at the  Vq4(q’,q;P)
pointggs=0, q”=q, whereq is the magnitude of the on-shell
three-momentum. The four-vectgrthat is defined by4.3)

and (4.4) is known as the Wightman-@ging relative mo- 1 v q’
mentum[53]. =g- I — X(§P+ —;)
With this choice of kinematics we can write the input (,,d_ Z|P+q' —q| —m?
amplitudesZ as 2 ]
(4.9
Z44(P1,P2,P1,P2)=—1(2m)*6(p1+py—P1—P2) The (¢¢)q and o propagators are
X[Vy(a-)+V,(a+q') ro(qiP)= 2P
o (vgP+q)?—mg’
—X(q",9;P)=X(q",—a;P)], :
(4.5 d(a:P) = 7= a2 (4.9
We now define
Z4y(P1,P3,P1,P2)=—i1(2m)*6'(p1+py—p1—P2) Tps=—1(2m)* M (p;+ps—p1—P2) Tys(1+P1y),
X2[Vge(a',q;P)+Vg4(a’',—q; P)], ?dqs:_i(277)45(4)(pi+pé_pl_Pz)Tw(l"‘Plz)(, 0
4.1

4.6
49 where P, is the permutation operator for the twb's and

the factor of 1+ P;, ensures that scattering takes place in
., B ., symmetric states only. In particular, no scattering can take
Z4d(P1:P2:P1,P2) = Zdy(P1,P2,P1.P2)- (4.7) place in a state with odd angular momentum. By contrast, if
acting on a state with positive parity+lP,, merely gives a
In Egs.(4.5) and(4.6), the potentiald/,, for o exchange and factor of 2. The equations for these unsymmetrized ampli-
Vg, for ¢ exchange are given by tudesT,, and Ty, are then

. d4qn
T¢¢(q’,q;P)=V¢¢(q’,q;P)+lf(?_T)lew(q’,q”;P)G¢(q”;P)T¢¢(q”,q;P)

- d4qu
+Ifind(q’.q”:P)Gd(q”;P)Td¢(q”,q;P), (4.1

4.5

Td¢(q’,q;P)=VdS¢(q’,q;P)+ifWV§¢(q’,q”;P)G¢(q”;P)T¢¢(q",q;P), (4.12

where G, is defined in Eq.(3.7) and G4=—74d,, is the  If we remove the coupled-channel teMy, and the double
propagator for ther( ¢ ¢)4 System. The “potentials” in Eqs. counting subtractionX Eq. (4.11) reduces to the Bethe-
(4.1 and(4.12 are given by Salpeter equation solved fgr¢ scattering in Sec. Il A, thus
justifying our use of the distinguishable-particle BSE to de-
Vyal@' 0 P)=V,o(a' —q) —X(q',q;P),  (4.13 'éehr;nnquglsthecﬁqS—>¢¢ amplitude in the allowed two-body
Having derived these coupled integral equations they
Vzd(q’,q;P)=V¢d(q’,q; P)+V4a(—a',q;P), must be recast into a fc_)rm convepient for computgtion. This
requires three steps. First, a partial-wave expansion must be
s . . ) _ performed in order to reduce the dimensionality of the equa-
Vas(a',a:P)=Vay(q',a;P) +Vay(q', —q;P). tions from 4 to 2. Second, any pinches causing difficulties in
414 the energy range of interest must be remov@dbte that
such pinches ameotremoved by Wick rotation.Once this is
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done Wick rotation can be performed, thus moving the re-The use of these partial-wave expansions leads to a set of

gion of integration away from the poles of tigepropagators

and exchange diagrams.

A. Partial-wave expansion

The partial-wave expansion is performed exactly as de-
fined in Sec. Il A. The amplituded ;, and Ty, and the
potentialsV,,, X, V44, andV,q, are expanded according to

Eq. (3.5. This produces the results given in E¢3.8) and

(3.33 for V,, andX. ForVy, partial fractions may be used to

split the integration, leading to

| I
Vag:1(do,d’,do,d;8) = 2 DLQi(vag) ~Qilyp)l, (4.19

D=2q"d(vdg— Vp) (4.16
1 2
q2+q’2+m2—[q6—qo+ Vd_z)\/g
Ydo = 2qrq ’
q’? veVs  do)?
T+q2+32—< > +QO—7>
- : 4.1
Yp a9 (4.17)

With this result in hand it is easy to compuég,y. since
Va:1(00.,0",90,0;8) = Vag:1(do,d,d,9';8). (4.18

V¢¢(q6,q’,0,q_;5)
Voo

f¢¢(q6’q,):

i Loqufo dq'Vga(dp,a",45,9";8)Ga(0,0":9) fag(d5, A",

Vou

fas(d0.q") =

~i | 0| “aqVadap.ar.ag.a

where

V(00,9 ,00,8;8) =V 44(06," 0o, 0;S) —
V 44(G6,0,00,0;8) = V54(06,0’ . 80,0;S) —

Vag(0h.9.00.0;5) = V54(05.0’ 0o, 0:S) —

coupled two-dimensional integral equations for the half-off-
shell partial-wave amplitudeg,,, and Ty, . These equa-
tions must then have all pinches removed.

B. Kowalski-Noyes reduction

Although the main interest in a coupled-channel approach
is to investigate scattering in the energy region where three-
body unitarity plays a central role, at this stage we are going
to restrict our analysis to the energy region below the three-
body unitarity cut. This is partly because in this energy do-
main we can use the Kowalski-Noyes approach, discussed in
Sec. lll A, to remove the two-body unitarity cut.

Since the coupled-channel equations do not couple ampli-
tudes of different angular momentum, we now simplify the
notation by dropping the angular momentum label on all
amplitudes. The Kowalski-Noyes reduction is carried out for
the two amplitudes in question by making the factorizations

Ty(00,a",0,0;8) = 44(d0,a ) Ty(s),

Tag(d0.0",0,0;8) =fay(do,q ) Tgy(s),  (4.19

where the dependence of the Kowalski-Noyes half-off-shell

functions ons has been suppressed. Using these factoriza-
tions, the partial-wave-expanded coupled-channel equations
for the KN half-off-shell functions become

—'Lodqiéfo dq'Vy(a5.0",05.07:8) G 4(d5,0"59)  4s( 5., 0")

V54(99.9,00,0;8) = —

(4.20
Ifﬁmdqééfo dq"Va,(do,a’,d5,0";8)G (A5, 4";9)F 44(dg,0")
;5)G4(0p.9";8)fae(d0.a"), (4.21)
V46(06.9",0,0;5)V4(0,0,d0,G;S)
¢\ M0 o ¢ , (4.22)
(293
V4s(95.97,0,0;9)V54(0,0,00,0;9)
¢¢ e Von ¢d ) (423
o2
V34(d5,9",0,0;9)V 44(0.,00,;S)
de\Ho on (29 0 , (4.24)
b
V5,(99.a',0,0;9)V54(0:0,00.4;S) 25

on
Voo
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It is clear from the structure of thed&s that the pinch inG 4(dy,9";s) is now always ameliorated by a zeroVh In order
to obtain phase shifts it is necessary to calculate the on-sheditrix T ,,(s) via

Von (S)
on _ [
TosS= 157 () +ilo(s) (4.26
with
I,ﬁ(s):ff dqﬁfo dq"V4(0.0,00,9":5)G (05, a":9) F54(05, A", (4.27)
Id(s)=ﬁ dqsfo da"V4a(0.9,05.9":5)Ga(05.9";5) fag(d5.a").- (4.28

C. Wick rotation

By writing coupled integral equations for the KN functions we have overcome the problem of the pinching between the
poles of the¢ propagator. However, to convert the equations to matrix equations we have to avoid the other singularities of
the kernel. This can be achieved by performing a Wick rotation imgthimtegrals. Such a rotation requires that we take into
consideration the singularities of both the kernel and the amplitude in the first and third quadrantggfplame. These
singularities have been examined in defai] with the result that for Bv< \/s<mgy+ x the only analytic structure that may
cause problems during the rotation are the two poles from the Green’s fui@gjon

The final equations after Wick rotation can thus be written as

VS (igl,q’,0.0;s
»4(1d0,9",0,9 )+f

fys(i00,9") = von dqsf da'V5,(ia6.a',ia5,0":9)G 4(ia5.0":5)f 44(i05,0")
bd 0 0
f%q/,vs (Iq/ qr W_(q”) q//.s\ 1 g (q//)
_7T L 1 1 L } —_—
o PO 2swiq")Eyla") !
+f_ dqésfo AoV g4(id5,0",105,9";5) Ga(idg,q":9) fag(iag,q"), (4.29
.y leﬁ(iq,’q,’o’q_;s) * 1" * Y P N sn s non
fae(ido.q")= (\)/on +f0 d%fo dqg Vds¢(|qo,q 1i100,9":8)Gy(idg,d";9) f 44(id0,9")
[

q  ~ — 1
= | dq'Vg,(ide.a’ w(g"),q":)—=— 940(")
fo aoro 2 swaE(a) "
+J_ dqéﬁfo da"Vad(ido,q',id5,0";8)Galidg,a";8) fus(iag,"), (4.30

where in order to simplify the equations we have assumed undressed particles in taking the reSiguéutfthe appropriate
modification for dressed particles may easily be made. Also

V54(06.0°.05.0":5)=Vyy(d6.0".06.0":9) + V(06.0’ . — d5.9";9), (4.3)

V5,(06,9",0,0"9)=Vay(d6,a’,08,0":8) + Vae(d5,a’, — d5.0":8) =2V a,(a0,0’,05,9";S). (4.32

Note thatg ,4(q') =" 4,(W(q’).q’) obeys the equation
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_ VgsW(a'),q'.0.0:9)

9s0(a’) + fo dqﬁfo da'VS,(w(a'),q',igs.9";9)G 4(ia5,q":9)f 44(i05,0")

va
J *dqVS,@Q).a WG).q"S) ! 9ge(a")
_7T 1 1 1 1 —
o 2sw(g"Ey(a) "
+ [ deh [ 00 @), 079G 105,079 el i) 433

Wick rotation is also necessary to remove the poles in thédashed line labeled Laddethe crossed-box diagram. All

integrals in Eq(4.26). Above we saw that four curves are calculated with thk propagators dressed as
described in Sec. Ill C.
I 4(s)=2a(s)+b(s), (4.34 First, observe that the double counting subtraction has a

notable but not substantial effect on the phase shifts. This is
wherea(s) andb(s) are given by Eqs(3.19 and(3.16), but 3 measure of the contribution of the crossed-box diagram and
with V4, and f,, replacingVand f. As for 14, by Wick  the results are consistent with the difference between the
rotating theqg integration in Eq(4.28 the result ladder and ladder plus crossed-box diagram BSE calcula-
tions. Second, it is easily seen from Fig. 10 that there is a

- U R R — . considerable gap between the phase shifts given by the lad-
1q(s) f_wdqofo dq"Va(00,1d0,0"5) der plus crossed-box calculatighadder + X) and those
., . produced by the coupled-channel calculation with the double
X Gqy(idg,q";8)fqys(idg,.d";s) (4.39  counting subtractioiCC—X). The difference between these

two calculations is that CEX contains the complete cou-
is found. In contrast to the BSE equation, where we had tW(b“ng to the (¢¢)d0- channel in its kerne|, whereas Ladder
coupled integral equations for the KN functions, here wex includes only two Feynman graphs in its kernel. Thus we
have three coupled integral equations, with #@#¢)q  would expect some gap between the phase shifts predicted

channel being the source of the extra equation. by these two calculations. However, at first sight it is odd
that such a large difference could occur below the
D. Numerical results o-production threshold and with the small coupling strength

Equationg4.29), (4.30, and(4.33 are in a form suitable A=0.13.
for computation, having had almost all poles and cuts re-
moved from the kernel. The only remaining pole is that at
d5=0, q"=q, due to the zero itV at that point being only The explanation of the large difference could be due to
first order, while the pole i at that point is second order. the two diagramga) and (b) of Fig. 2. These graphs are
However, as in the ladder BSE case, this pole may be dealt
with by making a change of integration variable and choos-
ing appropriate quadratures. 180 7

Equations(4.29, (4.30, and (4.33 are solved for the i —~Re
Kowalski-Noyes half-off-shell functions and the results used i‘ — ~TRe®)-CC |
to calculate phase shifts according to E¢3.10, (4.26), _ N Re (8) - Ladder + X I
(3.15, (3.16), and(4.35. The equations are solved by dis- & FvL N Re®)-CC-X
cretizing the integrals using Gauss-Legendre quadratures and~ 90  \'-_ t— ]
then applying matrix inversion. In order to guarantee phase- fj i Sl TTSe=moo . ]
shift accuracy to three significant figures 14 and 22 quadra- - T R ]

. . 45 L T T Tl ]

tures are necessary for tgg andq” ¢¢ intermediate-state - ;
integration, while 44 and 14 quadratures are necessary in the _
gp andq” integrations over thed)q0 intermediate state. 0 b b b b L b
[Note that theqg integration is from—o to « in the 0 50 100 150 200 250 300
(¢ d) 40 case] Eight quadratures are needed for tifeinte- E_ (MeV)
gration over{0,q]. °

As a first step in the application of the coupled-channel £ 10 comparison of four different ways of calculating the
equations, we examine the contribution of the double countrea| part of thes-wave phase shifts. The dashed curve is the result
ing subtraction. In Fig. 10 we present the phase shifts fobs the ladder calculation, the dotted curve includes the crossed-box
¢-¢ scattering with(solid line labeled CEX) and without  diagram, the dot-dashed curve is the straightforward coupled-
(dash-dot line labeled OCthis subtraction. Included for channel result, and the solid curve is the coupled-channel result
comparison are the phase shifts resulting from the solution afith the crossed-box diagram subtracted so as to remove double
the BSE with(dotted line labeled LadderX) and without  counting.

E. Effects of vertex dressing

(8) - Ladder




1556 D. R. PHILLIPS AND I. R. AFNAN 54

effectively included in the coupled-channel calculation, thusequations. The effect of this on the coupled-channel equa-
partially dressing theb o vertices. By contrast, the vertices tions is that some vertices in Fig. 2 are now bare vertices and
used in the ladder and ladder plus crossed-box calculatiorsome are dressed vertices.
were undressed. We begin by seeking a self-consistent equation for the
To gauge the size of this effect, we introduce vertexonewo-exchange piece of the C&X calculation. In other
dressing in the ladder BSE and adjust the coupling strengtivords, we must determine what form theb¢ vertex func-
\ to get a binding for thep-¢ state that is comparable with tion must have if it is to be the vertex in both the input
the deuteron binding energy. We then use a separable agr¢ ladder interactiorand the onee-exchange piece of the
proximation to this new ladder BSE amplitude as input to theg¢ interaction that results from the coupled-channel ap-
coupled-channel equations. In this way diagrgmsand (b) proach. It is easily demonstrated that for this to be the case
of Fig. 2 are included in both the BSE and coupled-channethe vertex functiorf must obey

d*k’ 1
f ’1 Vka: +i ZJ ’ ’ [ ’ Y2 f ’_k’1 V_krvkv ’ Y2 .
(py p ) gpT19p (277.)4 kvk/y_MZ (p —k )v(p _k) _m2 (pv v P v )(p—k )y(p_k) _m2
(4.39
|
(This equation is given in diagrammatic form in Fig. Lh Defining | to be the value of the integral for

general, Eq(4.36 is difficult to solve. On the other hand, a p?=p’?=m? andk?=u? (without the factors ofy and g,
reasonable approximation is obtained by arguing that ihe  included suggests that the dressed and bare coupling con-
the integrand may be approximated §ythe dressed cou- stants are related by

pling constant. Such an approximation includes the one-loop

dressing of the vertex exactly and higher-loop dressings ap- Op

proximately. Its use may be justified by appeal to the same g=
argument that validated our use of one-loop propagator

dressing above. Higher-loop dressings make contributions to

¢¢poo and higher-state unitarity. The one-loop result is
therefore all we need to enforekdo unitarity. Moreover,

I (4.39

When the integrall is evaluated numerically we find

due to the small value of the coupling being used we migh

expect that any error in such an approximation is small.
The integration over four-momenturk, may now be
done via the Feynman technique and the result is

1

D(a,Blp,, Py Ky’
(4.37

1 1-a
f(p’v,pv.ky)=gb—g>xbf0dajo dB

D(a,Blp,, Py k) =B(1—a—B)p,p"*+ aBk, k"
+a(l-a—p)p,p*
—(m?=u?)(a+pB)—u? (4.38

wherep, is the initial nucleon four-momentunpl’L is the
final nucleon four-momentumk, is the pion four-
momentum, and\,= g&/1672, with g, the bare coupling
constant.

—————

FIG. 11. Nonlinear equation for the vertex functibn

=-1.719.
{ To include such dressing for the vertices in any of our
previous BSE calculations only requires a change in the defi-
nition of the potentialV. The additional vertex dressing does
not interfere with the Wick rotation since none of its cuts
intrude into the first and third quadrants fgis<2m-+ .
The momentum dependence of the vertices may be calcu-
lated straightforwardly up ta/s=2m+ u since at these en-
ergies the integrand in Eq4.37) is regular for all four-
momenta used in the kernel of the integral equations for the
KN functions.

Numerical partial-wave expansion is used to evaluate the
onev-exchange interaction with dressed vertices. To obtain
an accuracy of three significant figures in the phase shifts and
four significant figures in the squares of the bound-state
masses, eight quadratures in this partial-wave integration and
four quadratures in the Feynman integral is sufficient. The
dressing of theg propagator is done as before but with a
strengthyA N}, rather than\, in order to simulate the effect
of dressing one of the two vertices in the dressing loop.

First we consider the bound-state calculation. Tests show
that the discretization of the integral equation can be carried
out with the same number of quadratures without the accu-
racy diminishing. It is found that the bare coupling required
for the scalar “deuteron” to have the desired mass is
Np=0.0935, corresponding to=0.133.

To examine the importance of the momentum dependence
of the vertex dressing, in Fig. 12 we compare the phase shifts
with dressed propagators and verti¢sslid line) with a lad-
der calculation in which there is no vertex dressing and the
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180 .,l,, P S
135
= [ I
L]
) L 1
s 97 I
[
m -
45
L \ ‘ /I
N~ o - _ -
0 L | I 1 ] 1
0 50 100 150 200 250 800 FIG. 14. Feynman graph that is double counted in the coupled-
E  (MeV) channel calculation if an inpub-¢ amplitude with dressed vertices
lab -
is used.

FIG. 12. Real part of the&S-wave phase shifts for the case . o
\,=0.0935 with vertex dressing includegolid line), compared double counted, and so a further subtractiorvig, is re-

with the casex =0.133 with no vertex dressinglashed ling quired. o _ _
Other complications arise because the vertices that pro-

duce the coupling to the (¢ ¢)4 channel should be dressed.

strength of the bare coupling is taken to kg=\=0.133 h ) | i d theref
(dashed ling These results show clearly that the momentum1OWEVer, there is _nd’(’ nonpo et-matr_lx and therefore no
dependence introduced as a result of the dressing has only"@y for these vertices to be dressed in the coupled-channel

small effect on the final phase shifts. In fact, it reduces thdéh€ory derived above. To cover this deficiency of our calcu-
phase shifts and to that extent increases the difference béation we arbitrarily replacgy, by g everywhere inv ;4 and
tween these results and the results of the coupled-chann¥h -
calculation reported in Fig. 10. The small effect of the mo- The problem with thisad hoc solution is that the
mentum dependence on the phase shifts provides justificatid ¢) 4o coupling vertices that lead to vertex dressing for the
for the approximation used in solving.37). one-v-exchangep ¢ interaction are now also dressed. There-
We can now use the results of the BSE with dressed verfore corrections are made to the interactip,, in order to
tices and propagators as input to the coupled-channel equeemove allg’s that lead to vertex dressing and replace them
tions. To do this, we need to fit the solution of the BSE in thewith g,’s once again.
ladder approximation with dressed vertices and propagators Note that dressed vertices in the crossed-box diagram, the
with a separable potential. The result of this fit is presenteqy propagator dressing loop, and the “true” coupling to the
in Flg 13. The best fit is achieved WI]ZBI=O467 60, which (¢¢)do- channel all haveno momentum dependence; they
is not Vel’y different from th% found in the undressed- mere'y Contain the Coup"ng Consteg]trather thargb_ We
vertex case. think this is a reasonable approximation to the full result
This separable expansion of the ladder BSE with dressegince the ladder results show that, for the values of the cou-
vertices can now be used as the input to the coupled-channgling of interest here, it is the overall strength of the coupling
calculation. However, if this is done additional double count-that is the major effect, not its momentum dependence.
ing is introduced, since the Feynman graph in Fig. 14 iS oOpce these corrections W44, Vya, andVy, are made
the calculation proceeds exactly as above. The number of
quadratures required for three significant figure accuracy re-
mains unchanged. The results of these calculations are
shown in Fig. 15. Coupled-channel calculations both with
and without the crossed-box diagram subtraction are com-
pared to the ladder calculation with dressed vertices and the
same calculation with the crossed-box diagram added. Now
that graphs such a®) and(b) of Fig. 2, but with bare ver-
tices, are included in the kernel of the BSE, th€— X and
Ladder + X calculations contain the same second- and
fourth-order Feynman graphs. Therefore, it is the two middle
I 1 curves of Fig. 15 that should be compared. These two curves
I o are much closer together than was the case in Fig. 10, thus
0 50 100 150 200 250 300 indicating that the discrepant vertex dressing was the main
reason for the large gap between the same curves in that plot.
So we conclude that if the vertex dressing is done ap-
proximately consistently in the Ladder X and CC-X cal-
FIG. 13. Real part of theéS-wave phase shifts for the case culations, then the resultant phase shift curves lie very close
A\p,=0.0935 with vertex dressing includedolid line), compared together. The double counting subtraction is crucial to our
with a separable approximation to this redashed ling obtaining this agreement.

180 T
135

90

Re (3) (deg)

45

E,, (MeV)

lai
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180 ————T [ Ey(@) s E(d")
— — -Re (8) - Ladder i
----- Re (5) - Ladder + X HH
135 { —--Re(3)-CC 1
S o Re (8) - C C- X
2 g0 [\ s®E(@) Ea")
- [
2 i FIG. 16. Diagram that, above the-production threshold, leads
45 to logarithmic branch points in the kernel of the Wick-rotated
coupled integral equations.
o b are summed in the kernel of the single BSE then the results
0 75 150 225 300 of the two calculations are very similar. It is worth noting
E,_ (MeV) that the agreement between the single and coupled BSE ap-

proaches is destroyed by the omission of any fourth-order
FIG. 15. Comparison of single-BSE approach, with vertices ap-dlagra.lm from the Ladde# X calculation and by the over-
proximately dressed to all loop orders, against coupled-channel aé:_ountmg of the fourth-prder crossed-box graph in the CC
proach. The legend is the same as in Fig. 10. calculation. Whether thl_s close agreement persists above the
(¢ )40 threshold remains to be investigated.

It is only because the true(@)qo channel is relatively
unimportant that we can claim to have summed the field

In this paper a coupled-channel formulationg# scat-  theory correctly. If this. were not the case our use of the
tering in a¢?c field theory was investigated. In particular, ladder BSE as the basis for the inpfit interaction would
we found that thep¢-od¢p equations can be solved using b€ open to criticism. Strictly speaking in order to “boot-
an extension of the method developed by Levinal.[45] ~ Strap” the theory up we should construct a parametrization
for the ladder Bethe-Salpeter equation. This may be done iff the ¢#¢ amplitude resulting from our CEX calculation
a moderate amount of computer time on a SUN workstationand use this as input tormew CC—X calculation, repeating
Since these equations are just tN&-7NN equations of this process until convergence is opt_ained. However, if thls
Ref. [27] adapted to a scalar field theory wit[;j(2=0 this procedure. were |mp_lemented ad(_jmonal QOubIe counting
indicates that it is feasible to solve the four-dimensional co\Would be introduced into the equations. This would have to
variantNN-7NN equations numerically. It also yields phase P& explicitly removed. As the trugf(¢) o coupling appears
shifts for ¢¢ scattering up to thee) 4o threshold, thereby fairly s.mall in our calculation, we do not pursue such a boot-
showing that thep¢-o ¢ equations can be used to effec- StraPping procedure here. _
tively include in the BSE kernel the infinitely many diagrams N ﬂl's paper we have only calculatgdp scattering up to
involving one explicit. So it allows a comparison between the o “deuteron” threshold. In modifying the methods of
such a coupled-channéCC) approach tapé scattering and  this paper for work abqva/§= my+u three issues arise.
descriptions using a single BSE, which allow only a finite First, once this energy is reached theand d poles pinch
number of Feynman graphs to be included in the kernel. €ach other, thus generating the elastiéf) o threshold.

As discussed at length in Ref&,27,28, in most previous ~ T1his pmgh and threshold may be re_moved _by modifying the
four-dimensionaNN-7NN equations some diagrams are in- Kowalski-Noyes method so that it applies to coupled-
cluded more than once in the kernel of the coupled-channéih@nnel problems. Second, the validity and efficacy of Wick
equations. In the first calculation of Sec. IV D the only otation must be gxamlned. The discussion of analytic struc-
double counting removal required is that of the crossed-bofre in Appendix G of Ref.[28] shows that, for
diagram. Its subtraction is found to make a significant differ-Ma+ 4= ys<2m-+ 2y, the only cut that threatens Wick ro-
ence to the phase shifts obtained from the coupled-channéition is the one that represents the procesg)y— ¢+ ¢.
calculation. However, even if\/s is large enough for this deuteron

However, the gap between the phase shifts produced byreakup cut to intrude into the third quadrant the cut may
this, CC—X, calculation and those obtained when thestill be avoided by Wick rotating about a point on the nega-
crossed-box diagram is added to the kernel of the ladder BSHve qg axis in (¢¢)q0o intermediate states. Provided this
(Ladder + X) is surprisingly large. Closer examination re- point is suitably chosen, the only structure that can obstruct
veals that thep¢o vertices in the two approaches are notsuch a rotation is the--propagator pole. Hence an auxiliary
dressed in the same way. The coupling to th@j o chan- equation for the Kowalski-Noyes functions at
nel in the CC formulation introduces some dressing of thegy=v,\s—E,(q") must be written when the Wick rotation
vertices. If a direct comparison is to be made this dressings performed. Once the rotation is completed the only new
must be included in the ordinary BSE calculations. Once thisnalytic structure in the kernel occurs in that part of the
consistent dressing is implemented a striking decrease in tHesrnel corresponding to the transitiosh ) 4+ o— ¢+ ¢. In
gap between the CEX and Laddert X calculations occurs. the auxiliary equation forf 5, at w(q’) that piece of the

It is then seen that the “true” coupling to thepe) 0 kernel acquires logarithmic branch points, due to the possi-
channel makes little difference to the phase shifts. In othebility of real o production via the diagram shown in Fig. 16.
words, if all of the second- and fourth-order diagrams thatThus Wick rotation is permitted and succeeds in eliminating
are effectively included in the CEX calculation’s kernel most of the troublesome analytic structure from the kernel.

V. CONCLUSION
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Few changes will be needed in order to apply the methods
of this paper to th&N-7NN system. The first step in such a
calculation will be to perform the spin and isospin algebra
involved in the partial-wave decomposition of the four-
dimensionalNN-77NN equations. Once this is done a set of
coupled partial-wave expanded equations of the form solved
in this paper is obtained. Questions remain about the validity

FIG. 17. Possible driving term for the ladder BSE tw scat- ~ Of Wick rotation in theNN-7NN case, since some of the
tering. propagators now are proportional togl/rather than the

1/g® of the scalar case. However, the presence of form fac-

Finally, the increase in available energy leads to complicators in our equations will ensure that the integrands go to
tions in the calculation of Feynman integrals. In both thezero fast enough to validate the use of Wick rotation. Thus,
crossed-box graph and the vertex loop some of theénce a setof coupled equations for thbl-7NN system has
intermediate-state particles can propagate on shell gisce been obtained the approach described here may be applied.
reaches B+ w. So singularities occur in the integrands of The computing time required for such a calculation will ob-
the Feynman integrals and the integrals can no longer beiously be much longer than for those in the scalar field
done in a straightforward way. theory. It should also be pointed out that if results for the

Another point for future investigation is the inclusion of a NN-7NN system above the two-pion threshold are needed a
nonpolego interaction in the theory. This might be done by method that is more sophisticated than our “naive” Wick
solving the ladder BSE for unequal mass particles using theotation should be used. However, for calculations up to the
driving term shown in Fig. 17. The resultant amplitude couldsecond production threshold the work of this paper shows
then be parametrized by a separable interaction and used &t the numerical solution of the coupled field-theoretic
input to the pp-o b equations. This obviously increases equations derived in Ref27] is entirely possible.
the amount of physics summed in the theory, but also has
three other effects. First, by'introduci.ng an anitionaI chan- ACKNOWLEDGMENTS
nel (¢o) + ¢, the computer time required is raised. Second,
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