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Universal predictions for statistical nuclear correlations
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We explore statistical correlations of collective nuclear excitations under a multiparameter deformation of
the Hamiltonian, in the framework of the interacting boson model. The distribution of Hamiltonian matrix
elements is found to behave §’§Q|Hij|)oc1/\/mexp(—|Hij|/\/), with a parametric correlation of the type
IN(H(X)H(y))x—|x—y|. The studies are done in both the regular and chaotic regimes of the Hamiltonian.
Model-independent predictions for a wide variety of correlation functions and distributions, which depend on
wave functions and energies, are made from parametric random matrix theory and found to agree with the IBM
results. Being a multiparameter theory, we consider general paths in parameter space and find that universality
can be effected by the topology of the parameter space. Specifically, Berry's phase can modify short distance
correlations, breaking certain universal predictidi80556-28186)04107-4

PACS numbe(s): 24.60—k, 24.10.Cn, 24.60.Lz, 05.40)]

I. INTRODUCTION Il. COLLECTIVE NUCLEAR STATES

We have chosen to model collective nuclear excitations in

The statistics of nuclear excitations has been explore%e framework of the interacting boson mod&M ) [11] for
from the shell model to collective models, with studies raNg-several reasons. One of our main objectives is to explore and

ing from the relation of observed quantum fluctuations t0cateqorize types of model-independent predictions that exist
those in random matrix models, to the connection with chaog, parametric quantum theories which exhibit classical
using classical limits of the Hamiltoniari—5]. The agree-  chaos. The IBM is ideally suited for this since the classical
ment of various spectral properties with random matrix pre{imit has been extensively studied in recent years using co-
dictions has shown that certain simplifying assumptions camerent states and the complete chaotic behavior is now
be made concerning fluctuations in nuclei. That is, once ranknown for every value of the parametéfi<]. Hence we can
dom matrix theory can be justified, certain results followeasily choose parametric variations in regions of strong or
immediately. These studies of chaos in nuclei stem from atweak chaos, or in regular regimes of the parameter space. An
tempts to extract a simplified behavior from the complexityadditional advantage is that we can solve the quantum prob-
of nuclear excitations. In this respect, random matrix theorylem exactly. One might argue that collective states form only
has provided invaluable assistance in developing simpl@ subset of the real spectrum as the excitation energy in-
methods to compute complex behaviors. In the past, asidereases, so that the use of the IBM is not reasonable. This is
from the studies of constant random matrices and the relatioRot crucial, however, since the IBM provides a solvable
to chaos, these models have been given a parameter depéfeory with known spectral properties, which can be com-
dence to model correlations in various nuclear systems, frorR@red to those of the Gaussian orthogonal ensef@@E)
heavy ion collisiong6], high spin physic$7], to large am- throughout its parameter range. Certainly a more realistic

plitude collective motion[8]. Recently it has been shown description of the spectrum would embody the same features.

that Hamiltonians which have a parametric dependence car" €x@mple, when broken pair states are added to the IBM

exhibit universal behavid]; that is, there can exist model- model space, the spectrum becomes more GOE, as the inter-

independent quantities in a given theory, providing th aCt.'OT‘S In th_e Hamiltonian become more complica&8].
Hamiltonian has certain random matrix properties. In this h|s_ 1S certamly the case as one aftempts to construct more
' realistic Hamiltonians. And as we are showing howdel-

art_icle we stutjy_a wide clas_s of observables and develthdependenquantities emerge, the model we use is really
universal predictions. By universal, we mean that We US& s o, important. Similar results found in the shell model are

random matrix methods to obtain parameter-free statisticaliscssed elsewhef&0]. Hence we use a simple form of the
limits for various correlation functions. We then show that,gn1 Hamiltonian. known as the consiste@tform:

parametric deformations of collective nuclear excitations,

computed in the interacting boson model, can readily be de- H=Eq+ cyNg+CoQX- QX+c,l - L, (1)
scribed by such parametric random matrix models, even

though the Hamiltonian does natpriori look like a random  where

matrix, and that computed correlation functions agree with

our universal predictions. It is noteworthy that several con- Ag=d'd, L,= \/ﬁdTXH]f),
current studies have explored the universality of the statisti- A _ _
cal survival probability in nuclear systerfis0]. Qr=dls+s'd,+x[d"xd]?. )

The parametersc; are defined by c;=#%/4 and
"Electronic address: dimitri@nst.physics.yale.edu Cc,=(1— n)/4Ny, whereN, is the number of bosons. Since
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the Hamiltonian is diagonalized in a basis of fixed angular
momentumL, the constant; does not play any role, and is 10t : : : '
hence omitted. Except when stated otherwise, we will use
N, =25, which will give optimal statistics for the quantities 0
we  consider. The resulting dimensions  for 10
J™=0% 2" 4" 10" states are 65, 117, 165, 211, respec- + Regular
tively. In this parametrization, one has the following limits: 10-1
(@ n=1 corresponds to vibrational or (8) nuclei, (b)
=0 andy=— \/[7/2 corresponds to rotational or &) nu-
clei, and(c) »= xy=0 describesy-soft or Q6) nuclei.

The interpretation of the Hamiltonian in terms of shape
variablesB and y is possible using coherent states, in the
large N limit of H. The energy surface for the Hamiltonian 1073
in Eq. (1) is[12]

D Chaotic

P(|H,l)

10—R

10~4

_ _ ,4-37p X2
EB.yimx)=B— +B4(1—77)<ﬂ—1)

3 ﬂz 2x FIG. 1. Distribution of matrix elements for the IBfh the U5)
+pB°cos3y\/1- 7(1_ ﬂ)ﬁ- () basig in the chaotic regionlboxes, n=0, y=—0.7) and in the
regular region(crosses,;=0.85, y=—0.661). Both distributions
are compared to the distributid®(|H|) = 1/\[H[exp(~|H|/V), with
We recall that in the IBM the range of is bounded Values ofV=10 andV=0.3, respectively.
0=<pB=<.2, so that the sign of the quartic term poses no
problem in the @6) limit. For a particular value ofy and
X, the energy¢ can be minimized to determine the quantities Pigm(] Hij [)er H
B andy. B andy in turn define a deformed nuclear mean

field. This can be made explicit by reexpressing the Hamilyyhere the strength depends on whether one is in a chaotic
tonian in terms of excitations in a deformed mean field using,, regular regime. Typical results are shown in Fig. 1 for
boson condensate technigyégl]. This allows the interpre- 4 regularcrossesand chaotiqboxes choices of the pa-

tation of correlations of observables at different values of;meters together with the behavidy (solid curves. In the
7 andy in terms of the shape variabgandy. Correlations  cpaotic parameter regimes of the modélis of order unity,
in observables at different values of the parameters are thfile in the regular regions, it is much smaller. But both

precisely the correlations between properties of the nucleug,gyjar and chaotic regimes display the same functional form
in the presence of different mean field configurations. Wesf the distribution, suggesting that the functional form is due

will consider the behavior of the properties of the Hamil- 1, the structure of the Hamiltonian, rather than to the pres-
tonian under a very general parametric deformationgnce of chaos. Similar distribution functions have been seen

z=2(7,x). For paths which lie entirely within the chaotic i, harity nonconservation studies of the compound nucleus
regime of the parameter space, the universal predictions 5]

explore are path independefup to effects due to Berry's — another quantity of interest is the autocorrelation function
phase'whlch we expllore in Sep),\tprrelatmn; ina nucleus F e computed from the IBM Hamiltonian:

changing from rotational to vibrational or vibrational t0

soft are the same when properly interpreted. Fiem(z—2)=(H(2)H(Z"))

e Millv, ()

1]

1
A. Distributions and correlations of nuclear matrix elements = m; Hij(Z)Hij(Z’) . (5
1<] —
We now consider the distribution of matrix elements of o

the Hamiltonian in the vibrational or (B) basis. One of the The brackets- - - ),_,, represent the averaging over a trajec-
results presented in this article is that parametric nucleajory in parameter spacg 7,y), which remains either in a
Hamiltonians can be modeled by correlated, parametrighaotic or in a regular region, keeping the differezeez’

Gaussian random matrices. Recall that a Gaussian randofiged. The results for the short distance behavior of the mea-
matrix has a distribution of matrix elements of the Gaussiansyred functionF g, are shown in Fig. 2, and are found to

form P(Hij)ocexp[—Hﬁ/Zy(1+ )], wherey is a constant  pehave generically as

related to the level density. To implement random matrix

theory does not imply that the actual nuclear Hamiltor{iBn Fiem(z)~e M~1—y|z/+- .. (6)
should have Gaussian matrix elements. We note that the dis-

tributions of matrix elements of the interacting boson modelin both regular and chaotic regions. Again, the measured
Hamiltonian are not Gaussian. At any given value ofvalue ofF gy is not a good measure of the underlying chaos.
(7,x), we find the distribution of matrix elements in this If the averaging in(5) is restricted to a submatrix
basis obeys roughlyl5] N;<i, j<N,, there is no difference in the functidag, .
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FIG. 2. Short distance behavior of the measured IBM autocor-
relation function(H(z)H(0)) in the chaotic regior(solid) and in FIG. 3. Instantaneous eigenstates of the Hamiltofdaror the
the regular regior(dots. The linear behavior at small suggests parameter range;=0 and y as shown.(Top) original energies;
a=1 in Egs.(21) and (26), which is not consistent with the ob- (middle) unfolded energiestbottom) Brody parameter along this
served parametric energi€s,(z). HenceF gy cannot be used as path, indicating a rather chaotic regimes= 1 being the GOE limit.
physical input into the random matrix theory through ELf).

which results in a spectrum with a constant average level

One observation is that the apparent decorrelation, seen fPacing. The degree of chaos in the energies can be mea-
the slow decay of gy, is misleading. The actual decorre- Sured through the Brody distribution of the level spacings
lation is much more rapiwhen model specific dependences s=En(z) —E,_1(2) [16]:
are removey as we will see below when we compute prop- ot
erties of wave functions and eigenvalues. Hence using Eq. P(s)=As’e " *, A=(lt+w)a,
(5) as actual input into a random matrix thedeyg., into Eq.

(16) below] is not meaningful. | L2t o
a=| 1| = (10)
1+w
B. Unfolded parametric energies Whenw=1, the distribution of level spacings is GOE, while

To study the statistical fluctuations of the nuclear energyor @=0, it is Poisson. In Fig. 3, we show the origiri&p)
levels,E(z), wherez=2z(7,y) is a general path in configu- and_ unfolded(middle) parametric energies of the Hamil-
ration space, we must separate out the average behavior §nian for =0 andx as shown. The degree of “chaos,”
the energies which cannot be described by random matrigi€asured in terms of the Brody parameteris shown in the

theory. This is done with the staircase funct{dn bottom of the figure for this particular path.
For purposes of contrast, the parametric levglst un-

folded) in two regular regions are shown in Fig. 4. The right
figure corresponds to th@egulay transition from U5) to
0O(6), while the left corresponds to a path through the “val-
ley of regularity” recently studiedi17] (the two kinks in the
This function is computed along various paths in parameteparametric energies are artificial and only reflect the fact that
space. On each path, 100-200 valueg afe taken, and the the parameter path took a torrin the figure, the average
eigenvaluegE,(z)} determined. From this data, a polyno- Brody parameterg are 0.25 and 0.23, respectively, with

N(E;z)=Tro(E—H)=2, [E—E,(2)]. 7)

mial fit is made to the staircase function using fluctuations up tow=1. In the following studies, we will
consider regular and chaotic regions of the parameter space.
k As chaos is a classical notion and we study quantum statis-
N(E;z)=2 2 CijZiEj. (8) tics here, let us be precise. The chaotic regions are general

=0 j=0 paths in parameter spaeén,xy) which stay in the areas of

chaos in the classical limit of the Hamiltonian, as discussed

In the chaotic regions of parameter spdce,2 is sufficient, in Ref. [12]. The chaotic paths studied here are largely

whereas higher values are needed in less chaotic regions. 7=0, xe[—0.9,-0.4],
Once the coefficient€;; are determined, thenfolded ener-
z(p,x)=4 7=0.1, xe[—0.9-0.4], (11)

giesare defined by
x=-0.66, 7e[0.0,0.5.

En(z)z N(E,;2), (9) Similarly, the regular regions we study are
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provides a more general framework and includes a broader
class of processgd9]. One additional difference between
H’ andH”, H"' is that the former is not a translationally
invariant theory. While translational invariance is not impor-
tant to the results we derive here, its presence simplifies our

SU(|3)—U(I5) U(5I)—O(6I)

L=

—~ RO constructions. We will only focus on constructions of the
G type (14) and (15) here.
r_:slv The Gaussian random matrix Hamiltonians are character-

ized by their first and second cumulahng:

Hij(2)=0,
0 — @&
00 05 1000 05 1.0 Hij(2)H(2")= Z—VF(Z—Z’)gf,-V,)k. ; (16)

z(n,x) _ _
whereg([" "= 88+ 8 0, 9l k” =284 8, anda deter-

mines the average level spaciny through the relation
a/lA=\2N/m7. Here v=1 (GOE) corresponds to real-
vibrational [U(5)] spectra through the regular region proposed re-Symmetric matrices or, eqUIvaIentIy, to a system with time
cently[17]. The energies have been scaled by Rght) the tran-  '€Versal symmetry, and=2 (Gaussian unitary ensemble or
sition from vibrational[U(5)] to y-unstablefO(6)] choosing a path GUE) to complex Hermitian matrices, or broken time rever-
which is weakly chaotic. The average Brody parameters aréal symmetry. From the definitions &f(z), it is clear that

FIG. 4. Instantaneous eigenstates of the Hamiltofiarfor two
largely regular regions(Left) a path from rotationa[SU(3)] to

@=0.23 andw=0.25, respectively. H(z) is GOE (v=1) or GUE (v=2) for anyz.
In contrast to previous studies of chaos in nuclei, which
Nk deal with constant random matrices, we can introduce a mea-
X==—m 7ne [0,1], O(6)—U(5), sure for the parametric ensemble rather eddiBj:
z(m,x)=

x=-0661, 7<[0.510. P[H(z)]ocex%—z—:‘zf dzdZTH{H(2)K(z— 2" )H(z)]},

17)
Also included in the regular region is the path through thevvhere the measui@[H(z)]=11,dH(z) is a product over the
valley of regularity from SWB) to U(5), as shown in the left .1 10us variablez of the éorresponding Gaussian en-
half of Fig. 4. The first path in Eq12) corresponds to the (o pia measuréH(z). HereK; (z) can be viewed in gen-
right half of Fig. 4, is not the direct path petweerﬁa)Jgnd eral as a banded matrix of bgndwidbh connecting states
O(6) which would bex=0, <[0,1], and is entirely inte- 547" \yith | —j|<o. As we do not consider banded para-

grable. Rathe_;r We.have chosen one t_hat passes .throughn?etric matrices here, we will tak;; (z) = 6, K (2), resulting
weakly chaotic regime. Hence, results in the following sec-

) . » . ; in the measure
tions referred to as “regular” are quantities which are aver-

(12

aged in the highesb regions of these regular areas, such as v
ze[0.5,0.9 in Fig. 4. P[H(z)]ocex4 - ﬁf dzdZK(z—2")Tr[H(z)H(zZ')];.
IIl. CORRELATED RANDOM MATRIX ENSEMBLES (18

_ These Gaussian integrals are easily done to establish Eq.
In order to see what types of model-independent quantl(16) providing F is the inverse oK

ties emerge from the IBM, we must construct a random ma-
trix model which has an equivalent parametric dependence.
There is no unique method to realize such an ensemble; for J dz'K(z=2")F(z' =2")=8(z=2"). (19
instance, one might take
The stochastic integr&l 5) provides a direct method for con-
H'(z2)=Hy+zH,, (13)  structingH(z) with a desiredF(z). That is, we can choose

. f to satisfy
H”(z)=sinzH;+ coszH,, (14

F(z—y)=f dxf(z—x)f(y—x); (20
H’”(Z)=f dyf(z=y)V(y), V(2)V(y)=d(z-y).
(15  then,H is constructed as ifiL5), and the desired covariance

(16) is automatically satisfied. It is important to realize that
HereH,, H, are constanNxX N Gaussian random matrices the properties of the random matrix theory here are distinct
and Vj;(y) is Gaussian white noise for each j, andy. from the observed properties of the Hamiltonian, both in the
Each of these is a viable random matrix theory; however, theneasured distributions of matrix elemerfegy(H;;) and
stochastic integral of Eq15), introduced by Wilkinso18],  their autocorrelatiorF gy (z). The random matrix distribu-
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tion of matrix elements is Gaussian, akdz) is different  parametric dependence, such as a parameter range taken
from F gy, as we discuss below. In particul&(z) cannot from a Brownian trajectory. The computation Bf, is done

be exponential as measured. Model-independent results caélmrough the definitior(24):

be obtained from our random matrix constructions by a

proper scaling of parameters. We discuss two approaches [SEn(2)]? [JEn(2)]
here to this scaling. The first is a general procedure based on am T s C(0)=D,= 972
Ref.[19], while the second is a statistical argument based on

the Fokker-Planck equation and the original work of Dyson, In order to model the IBM Hamiltonian using parametric

(26)

and has been pursued in recent work8,19-22. random matrix theory, we must choose a correl&tfr) in
Eqg. (16) with «=2 short distance behavi¢see Eq.(21)].
A. Scaling from anomalous diffusion Otherwise the parametric dependence of the random matrix

| h v th . ahodel-ind q energieE, (z) would not be smooth. Hence, if we attempt to
t was shown recently that universahodel-independent .4 0qrate nuclear properties into the random matrix model
predictions can be obtained from the above translatlonallyby substituting the model-specific, compuegy(2) in Eq

invariant random matrix theories if one introduces a proper(6) into Eq.(16), we would end up with an energy spectrum
scaling[19]. A general approach to do so is to view the (2) charactérized bya=1, resulting in nonsmooth,

. ) e E
parametric dependence of the energies as a diffusion proceﬁownian-motion-type paths for eadfy(z). For the IBM

Eg;gder first the short distance behavior of the function _ - o proper result. Details can be found in Re8].

F(2)=~1—c,|z|*+---. (21 B. Scaling and the Fokker-Planck equation

A statistical argument can also be made with the Fokker-
Planck equation. Fokker-Planck methods, first introduced by
Dyson [20], have been recently discussed with parametric

From perturbation theory, one can see that

2
SEL(X)=En(X') —En(X)=Hppt+ 2, [ H - correlations in mind[19,21,23. Consider first Dyson’s
mzn En—En Brownian motion model for random matrices:
(22) :
Hij=— yHij + (1), (27)
(W, (X)) W(X))2=1— > ——=—>+---. (23 The random force is white noise,
m#n (En Em)
; ; - fij(t)=0,
By implementing the ensemble averages defined &, and !
following Dyson[20], one easily finds that — ’ ,
f Ot =Tgfst—t"), (28)
— _ 4Nc
[6En(2)]°= Wrza 62=D ,6z%, (29 and vy is a friction coefficient. The equilibrium solution can

be found in the long time limit, by direct integration:

and similarly 1—[(¥,(2)|¥(z'))|?<6z%. One can then t
view the parametric energy levels.(z), such as those in Hij(t):f e Mt (nydr, (29
Fig. 2 (middle), as evolving diffusively on short distance

scales according to Eq24). This has been recently con- which is same type of stochastic formulation as in Bdp).
trasted with the anomalous diffusion process of a particle int follows then from Eqs(27), (28), and(29) that

a chaotic or disordered medium, whose position obeys
(R%(t))=Dt%, which, although the physics is distinct, the
formal treatment is similaf19]. For our random matrix
model, the parametez(#,x) plays the role of time. The
diffusion constanD , contains both dimensional information This process can be formulated as well in terms of the
(N) and model-dependent date,j. Hence, by scaling the Fokker-Planck equation for the distributiét{H,t):

parameterz by the diffusion constanD, all model and di-

r ’
<|‘|ij(t)|‘|k|(t')>:2_),§li(1'y,)|<|‘977|t7t . (30

. . .. . 2
mension dependence is removed. This is done by defining a P _ 9 10
new scaled parameter ot oMy (YHiiP)+ 5 i il 6Hi—jaHi’j - (31)
S_[D (Wey— 4Nc, | Y o5 Since we are interested in a stationary process
z=[D.]"2=|——=| z (29 p(H,t)=P(H) for H(t), we can choose the initial distribu-

tion to be the equilibrium resulP(H)x<exd — vTrH?/2a2].
For the case ofv=2, we haveD,=C(0), whereC(0) isthe  The equilibrium solution is a solution of the Fokker-Planck
scaling introduced in Ref9]. By computing observables in equation providing the fluctuation dissipation theorem is sat-
the scaled variable, one obtains model-independent predidsfied:
tions for desired quantities. Physically=2 in Eq.(21) cor- )
responds to a Hamiltonian with a smooth dependence on the g(-”)--F/27=|H-- |2:a_g_<_v)_ (32)
parameter, while «<2 corresponds to a theory with fractal R 2l
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or a’/v=T/y, where the last equality follows from our IV. OBSERVABLES
original construction in Eq(16). Following Dyson’s argu-
ment that the eigenvalues Hf(t) behave as a diffusive Cou-
lomb gas, equilibratingat the microscopic scalen a time
scale of t«1/(yN), we see that in order to obtain
N-independent correlations, we must havwe<1/N or

In this section we will see that many properties of para-
metric Hamiltonians have well-defined model-independent
structure. There are two classes of observables we study
here, those related to the energiegz) and those related to

o : the instantaneous eigenfunctiof®,,(z)). The relation of
y=v'IN. By equating the second cumulantste(t) for the wave functiong ¥ ,(z)) at z to those atz’ is given by the
Langevin proces$30) and for our desired proce$$6), and ) ;

transformation matrix

implementing the fluctuation-dissipation theorem, we equate
V. Unm(2=2')=(¥o(2)[ ¥ n(2')). (36)
F(z—2z')—exp — —|t—t'|]. 33
( ) F{ N | |) 33 We will see below that correlation functions that depend on
. ) . L ) U,.m(2) andE,(z) have universal predictions which gener-
Expanding to leading order in the larbelimit, we associate  5jly agree well with the results of the IBM in the chaotic
, regions.
1-c|z|"=1- 7—|t|. (34) The universal predictions for an=2, GOE system are
N computed here with two different covariances. The first is

As the Langevin result i®l independent at the microscopic the simple sum of two uncorrelated GOE matrices

scale,N-indeQendent rltl-:-sults will also result if we defir_1e a H'(z)=H,cog+H,sirz,
e o iaclr o crder iy
(4/7<v), this is precisely S scaling we discuss r- i (v — N (5
lier. Now to leading order, HY(2H'(y)=cosz=y)=F'(z=y). S
2= =i The correlator is periodic witk’ (z) ~1—z%/2+ - - - , defin-
Felop [2=7'] _ 35  ing the scalingz—7= \D,z=(y2N/)z for universal cor-
4 N relations. The second construction is in terms of a stochastic

integral, where one integrates over a continuous range of

There is now no explicit model dependenceand theN gncorrelated random matricd4y):

dependence of correlation functions will be absent due to th

explicit dependence oN, which was required to achieve the 2
microscopic equilibrium condition discussed above. H"(Z)=J’ dye™ Y72y (y),
C. Remark on @ and universality HH(Z)HH(y):ef(ny)ZMZ F"(z—y). (39)

We want to make a few clarifying remarks concerning _
« and what is meant precisely by universal predictions. FirstHere Z=(yN/m)z. We have computed various correlation
for any Hamiltonian with a smooth dependence on somdunctions described below witiN=50-300. Generally
parameters, the value of is always 2. If one takes a par- N=50 is sufficiently large.
ticular parametric dependence dfli(z) and redefines
z—7'=7?, thena=2 for H(z') as well. The reason is that A.C(2)
regardless of the functional dependenceHobn its param-
eters, the autocorrelation functiéi(z) will always decorre-
late with o= 2.[Although o would be the same fdd(z) and
H(z'"), the gxplicit gxpressions for the scaled para_m'éter <(9Ei(2) aE(z’)>
would be slightly different. But in any case, all universal C(z—2')={ —— ,
predictions forae=2 processes are identiddl9].] 9z 9z E.z

By universal we refer to the predictions we make from . )
random matrix theory which are model-independent,Where the averaging is over energy and parameter. In Fig. 5,

parameter-free functions and distributions. Although randon{hwe refu”f fgr thf IBM in the chaotic regions are shown for
matrix theory is a purely statistical theory, results will gen-J"=0",2",47,10". The averages are computed by averag-

erally depend on the dimension of the mathix and other ~'N9 OVer the middle third of the spectrum and over the tra-
quantities such as the, in (21), and so forth. By appropriate Jecto_ry Z. The _two solid lines are the results of the random
scaling, all dependence on this “model™-independent prop-Matrix simulations, Eqs(37) and (38), for N=50 and 300.

erty of the random matrix results vanishes. As a consefOr comparison, a computation in the regular region of the
quence, any random matrix with sufficiently large will IBM is sh.own, indicative .much slower decorrelathn. As we
provide the same results, as we find here. When we go to il see in all computations here, the typical distance at
model such as the IBM, we use the prescribed scaling to seéhich quantities decorrelate i~ 1, which corresponds to
whether these parameter-free functions also describe of?€ average separation between level crossings when the en-
served correlation functions. As we see below, the agreeme@f9iesE, are plotted as a function of the scaled parameter
is quite good, indicating that statistical correlations in thez. For regular systems, and the apparent level crossings in
IBM can be described by model-independent functions, andFig. 4, this is not the case, and decorrelation happens over a
hence universal functions. much longer scale. In general the agreement with the univer-

The slope-slope correlation function of the unfolded para-
metric energieE, (z) is defined a$9]

(39
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FIG. 5. Slope-slope autocorrelation functi@{z) for the para- FIG. 6. Scaling ofD,=C(0) with N, the dimension of the

metric energiesE,(Z) in the chaotic(symbol3 and regular(dots space. The boson number was variedNgs- 10,15,20,25, resulting
regions. The solid lines are the random matrix predictions using,, dimensionsN=16.56.121.211 fod™=10" states. The antici-

(37) and (38) with N=_30_0 andN_=50, respectively. TheDSt_«’ﬂes pated scaling behavior, given by Edg85) and (26) with =2, is
have the poorest statistics, due in part to the small dimension of thf?near, shown by the solid line. There are deviations at small boson

space N=65). number since the chaos is not as strong there, and the dimensions

[ [ i Il.
sal functions is quite good. TheOstates have the poorest are sma

agreement, which is in part statistical, having the smallest D. Diagonal wave function decorrelationsP,(|U,,(2)|?)
dimension. The lack of agreement with the universal predic- 1 . qiapatic survival probability|(V ,(z)| ¥ ,(0))|?

fcions might also be indicgtive of some addit?onal regularitymeasures how rapidly wave functions decorrelate. These are
in the spectrum or, classically, weak chaos in thehase found to be universal with a well-defined Lorentzian shape:

space.
1 ) (v+1)/2

1+c[Z-V|°

B. N Scaling of C(0) Pn(|Unn|2)=|(\I’n(z)|\Ifn(y))|2=( ,
We have seen that the diffusion const&i0)=D, scales (41)

linearly with N, the dimension of the space. This scaling can _ _

be tested in the IBM by modifying the boson numidy.  wherev=1 (2) corresponds to GOEGUE) eigenstates; is

For N,=10,15,20,25 we have dimensions bf 10" states a constant, and is given by the leading order behavior of

of N=16,56,121,211. In Fig. 6 we pl@(0) as a function of

N, and see that this scaling is observed. At Ny (equiva- (a)
lently low N), the results are not as reliable due to statistics 1o a
becoming increasingly poor, and the classical phase space
becoming increasingly regul@t 2].
0.5
C. Curvature distribution P(k)
The distribution of curvatures of the parametric energies =
~ . R = 0.0 T
E,(z) or equally,E,(2), has a predicted distribution in the a, (b)
chaotic regime, given bj23] 1.0 b
|
c d’E, 1 EI'
— v — I
P(k)= (11K D k dZ 71Cy’ (40) 0.5 X
1
Herec, is the normalizationy=1 (2) for GOE (GUE), and le' }11
k is the scaled curvature of the parametric energy. This func- 0.0 ! -
tion is compared to our random matrix computatideg. 0
(38)] in Fig. 7(d). In Fig. 7(b), the results for the chaotic k

region of the IBM(solid histogramare seen to agree equally

well. A similar calculation done in the regular region shows FIG. 7. (@) Analytic level curvature distributiorP(k) (solid

a much more strongly peaked functitdashed and scaled by line) compared to results of a GOE simulatighistogram. (b)

1/5 vertically. This is expected since the regular regionsComparison of the analytic distribution to those for &tates in the
have much fewer level crossings and are hence much flattéBM (solid histogram The dashed histogram corresponds to 2
(see Fig. 4 states in the regular regime, and has been scaled vertically by 1/5.
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FIG. 8. Wave  function decorrelation function
P.(2) =(¥.(2)|¥,(0))|? for selected states in the chaotic regimes
indicated (symbol$ and one for 2 states in a regular region FIG. 9. Distributions of off-diagonal matrix elements
(dashes The solid curves are our universal predictions. As thereP (U, (Z)) (where k=|n—m|). The IBM results for chaotic
are no universal predictions in the regular regimes; the dashed cund = 10" states(boxes agree well with the random matrix predic-
is only representative. tions(solid) usingN=50, as well as with a simple analytic function

(dasheg In addition, we show the asymptotic resuk§(z) (dotted
F(2). For the case at hanet=1 anda=2. In Fig. 8, com- line) and Py(Z) (dot-dashed lingof Ref. [22] \_Nh_ich converge fgr
parisons are shown for selected spins, and in chadsyim- low k to the_ exact results. qu r_eference, a similar calculation in the
bols) and regulardashed regions. The regular regions indi- regular region for 10 states is includedcrosse}
cate much longer correlations, while the GOE result provides _ o )
the most rapid statistical decorrelation of states. The twoP k(@ = {Unm(2)[%) = V(24 20) |V (20))| Ve, 2 k= |-
solid lines are the random matrix predictions. There is no (43)
Zggl\tﬁfg;:hn;\éeﬁzl igrjigltcgOrgpfr%rsglﬁagg;ht?‘zné,:/el ?rllmeSWh.ere the subscript indicates that it is avgraged over the
the regular region. trajectoryz(n,x), as well as over energy, ywth the separa-
tion [n—m| held fixed. We use the notatioR,,, for the
quantity which is not energy averaged, angdfor the energy
E. Off-diagonal wave function decorrelation Py (|U ,m(2)]?) averaged result. In Fig. 9, we compare this function com-

I ) puted in random matrix theorysolid) and in the chaotic
W|II§|nson and W?'kefzz] have u_sed perturbqtlon thgory fregime of the IBM(boxe3. In general the agreement is quite
to derive an approximate expression for the distribution o

. : . good. The random matrix theory result was done using
tsr?u?reg o;f-d|ago(3nal (rj‘nkainx e_lem:ilt(si’ﬁ(z)lc\lfm(é)m zt’ n N=50, and averaging over the middle third of the spectrum.
e limit of || —cc andk=|m-—n|>1. They found tha Hence, axk increases, the statistics get worse. The IBM re-

w222 sults are for the)”=10" states, with a dimension of 211, so
Pam(2)= > 55 that the statistics is better. In order to contrast our results
(En—Em)*+(mpuz?) i on i
no=m with Eq. (42), we have taken a rescaled form, which is not
o= <

entirely justified, as the scaling by is distinct from
D,=C(0). Nevertheless, we plot in Fig. 9 the following
2> . (42)  rescaled functionswhose regimes of validity are indicajed
E.~E, ,nFm
Here, the energies are not averaged ougr; 1, andp is the
average level density. In exploring the behavior of these .
guantities in the IBM, it is difficult to satisfy the validity p” Z):f dxcos(kx)eﬁ2[1—exp(—|x|>]’ k>1. (45)
conditions for Eq.42), since we largely study states in the 0
middle portion of the spectrum, amd>n is difficult to sat-
isfy. If we use only two states separated by |n—m|>1, The functionPy, (dotted line in Fig. 9is an approximation of
and we do not average over energy, the statistics are veryy (dot-dashed line in Fig.)dn the limit |z|>1, which was
poor. In order to get good statistics, we have examined thderived in Ref.[22]. As the value ofk increases, there is
equivalent distribution which is averaged over both coordi-better agreement with the exact results form the random ma-
natez and energy, wittk kept fixed. We define this distri- trix simulation and the IBM. We observe that a better overall
bution of off-diagonal matrix elements ak>0) fit can be found with the functiofdashed line of Fig. P

oH
Jz

-5
z

P.(z)=——, k>1, |z|>1, (44

(2) k2+Z4 12
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UM(E) FIG. 11. Distributions of off-diagonal matrix elements

P5(U,(2)) at several values & for 10" state(histogram. The
distribution shifts from a delta function centered at zer@=an, to
an asymptotic, nonuniversal Porter-Thomas distributionziarl
(solid line).

FIG. 10. Distributions of diagonal matrix elements
P3(Unn(2)) at several values a for 10" state(solid line) and the
random matrix predictiongdashed ling The distribution shifts
from a delta function centered at onezat0, to an asymptotic,

nonuniversal Porter-Thomas distribution o 1. ~ . . .
largelyz=1, but the precise decorrelation of matrix elements

within this range has the model-independent form shown in
Fig. 10.
’2’2

Pk(i)zck ., c=3/4, (46)

(k—c) +74 G. Off-diagonal matrix elementsP3(U,n(2))

A similar result exists for the distribution of off-diagonal
matrix elementsU,(z)=(¥,(2)|¥,(0)) . The distribu-
tion P5(U,(Z)) is shown in Fig. 11 fod™=10" states at
several values of. At z=0, the distribution is also &
function, but now centered at=0. As the separation of the
wave functions increases, the overlaps evolve to an asymp-
II_otic Porter-Thomas distributiofan approximate Gaussian
at largez:

which trivially converges to the Wilkinson-Walker result in
its regimek>1, but better describes the results forlallThe
normalization constant is determined from the condition
that =,|U.m(2)|?>=1. The results for the regular region
x=—0.661, n[0.5,1.0, are given by the crosses. Once
again, there is no universal result for the regular case. Fu
ther, as expected, all three analytic functi¢f8)—(44) agree

in the largek limit. (U pm) 70

P3(Unm(2)—1 exa —NU2 /2), Z>1. (49
F. Diagonal matrix elementsPz(U,,(2))

~ The previous results have been averages over various Mas before, the large limit is not universal, as can be seen by
trix elements. We now show that the actual distributions ofthe explicit dimensional dependence of the result. The solid

matrix elements can also be predicted by universal functiongurve in Fig. 11 is the Porter-Thomas result.
Consider, for example, the distribution of the matrix ele-
ments U,,(2) =(¥,(2)|¥,(0)). These can be seen to be
described by a universal function for eachThe distribution
P(U,.(2)) is shown in Fig. 10 fod™=10" states at several _ Each value of @,x) corresponds to a deformed mean
values ofZ. At z=0, the distribution is & function centered field characterized by, y) determined from the minimum
at 1. As the separation of the wave functions increases, théf Ed. (3). Because wave functions decorrelate on the order
centroid shifts from 1 to 0, and the overlap evolves to andf Z=VD,z~1, the actual correlation length in terms of the
asymptotic Porter-Thomas distributiofan approximate Parametersy and y depends on spin, and is given by
Gaussiahat largez: z~2,=1/\JD,(AB,Av,J7). To explore the spin dependence
_ of the correlation length, we computg in the IBM for
o(Upp—1), z—0, J7=0",2",4"10", and find typical values of
Ps(Upn(2)— exp(—NUﬁn/Z), F>1. 47 z.=0.16,0.14,0.11,0.05. This has roughly a behavior

H. Correlations of mean fields

z.~1—1vJ, (49

The largez limit is not universal, as can be seen by thewherey is a constant. How generic such a dependence might
explicit dimensional dependence of the result. The Porterbe in other nuclear models is unclear, but it does indicate
Thomas result lies beyond the range of universality which ishow rapid states of different spin can decorreléé&B. The
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results can be corrected for the dependence, oh N, but

this does not account entirely for the behavidte equiva- 1
lent values ofA 8 and Ay, which correspond to statistically
decorrelated configurations, depend rather strongly on the
parameter region. For example, in our calculations we can
obtain a range fromA 8=0.01 to 1.3, for the same correla-
tion length, depending on whether the shape is undergoing a
rapid shape phase transition or not in the particular parameter
regime. One can only conclude that near a shape phase tran-
sition, there can exist statistical correlations between very
distinct nuclear shapes.
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It is clear that one can explore many classes of operators w L {3
and establish the behavior of model-independent limits of 0 -1 0 1
those quantities. For instance in the study of ##decay of U
high-spin states, Aberf7] has introduced the matrix quan-
tity

= O

I. More complicated operators

nn

FIG. 12. Effects of Berry's phase on universal distribution func-
T =(¥i(I-2)|¥;(I)[E;(I—E(I—-2)]°, (50) tions. The parametér undergoes motion on a closed loop, starting
and ending az=0. Starting at the top, the distribution evolves and
where the parametel is the angular momentum, and is eventually bifurcates due to the presence of topological phases.
equivalent taz. This matrix can be explored as a function of Both resultsz=0.5 are within the universal regime, but the lower
the correlation length, and has different results in the chaotifigure shows that the path taken to get to the point of interest can be
limit, depending on the spin-dependent scalihwy One can important. At the bottom, the fraction of matrix elemeritdhat
consider other operators as well, and we would like to poin€hange toJ,»=—1 depends on the area enclosed. The minimum
out that additional quantities can be constructed using ouirea needed to achieve the maximum fraction of 1/2 scales as
universal predictions here, together with the analysis of Refl/N, and is hence rapidly realized in large dimensional systems.
[22], which discusses how to compute arbitrary correlation

functions. : . :
tinct paths fromz to z’. Then phase differences result in

interference. Whether or not paths are in a chaotic or regular

regime does not change the nature of the argument, but in the

chaotic regime, more states are likely to pick up a negative
While formal studies of parametric correlations have beerphase due to the many avoided level crossiafs.

limited largely to single-parameter systefsse Ref[22] for

some exceptions nuclear deformation is usually described A. Two-parameter random matrix model

in terms of two or more shape parameters. When two or

more parameters are involved, one finds that short distanq%

correlations can be modified by topological effects, due to

Berry’'s phase. That is, the correlation between quantities at H(X,Y)=H;cosX+ H,sinX+ HzcosY + H,sinY, (53)

B,y and B8’,y’' depends on the path used to connect these

points. Generally, for correlation functions which are sensiwhere the constant random matricels are uncorrelated:

tive to phase information, we will show that interference HiH;=g;; . It follows that

terms can strongly modify the expected results. We explore

the basic ideas here in the case of two parameters. H(X,Y)H(X',Y")=cogX—X")+cogY—-Y"). (54

When a wave function undergoes parametric evolution on o ] ] ) )
a closed circuitC. it is well known that the wave function CGeneralizations to arbitrary dimensions have been discussed

V. MULTIPARAMETER CORRELATIONS:
TOPOLOGICAL EFFECTS AND BERRY’S PHASE

The simplest formulation of a two parameter correlated
ndom matrix ensemble is

can pick up a topological phase: by Wilkinson and Walkef22]. We can now consider para-
metric excursions in theX,Y) plane, specifically two paths
¥, (2)—e"OW (2), (51)  which connect (0,0) toXX,AY), one of shortest length, and

the other a longer path enclosing an akeaBecause the
where C represents a loop in parameter space starting angiave functions acquire a Berry’s phase around the closed
ending atz. For real symmetric matrices, such as our GOEloop, which can be+1 for the GOE case, the areéaen-
ensemble;y(C) is only O ora (mod 2m) [24]. Hence closed can modify expected short distance behaviors.

Wi(z+C)==¥y(2), (52) B. Correlations in the B-y plane

where the sign depends upon the particular eigenstate and the We can now explore some of the topological effects in
path, andz+ C represents the same pointafter following  our two-parameter theori(#,y). Consider a rectangular
the closed loopgC. Of course, one does not have to follow a loop C in parameter space which encloses an akedn
closed loop. A similar effect exists if one follows two dis- analogy to scaled paramefgr we define the scaled area of
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the loop asK=C(O)A~'z" 2 Then an ared~1 is a loop So there are several aspects here to consider. Berry’'s
whose sides are approximately the decorrelation length aphase effects are independent of the underlying chaos along
observables. Such a loop stays within the universal regimghe chosen path, but depend more upon the nature of the
for all values of the parameter. In Fig. 12, we plot the distri-parameter space enclosed by the path. One could imagine a
bution of matrix element®,(U,,) [see Eq(45)] for such a loop in parameter space which is entirely regular, but en-
loop. Starting from the top of the figure, we haxe 0, and closes a chaotic regime. The expression for the fraction of
the distribution is a delta function. Asincreases, the distri- total statesf above assumes one is always in a chaotic re-
bution spreads in accordance with universal predictighs gime, and the enclosed area is also chaotic.

Fig. 10. At the farthest point of the loop, the distribution is

given by the middle figure. As the trajectory returns to the VI. CONCLUSIONS

initial point, approximately half the eigenfunctions develop a

negative topological phase, and at the final point, which is !N conclusion, we have explored the multiparameter, adia-
precisely the initial point, the distribution is equally split. Al batic behavior of collective nuclear excitations in the frame-

of the results in Fig. 12 are within the universal regime, butWork of the IBM, and found that under the appropriate scal-

one can see that topological effects can destroy the expectde@ of the parameters, correlation functions and distributions

behavior discussed in Fig. 10. For smaller loops, the effect i9f matrix elements behave universally. We have provided
smaller. The approximate behavior[25] new universal predictions from parametric random matrix

theory for statistical correlations related to wave functions

and energies. The results here are suggestive of a new uni-
A~ versality in statistical nuclear correlations, related to the “de-
5 A<1, formation” of the nucleus, which are quite robust, and would

be interesting to explore in other more microscopic models.
1 (59 While we have focused on matrix element distributions and
2 certain correlation functions, it is clear that the scaling pro-
vides a general type of approach to compute arbitrary corre-

: : : : lation functions. This also shows that the use of random ma-
Here f is the fraction of the total states which split tol, trix theory with covariances of the typ€l6) is quite

and A is the enclosed, scaled area. The fraction increas€g,agonabie, even when the distribution of matrix elements
linearly with the area. Because saturation OCCUIS N€8eems quite different from the expected GOE behavior.
A=1=C(0)AxAxn, and C(0)xN, the size of the loop

needed to see the maximal effect decreases likg: 1/ ACKNOWLEDGMENTS
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