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Universal predictions for statistical nuclear correlations
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We explore statistical correlations of collective nuclear excitations under a multiparameter deformat
the Hamiltonian, in the framework of the interacting boson model. The distribution of Hamiltonian m
elements is found to behave asP(uHi j u)}1/AuHi j uexp(2uHij u/V), with a parametric correlation of the type
ln^H(x)H(y)&}2ux2yu. The studies are done in both the regular and chaotic regimes of the Hamilto
Model-independent predictions for a wide variety of correlation functions and distributions, which depe
wave functions and energies, are made from parametric random matrix theory and found to agree with t
results. Being a multiparameter theory, we consider general paths in parameter space and find that uni
can be effected by the topology of the parameter space. Specifically, Berry’s phase can modify short d
correlations, breaking certain universal predictions.@S0556-2813~96!04107-6#

PACS number~s!: 24.60.2k, 24.10.Cn, 24.60.Lz, 05.40.1j
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I. INTRODUCTION

The statistics of nuclear excitations has been explo
from the shell model to collective models, with studies ran
ing from the relation of observed quantum fluctuations
those in random matrix models, to the connection with ch
using classical limits of the Hamiltonian@1–5#. The agree-
ment of various spectral properties with random matrix p
dictions has shown that certain simplifying assumptions c
be made concerning fluctuations in nuclei. That is, once r
dom matrix theory can be justified, certain results follo
immediately. These studies of chaos in nuclei stem from
tempts to extract a simplified behavior from the complex
of nuclear excitations. In this respect, random matrix the
has provided invaluable assistance in developing sim
methods to compute complex behaviors. In the past, a
from the studies of constant random matrices and the rela
to chaos, these models have been given a parameter de
dence to model correlations in various nuclear systems, f
heavy ion collisions@6#, high spin physics@7#, to large am-
plitude collective motion@8#. Recently it has been show
that Hamiltonians which have a parametric dependence
exhibit universal behavior@9#; that is, there can exist model
independent quantities in a given theory, providing t
Hamiltonian has certain random matrix properties. In th
article we study a wide class of observables and deve
universal predictions. By universal, we mean that we u
random matrix methods to obtain parameter-free statist
limits for various correlation functions. We then show th
parametric deformations of collective nuclear excitatio
computed in the interacting boson model, can readily be
scribed by such parametric random matrix models, e
though the Hamiltonian does nota priori look like a random
matrix, and that computed correlation functions agree w
our universal predictions. It is noteworthy that several co
current studies have explored the universality of the stati
cal survival probability in nuclear systems@10#.

*Electronic address: dimitri@nst.physics.yale.edu
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II. COLLECTIVE NUCLEAR STATES

We have chosen to model collective nuclear excitations
the framework of the interacting boson model~IBM ! @11# for
several reasons. One of our main objectives is to explore a
categorize types of model-independent predictions that ex
in parametric quantum theories which exhibit classic
chaos. The IBM is ideally suited for this since the classic
limit has been extensively studied in recent years using c
herent states and the complete chaotic behavior is n
known for every value of the parameters@12#. Hence we can
easily choose parametric variations in regions of strong
weak chaos, or in regular regimes of the parameter space.
additional advantage is that we can solve the quantum pr
lem exactly. One might argue that collective states form on
a subset of the real spectrum as the excitation energy
creases, so that the use of the IBM is not reasonable. Thi
not crucial, however, since the IBM provides a solvab
theory with known spectral properties, which can be com
pared to those of the Gaussian orthogonal ensemble~GOE!
throughout its parameter range. Certainly a more realis
description of the spectrum would embody the same featur
For example, when broken pair states are added to the IB
model space, the spectrum becomes more GOE, as the in
actions in the Hamiltonian become more complicated@13#.
This is certainly the case as one attempts to construct m
realistic Hamiltonians. And as we are showing howmodel-
independentquantities emerge, the model we use is real
not so important. Similar results found in the shell model a
discussed elsewhere@10#. Hence we use a simple form of the
IBM Hamiltonian, known as the consistent-Q form:

Ĥ5E01c1n̂d1c2Q̂
x
•Q̂x1c3L̂•L̂ , ~1!

where

n̂d5d†•d̃, L̂m5A10@d†3d̃#m
~1! ,

Q̂m
x 5dm

†s1s†d̃m1x@d†3d̃#m
~2! . ~2!

The parameters ci are defined by c15h/4 and
c25(12h)/4Nb , whereNb is the number of bosons. Since
147 © 1996 The American Physical Society
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148 54DIMITRI KUSNEZOV AND DAVID MITCHELL
the Hamiltonian is diagonalized in a basis of fixed angul
momentumL, the constantc3 does not play any role, and is
hence omitted. Except when stated otherwise, we will u
Nb525, which will give optimal statistics for the quantitie
we consider. The resulting dimensions fo
Jp501,21,41,101 states are 65, 117, 165, 211, respe
tively. In this parametrization, one has the following limits
~a! h51 corresponds to vibrational or U~5! nuclei, ~b!
h50 andx52A7/2 corresponds to rotational or SU~3! nu-
clei, and~c! h5x50 describesg-soft or O~6! nuclei.

The interpretation of the Hamiltonian in terms of shap
variablesb and g is possible using coherent states, in th
largeN limit of H. The energy surface for the Hamiltonia
in Eq. ~1! is @12#

E~b,g;h,x!5b2
423h

2
1b4~12h!S x2

14
21D

1b3cos3gA12
b2

2
~12h!

2x

A7
. ~3!

We recall that in the IBM the range ofb is bounded
0<b<A2, so that the sign of the quartic term poses n
problem in the O~6! limit. For a particular value ofh and
x, the energyE can be minimized to determine the quantitie
b andg. b andg in turn define a deformed nuclear mea
field. This can be made explicit by reexpressing the Ham
tonian in terms of excitations in a deformed mean field usi
boson condensate techniques@14#. This allows the interpre-
tation of correlations of observables at different values
h andx in terms of the shape variableb andg. Correlations
in observables at different values of the parameters are t
precisely the correlations between properties of the nucl
in the presence of different mean field configurations. W
will consider the behavior of the properties of the Hami
tonian under a very general parametric deformati
z5z(h,x). For paths which lie entirely within the chaotic
regime of the parameter space, the universal predictions
explore are path independent~up to effects due to Berry’s
phase which we explore in Sec. V!; correlations in a nucleus
changing from rotational to vibrational or vibrational tog
soft are the same when properly interpreted.

A. Distributions and correlations of nuclear matrix elements

We now consider the distribution of matrix elements o
the Hamiltonian in the vibrational or U~5! basis. One of the
results presented in this article is that parametric nucle
Hamiltonians can be modeled by correlated, parame
Gaussian random matrices. Recall that a Gaussian rand
matrix has a distribution of matrix elements of the Gaussi
form P(Hi j )}exp@2Hij

2/2g(11d i j )#, whereg is a constant
related to the level density. To implement random matr
theory does not imply that the actual nuclear Hamiltonian~1!
should have Gaussian matrix elements. We note that the
tributions of matrix elements of the interacting boson mod
Hamiltonian are not Gaussian. At any given value
(h,x), we find the distribution of matrix elements in thi
basis obeys roughly@15#
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PIBM~ uHi j u!}
1

AuHi j u
e2uHi j u/V, ~4!

where the strengthV depends on whether one is in a chao
or regular regime. Typical results are shown in Fig. 1 f
both regular~crosses! and chaotic~boxes! choices of the pa-
rameters, together with the behavior~4! ~solid curves!. In the
chaotic parameter regimes of the model,V is of order unity,
while in the regular regions, it is much smaller. But bo
regular and chaotic regimes display the same functional fo
of the distribution, suggesting that the functional form is d
to the structure of the Hamiltonian, rather than to the pr
ence of chaos. Similar distribution functions have been s
in parity nonconservation studies of the compound nucle
@15#.

Another quantity of interest is the autocorrelation functio
F IBM computed from the IBM Hamiltonian:

F IBM~z2z8![^H~z!H~z8!&

5K 1

N~N21!(i, j
Hi j ~z!Hi j ~z8!L

z2z8

. ~5!

The bracketŝ•••&z2z8 represent the averaging over a traje
tory in parameter spacez(h,x), which remains either in a
chaotic or in a regular region, keeping the differencez2z8
fixed. The results for the short distance behavior of the m
sured functionF IBM are shown in Fig. 2, and are found t
behave generically as

F IBM~z!;e2guzu;12guzu1••• ~6!

in both regular and chaotic regions. Again, the measu
value ofF IBM is not a good measure of the underlying chao
If the averaging in ~5! is restricted to a submatrix
N1< i , j<N2 , there is no difference in the functionF IBM .

FIG. 1. Distribution of matrix elements for the IBM@in the U~5!
basis# in the chaotic region~boxes,h50, x520.7) and in the
regular region~crosses,h50.85, x520.661). Both distributions
are compared to the distributionP(uHu)}1/AuHuexp(2uHu/V), with
values ofV510 andV50.3, respectively.
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54 149UNIVERSAL PREDICTIONS FOR STATISTICAL . . .
One observation is that the apparent decorrelation, see
the slow decay ofF IBM , is misleading. The actual decorre
lation is much more rapid~when model specific dependence
are removed!, as we will see below when we compute pro
erties of wave functions and eigenvalues. Hence using
~5! as actual input into a random matrix theory@e.g., into Eq.
~16! below# is not meaningful.

B. Unfolded parametric energies

To study the statistical fluctuations of the nuclear ene
levels,En(z), wherez5z(h,x) is a general path in configu
ration space, we must separate out the average behavi
the energies which cannot be described by random ma
theory. This is done with the staircase function@1#

N~E;z!5Tru~E2Ĥ !5(
n

u@E2En~z!#. ~7!

This function is computed along various paths in parame
space. On each path, 100–200 values ofz are taken, and the
eigenvalues$En(z)% determined. From this data, a polyno
mial fit is made to the staircase function using

N~E;z!5(
i50

k

(
j50

6

Ci j z
iEj . ~8!

In the chaotic regions of parameter space,k52 is sufficient,
whereas higher values are needed in less chaotic reg
Once the coefficientsCi j are determined, theunfolded ener-
giesare defined by

Ẽn~z!5N~En ;z!, ~9!

FIG. 2. Short distance behavior of the measured IBM autoc
relation function^H(z)H(0)& in the chaotic region~solid! and in
the regular region~dots!. The linear behavior at smallz suggests
a51 in Eqs.~21! and ~26!, which is not consistent with the ob
served parametric energiesEn(z). HenceF IBM cannot be used as
physical input into the random matrix theory through Eq.~16!.
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which results in a spectrum with a constant average lev
spacing. The degree of chaos in the energies can be m
sured through the Brody distribution of the level spacing
s5Ẽn(z)2Ẽn21(z) @16#:

P~s!5Asve2asv11
, A5~11v!a,

a5FGS 21v

11v D G11v

. ~10!

Whenv51, the distribution of level spacings is GOE, while
for v50, it is Poisson. In Fig. 3, we show the original~top!
and unfolded~middle! parametric energies of the Hamil-
tonian forh50 andx as shown. The degree of ‘‘chaos,’’
measured in terms of the Brody parameterv, is shown in the
bottom of the figure for this particular path.

For purposes of contrast, the parametric levels~not un-
folded! in two regular regions are shown in Fig. 4. The righ
figure corresponds to the~regular! transition from U~5! to
O~6!, while the left corresponds to a path through the ‘‘val
ley of regularity’’ recently studied@17# ~the two kinks in the
parametric energies are artificial and only reflect the fact th
the parameter path took a turn!. In the figure, the average
Brody parametersv̄ are 0.25 and 0.23, respectively, with
fluctuations up tov51. In the following studies, we will
consider regular and chaotic regions of the parameter spa
As chaos is a classical notion and we study quantum sta
tics here, let us be precise. The chaotic regions are gene
paths in parameter spacez(h,x) which stay in the areas of
chaos in the classical limit of the Hamiltonian, as discusse
in Ref. @12#. The chaotic paths studied here are largely

z~h,x!5H h50, xP@20.9,20.4#,

h50.1, xP@20.9,20.4#,

x520.66, hP@0.0,0.5#.

~11!

Similarly, the regular regions we study are

or-
FIG. 3. Instantaneous eigenstates of the Hamiltonian~1! for the

parameter rangeh50 and x as shown.~Top! original energies;
~middle! unfolded energies;~bottom! Brody parameter along this
path, indicating a rather chaotic regime,v51 being the GOE limit.
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150 54DIMITRI KUSNEZOV AND DAVID MITCHELL
z~h,x!5H x52
A7
4

h, hP@0,1#, O~6!2U~5!,

x520.661, hP@0.5,1.0#.

~12!

Also included in the regular region is the path through th
valley of regularity from SU~3! to U~5!, as shown in the left
half of Fig. 4. The first path in Eq.~12! corresponds to the
right half of Fig. 4, is not the direct path between U~5! and
O~6! which would bex50, hP@0,1#, and is entirely inte-
grable. Rather we have chosen one that passes throug
weakly chaotic regime. Hence, results in the following se
tions referred to as ‘‘regular’’ are quantities which are ave
aged in the highestv regions of these regular areas, such
zP@0.5,0.8# in Fig. 4.

III. CORRELATED RANDOM MATRIX ENSEMBLES

In order to see what types of model-independent quan
ties emerge from the IBM, we must construct a random m
trix model which has an equivalent parametric dependen
There is no unique method to realize such an ensemble;
instance, one might take

H8~z!5H11zH2 , ~13!

H9~z!5sinzH11coszH2 , ~14!

H-~z!5E dy f~z2y!V~y!, V~z!V~y!5d~z2y!.

~15!

HereH1 , H2 are constantN3N Gaussian random matrices
and Vi j (y) is Gaussian white noise for eachi , j , and y.
Each of these is a viable random matrix theory; however,
stochastic integral of Eq.~15!, introduced by Wilkinson@18#,

FIG. 4. Instantaneous eigenstates of the Hamiltonian~1! for two
largely regular regions.~Left! a path from rotational@SU~3!# to
vibrational @U~5!# spectra through the regular region proposed r
cently @17#. The energies have been scaled by 1/2.~Right! the tran-
sition from vibrational@U~5!# to g-unstable@O~6!# choosing a path
which is weakly chaotic. The average Brody parameters a
v̄50.23 andv̄50.25, respectively.
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provides a more general framework and includes a broa
class of processes@19#. One additional difference betwee
H8 andH9, H98 is that the former is not a translationall
invariant theory. While translational invariance is not impo
tant to the results we derive here, its presence simplifies
constructions. We will only focus on constructions of th
type ~14! and ~15! here.

The Gaussian random matrix Hamiltonians are charac
ized by their first and second cumulants@8#:

Hi j ~z!50,

Hi j ~z!Hkl~z8!5
a2

2n
F~z2z8!gi j ,kl

~n! , ~16!

wheregi j ,kl
(n51)5d ikd j l1d i ld jk , gi j ,kl

(n52)52d i ld jk , anda deter-
mines the average level spacingD through the relation
a/D5A2N/p. Here n51 ~GOE! corresponds to real-
symmetric matrices or, equivalently, to a system with tim
reversal symmetry, andn52 ~Gaussian unitary ensemble o
GUE! to complex Hermitian matrices, or broken time reve
sal symmetry. From the definitions ofH(z), it is clear that
H(z) is GOE (n51) or GUE (n52) for anyz.

In contrast to previous studies of chaos in nuclei, whi
deal with constant random matrices, we can introduce a m
sure for the parametric ensemble rather easily@19#:

P@H~z!#}expH 2
n

2a2E dzdz8Tr@H~z!K~z2z8!H~z8!#J ,
~17!

where the measureD@H(z)#[)zdH(z) is a product over the
continuous variablez of the corresponding Gaussian en
semble measuredH(z). HereKi j (z) can be viewed in gen-
eral as a banded matrix of bandwidths, connecting states
i and j with u i2 j u<s. As we do not consider banded para
metric matrices here, we will takeKi j (z)5d i j K(z), resulting
in the measure

P@H~z!#}expH 2
n

2a2E dzdz8K~z2z8!Tr@H~z!H~z8!#J .
~18!

These Gaussian integrals are easily done to establish
~16!, providingF is the inverse ofK,

E dz8K~z2z8!F~z82z9!5d~z2z9!. ~19!

The stochastic integral~15! provides a direct method for con
structingH(z) with a desiredF(z). That is, we can choose
f to satisfy

F~z2y!5E dx f~z2x! f ~y2x!; ~20!

then,H is constructed as in~15!, and the desired covarianc
~16! is automatically satisfied. It is important to realize th
the properties of the random matrix theory here are disti
from the observed properties of the Hamiltonian, both in t
measured distributions of matrix elementsPIBM(Hi j ) and
their autocorrelationF IBM(z). The random matrix distribu-
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54 151UNIVERSAL PREDICTIONS FOR STATISTICAL . . .
tion of matrix elements is Gaussian, andF(z) is different
from F IBM , as we discuss below. In particular,F(z) cannot
be exponential as measured. Model-independent results
be obtained from our random matrix constructions by
proper scaling of parameters. We discuss two approac
here to this scaling. The first is a general procedure based
Ref. @19#, while the second is a statistical argument based
the Fokker-Planck equation and the original work of Dyso
and has been pursued in recent works@10,19–22#.

A. Scaling from anomalous diffusion

It was shown recently that universal~model-independent!
predictions can be obtained from the above translationa
invariant random matrix theories if one introduces a prop
scaling @19#. A general approach to do so is to view th
parametric dependence of the energies as a diffusion proc
Consider first the short distance behavior of the functio
F(z):

F~z!'12cauzua1•••. ~21!

From perturbation theory, one can see that

dEn~x!5En~x8!2En~x!5dHnn1 (
mÞn

udHmnu2

En2Em
1•••,

~22!

u^Cn~x8!uCn~x!&u2512 (
mÞn

udHmnu2

~En2Em!2
1•••. ~23!

By implementing the ensemble averages defined in~16!, and
following Dyson @20#, one easily finds that

@dEn~z!#2.
4Nca

np2 dza[Dadza, ~24!

and similarly 12u^Cn(z)uCn(z8)&u2}dza. One can then
view the parametric energy levelsEñ(z), such as those in
Fig. 2 ~middle!, as evolving diffusively on short distance
scales according to Eq.~24!. This has been recently con-
trasted with the anomalous diffusion process of a particle
a chaotic or disordered medium, whose position obe
^R2(t)&5Dta, which, although the physics is distinct, the
formal treatment is similar@19#. For our random matrix
model, the parameterz(h,x) plays the role of time. The
diffusion constantDa contains both dimensional information
(N) and model-dependent data (ca). Hence, by scaling the
parameterz by the diffusion constantD, all model and di-
mension dependence is removed. This is done by definin
new scaled parameter

z̃5@Da#1/az5S 4Nca

np2 D 1/az. ~25!

For the case ofa52, we haveD25C(0), whereC(0) is the
scaling introduced in Ref.@9#. By computing observables in
the scaled variable, one obtains model-independent pred
tions for desired quantities. Physically,a52 in Eq.~21! cor-
responds to a Hamiltonian with a smooth dependence on
parameterz, while a,2 corresponds to a theory with fracta
can
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parametric dependence, such as a parameter range t
from a Brownian trajectory. The computation ofDa is done
through the definition~24!:

Da5
@dEn~z!#2

dza , C~0![D25
@]En~z!#2

]z2
. ~26!

In order to model the IBM Hamiltonian using parametri
random matrix theory, we must choose a correlatorF(z) in
Eq. ~16! with a52 short distance behavior@see Eq.~21!#.
Otherwise the parametric dependence of the random ma
energiesEn(z) would not be smooth. Hence, if we attempt t
incorporate nuclear properties into the random matrix mod
by substituting the model-specific, computedF IBM(z) in Eq.
~6! into Eq. ~16!, we would end up with an energy spectrum
En(z) characterized bya51, resulting in nonsmooth,
Brownian-motion-type paths for eachEn(z). For the IBM,
a52 is the proper result. Details can be found in Ref.@19#.

B. Scaling and the Fokker-Planck equation

A statistical argument can also be made with the Fokke
Planck equation. Fokker-Planck methods, first introduced
Dyson @20#, have been recently discussed with paramet
correlations in mind @19,21,22#. Consider first Dyson’s
Brownian motion model for random matrices:

Ḣ i j52gHi j1 f i j ~ t !. ~27!

The random force is white noise,

f i j ~ t !50,

f i j ~ t ! f kl* ~ t8!5Ggi j ,kl
~n! d~ t2t8!, ~28!

andg is a friction coefficient. The equilibrium solution can
be found in the long time limit, by direct integration:

Hi j ~ t !5E t

e2gut2tu f i j ~t!dt, ~29!

which is same type of stochastic formulation as in Eq.~15!.
It follows then from Eqs.~27!, ~28!, and~29! that

^Hi j ~ t !Hkl~ t8!&5
G

2g
gi j ,kl

~n! e2gut2t8u. ~30!

This process can be formulated as well in terms of t
Fokker-Planck equation for the distributionP(H,t):

]P

]t
5

]

]Hi j
~gHi j P!1

1

2
gi j , j i

~n! G
]2P

]Hi j ]Hi j*
. ~31!

Since we are interested in a stationary proce
P(H,t)5P(H) for H(t), we can choose the initial distribu-
tion to be the equilibrium resultP(H)}exp@2nTrH2/2a2#.
The equilibrium solution is a solution of the Fokker-Planc
equation providing the fluctuation dissipation theorem is s
isfied:

gi j , j i
~n! G/2g5uHi j u25

a2

2n
gi j , j i

~n! ~32!
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152 54DIMITRI KUSNEZOV AND DAVID MITCHELL
or a2/n5G/g, where the last equality follows from our
original construction in Eq.~16!. Following Dyson’s argu-
ment that the eigenvalues ofH(t) behave as a diffusive Cou-
lomb gas, equilibrating~at the microscopic scale! on a time
scale of t}1/(gN), we see that in order to obtain
N-independent correlations, we must haveg}1/N or
g5g8/N. By equating the second cumulants ofH(t) for the
Langevin process~30! and for our desired process~16!, and
implementing the fluctuation-dissipation theorem, we equa

F~z2z8!↔expS 2
g8

N
ut2t8u D . ~33!

Expanding to leading order in the largeN limit, we associate

12cuzun.12
g8

N
utu. ~34!

As the Langevin result isN independent at the microscopic
scale,N-independent results will also result if we define
new quantity ẑ5(c/N)1/nz. Up to a factor of order unity
(4/p2n), this is precisely the same scaling we discussed e
lier. Now to leading order,

F'12n
p2

4

uz̃2 z̃ 8un

N
. ~35!

There is now no explicit model dependencec, and theN
dependence of correlation functions will be absent due to
explicit dependence onN, which was required to achieve the
microscopic equilibrium condition discussed above.

C. Remark on a and universality

We want to make a few clarifying remarks concernin
a and what is meant precisely by universal predictions. Fir
for any Hamiltonian with a smooth dependence on som
parameters, the value ofa is always 2. If one takes a par-
ticular parametric dependence ofH(z) and redefines
z→z85z2, thena52 for H(z8) as well. The reason is that
regardless of the functional dependence ofH on its param-
eters, the autocorrelation functionF(z) will always decorre-
late witha52. @Althougha would be the same forH(z) and
H(z8), the explicit expressions for the scaled parameterz̃
would be slightly different. But in any case, all universa
predictions fora52 processes are identical@19#.#

By universal, we refer to the predictions we make from
random matrix theory which are model-independen
parameter-free functions and distributions. Although rando
matrix theory is a purely statistical theory, results will gen
erally depend on the dimension of the matrixN, and other
quantities such as theca in ~21!, and so forth. By appropriate
scaling, all dependence on this ‘‘model’’-independent pro
erty of the random matrix results vanishes. As a cons
quence, any random matrix with sufficiently largeN will
provide the same results, as we find here. When we go t
model such as the IBM, we use the prescribed scaling to
whether these parameter-free functions also describe
served correlation functions. As we see below, the agreem
is quite good, indicating that statistical correlations in th
IBM can be described by model-independent functions, a
hence universal functions.
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IV. OBSERVABLES

In this section we will see that many properties of para
metric Hamiltonians have well-defined model-independe
structure. There are two classes of observables we stu
here, those related to the energiesEn(z) and those related to
the instantaneous eigenfunctionsuCn(z)&. The relation of
wave functionsuCn(z)& at z to those atz8 is given by the
transformation matrix

Unm~z2z8!5^Cn~z!uCm~z8!&. ~36!

We will see below that correlation functions that depend o
Unm(z) andEn(z) have universal predictions which gener-
ally agree well with the results of the IBM in the chaotic
regions.

The universal predictions for ana52, GOE system are
computed here with two different covariances. The first
the simple sum of two uncorrelated GOE matrices

H8~z!5H1cosz1H2sinz,

H8~z!H8~y!5cos~z2y!5F8~z2y!. ~37!

The correlator is periodic withF8(z)'12z2/21••• , defin-
ing the scalingz→ z̃5AD2z5(A2N/p)z for universal cor-
relations. The second construction is in terms of a stochas
integral, where one integrates over a continuous range
uncorrelated random matricesV(y):

H9~z!5E dye2~z2y!2/2V~y!,

H9~z!H9~y!5e2~z2y!2/45F9~z2y!. ~38!

Here z̃5(AN/p)z. We have computed various correlation
functions described below withN550–300. Generally
N550 is sufficiently large.

A. C„z…

The slope-slope correlation function of the unfolded para
metric energiesEñ(z) is defined as@9#

C~z2z8!5K ]Eĩ~z!

]z

]Eĩ~z8!

]z L
E,z

, ~39!

where the averaging is over energy and parameter. In Fig.
the results for the IBM in the chaotic regions are shown fo
Jp501,21,41,101. The averages are computed by averag
ing over the middle third of the spectrum and over the tra
jectory z. The two solid lines are the results of the random
matrix simulations, Eqs.~37! and ~38!, for N550 and 300.
For comparison, a computation in the regular region of th
IBM is shown, indicative much slower decorrelation. As we
will see in all computations here, the typical distance a
which quantities decorrelate isz̃;1, which corresponds to
the average separation between level crossings when the
ergiesẼn are plotted as a function of the scaled paramet
z̃ . For regular systems, and the apparent level crossings
Fig. 4, this is not the case, and decorrelation happens ove
much longer scale. In general the agreement with the unive
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sal functions is quite good. The 01 states have the poore
agreement, which is in part statistical, having the smal
dimension. The lack of agreement with the universal pre
tions might also be indicative of some additional regula
in the spectrum or, classically, weak chaos in the 01 phase
space.

B. N Scaling ofC„0…

We have seen that the diffusion constantC(0)5D2 scales
linearly withN, the dimension of the space. This scaling c
be tested in the IBM by modifying the boson numberNb .
For Nb510,15,20,25 we have dimensions ofJ5101 states
of N516,56,121,211. In Fig. 6 we plotC(0) as a function of
N, and see that this scaling is observed. At lowNb ~equiva-
lently low N), the results are not as reliable due to statis
becoming increasingly poor, and the classical phase s
becoming increasingly regular@12#.

C. Curvature distribution P„k…

The distribution of curvatures of the parametric energ
En(z) or equally,Eñ(z), has a predicted distribution in th
chaotic regime, given by@23#

P~k!5
cn

~11k2!~n/211! , k5
d2Eñ

dz2
1

pnC0
. ~40!

Herecn is the normalization,n51 ~2! for GOE ~GUE!, and
k is the scaled curvature of the parametric energy. This fu
tion is compared to our random matrix computation@Eq.
~38!# in Fig. 7~a!. In Fig. 7~b!, the results for the chaoti
region of the IBM~solid histogram! are seen to agree equal
well. A similar calculation done in the regular region sho
a much more strongly peaked function~dashed and scaled b
1/5 vertically!. This is expected since the regular regio
have much fewer level crossings and are hence much fl
~see Fig. 4!.

FIG. 5. Slope-slope autocorrelation functionC( z̃) for the para-
metric energiesEñ( z̃) in the chaotic~symbols! and regular~dots!
regions. The solid lines are the random matrix predictions us
~37! and~38! with N5300 andN550, respectively. The 01 states
have the poorest statistics, due in part to the small dimension o
space (N565).
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D. Diagonal wave function decorrelationsPn„zUnn„z…z2…

The adiabatic survival probabilityu^Cn(z)uCn(0)&u2
measures how rapidly wave functions decorrelate. These
found to be universal with a well-defined Lorentzian shap

Pn„uUnnu2…5u^Cn~z!uCn~y!&u25S 1

11cuz̃2 ỹua
D ~n11!/2

,

~41!

wheren51 ~2! corresponds to GOE~GUE! eigenstates,c is
a constant, anda is given by the leading order behavior o

ing

the

FIG. 6. Scaling ofD25C(0) with N, the dimension of the
space. The boson number was varied asNb510,15,20,25, resulting
in dimensionsN516,56,121,211 forJp5101 states. The antici-
pated scaling behavior, given by Eqs.~25! and ~26! with a52, is
linear, shown by the solid line. There are deviations at small bos
number since the chaos is not as strong there, and the dimens
are small.

FIG. 7. ~a! Analytic level curvature distributionP(k) ~solid
line! compared to results of a GOE simulation~histogram!. ~b!
Comparison of the analytic distribution to those for 21 states in the
IBM ~solid histogram!. The dashed histogram corresponds to 21

states in the regular regime, and has been scaled vertically by
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F(z). For the case at hand,n51 anda52. In Fig. 8, com-
parisons are shown for selected spins, and in chaotic~sym-
bols! and regular~dashed! regions. The regular regions ind
cate much longer correlations, while the GOE result provi
the most rapid statistical decorrelation of states. The
solid lines are the random matrix predictions. There is
equivalent universal prediction for the nonchaotic regim
and the dashed line is just a representativePn of the IBM in
the regular region.

E. Off-diagonal wave function decorrelationPk„zUnm„z…z2…

Wilkinson and Walker@22# have used perturbation theo
to derive an approximate expression for the distribution
squared off-diagonal matrix elements,u^Cn(z)uCm(0)&u2, in
the limit of uzu→` andk5um2nu@1. They found that

Pnm~z!5
m2z2

~En2Em!21~prm2z2!2
,

m25 K U ]H

]z U2L
En;Em ,n5” m

. ~42!

Here, the energies are not averaged over,m2;1, andr is the
average level density. In exploring the behavior of th
quantities in the IBM, it is difficult to satisfy the validity
conditions for Eq.~42!, since we largely study states in th
middle portion of the spectrum, andm@n is difficult to sat-
isfy. If we use only two states separated byk5un2mu@1,
and we do not average over energy, the statistics are
poor. In order to get good statistics, we have examined
equivalent distribution which is averaged over both coo
natez and energy, withk kept fixed. We define this distri
bution of off-diagonal matrix elements as (k.0)

FIG. 8. Wave function decorrelation functio
Pn( z̃)5u^Cn( z̃)uCn(0)&u2 for selected states in the chaotic regim
indicated ~symbols! and one for 21 states in a regular regio
~dashes!. The solid curves are our universal predictions. As th
are no universal predictions in the regular regimes; the dashed c
is only representative.
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Pk~ z̃!5^uUnm~z!u2&5Šu^Cn~z1z0!uCm~z0!&u2‹E,z0 ,k5un2mu

~43!

where the subscript indicates that it is averaged over
trajectoryz(h,x), as well as over energy, with the separa
tion un2mu held fixed. We use the notationPnm for the
quantity which is not energy averaged, andPk for the energy
averaged result. In Fig. 9, we compare this function com
puted in random matrix theory~solid! and in the chaotic
regime of the IBM~boxes!. In general the agreement is quit
good. The random matrix theory result was done usi
N550, and averaging over the middle third of the spectru
Hence, ask increases, the statistics get worse. The IBM r
sults are for theJp5101 states, with a dimension of 211, so
that the statistics is better. In order to contrast our resu
with Eq. ~42!, we have taken a rescaled form, which is no
entirely justified, as the scaling bym is distinct from
D25C(0). Nevertheless, we plot in Fig. 9 the following
rescaled functions~whose regimes of validity are indicated!:

Pk8~ z̃ !5
z̃ 2

k21 z̃ 4
, k@1, uzu@1, ~44!

Pk9~ z̃!5E
0

`

dxcos~kx!e2 z̃ 2@12exp~2uxu!#, k@1. ~45!

The functionPk8 ~dotted line in Fig. 9! is an approximation of
Pk9 ~dot-dashed line in Fig. 9! in the limit uzu@1, which was
derived in Ref.@22#. As the value ofk increases, there is
better agreement with the exact results form the random m
trix simulation and the IBM. We observe that a better overa
fit can be found with the function~dashed line of Fig. 9!

n
es

ere
urve

FIG. 9. Distributions of off-diagonal matrix elements
Pk„Unm( z̃)… ~where k5un2mu). The IBM results for chaotic
Jp5101 states~boxes! agree well with the random matrix predic-
tions~solid! usingN550, as well as with a simple analytic function
~dashes!. In addition, we show the asymptotic resultsPk8( z̃) ~dotted
line! andPk9( z̃) ~dot-dashed line! of Ref. @22# which converge for
low k to the exact results. For reference, a similar calculation in t
regular region for 101 states is included~crosses!.
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Pk~ z̃!5C
z̃ 2

k~k2c!1 z̃ 4
, c53/4, ~46!

which trivially converges to the Wilkinson-Walker result
its regimek@1, but better describes the results for allk. The
normalization constantC is determined from the condition
that (nuUnm(z)u251. The results for the regular regio
x520.661, hP@0.5,1.0#, are given by the crosses. Onc
again, there is no universal result for the regular case. F
ther, as expected, all three analytic functions~42!–~44! agree
in the largek limit.

F. Diagonal matrix elementsPz̃„Unn„z……

The previous results have been averages over various
trix elements. We now show that the actual distributions
matrix elements can also be predicted by universal functio
Consider, for example, the distribution of the matrix e
mentsUnn(z)5^Cn(z)uCn(0)&. These can be seen to b
described by a universal function for eachz. The distribution
P„Unn( z̃)… is shown in Fig. 10 forJ

p5101 states at severa
values ofz̃. At z50, the distribution is ad function centered
at 1. As the separation of the wave functions increases,
centroid shifts from 1 to 0, and the overlap evolves to
asymptotic Porter-Thomas distribution~an approximate
Gaussian! at largez:

Pz̃„Unn~z!…→H d~Unn21!, z̃→0,

exp~2NUnn
2 /2!, z̃.1. ~47!

The largez limit is not universal, as can be seen by t
explicit dimensional dependence of the result. The Por
Thomas result lies beyond the range of universality which

FIG. 10. Distributions of diagonal matrix elemen
Pz̃„Unn( z̃)… at several values ofz̃ for 10

1 state~solid line! and the
random matrix predictions~dashed line!. The distribution shifts
from a delta function centered at one atz̃50, to an asymptotic,
nonuniversal Porter-Thomas distribution forz̃@1.
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largely z̃<1, but the precise decorrelation of matrix elemen
within this range has the model-independent form shown
Fig. 10.

G. Off-diagonal matrix elementsPz̃„Unm„z……

A similar result exists for the distribution of off-diagonal
matrix elements,Unm(z)5^Cn(z)uCm(0)& . The distribu-
tion Pz̃„Unm( z̃)… is shown in Fig. 11 forJp5101 states at
several values ofz̃. At z50, the distribution is also ad
function, but now centered atz50. As the separation of the
wave functions increases, the overlaps evolve to an asym
totic Porter-Thomas distribution~an approximate Gaussian!
at largez:

Pz̃„Unm~z!…→H d~Unm!, z̃→0,

exp~2NUnm
2 /2!, z̃.1. ~48!

As before, the largez limit is not universal, as can be seen by
the explicit dimensional dependence of the result. The so
curve in Fig. 11 is the Porter-Thomas result.

H. Correlations of mean fields

Each value of (h,x) corresponds to a deformed mean
field characterized by (b,g) determined from the minimum
of Eq. ~3!. Because wave functions decorrelate on the ord
of z̃5AD2z;1, the actual correlation length in terms of the
parametersh and x depends on spin, and is given by
z;zc[1/AD2(Db,Dg,Jp). To explore the spin dependence
of the correlation length, we computezc in the IBM for
Jp501,21,41,101, and find typical values of
zc50.16,0.14,0.11,0.05. This has roughly a behavior

zc;12gJ, ~49!

whereg is a constant. How generic such a dependence mig
be in other nuclear models is unclear, but it does indica
how rapid states of different spin can decorrelate.~N.B. The

ts

FIG. 11. Distributions of off-diagonal matrix elements
Pz̃„Unm( z̃)… at several values ofz̃ for 101 state~histogram!. The
distribution shifts from a delta function centered at zero atz̃50, to
an asymptotic, nonuniversal Porter-Thomas distribution forz̃@1
~solid line!.
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results can be corrected for the dependence ofzc onAN, but
this does not account entirely for the behavior.! The equiva-
lent values ofDb andDg, which correspond to statisticall
decorrelated configurations, depend rather strongly on
parameter region. For example, in our calculations we
obtain a range fromDb50.01 to 1.3, for the same correla
tion length, depending on whether the shape is undergoi
rapid shape phase transition or not in the particular param
regime. One can only conclude that near a shape phase
sition, there can exist statistical correlations between v
distinct nuclear shapes.

I. More complicated operators

It is clear that one can explore many classes of opera
and establish the behavior of model-independent limits
those quantities. For instance in the study of theE2 decay of
high-spin states, Aberg@7# has introduced the matrix quan
tity

Ti j5u^C i~J22!uC j~J!&u2@Ej~J!2Ei~J22!#5, ~50!

where the parameterJ is the angular momentum, and
equivalent toz. This matrix can be explored as a function
the correlation length, and has different results in the cha
limit, depending on the spin-dependent scalingD2 . One can
consider other operators as well, and we would like to po
out that additional quantities can be constructed using
universal predictions here, together with the analysis of R
@22#, which discusses how to compute arbitrary correlat
functions.

V. MULTIPARAMETER CORRELATIONS:
TOPOLOGICAL EFFECTS AND BERRY’S PHASE

While formal studies of parametric correlations have be
limited largely to single-parameter systems~see Ref.@22# for
some exceptions!, nuclear deformation is usually describe
in terms of two or more shape parameters. When two
more parameters are involved, one finds that short dista
correlations can be modified by topological effects, due
Berry’s phase. That is, the correlation between quantitie
b,g andb8,g8 depends on the path used to connect th
points. Generally, for correlation functions which are sen
tive to phase information, we will show that interferen
terms can strongly modify the expected results. We exp
the basic ideas here in the case of two parameters.

When a wave function undergoes parametric evolution
a closed circuitC, it is well known that the wave function
can pick up a topological phase:

Cn~z!→eig~C!Cn~z!, ~51!

whereC represents a loop in parameter space starting
ending atz. For real symmetric matrices, such as our GO
ensemble,g(C) is only 0 orp ~mod 2p) @24#. Hence

Cn~z1C!56Cn~z!, ~52!

where the sign depends upon the particular eigenstate an
path, andz1C represents the same pointz after following
the closed loopC. Of course, one does not have to follow
closed loop. A similar effect exists if one follows two dis
the
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tinct paths fromz to z8. Then phase differences result i
interference. Whether or not paths are in a chaotic or regu
regime does not change the nature of the argument, but in
chaotic regime, more states are likely to pick up a negat
phase due to the many avoided level crossings@25#.

A. Two-parameter random matrix model

The simplest formulation of a two parameter correlat
random matrix ensemble is

H~X,Y!5H1cosX1H2sinX1H3cosY1H4sinY, ~53!

where the constant random matricesHi are uncorrelated:
HiH j5d i j . It follows that

H~X,Y!H~X8,Y8!5cos~X2X8!1cos~Y2Y8!. ~54!

Generalizations to arbitrary dimensions have been discus
by Wilkinson and Walker@22#. We can now consider para
metric excursions in the (X,Y) plane, specifically two paths
which connect (0,0) to (DX,DY), one of shortest length, and
the other a longer path enclosing an areaA. Because the
wave functions acquire a Berry’s phase around the clo
loop, which can be61 for the GOE case, the areaA en-
closed can modify expected short distance behaviors.

B. Correlations in the b-g plane

We can now explore some of the topological effects
our two-parameter theoryH(h,x). Consider a rectangula
loop C in parameter space which encloses an areaA. In
analogy to scaled parameterz̃, we define the scaled area o

FIG. 12. Effects of Berry’s phase on universal distribution fun
tions. The parameterz̃ undergoes motion on a closed loop, startin
and ending atz̃50. Starting at the top, the distribution evolves an
eventually bifurcates due to the presence of topological pha
Both resultsz̃50.5 are within the universal regime, but the lowe
figure shows that the path taken to get to the point of interest can
important. At the bottom, the fraction of matrix elementsf that
change toUnm521 depends on the area enclosed. The minimu
area needed to achieve the maximum fraction of 1/2 scales
1/N, and is hence rapidly realized in large dimensional systems
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the loop asÃ5C(0)A; z̃ 2. Then an areaÃ;1 is a loop
whose sides are approximately the decorrelation length
observables. Such a loop stays within the universal reg
for all values of the parameter. In Fig. 12, we plot the dis
bution of matrix elementsPz(Unn) @see Eq.~45!# for such a
loop. Starting from the top of the figure, we havez̃50, and
the distribution is a delta function. Asz̃ increases, the distri
bution spreads in accordance with universal predictions~cf.
Fig. 10!. At the farthest point of the loop, the distribution
given by the middle figure. As the trajectory returns to t
initial point, approximately half the eigenfunctions develop
negative topological phase, and at the final point, which
precisely the initial point, the distribution is equally split. A
of the results in Fig. 12 are within the universal regime, b
one can see that topological effects can destroy the expe
behavior discussed in Fig. 10. For smaller loops, the effec
smaller. The approximate behavior is@25#

f55
Ã

2
, Ã<1,

1

2
, Ã.1.

~55!

Here f is the fraction of the total states which split to21,
and Ã is the enclosed, scaled area. The fraction increa
linearly with the area. Because saturation occurs n

Ã515C(0)DxDh, and C(0)}N, the size of the loop
needed to see the maximal effect decreases like 1N:
DxDh;1/N. Hence we see that universal predictions can
modified in multiparameter theories due to the topology
the parameter space. It is not sufficient to give only the m
ric distance in parameter space in order to provide all u
versal predictions. One must also consider the path take
get to that metric separation.
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So there are several aspects here to consider. Ber
phase effects are independent of the underlying chaos al
the chosen path, but depend more upon the nature of
parameter space enclosed by the path. One could imagin
loop in parameter space which is entirely regular, but e
closes a chaotic regime. The expression for the fraction
total statesf above assumes one is always in a chaotic r
gime, and the enclosed area is also chaotic.

VI. CONCLUSIONS

In conclusion, we have explored the multiparameter, ad
batic behavior of collective nuclear excitations in the fram
work of the IBM, and found that under the appropriate sca
ing of the parameters, correlation functions and distributio
of matrix elements behave universally. We have provid
new universal predictions from parametric random matr
theory for statistical correlations related to wave function
and energies. The results here are suggestive of a new
versality in statistical nuclear correlations, related to the ‘‘d
formation’’ of the nucleus, which are quite robust, and wou
be interesting to explore in other more microscopic mode
While we have focused on matrix element distributions a
certain correlation functions, it is clear that the scaling pr
vides a general type of approach to compute arbitrary cor
lation functions. This also shows that the use of random m
trix theory with covariances of the type~16! is quite
reasonable, even when the distribution of matrix eleme
seems quite different from the expected GOE behavior.
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