PHYSICAL REVIEW C VOLUME 54, NUMBER 3 SEPTEMBER 1996

Ambiguities in the partial-wave analysis of pseudoscalar-meson photoproduction

Greg Keaton and Ron Workman
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
(Received 19 April 1996

Ambiguities in pseudoscalar-meson photoproduction, arising from incomplete experimental data, have ana-
logs in pion-nucleon scattering. Amplitude ambiguities have important implications for the problems of am-
plitude extraction and resonance identification in partial-wave analysis. The effect of these ambiguities on
observables is described. We compare our results with those found in earlier 4i80&56-28136)03809-5
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I. INTRODUCTION amplitudes. Following the notation of R¢f], the transition
matrix is given by
Our empirical knowledge of th&l (S=0,1=1/2) and =
A(S=0,1=3/2) baryons is mainly based upon data from the T=F+iGn-o, Y

scattering and photoproduction of pseudoscalar MESONG heref is the normal to the scattering plane. The spin-flip

Resonance positions and couplings have generally com . : .
X L ) and spin-nonflip F) amplitudes can be decomposed

from partial-wave analyses of the existifigcomplete sets into partial-wave amplitudes
of observable$1]. The lack of sufficient experimental data
implies that the transition amplitudes cannot be uniquely de-
termined. Barring further theoretical input, multiple sets of F(G):Z [(I+Df +1f,_]P(cosy), )
valid amplitudes exist.

Typical analyses employ the additional constraints of uni-
tarity and analyticity, which reduce the range of potential G(0)=E (fi—f,_)singP| (cos), ©)]
ambiguities[2]. Amplitudes are expected to be “smooth” !

with the possible exception of threshold cusps. Born term%vhere the subscript- gives thel value,J=1+ 1/2, andd is
are usually added, either diagrammatically or through the USE o center-of-mass scattering angle ' -

?(T“,Mdl?gp[zasfnn d lgﬁg?unr?é-Hglfinlgsw)e?ﬁ_xﬁggg_uizgﬂey In terms of these amplitudes, the differential cross section
; . . . . ; . (da/dQ) and polarization ) are

wide range of dispersion relation constraif in their

analyses. As a result, these independent studies produced re- do

sults which were qualitatively very similar. However, recent aq =|F|?+|G|?, (4)

spin-rotation datd6] are in marked disagreement with the

prediction of these analyses. No data of this type were avail- do

able(in the resonance regipmhen these analyses were per- pm =—2ImMF*G. (5)

formed.

We will concentrate on the ambiguities which can arise in
the partial-wave analysis of pseudoscalar meson photopro-
duction data. There is a close analogy between the ambigu- F _F*
ities found in the photoproduction and the elastic scattering ( )H( )
of pseudoscalar mesons. This is particularly evident if one G G*
adopts the method of Dean and L&8. In a previous work . . —
[8] vF\)/e considered the problems encountergd in constructin hich Preserves both t_he Cross section a_nd pol_arlzatlon.
a complete experiment. The present study is more genera .herEfore experlmenjtal mformgtpn on_the differential cross
Here we will show how amplitude ambiguities can alter theSection and polarization alone is insufficient to deternitne

angular structure of observables and these results will bgndG. . . . .
cor%pared to some earlier findings of OmelaeriRh We The photoproduction amplitude can be similarly divided

will also mention how these results are related to the study O?tobfpig_—single-flip 61, S2), Spin—r;onflip_ N), ar:d spin-
nodal trajectorie$10]. ouble-flip D) pieces[11]. A transformation analogous to

Eq. (6) is ambiguity IV of Ref.[8]:

We will first consider a transformation

(6)

N
D

N*
D*

—

S\ [—SI
Il. CONJUGATION SYMMETRIES — and , (7)

ok
As suggested in the Introduction, the ambiguities associ- > =
ated with pseudoscalar meson photoproduction are most eashich is a symmetry of the cross section, single-polarization
ily described in analogy with elastic meson-nucleon scatterebservables, and half of the double-polarization observables
ing. To that end, we will first define the elastic scatteringlisted in Ref.[11].
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The associated change in partial-wave amplitudes is clear S, cosp  sing 0 0 S,
if we first introduce the helicity amplitudes and helicity ele-

ments of Walkef12]: D’ _ —sing cosp 0 0 D

N’ 0 0 cosp  sing N

1. 1 & A S} 0 0 —sing cosp/ |'S,
Slzﬁsmeco% 02,1 (Bi+—Bg+1)-)(P/=P11), (8 16

Here also¢ depends on the energy and scattering angle.
Ambiguities | and Il of Ref.[8] can be generalized in a
similar way. While a constant value @f was chosen in Ref.
1 - [8], the choicep= ¢ () is more interesting(In fact, ¢ must
N= \/Eco% 0>, (A —Agsiy )(P[=P/), (10 vary with the scattering anglé [15].) The simplest choice
=0 ¢=6 was shown16] to confuse the identification of reso-
nances in elastic scattering. The choj@é ¢= esing, for a
1 2 small (angle-independenparametel, is also interesting as
S,= \/ES"E 92 (Ary+Aq1))(P{+P[Ly). (11  itillustrates a case where solutions may be continuously var-
=0 ied with e.

The cross-section, single-polarization, and beam-target
double-polarization observables are invariant under the
above transformation. The beam-recoil and target-recoil ob-
servables are not.

1 . H 1 . n n
D=—sm05|n§0§1(B|++B(|+1)_)(P|+P|+1, 9)

V2

The transformation given in Eq7) is then equivalent to an
exchange of helicity elements:

B|+<—>B;k|+1)_ and A|+<—>_Aik|+1)_ . (12)

It should be noted that this transformation is only pertinent IV. FITTING ANGULAR DISTRIBUTIONS
above therrmN threshold. At lower energies it violates uni-

tarity in the form of Watson's theoref1.3]. So far, we have not explicitly considered the problems

which arise in fitting angular distributions. Here one gener-
[ll. CONTINUOUS SYMMETRIES ally adopts the methods of Barrelgit7] or Gerster[18] in
order to write the transversity amplitudes as factorized poly-
Pomials in some function of the scattering angle. The case of
7N elastic scattering has been reviewed byhtéo[4]. Here
we will concentrate on photoproduction, following the treat-
ment given by Omelaenk®].

As discussed in Ref.7], the polarization and cross sec-
tion for elastic scattering are also invariant under rotations o
the F andG amplitudes:

F _ cosp  sing)F (13) The use of transversity amplitudes
G’ —sing cosp '
Here ¢ is a parameter which can vary with the energy and b1=3[(S;+S,) +i(N-D)], (17)

scattering angle. While this transformation does not preserve

elastic unitarity, it has implications for resonance identifica-

tion above the inelastic threshdld]. As noted in Ref[7], if b,=1[(S;+S,)—i(N-D)], (18)
this rotation(with ¢=—6) is composed with the conjuga-

tion operation given in Eq6), the Minami ambiguity{ 14]

b3=3[(S;—S) —i(N+D)], (19
flo a0 (14) I

results. This transformation, applied to the partial-wave am- b,=1[(S;—S,) +i(N+D)], (20)
plitudes, preserves elastic unitarity along with the cross sec-
tion and polarization.

Ehe above rolt.ati(;)n also has an iamalogbi_n terms Offphoftoallows the problem to be stated very simply. Measurements
péo' uction aE)mp itudes. For example, ambiguity [Il of Ref. ¢ e gifferential cross-section and single-polarization ob-
[8]is given by servables determine only the moduli bf—b,, not their

and N - Sz ) (15) overall phase is not observable, and so there remain three
S, N/’ unknown phases. These three unknowns correspond to the
which is a special casep(= 7/2) of the more general trans- the b; basis and generalized for arbitrary angleas in Eq.
formation (16) become

s b phases. This leaves four undetermined phases. However, one
! —
ol
first three ambiguities of Ref8], which when expressed in
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b} e v 0 0 0 b, The effect of root conjugation was demonstrated in Fig. 5
b’ ig of Ref. [9]. Some of the double-polarization observables

0 2| _ 0 e 0 0 b changed dramatically. This transformation was originally ap-
bj 0 0 €e¢ 0 by |’ plied, however, to pion photoproduction amplitudes in the

b/ 0 0 0 &4/ b, first resonance region, where Watson’'s theorem and the

threshold energy dependence can be used to resolve the am-
biguities. It would be interesting to examine the effect of the

b; e’ 0 o0 0 by ambiguities at higher energies, where such constraints do not
b} 0 €% o 0 b, exist. The regi(_)n with a c_enter-of-mass energy near 1.9 GeV
(1) = i , seems promising. Th_|s is the energy at which the recent
b3 0 0 e 0 bs ITEP-PNPI spin-rotation measurements were made. Here
by 0 0 0 e’i¢ b, there are many overlapping resonance candidates and we are
well separated from the threshold region.
bl dé 0 0 0 b ~ We should also mention a recent study where these am-
_ L biguities could have important consequences. The nodal tra-
b, 0 e’ 0 0 b, jectory method 10] is concerned with the numbéand en-
(nr) by “l o o €4 o by | ergy dependenge of nodes found in photoproduction

observables. Observables are split into “Legendre classes”
having similar nodal structure. However, this grouping of
(21)  observables is not respected by the transformations we have
. . . ) ) .. discussed.
Since the differential cross-section and single-polarization ag 5 test case, we chose the target-recoil observable
observables give no information about the phasebef ¢, yp—p7®. Helicity amplitudes were generated from a

b,, it would appear that the angles above are completely mjiipole analysig19], andL, crossed zero 3 times at 500
arb|trary. However, this is not so. The form of the multipole \jev/ Then the transformation given in E(.6) was applied
expansior{9] requires that with ¢=n6. Using¢ = 6 and 2, the number of zero cross-
ings increased to 5 and 7, respectively. The work of Om-
elaenko[9] indicates that the nodal structure can also be
altered by thgsmalley set of ambiguities remaining when a
fixed and finite angular momentum cutoff is applied. At suf-
ficiently low energies, a knowledge of the threshold energy
dependence helps to resolve ambiguities. At higher energies,
{urther assumptions seem necesdag.

For the photoproduction of kaons and etas the problem is
more acute. In analyzing these reactions, we have no Wat-

b;(6)=—by(—6) and by(6)=—by(—6), (22

which restricts the dependence éfon 6. In ambiguity |,
¢ must be an even function @f while, in ambiguities 1l and
lll, ¢ must be an odd function df.

The constraint given in Eq22) allowed Omelaenk¢9]
to parametrize the four transversity amplitudes in terms o
two functions[18]

g2 2L son’s theorem constraint and we must account for the effect
b.=ca € H (X— a 23 of subthreshold resonances. It should also be noted that, in
1= by 5 OO\ T . @), (23 . . : .o
(1+x9)"i=1 analyzing pion photoproduction data, the resonance positions
are usually taken as known from elastitN analyses. Given
gz 2k the possibility of significant contributions from “missing
b3=—ca2LmH (Xx—=B), (29 resonances”(that is, resonances very weakly coupled to
i=1

7N), kaon and eta photoproduction analyses are relatively

. Lo free ofa priori constraints. Therefore they are more likely to
with x=tand/2. Ambiguities result from the fact that com- be plagued by the kind of ambiguity discussed here.

plex conjugation of the rootsaf and B;) alters the relative
phases(but not the modu)i of the transversity amplitudes.

One further condition V. SUMMARY AND CONCLUSIONS

2L 2L Pion photoproduction amplitudes are not completely de-
1 a=11I 5 (25)  termined by cross-section and single-polarization measure-
i=1 i=1 ments. This fact is exhibited by the existence of one discrete
[Eqg. (7)] and three continuou€Eq. (21)] transformations of
restricts this freedom. The most simple caakroots conju-  the amplitudes that leave these observables invariant. The
gated is equivalent to the composition of the two transfor- ransformations, introduced in Réf8], are generalized in
mations IV[Eq. (7)] and Il with ¢= 6. The choice of a this paper. We have also shown how these transformations
finite cutoff in L further restricts the values @#(6) appear-  are related to the ambiguity found by Omelaef@
ing in Eq. (21). This is because if, for example;=b,e'’, In order to resolve these ambiguities, either further data or
and b; is to be reexpressed in the form of E@3), the  more theoretical input must be used. One theoretical con-
product must go to=2(L+1). Therefore, if the product is straint comes from restricting the amplitudes to contain only
restricted toi =2L, this transformation is ruled out. In this a certain number of partial waves. As shown in Sec. 1V, this
case, the only indeterminacy is the freedom to conjugate theeduces the ambiguities involved. However, such a theoreti-
roots. cal restriction seems artificial, and cannot be justified in the
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case of charged-pion photoproducti@ue to thet-channel eters. Unfortunately, less is known about the resonances con-
pole). tributing to eta and kaon photoproduction.

Other constraints come from unitarity and the elastic The ambiguities discussed here are more relevant at
mN scattering data. For energies between thM and higher energies, where there are fewer theoretical restric-
N thresholds, Watson's theorem gives the phases of thons, than at lower energies, where Watson’s theorem ap-
photoproduction multipoles in terms of the elastibl phase pl|es. This has an important consequence for the nodal tra-
shifts. This greatly reduces the ambiguity in the photoproJ€ctory method 10], since the Legendre classes it employs
duction amplitudes. Above thenN threshold such a pow- '€ not respected by the ambiguity transformations. There-
erful constraint does not exist. HoweverN data can again fore, at energies where these transformations are allowed, the

be used to reduce the ambiguity. We know the masse nodal trajectory method will have to account for this addi-

widths, and7N couplings of the dominant resonances in the%ronal freedom.

7N channel [such as theP33(1232), D,4(1520), and This work was supported in part by U.S. Department of
F15(1680)]. We can reject any transformation of the photo- Energy Grants Nos. DE-FG05-88ER40454 and DE-FGO05-
production amplitudes that significantly alters these param95ER40709A.
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