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In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation
during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed
structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the
cross section to be weakly dependent on the projectile charge radius and to be sensitive to only the leading
momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a
guantum-mechanical “equivalent-photon spectrum” valid in the long-wavelength limit. This improved spec-
trum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics,
and the response of the target nucleus to the off-shell phfEh56-28186)04508-9

PACS numbdss): 25.75~q, 21.60--n, 24.30.Cz, 25.20:x

[. INTRODUCTION inputs are essential to extracting the correct physical cross
sections, we construct a simple model that incorporates these
In the previous decade, relativistic heavy-ion beams havéeatures and is valid in the limit of low transition energies.
become a useful tool for the study of electromagnetic proThis allows us to obtain a new, fully quantum-mechanical
cesses in nuclei. Applications have included studies ofXxpression for an “equivalent-photon spectrum” that can be
nuclear astrophysicgl], nuclei far from stability[2], and used with measured photoabsorption cross sections in ex-
searches for multiphonon excitations in nudg]. In these actly the same fashion as the semiclassical expression.
experiments, cross sections that are difficult to measure by The paper is structured as follows: In the next section, we
other means are amplified by the projectile charge and, in thg”eﬂy review the results of Ref10], emphasizing the inter-
case of relativistic projectiles, by the contraction of the pro-Play between the different length scales that determine the
jectile’s electric field into a sharp pulse. cross sections measured in heavy-ion collisions. Section Il
Almost exc|usive|y1 the data from these experiments havés devoted to a Comparison of the exact numerical results for
been analyzed using the semiclassical WeikeaWilliams  the cross sections using an assortment of parametrizations for
method of virtual quantd4], in which the cross section for the projectile form factors and target transition densities. In
the heavy-ion-induced reaction is calculated by integrating>ec. 1V, we use the results from these comparisons to con-
the cross section for the analogous real-photon process ovéfuct a simple model for the form factors and transition den-
a flux of photons that is “equivalent” to those that make up sities that incorporates the important physical parameters of
the electric field of the projectile. In its simplest form, the the projectile and target. This allows us to extract a new
pulse of equivalent photons is obtained from the booste@ffective photon spectrum that may be used in the same fash-
Coulomb field of the projectile by equating the C|assica|i0n as the Weizszker-Williams spectrum. In the last section,
Poynting flux onto the target to the energy flux carried by theve compare the predictions obtained using the new spectrum
pulse of equivalent photons. The semiclassical spectrum hadith selected data from heavy-ion collisions.
been generalized to include arbitrary multipol&$ projec-

tile structure[6], and Coulomb scattering eff_ecti]. At- Il. QUANTUM CROSS SECTION
tempts to move beyond the semlclassmallplcture .of these FOR ELECTROMAGNETIC PROCESSES
processes have been thwarted by a lack of information about INDUCED BY HEAVY IONS

the structure of the target nuclel@. Furthermore, there has
been little motivation for improvement because the semiclas- We begin with a review of the results of R¢10], where
sical spectrum, when used in conjunction with data fromthe cross section for nuclear excitation induced by the elec-
real-photon processes, provides model-independent result®magnetic fields of a passing heavy ion was derived in the
for cross sections measured in heavy-ion collisif#ls first Born approximation. The relevant Feynman diagram is
Recently, we have undertaken a program to systematicallghown in Fig. 1. Avirtual photon of momentung” is ex-
examine corrections to the semiclassical pic{l@11], and changed between the target and projectile nuclei, producing
have found significant deviations from the predictions of thean excitation in the target of energy;. (As a matter of
Weizsaker-Williams method for the mildly relativistic col- convention, the nucleus that gets excited is considered to be
lisions (y<2—3) that constitute a significant fraction of the the targe). The cross section for simultaneously exciting
available data. The aim of the present work is to expand ofoth nuclei has been shown to be snjafl] at this level of
the results of Ref.10], examining the sensitivity of the cross approximation in the fine structure constant. The lack of pro-
section to nuclear structure inputs. Having determined whicljectile excitation and the large masses of the nuclei combine
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sion without further approximations. The differences be-
tween the semiclassical approximation and the full result are
Py even more striking when the transverse momentum cutoff
Omax IS removed too. In this limit, the semiclassical cross
section diverges logarithmically, while the full expression
for the cross section remains finite. There are three additional
regulating factors in the full cross section, which tend to
lower the cross section even whep,,y is finite. The first
factor arises because of the finite size of the projectile. The
magnitude of the three-momentum transfer in the projectile’s
rest frame is given byw/—g?=w+/yB, and the degree to
which the protons in the projectile act coherently on the tar-
get is reduced at largg. This produces a cutoff governed by
the size of projectileRp. The falloff of the target’s excited
state wave function at high momentum produces a corre-
sponding second regulator governed by the target §ze,
FIG. 1. Feynman diagram for electromagnetic excitation in aln the absence of both these effects, the cross section would
peripheral heavy-ion collision. still remain finite as a result of thg * dependence of the
integrals appearing in Eq2). This third factor effectively
to determine both the energy transfer and the component afuts off the integrals at momentum scales of the order of
the momentum transfer along the direction of the projectilewr. If, in order to agree with semiclassical estimates, one
momentum. These are given, in the target rest frame, by choosesq .~ 1/(Rt+Rp), the situation becomes compli-
cated, as all the cutoffs are of comparable size. Without fur-

Pi

Ki

Qo= o7, ther study, it is impossible to determine which of these fac-
| tors are most important in relation to the measured cross
q'=owr/B, (1) section.

where B is the projectile velocity. Our metric is such that

qzzqg_qz ] Ill. EFFECTS OF NUCLEAR STRUCTURE
~In Ref.[10], the heavy ion cross sectian, was written In this section, we examine the effects of the detailed
in the compact form form factors (or transition densitioson the cross sections

calculated with Eq(2). These effects are naturally divided
2)|2 into projectile and target structures, and we begin with the

Z(Zpa)2 J(wT18)? 2
UHIZ—ZdeTP(wT)j e ma(g|d|qf|Fe(q
3 P former.

[1 [FT@>  [FT(@l*> 2[F%a) @ A Project
;z (w$_q2)q2 (w%—q2)2 q4 ) . Projectile structure
In the semiclassical description, the projectile is assumed

where Z is the projectile’s chargeFp(g?) is the elastic to be a point charge, and only the long-range Coulomb field
form factor of the projectileF"(q) andF¢(q) are the trans-  of the projectile generates the photon flux. From &, it is
verse and Coulomb form factors of the targgt. is a phe- apparent that the extended nature of the projectile enters the
nomenological cutoff on the transverse momentum transfegross section through its elastic form fact®p(q?), which
required to account for strong absorption effegtép) is  accounts for the incoherence of the electromagnetic fields
the density of states in the target with excitation energyproduced by spatially separate regions of the projectile. The
wr, andy=(1—p%)"12 size of this effect, which tends to decrease the heavy-ion

From this expression, it is easy to see how the semiclassross section, is governed by{Rp/B7)?, whereRp is the
sical limit is realized. Asy becomes large, the lower limit of charge radius of the projectile. For light-target—heavy-
the g integration approachee;. When this happens, the projectile combinations, there is no guarantee that this is
behavior of the integral is dominated by the rapid variationsmall unlessy is large.
of the poles aj>=0 in the photon propagators. The nuclear In Fig. 2, we demonstrate the effect of the finite size of
densities and form factors vary much more slowly with  the projectile on the calculated cross section. The ratio of the
and are effectively frozen at their values fgr=0. The third ~ quantum to classical cross sections for a 20 MeV dipole ex-
term in Eq.(2), which has no pole a§?=0, is small com- Citation of a mass 41 target by'8’Au projectile, as a func-
pared to the first two, which grow logarithmically with. ~ tion of projectile energy, is shown. Here and in all the cal-
Thus, the cross section factorizes neatly into a product of theulations to follow, we choos@a,= 1/byi,, where
same matrix elements that appear in the excitation cross sec-
tion for real photons times arr:F‘)‘equivaIent photon number.”  Pmin=(1.34 fm[AY+AY - 0.75 A3+ AT 9] (3)
The latter is a function only of thet, gnay, andy.

Outside of the largey limit, there is no simple factoriza- is a commonly used minimum-impact-parameter cutoff in
tion of the quantum cross section, @), so that there is no semiclassical calculatior|8,12]. The four curves represent
possibility for reconciliation with the semiclassical expres-the results of assuming either a point projectiiet-dashed
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smaller for lower-energy transitions, since the minimgf
of the virtual photon varies as?.

-—— Bessel
Gaussian
Monopole

—-— No Projectile Structure B. Target structure effects

10 ]

We now turn to the issue of target structure. In the clas-
sical prescription, the target is assumed to respond to the
electromagnetic field of the passing projectile in exactly the
same fashion as it would to a real photon. Hence, for the
majority of the transitions of interest, the long-wavelength
approximation should be valid. In the quantum case, this is
not guaranteed, since the momentum transfer is bounded
e memn T e T from below by w{/B>wy, so that higher moments of the
transition density may play a larger role than they do for
. processes mediated by real photons. To calculate the quan-
1 10 tum cross sections we used transition form factors taken
from two models. The first of these represents a generalized
_ ._collective model for nuclear giant resonan¢&8], which is
FIG. 2. The dependence of the Coulomb-excitation cross SeCt'oﬂwotivated by the Goldhaber-TelléGT) model for the giant

on the finite size of the projectile. The figure shows the ratio of the ,. " .
: . A dipole resonance. The second set of transitions is composed
full quantum result to the standard semiclassical approximation for

the cross section for a 20 MeV dipole excitation YCa by a of the shell-model form factors classifiéti] by their SU3)

197aAu ion. Results are shown for a point projectildot-dashed symmetries. . " .
curve and for three different forms foF p(q2) with the same In the generalized GT model, the transition densities are

charge radius. For low projectile energies the predictions of thd@ken to be the gradient of a spherically symmetric ground-
usual semiclassical approximation deviate significantly from theState density. These collective transition densities are then
full quantum results even for pointlike projectiles. When the finite COrrect to leading order in the long-wavelength limit, and the

size of the projectile is included, the cross sections show sensitivitform factors for a given multipole” are given by

to the charge radius of the projectile, but not to the detailed form of

Quantum/Semiclassical

c 2_ o 2

the projectile charge distribution. For low-energy projectiles0 [FZ(lah1*=7C,jZ(|a|Ry),

MeV/nucleon the cross section is reduced by a factor of 2—-3 rela-

tive to the point-projectile result. A¥=2 the calculated cross sec- (/+1) w%

o . . S T 2_ c 2

tion is reduced by 7% relative to the point-projectile results, and the IF (Jah)|*= 7P IFZ(lah)]?. 6)

relative reduction decreases as the projectile energy increases.

o i ith h di fHere Ry is the target charge radius ar@, is a constant
cu2rv1/2 or & projectiie With mean-square charge radius Olehosen so as to saturate the appropriate photonuclear sum
(r*Yen= 5.4 fm and form factor parametrized by rule for multipole/ [10]

In the shell model, appropriate linear combinations of the

5 31(X) single-particle transitions can provide descriptions of either
Fe(g9)= (Bessel : . -
P giant resonance states or noncollective states. By examining
5 ) each of these we can explore the sensitivity of the cross
=exp(—x°) (Gaussian section to a wide range of transitions, including the so-called
1 “retarded” transitions.(The retarded transitions are those
=13 (monopole, (4)  that do not contribute to the real-photon cross section in the

leading order of the long-wavelength approximatjofhe
separation into unretarded and retarded transitions can be
with x= \/—q2r2/6 andr the root-mean-square charge radiusachieved by classifying the shell-model form factors by their
of the projectile. For each curve we have assumed that targéansformation properties under the @Jsymmetry[14—
transition densities are given by the Goldhaber-Teller model 6] of the three-dimensional harmonic oscillator. This clas-
[13]. sification scheme has the advantage of allowing us to iden-
For low-energy projectile$~50 MeV/nucleon, the cal- tify easily those form factors that dominate the cross section
culated cross section is sensitive to the finite size of the prain the long-wavelength limit.
jectile and is smaller by a factor of 2—3 than the point- Table | lists the expressions for the dipole Coulomb and
projectile result. For relativistic projectiles, the reduction intransverse electric form factors classified unde3UAs
cross section is less dramatic, being about 7%-aR and discussed in the Appendix, these are linear combinations of
decreasing as the projectile energy increases. Once ttibe usualjj-coupled transitions. Following Donnelly and
charge radius is fixed, however, the resulting cross section idaxton[17], the form factors are expressed in terms of a
insensitive to further details of the form factor, except at thepolynomial iny, wherey=(bq/2)? andb is the shell-model
lowest projectile energies, where a variatis20% remains. oscillator size parameter. For a dipole transition between
We conclude that the effect of projectile size is non-oscillator orbits with Q; and Q, quanta there are
negligible for many nuclear transitions, particularly when the(Q;+ Q,+1)/2 distinct form factors, and these are labeled
projectile energy is low. We note, however, that the effect iswith SUQ3) guantum numbers N )
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TABLE I. Shell-model form factors for dipole transitions in the @Yclassification scheme. The form
factors are expressed in terms of the variapte(bg/2)?, whereb is the oscillator parametet.w is the
transition energy anflwg is the oscillator energgi.e.,b= \A/mw,). These form factors correspond to linear
combinations of the usuglj-coupled transition form factors. As can be seen from the tables tH8)SU
classification separates the transitions into an unretarded transition transformioguds-(1,0) and into a
set of transitions that are retarded to various ordergin

Dipole form factorsAJ=1"(AL=1AS=0)

Q:1—Q; (N ) F Coul FT/ECoul
Aﬁw0=l
p—s (1,0 2y112%g-y N
cq
2
Sd—> p (170) %yll2(17 %y)e—y \/_wT
cq
@1 By 201 43w,
cq cq
pf—sd (1.0 VBy(1-y+by?e V2or
cq
@ ~Viya-ty)e V20142,
cq cq
(3.2 _ 2\2 Y%y \/EwTJr 2\2w,
3V35 cq cq
2w
sdg—pf (1,0 @yllz(l_%y+%y2_%5y3)e,y J2 T
cq
Ahw0=3
f (3,0 A 820y \/sz 220
pr—s y 1EY € _ 0
cq cq
sdg—p (3,0 8321 Lyye Y VZor 2 Bory
cg  cq
4,9 2 Y52 \/EwT_ 812w,
3\/§3 cq cq
=(1,0),...,(Q:—10Q,-1),(Q1,Q,). The maximum In Figs. 3 and 4, we show the ratio of the quantum to
1 2 1.2

power ofy appearing in any form factor is determined only semiclassical cross sections for a 20 MEY excitation of a
by the orbitals involved in the transitions and is equal tomass 17 and mass 41 targets YAu, using the Goldhaber-
(Q11Q2)/2. The lowest power ofy is determined by Teller and the X,u)=(1,0) and(2,1) shell-model transition

(\,u) and is equal to X+ u)/2. Thus, the S(B) scheme ﬂqensities. The Goldhaber-Teller density and th@) shell-

provides the required linear combinations of the shell-mode, odel density yield very similar results. The quantum cross

form factors, separafing them into an unretarded tranSitiOgection is enhanced relative to the semiclassical cross section
and a set of transitions retarded to various orderginn the

long-wavelength approximation, only the () = (1,0) form for v near unity, it.is suppressed at moderagteand returns
factor contributes in leading order, and it contains all theSlowly to the semiclassical result gsbecomes large. The
allowed B(E1) strength. The1,0) form factor is the shell- ~cross-section ratio for the retarded,1) SU(3) transition
model equivalent of the Goldhaber-Teller giant resonancedensity is markedly different from that for th&,0) density,

and can be obtained by differentiating the ground-state derbeing larger at lowy, and approaching the semiclassical re-
sity distribution. The X,u)=(2,1) and higher S{8) form  sult from above ay becomes large. At lowy, the additional
factors represent the retarded dipole transitions and do n@nhancement can in part be traced to the additional powers
contribute to real photon processes in the long-wavelengtbf |q| = w1/ that appear in the form factors, each leading to
limit. an enhancement of the cross section bg délative to the
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Goldhaber-Teller Model
~Shell Model (10)
—-— Shell Model (21)

—-— Goldhaber-Teller Model
-~ Shell Model (10)
===~ Shell Model (21)

Quantum/Semiclassical
Quantum/Semiclassical

FIG. 3. Ratio of the full quantum result to the standard semi- FIG. 4. Ratio of the full quantum result to the semiclassical
classical approximation for the cross section of a 20 MeV dipoleapproximation for the cross section of a 20 MeV dipole excitation
excitation in 7O by a %’Au ion. The transition form factors for in **Ca by a'®’Au ion. The transition form factors of'Ca are
Y0 are described by either the Goldhaber-Teller model or by shelldescribed by either the Goldhaber-Teller model or by shell-model
model densities transforming as (1,0) or (2,1) representations ofensities transforming as (1,0) or (2,1) representations aBSU
SU(3). The Goldhaber-Teller and the (1) =(1,0) transition form  As is the case of the calculations summarized in Fig. 3, the cross
factors have the same leading-order dependendglirand their ~ sections are found to be sensitive to only the leadiijiglependence
calculated cross sections are very similar. TBd) transition form  of the transition form factors and to the relative normalization of the
factor does not contribute in leading order in the long-wavelengtHransverse and Coulomb form factors.
approximation and shows a markedly different cross-section ratio.

In all cases, the cross sections are found to be sensitive to only tifactors, and the quadrupole transition density from the
leading-orderlq| dependence of the transition form factors and to Goldhaber-Teller model. Qualitatively, the results are very
the relative normalization of the transverse and Coulomb form facsjmilar to what was seen for the dipole cross section. The
tors. Goldhaber-Teller and2,0) transition densities, which have
the same behavior in the long-wavelength limit, yield very
semiclassical result. The shapes of the curves in Figs. 3 arimilar results for the electromagnetic cross section. The re-
4 are determined essentially by the leading-ofdedepen-  tarded(2,2) transition, whose form factors grow more rap-
dence of the transition form factors and by the relative noridly at small|g|, shows a more enhanced quantum to semi-
malization of the Coulomb and transverse form factors. ~ classical ratio relative to that seen for th@,0) and

While the dipole excitations provide the bulk of the rela- Goldhaber-Teller densities. In all cases, the quantten
tivistic heavy-ion-induced electromagnetic cross sectionCross section is reduced dramatically from the semiclassical
quadrupole transitions have been estimd@do contribute result for all but the lowest projectile energies, it is enhanced
significantly to the semiclassical cross section at moderatdt very smally, and returns to the semiclassical resultyas
projectile energies. To investigate the sensitivity of B2 becomes large.
contribution to target structure effects, we once again com- NO other multipoles contribute measurably to the cross
pare the predictions of the Goldhaber-Teller and shell modsection at relatlv_lsnc energies. Our studies of the sensitivity
els. For theE2 transition densities, it proves useful to clas- Of the cross section to the shape of the form factor show that

sify the densities as representations of the(Blscillator ~ Only the leading-ordefq| dependence and relative normal-
symmetry group, and these are listed in Table II. As in thedzation of the transyerse and Coulomb trar_wsi_tion densities are
case of the dipole transitions, the @Yclassification scheme Necessary to provide an adequate description of the heavy-
separates the quadrupole form factors into unretarded arl@n-induced electromagnetic cross section.
retarded linear combinations of the single-particle transi-
tions. There are two S@3) form factors that contribute to the
E2 photon strength in the long-wavelength approximation.
The first of these transforms as.,w)=(1,1) and corre-
sponds to transitions within the same major shell, and the In this section, we combine the results of the previous
second transforms aa (u)=(2,0) and corresponds to tran- sections to parametrize the projectile and target transition
sitions across two major shells. Tti2,0) transition is the densities that incorporate the nuclear structure details neces-
shell-model equivalent of the giant quadrupole resonance. Asary to describe adequately the cross section. Our goal is to
can be seen from Table I, all other &) quadrupole tran- rewrite the cross section in a form that allows us to extract an
sitions are of higher order in the long-wavelength limit. “effective photon spectrum” that can be used with real-
In Fig. 5, the ratio of the quantum to semiclassical crosgphoton cross section data. This will provide an essentially
sections is shown for a 20 MeE2 excitation of a mass 41 model-independent prediction for the electromagnetic cross
target by 1°7Au, using the(2,0) and (2,2 shell-model form  sections in peripheral heavy-ion reactions that incorporates

IV. SIMPLE MODEL FOR TRANSITION DENSITIES AND
CROSS SECTIONS
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TABLE Il. Shell-model form factors for quadrupole transitions in the($ltlassification scheme.

Quadrupole form factordJ=2"(AL=2AS=0)

Q1—Qy (N ) [ Coul £ T/ Coul
Aﬁw0=0
p—p 1D ~JEyey %?
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sd—sd (0] VEy(1-2y)e 30T
ZCq
(2,2k=0 _ /%%yze—y gﬁ—i- 7\@(»0
‘cq cq
(2.2xc=2 Vasy'e 301512 0o
’cq 3 cq
pf=pf @D —\By(1-ty+ &y?e Y 3o
cq
(2,2x=0 —ViyA(1- 2y)e Y \/gﬁ+ 76w,
cq cq
(2,2 k=2 @yZ(l_E y) eV 30T ﬂﬂ
513 7 Zcq 3 cq
(313) L 3e_y §ﬁ
21\/1_5y 2cq
AﬁwOZZ
sas 20 e o
2cq
pf=p 20 Viy(a-2ye e
(3. A ey gor_ 518 wo
577 ’cq 3 cq

the corrections for the kinematic and finite-size effects deimechanical Coulomb excitation cross sections in terms of the

scribed in the preceding sections. real photoexcitation cross section using the following long-
For the projectile, we have seen that the heavy-ionwavelength approximation for the transition form factors of

induced electromagnetic cross section is sensitive only to theultipolarity /:

rms charge radius, and so we approximate the projectile form

factor as ||:T(q)|2:wT07(wT) (q_Z)/—l
q°R2 4 map(wr) w% '
Fp(q?) =1+ —— +0(q), (6)
IFC(q)|2=M a q—z)/ @)
with Rp the rms charge radius of the projectile. 4 map(wy) /+1 w-|2-

For the target, we restrict our attention to the “unre-
tardt_ad transitions, which domlnqte_ the real—phof[on Cros%ereoy(wT) is the cross section for exciting the target with
sections in the long-wavelength limit. In the previous sec-

. . : a real photon of energy+.
tion, we saw that the form of the heavy-ion cross section was Inserting these expressions into &2). allows the integra-

largely determined_ _by two factors: the leading-order depenfions over the momentum of the virtual photon to be per-
dence of the transition f"”‘? fa_ctors on the momentum ranse) med explicitly. Since the transition densities are propor-
fer and the relative normalization of the Coulomt_)_and tranfs'tional to o, (wy), the cross section takes the form

verse form factors. For unretarded transitions, this v

normalization is determined by Siegert's theordid],

which builds in the constraints of angular momentum and _ |4 8
current conservation. We can express the quantum- on= | doto(oT)ng (o1), 8
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V. COMPARISON WITH DATA

— Goldhaber-Teller Model In Ref.[10], a crude estimate of the heavy-ion-induced
Shell Model (20)

of the E1L/E2 strength was concentrated in a discrete state at
the peak of the giant resonance energy. While this led to a
I cross section that was significantly lower than that obtained
1 with the corresponding semiclassical calculation, the results
i were still larger than the data. When the finite width of the
giant resonance is taken into account, the semiclassical pre-
________________ diction for the heavy-ion cross section is reduced. A similar
//_,.% reduction was expected in the fully guantum-mechanical
T cross section in Ref10], but a quantitative comparison with
data could not be performed without resorting to unjustified
assumptions concerning the effects of nuclear structure. The
1 10 central result of the present work is that with a few simpli-
fying assumptions it is now feasible to calculate the heavy-

' . ~ion-induced cross section in exactly the same manner as one
FIG. 5. Ratio of the full quantum result to the semiclassical does semiclassically.

approximation for the cross section of a 20 MeV quadrupole exci- \ve focus our attention on the data of Héft al. [18] for

proxime g 0 " _ _ _ _
tation in */Ca by a**’Au ion. The transition form factors for  gingle-neutron removal, leaving a consideration of all the

4 . .
'Ca are described by either the Goldhaber-Teller model or byjaia for 4 later effort. The advantage of this particular data
shell-model quadrupole densities transforming as (2,0) or (2,2) repz

; > Set is that the cross section for each target is studied with
resentat'on.s.(’f S@). The GOIdhaper'Te"ertrans't'on a’.‘?’ 20 __several projectiles, simplifying the search for systematic ef-
SU(3) transition both represent giant quadrupole transitions and in . - -

. . L fects. The total single-neutron-removal cross section, includ-
volve the same leadinfy| dependence in the transition form fac- ina a component produced by strona interactions in arazin
tors. The(2,2) SU(3) transition corresponds to a retarded transition %I' : P P df y h 9 ectile-t t 9 bi 9
that does not contribute in leading order in the Iong-wavelengthc.0 |S|0ns,dwas measure h Orleac projec |.e- arge CO”.‘ '”"’.“
limit. As in the case of the dipole transitions, the quadrupole cros§'on' In order tp extract the e eCtromagn(,at'C Cr0$S sectlon, it
sections are found to be sensitive only to the leading term in thdS Necessary first to subtract the strong interaction contribu-
form factors and to the relative normalization of the transverse andion- For light projectiles, the extracted electromagnetic cross
Coulomb form factors. section is sensitive to the method used in estimating the

strong contribution. Tables Il and IV list the data sets for the
- lectromagnetic contribution to the single-neutron-removal
where the effective photon spectrumg, (w7), plays the € : P 59, .
same role as the virtual photon spectrum in the classical caff0SS section for*’Au and *°Co targets. The cross sections
culation. EorE1 transitions we find accounting for the strong interaction contribution obtained
from the limiting fragmentation scheme of RdgR0] and
) 5 from the Glauber estimate of RéfL2] are listed in columns
L L[ eRel®| B 4 and 5 of the tables, respectively.
v 2 Also shown in Tables Il and IV are theoretical predic-
tions for the cross sections obtained with the semiclassical-

1

|

‘ . . .

i —-— Shell Model (22) electromagnetic cross section was made by assuming that all
|
i
i

Quantum/Semiclassical

272
pa [In(A'By) 1

Ng1(w)= WwTBZ

wT

n “’_$_ LRIZD ] ) equivalent photon flux and with the effective photon fluxes
2y°A° 6 |’ derived in the last section. The cross section is given by
®max
WhereAZZQrznax"‘(wT/?’ﬁ)z- Ulef dot[ngi(w7) o (w7) +Nea(wr) oy (wr)],
For E2 transitions the improved effective photon spec- @thresh 1
trum is given by

where wyesh IS the threshold for single-neutron removal
27%a ABy 1{ w7Rp)? from the targe{8 (11) MeV for Au (C0)], wmaxiS an upper
Nea(wr) = — 72 In B2+ 3l limit for the integration, taken to be 50 MeYig, are photon
T fluxes, andof, are the cross sections for single-neutron re-
B2 wZ 2 A2 w?R% 3 w3R3 moval by a real photon of the indicated multipolarity.
S toozts z| 1 o= To separate thE1 andE2 contributions to the total pho-
2 2vy°A° 3ot 6 4 vy .
toneutron cross section, we assumed thatBERecross sec-

T

[(A?+ w2 B%)?— (01! B)*IRS tion is dominated by the isoscalar giant quadrupole reso-
— 02 ) (10 nance and is described 9]
2
()= <M (12
To test our approximations we have recalculated the T2l @)™ 1+ (0~ wgqR) / 0’T?’

cross-section ratios appearing in Figs. 2—5 and found that the
simplified expressions appearing above reproduce the resultghere ogysg=0.22ZA?3(7T'/2) ub MeV ™, wgar is the
of the full calculation. energy of the giant quadrupole resonarités the resonance
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TABLE Ill. Comparison of the single-neutron-removal cross section calculated semiclassically with the
fully qguantum-mechanical photon spectrum derived in the text with dat®®w targets.

oy (mb)

Projectile (energy/nucleon Classical Quantum Exptlim. frag.) Expt. (Glaubej
2C (2.1 GeV 48 40 75+14 51+7
2Ne (1.7 GeV) 117 96 15113 10713
2Ne (2.1 GeV) 125 105 15318 13311
“OAr (1.9 GeV 352 288 34834 315+30
56Fe (1.9 GeV) 684 553 60154 552+52
88K (1.0 GeV) 1001 762 826:62 793+62

1394 (1.26 GeV 2472 1886 1976130 1952-130
197Au (1.0 GeV) 3967 2912 3077200 3066-200
20%Bj (1.0 GeV/nucleon 4211 3154 3244205 3233205
233 (0.96 GeV/nucleon 5024 3630 3166230 3248-210

width, and f is the fractional saturation of the energy- targets and in Table IV for the Co target. The quantum cal-

weighted sum rule. Values for these parameters were takezulation provides a significantly improved description of the

from Ref.[9]. data, particularly if the Glauber picture is used to estimate
For convenience, the total cross sectiong (+ a,) for  the strong interaction contribution to the cross section.

single-neutron removal were not taken directly from data,

but were calculated from t_he parametrizations of Berman VI. SUMMARY

[19]. These parametrized fits overestimate the total photo-

neutron cross sections, which in turn leads to an overestimate We have examined the sensitivity of heavy-ion-induced

of the calculated heavy-ion cross sections. The size of thislectromagnetic cross sections to the structure of the target

effect can be estimated by comparing the semiclassical prexnd projectile nuclei. For typical transitions, we have shown

dictions obtained using the parametrized fits with those ofhat the cross section is only mildly dependent on the projec-

Ref. [9], where the photoneutron data were used directlytile charge radius and more sensitive to the leadijgde-

This indicates use of the parametrized fits leads to heavy-iopendence and the relative normalization of the target’'s Cou-

cross sections that are larger by about 5% for Au and byomb and transverse form factors.

about 10% for Co. Using these results, we extracted a new equivalent-photon
The predictions for the Coulomb-excitation cross sectionspectra forE1 and E2 transitions, based on the fully

using both the semiclassical and quantum expressions for thlgiantum-mechanical cross section derived in IREJ]. The

equivalent-photon fluxes, are listed in Table Ill for the Au new spectra may be used in the same fashion as their semi-

TABLE IV. Comparison of the single-neutron-removal cross section calculated semiclassically with the
fully quantum-mechanical photon spectrum derived in the text with dat®@a targets.

oy (mb)

Projectile (energy/nucleon Classical Quantum Exptlim. frag.) Expt. (Glaubey
2Cc (2.1 GeV 9 8 6+9 —5+5
2ONe (2.1 GeV) 23 20 32:11 30+7
S6Fe (1.9 GeV) 122 98 88-14 72+9

139 3 (1.26 GeV 413 304 30240 304+40
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classical counterparts to obtain model-independent prediq—JfoH[a(TQ 0)’5(0Q )]()\M)K(ALAS)AJAT||JiTi>
tions for electromagnetic processes in relativistic heavy-ion ! 2

collisions. Moreover, the new spectra provide an explanation o

for some anomalously small measured cross sections in :;; (—)9%((Q10)71(0Q2) /Il (A ) kL)
terms of single-photon exchange and leave little room for vz

more exotic multiphoton mechanisms required to explain SR T
these cross sections in a semiclassical anal€i21]. _ ATl
ijj R N P <f||(aj1aj2) [[i),
112
AL AS AJ
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this work. Tables | and Il list the resulting S8) form factors for
dipole and quadrupole transitions that do not involve a spin
flip, i.e., AS=0. For the dipole form factors we consider
dipole transitions across oné\fwy=1) and across three

In this appendix we discuss the shell-model transition(A% wo=3) oscillator shells, and in the case of the quadru-
form factors and their classification under the(Slscheme.  Pole form factors we consider in-shelAfwy=0) transi-
We also discuss the use of the continuity equation for thdions and transitions across two shell$#(w,=2). As can

relative normalizations of the Coulomb and transverse fornPe seen from the tables, the @classification corresponds
factors. to a separation of the shell-model densities into an unre-

The Coulomb and the electric transverse form factors fotarded transition and into a set of transitions that are retarded
a transition of multipolarityJ are defined in terms of the to various orders irg®. The unretarded dipole form factor

nuclear charge and current transition densities as transforms asX, ) =(1,0), and contains all the dipole pho-
ton strength in the long-wavelength approximation. For the

guadrupole transitions there are two unretarded form factors
c A7 2J;+1 (= ) ) corresponding tAAZwy=0 and Afiwy=2 transitions, and
Fi(@=1\~z mfo pa()islanradr, (A1) these transform ad,1) and(2,0) under SU3), respectively.
' In determining the relative normalizations of the Coulomb
and transverse form factors it is important to ensure that the

APPENDIX

" continuity equation is satisfied. The continuity equation re-
47 J+1 _ - -
FJE(q)z — —f pufl(r)JJfl(qr)err lates the transition current densitieg;_; andp; ;. to the
27 2J+1Jo transition charge density; by
+\/47T ) Jm ' 2dr. (A2 [ J *
72 2341 OPJ,J+1(r)JJ+1(qr)r r. (A2 qf p33-1()js_1(qryradr
2J+17 ) 7
The transition charge and current densities are defined in =ﬂfxpj(r)jJ(qr)r2dr
terms of the reduced matrix elements of the charge and cur- CJo
rent operators as
J+1 (= ] )
+ 23119 o p3,3+1(Njar1(gr)r=dr.
=1{J Y5(1)|]3;)dr, A3 _ :
po(r) f< ille YOI dr (A3 Thus, the transverse electric form factor can be expressed in
terms of the Coulomb form factor and the current densities
Py i+1 88
poo (0= [ IIOVsn DIyl (a0
FE( 2): E J+1FC
J q Cq J J
Donnelly and Haxtor{17] have derived expressions for 5311 (=
the single-particle matrix elements of the electromagnetic +1/ 3 fo pJ,Hl(r)jHl(qr)rzdr. (A5)

operators that can be used with one-body density-matrix el-
ement§ OBDME's) defined injj coupling. The form factors
appropriate to S(B) coupling are linear combinations of Alternatively, one could eliminate the current density
these. They can be obtained by expanding the(38U p;;+4(r), and expres§ 5 in terms of F§ andpy ;- 4(r).
OBDME's in terms of thejj OBDME's. For this, we write For the (\,u)=(1,0 dipole and(1,1) and(2,2) quadru-
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pole transitions the integral involving the transition currentfrequencyw,, the integralfng’Hlelrzdr is proportional

p3.3+1 is identically zero. Thus, the relative normalizations to (wq/cq) f‘szjjjrzdr, and the constants of proportionality
of the Coulomb and electric transverse form factors are there given in Tables | and Il. Note that E@.7) implies that

same as for the Goldhaber-Teller transitids). (5)]. For

only one of two distinct combinations of current terms can

the retarded transitions the situation is more complicatedpe written in terms of the charge dendiB4]. The remaining
and the relation betweeR! and F¢ generally depends on term is determined by different physics, and in our model
(\,w). For harmonic-oscillator wave functions of oscillator this term is distinguished by, rather thanw- .
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