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Quantum-mechanical equivalent-photon spectrum for heavy-ion physics

C. J. Benesh,1,2,3 A. C. Hayes,4 and J. L. Friar1
1Los Alamos National Laboratory, Los Alamos, New Mexico 87545

2Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614
3International Institute for Theoretical and Applied Physics, Ames, Iowa 50011

4AECL, Chalk River Laboratories, Chalk River, Ontario, Canada K0J 1J0
~Received 15 April 1996!

In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excit
during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the deta
structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find
cross section to be weakly dependent on the projectile charge radius and to be sensitive to only the le
momentum-transfer dependence of the target transition form factors. We exploit these facts to deri
quantum-mechanical ‘‘equivalent-photon spectrum’’ valid in the long-wavelength limit. This improved sp
trum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinema
and the response of the target nucleus to the off-shell photon.@S0556-2813~96!04508-6#

PACS number~s!: 25.75.2q, 21.60.2n, 24.30.Cz, 25.20.2x
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I. INTRODUCTION

In the previous decade, relativistic heavy-ion beams h
become a useful tool for the study of electromagnetic p
cesses in nuclei. Applications have included studies
nuclear astrophysics@1#, nuclei far from stability@2#, and
searches for multiphonon excitations in nuclei@3#. In these
experiments, cross sections that are difficult to measure
other means are amplified by the projectile charge and, in
case of relativistic projectiles, by the contraction of the p
jectile’s electric field into a sharp pulse.

Almost exclusively, the data from these experiments ha
been analyzed using the semiclassical Weizsa¨cker-Williams
method of virtual quanta@4#, in which the cross section fo
the heavy-ion-induced reaction is calculated by integrat
the cross section for the analogous real-photon process
a flux of photons that is ‘‘equivalent’’ to those that make u
the electric field of the projectile. In its simplest form, th
pulse of equivalent photons is obtained from the boos
Coulomb field of the projectile by equating the classic
Poynting flux onto the target to the energy flux carried by t
pulse of equivalent photons. The semiclassical spectrum
been generalized to include arbitrary multipoles@5#, projec-
tile structure @6#, and Coulomb scattering effects@7#. At-
tempts to move beyond the semiclassical picture of th
processes have been thwarted by a lack of information ab
the structure of the target nucleus@8#. Furthermore, there ha
been little motivation for improvement because the semicl
sical spectrum, when used in conjunction with data fro
real-photon processes, provides model-independent re
for cross sections measured in heavy-ion collisions@9#.

Recently, we have undertaken a program to systematic
examine corrections to the semiclassical picture@10,11#, and
have found significant deviations from the predictions of t
Weizsäcker-Williams method for the mildly relativistic col-
lisions ~g,223! that constitute a significant fraction of th
available data. The aim of the present work is to expand
the results of Ref.@10#, examining the sensitivity of the cros
section to nuclear structure inputs. Having determined wh
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inputs are essential to extracting the correct physical cro
sections, we construct a simple model that incorporates the
features and is valid in the limit of low transition energies
This allows us to obtain a new, fully quantum-mechanica
expression for an ‘‘equivalent-photon spectrum’’ that can b
used with measured photoabsorption cross sections in e
actly the same fashion as the semiclassical expression.

The paper is structured as follows: In the next section, w
briefly review the results of Ref.@10#, emphasizing the inter-
play between the different length scales that determine t
cross sections measured in heavy-ion collisions. Section
is devoted to a comparison of the exact numerical results f
the cross sections using an assortment of parametrizations
the projectile form factors and target transition densities. I
Sec. IV, we use the results from these comparisons to co
struct a simple model for the form factors and transition den
sities that incorporates the important physical parameters
the projectile and target. This allows us to extract a ne
effective photon spectrum that may be used in the same fa
ion as the Weizsa¨cker-Williams spectrum. In the last section,
we compare the predictions obtained using the new spectru
with selected data from heavy-ion collisions.

II. QUANTUM CROSS SECTION
FOR ELECTROMAGNETIC PROCESSES

INDUCED BY HEAVY IONS

We begin with a review of the results of Ref.@10#, where
the cross section for nuclear excitation induced by the ele
tromagnetic fields of a passing heavy ion was derived in th
first Born approximation. The relevant Feynman diagram
shown in Fig. 1. Avirtual photon of momentumqm is ex-
changed between the target and projectile nuclei, produci
an excitation in the target of energyvT . ~As a matter of
convention, the nucleus that gets excited is considered to
the target.! The cross section for simultaneously exciting
both nuclei has been shown to be small@11# at this level of
approximation in the fine structure constant. The lack of pro
jectile excitation and the large masses of the nuclei combi
1404 © 1996 The American Physical Society
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54 1405QUANTUM-MECHANICAL EQUIVALENT-PHOTON . . .
to determine both the energy transfer and the componen
the momentum transfer along the direction of the projec
momentum. These are given, in the target rest frame, by

q05vT ,

qi5vT /b, ~1!

whereb is the projectile velocity. Our metric is such tha
q2[q0

22q2 .
In Ref. @10#, the heavy ion cross sectionsHI was written

in the compact form

sHI5
2~ZPa!2

b2 EdvTr~vT!E
vT /b

A~vT /b!21qmax
2

uquduquuFP~q2!u2

3F 1g2

uFT~q!u2

~vT
22q2!q2

2
uFT~q!u2

~vT
22q2!2

1
2uFC~q!u2

q4 G , ~2!

where ZP is the projectile’s charge,FP(q
2) is the elastic

form factor of the projectile,FT(q) andFC(q) are the trans-
verse and Coulomb form factors of the target,qmax is a phe-
nomenological cutoff on the transverse momentum trans
required to account for strong absorption effects,r(vT) is
the density of states in the target with excitation ener
vT , andg5(12b2)21/2.

From this expression, it is easy to see how the semic
sical limit is realized. Asg becomes large, the lower limit o
the q integration approachesvT . When this happens, the
behavior of the integral is dominated by the rapid variati
of the poles atq250 in the photon propagators. The nucle
densities and form factors vary much more slowly withq2

and are effectively frozen at their values forq250. The third
term in Eq.~2!, which has no pole atq250, is small com-
pared to the first two, which grow logarithmically withg.
Thus, the cross section factorizes neatly into a product of
same matrix elements that appear in the excitation cross
tion for real photons times an ‘‘equivalent photon number
The latter is a function only of thevT , qmax, andg.

Outside of the large-g limit, there is no simple factoriza-
tion of the quantum cross section, Eq.~2!, so that there is no
possibility for reconciliation with the semiclassical expre

FIG. 1. Feynman diagram for electromagnetic excitation in
peripheral heavy-ion collision.
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sion without further approximations. The differences b
tween the semiclassical approximation and the full result a
even more striking when the transverse momentum cut
qmax is removed tò . In this limit, the semiclassical cross
section diverges logarithmically, while the full expressio
for the cross section remains finite. There are three additio
regulating factors in the full cross section, which tend
lower the cross section even whenqmax is finite. The first
factor arises because of the finite size of the projectile. T
magnitude of the three-momentum transfer in the projectile
rest frame is given byA2q2>vT /gb, and the degree to
which the protons in the projectile act coherently on the ta
get is reduced at largeq. This produces a cutoff governed by
the size of projectile,RP . The falloff of the target’s excited
state wave function at high momentum produces a cor
sponding second regulator governed by the target size,RT .
In the absence of both these effects, the cross section wo
still remain finite as a result of theq24 dependence of the
integrals appearing in Eq.~2!. This third factor effectively
cuts off the integrals at momentum scales of the order
vT . If, in order to agree with semiclassical estimates, o
choosesqmax'1/(RT1RP), the situation becomes compli-
cated, as all the cutoffs are of comparable size. Without fu
ther study, it is impossible to determine which of these fa
tors are most important in relation to the measured cro
section.

III. EFFECTS OF NUCLEAR STRUCTURE

In this section, we examine the effects of the detaile
form factors ~or transition densities! on the cross sections
calculated with Eq.~2!. These effects are naturally divided
into projectile and target structures, and we begin with t
former.

A. Projectile structure

In the semiclassical description, the projectile is assum
to be a point charge, and only the long-range Coulomb fie
of the projectile generates the photon flux. From Eq.~2!, it is
apparent that the extended nature of the projectile enters
cross section through its elastic form factorFP(q

2), which
accounts for the incoherence of the electromagnetic fie
produced by spatially separate regions of the projectile. T
size of this effect, which tends to decrease the heavy-
cross section, is governed by (vTRP /bg)2, whereRP is the
charge radius of the projectile. For light-target–heav
projectile combinations, there is no guarantee that this
small unlessg is large.

In Fig. 2, we demonstrate the effect of the finite size
the projectile on the calculated cross section. The ratio of
quantum to classical cross sections for a 20 MeV dipole e
citation of a mass 41 target by a197Au projectile, as a func-
tion of projectile energy, is shown. Here and in all the ca
culations to follow, we chooseqmax51/bmin , where

bmin5~1.34 fm!@AP
1/31AT

1/320.75~AP
21/31AT

21/3!# ~3!

is a commonly used minimum-impact-parameter cutoff
semiclassical calculations@3,12#. The four curves represen
the results of assuming either a point projectile~dot-dashed

a
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1406 54C. J. BENESH, A. C. HAYES, AND J. L. FRIAR
curve! or a projectile with mean-square charge radius
^r 2&ch

1/25 5.4 fm and form factor parametrized by

FP~q2!5
3 j 1~x!

x
~Bessel!

5exp~2x2! ~Gaussian!

5
1

11x2
~monopole!, ~4!

with x5A2q2r 2/6 andr the root-mean-square charge radi
of the projectile. For each curve we have assumed that ta
transition densities are given by the Goldhaber-Teller mo
@13#.

For low-energy projectiles~'50 MeV/nucleon!, the cal-
culated cross section is sensitive to the finite size of the p
jectile and is smaller by a factor of 2–3 than the poin
projectile result. For relativistic projectiles, the reduction
cross section is less dramatic, being about 7% atg52 and
decreasing as the projectile energy increases. Once
charge radius is fixed, however, the resulting cross sectio
insensitive to further details of the form factor, except at t
lowest projectile energies, where a variation'20% remains.
We conclude that the effect of projectile size is no
negligible for many nuclear transitions, particularly when t
projectile energy is low. We note, however, that the effec

FIG. 2. The dependence of the Coulomb-excitation cross sec
on the finite size of the projectile. The figure shows the ratio of
full quantum result to the standard semiclassical approximation
the cross section for a 20 MeV dipole excitation of41Ca by a
197Au ion. Results are shown for a point projectile~dot-dashed
curve! and for three different forms forFP(q

2) with the same
charge radius. For low projectile energies the predictions of
usual semiclassical approximation deviate significantly from
full quantum results even for pointlike projectiles. When the fin
size of the projectile is included, the cross sections show sensiti
to the charge radius of the projectile, but not to the detailed form
the projectile charge distribution. For low-energy projectiles~'50
MeV/nucleon! the cross section is reduced by a factor of 2–3 re
tive to the point-projectile result. Atg52 the calculated cross sec
tion is reduced by 7% relative to the point-projectile results, and
relative reduction decreases as the projectile energy increases
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smaller for lower-energy transitions, since the minimumq2

of the virtual photon varies asvT
2 .

B. Target structure effects

We now turn to the issue of target structure. In the cl
sical prescription, the target is assumed to respond to
electromagnetic field of the passing projectile in exactly
same fashion as it would to a real photon. Hence, for
majority of the transitions of interest, the long-waveleng
approximation should be valid. In the quantum case, this
not guaranteed, since the momentum transfer is boun
from below byvT /b.vT , so that higher moments of th
transition density may play a larger role than they do
processes mediated by real photons. To calculate the q
tum cross sections we used transition form factors ta
from two models. The first of these represents a general
collective model for nuclear giant resonances@13#, which is
motivated by the Goldhaber-Teller~GT! model for the giant
dipole resonance. The second set of transitions is compo
of the shell-model form factors classified@14# by their SU~3!
symmetries.

In the generalized GT model, the transition densities
taken to be the gradient of a spherically symmetric grou
state density. These collective transition densities are t
correct to leading order in the long-wavelength limit, and t
form factors for a given multipolel are given by

uF l
C~ uqu!u25l Cl j l

2 ~ uquRT!,

uF l
T~ uqu!u25

~ l 11!

l

vT
2

q2
uF l

C~ uqu!u2. ~5!

Here RT is the target charge radius andCl is a constant
chosen so as to saturate the appropriate photonuclear
rule for multipolel @10#.

In the shell model, appropriate linear combinations of t
single-particle transitions can provide descriptions of eit
giant resonance states or noncollective states. By exami
each of these we can explore the sensitivity of the cr
section to a wide range of transitions, including the so-cal
‘‘retarded’’ transitions.~The retarded transitions are thos
that do not contribute to the real-photon cross section in
leading order of the long-wavelength approximation.! The
separation into unretarded and retarded transitions can
achieved by classifying the shell-model form factors by th
transformation properties under the SU~3! symmetry @14–
16# of the three-dimensional harmonic oscillator. This cla
sification scheme has the advantage of allowing us to id
tify easily those form factors that dominate the cross sec
in the long-wavelength limit.

Table I lists the expressions for the dipole Coulomb a
transverse electric form factors classified under SU~3!. As
discussed in the Appendix, these are linear combination
the usual j j -coupled transitions. Following Donnelly an
Haxton @17#, the form factors are expressed in terms of
polynomial iny, wherey[(bq/2)2 andb is the shell-model
oscillator size parameter. For a dipole transition betwe
oscillator orbits with Q1 and Q2 quanta there are
(Q11Q211)/2 distinct form factors, and these are label
with SU~3! quantum numbers (l,m)
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TABLE I. Shell-model form factors for dipole transitions in the SU~3! classification scheme. The form
factors are expressed in terms of the variabley5(bq/2!2, whereb is the oscillator parameter.\vT is the
transition energy and\v0 is the oscillator energy~i.e.,b5A\/mv0). These form factors correspond to linear
combinations of the usualj j -coupled transition form factors. As can be seen from the tables the SU~3!
classification separates the transitions into an unretarded transition transforming as (l,m)5~1,0! and into a
set of transitions that are retarded to various orders inq2.

Dipole form factorsDJ512(DL51DS50)
Q1→Q2 (l,m) FCoul FT/FCoul

D\v051
p→s ~1,0! A 2

3y
1/2e2y A2vT

cq

sd→p ~1,0! A 8
3y

1/2(12
1
2y)e

2y
A2vT

cq

~2,1! 2A 2
15y

3/2e2y
A2vT

cq
2
4A2v0

cq

p f→sd ~1,0! A 20
3 y

1/2(12y1
1
5y

2)e2y
A2vT

cq

~2,1! 2A 4
5y

3/2(12
1
3y)e

2y
A2vT

cq
2
4A2v0

cq

~3,2! 2
2A2
3A35

y5/2e2y
A2vT

cq
1
2A2v0

cq

sdg→p f ~1,0! A 40
3 y

1/2(12
3
2y1

3
5y

22
1
15y

3)e2y
A2vT

cq

D\v053

p f→s ~3,0! A 4
135y

3/2e2y
A2vT

cq
2
2A2v0

cq

sdg→p ~3,0! A 8
5y

3/2(12
1
3y)e

2y A2vT

cq
2
2A2v0

cq

~4,1! 2

3A35
y5/2

A2vT

cq
2
8A2v0

cq
o

ss
tion

-

ers
to
5(1,0), . . . ,(Q121,Q221),(Q1 ,Q2). The maximum
power ofy appearing in any form factor is determined on
by the orbitals involved in the transitions and is equal
(Q11Q2)/2. The lowest power ofy is determined by
(l,m) and is equal to (l1m)/2. Thus, the SU~3! scheme
provides the required linear combinations of the shell-mo
form factors, separating them into an unretarded transi
and a set of transitions retarded to various orders inq2. In the
long-wavelength approximation, only the (l,m)5(1,0) form
factor contributes in leading order, and it contains all t
allowedB(E1) strength. The~1,0! form factor is the shell-
model equivalent of the Goldhaber-Teller giant resonan
and can be obtained by differentiating the ground-state d
sity distribution. The (l,m)5(2,1) and higher SU~3! form
factors represent the retarded dipole transitions and do
contribute to real photon processes in the long-wavelen
limit.
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In Figs. 3 and 4, we show the ratio of the quantum t
semiclassical cross sections for a 20 MeVE1 excitation of a
mass 17 and mass 41 targets by197Au, using the Goldhaber-
Teller and the (l,m)5~1,0! and ~2,1! shell-model transition
densities. The Goldhaber-Teller density and the~1,0! shell-
model density yield very similar results. The quantum cro
section is enhanced relative to the semiclassical cross sec
for g near unity, it is suppressed at moderateg, and returns
slowly to the semiclassical result asg becomes large. The
cross-section ratio for the retarded~2,1! SU~3! transition
density is markedly different from that for the~1,0! density,
being larger at lowg, and approaching the semiclassical re
sult from above asg becomes large. At lowg, the additional
enhancement can in part be traced to the additional pow
of uqu5vT /b that appear in the form factors, each leading
an enhancement of the cross section by 1/b relative to the
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semiclassical result. The shapes of the curves in Figs. 3
4 are determined essentially by the leading-orderuqu depen-
dence of the transition form factors and by the relative no
malization of the Coulomb and transverse form factors.

While the dipole excitations provide the bulk of the rela
tivistic heavy-ion-induced electromagnetic cross sectio
quadrupole transitions have been estimated@9# to contribute
significantly to the semiclassical cross section at moder
projectile energies. To investigate the sensitivity of theE2
contribution to target structure effects, we once again co
pare the predictions of the Goldhaber-Teller and shell mo
els. For theE2 transition densities, it proves useful to clas
sify the densities as representations of the SU~3! oscillator
symmetry group, and these are listed in Table II. As in th
case of the dipole transitions, the SU~3! classification scheme
separates the quadrupole form factors into unretarded
retarded linear combinations of the single-particle tran
tions. There are two SU~3! form factors that contribute to the
E2 photon strength in the long-wavelength approximatio
The first of these transforms as (l,m)5(1,1) and corre-
sponds to transitions within the same major shell, and t
second transforms as (l,m)5(2,0) and corresponds to tran
sitions across two major shells. The~2,0! transition is the
shell-model equivalent of the giant quadrupole resonance.
can be seen from Table II, all other SU~3! quadrupole tran-
sitions are of higher order in the long-wavelength limit.

In Fig. 5, the ratio of the quantum to semiclassical cro
sections is shown for a 20 MeVE2 excitation of a mass 41
target by 197Au, using the~2,0! and ~2,2! shell-model form

FIG. 3. Ratio of the full quantum result to the standard sem
classical approximation for the cross section of a 20 MeV dipo
excitation in 17O by a 197Au ion. The transition form factors for
17O are described by either the Goldhaber-Teller model or by she
model densities transforming as (1,0) or (2,1) representations
SU~3!. The Goldhaber-Teller and the (l,m)5~1,0! transition form
factors have the same leading-order dependence inuqu and their
calculated cross sections are very similar. The~2,1! transition form
factor does not contribute in leading order in the long-waveleng
approximation and shows a markedly different cross-section ra
In all cases, the cross sections are found to be sensitive to only
leading-orderuqu dependence of the transition form factors and
the relative normalization of the transverse and Coulomb form fa
tors.
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factors, and the quadrupole transition density from th
Goldhaber-Teller model. Qualitatively, the results are ve
similar to what was seen for the dipole cross section. Th
Goldhaber-Teller and~2,0! transition densities, which have
the same behavior in the long-wavelength limit, yield ver
similar results for the electromagnetic cross section. The r
tarded~2,2! transition, whose form factors grow more rap
idly at small uqu, shows a more enhanced quantum to sem
classical ratio relative to that seen for the~2,0! and
Goldhaber-Teller densities. In all cases, the quantumE2
cross section is reduced dramatically from the semiclassi
result for all but the lowest projectile energies, it is enhance
at very smallg, and returns to the semiclassical result asg
becomes large.

No other multipoles contribute measurably to the cros
section at relativistic energies. Our studies of the sensitivi
of the cross section to the shape of the form factor show th
only the leading-orderuqu dependence and relative normal
ization of the transverse and Coulomb transition densities a
necessary to provide an adequate description of the hea
ion-induced electromagnetic cross section.

IV. SIMPLE MODEL FOR TRANSITION DENSITIES AND
CROSS SECTIONS

In this section, we combine the results of the previou
sections to parametrize the projectile and target transiti
densities that incorporate the nuclear structure details nec
sary to describe adequately the cross section. Our goal is
rewrite the cross section in a form that allows us to extract
‘‘effective photon spectrum’’ that can be used with real
photon cross section data. This will provide an essentia
model-independent prediction for the electromagnetic cro
sections in peripheral heavy-ion reactions that incorporat
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FIG. 4. Ratio of the full quantum result to the semiclassica
approximation for the cross section of a 20 MeV dipole excitatio
in 41Ca by a 197Au ion. The transition form factors of41Ca are
described by either the Goldhaber-Teller model or by shell-mod
densities transforming as (1,0) or (2,1) representations of SU~3!.
As is the case of the calculations summarized in Fig. 3, the cro
sections are found to be sensitive to only the leadinguqu dependence
of the transition form factors and to the relative normalization of th
transverse and Coulomb form factors.
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TABLE II. Shell-model form factors for quadrupole transitions in the SU~3! classification scheme.

Quadrupole form factorsDJ521(DL52DS50)
Q1→Q2 (l,m) FCoul FT/FCoul

D\v050

p→p ~1,1! 2A 8
15ye

2y A 3
2

vT

cq

sd→sd ~1,1! A 8
3y(12

2
5y)e

2y A 3
2

vT

cq

~2,2!k50 2A 8
1365y

2e2y A 3
2

vT

cq
1
7A6v0

cq

~2,2!k52 A 8
325y

2e2y A 3
2

vT

cq
2
5A2
A3

v0

cq

p f→p f ~1,1! 2A8y(12
4
5y1

2
15y

2)e2y A 3
2

vT

cq

~2,2!k50 2A 8
195y

2(12
2
7y)e

2y A 3
2

vT

cq
1
7A6v0

cq

~2,2!k52
2A14
5A13

y2S 12
2

7
yDe2y A 3

2

vT

cq
2
5A2
A3

v0

cq

~3,3! 8

21A15
y3e2y A 3

2

vT

cq

D\v052
sd→s ~2,0! A 4

15ye
2y A 3

2

vT

cq

p f→p ~2,0! A 4
3y(12

2
5y)e

2y A 3
2

vT

cq

~3,1! 2
4

5A7
y2e2y A 3

2

vT

cq
2
5A6
3

v0

cq
the
g-
f

h

r-
r-
the corrections for the kinematic and finite-size effects d
scribed in the preceding sections.

For the projectile, we have seen that the heavy-io
induced electromagnetic cross section is sensitive only to
rms charge radius, and so we approximate the projectile fo
factor as

FP~q2!511
q2RP

2

6
1O~q4!, ~6!

with RP the rms charge radius of the projectile.
For the target, we restrict our attention to the ‘‘unre

tarded’’ transitions, which dominate the real-photon cros
sections in the long-wavelength limit. In the previous se
tion, we saw that the form of the heavy-ion cross section w
largely determined by two factors: the leading-order depe
dence of the transition form factors on the momentum tran
fer and the relative normalization of the Coulomb and tran
verse form factors. For unretarded transitions, th
normalization is determined by Siegert’s theorem@24#,
which builds in the constraints of angular momentum an
current conservation. We can express the quantu
e-

n-
the
rm

-
s
c-
as
n-
s-
s-
is

d
m-

mechanical Coulomb excitation cross sections in terms of
real photoexcitation cross section using the following lon
wavelength approximation for the transition form factors o
multipolarity l :

uF l
T~q!u25

vTsg~vT!

par~vT! S q2vT
2D l 21

,

uF l
C~q!u25

vTsg~vT!

par~vT!

l

l 11 S q2vT
2D l . ~7!

Heresg(vT) is the cross section for exciting the target wit
a real photon of energyvT .

Inserting these expressions into Eq.~2! allows the integra-
tions over the momentum of the virtual photon to be pe
formed explicitly. Since the transition densities are propo
tional tosg(vT), the cross section takes the form

sHI5E dvTsg~vT!nEl ~vT!, ~8!
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where the effective photon spectrum,nEl (vT), plays the
same role as the virtual photon spectrum in the classical
culation. ForE1 transitions we find

nE1~vT!5
2ZP

2a

pvTb
2 H lnS Lbg

vT
D F11

1

3 S vTRP

g D 2G2
b2

2

1
vT
2

2g2L2 2
L2RP

2

6 J , ~9!

whereL25qmax
2 1(vT /gb)2.

For E2 transitions the improved effective photon spe
trum is given by

nE2~vT!5
2ZP

2a

pvTb
2 H lnS Lbg

vT
D Fb21

1

3 S vTRP

g D 2G
2

b2

2
1

vT
2

2g2L21
2

3

L2

vT
2 S 12

vT
2RP

2

6
1
3

4

vT
2RP

2

g2 D
2

@~L21vT
2/b2!22~vT /b!4#RP

2

9vT
2 J . ~10!

To test our approximations we have recalculated
cross-section ratios appearing in Figs. 2–5 and found tha
simplified expressions appearing above reproduce the re
of the full calculation.

FIG. 5. Ratio of the full quantum result to the semiclassi
approximation for the cross section of a 20 MeV quadrupole e
tation in 41Ca by a 197Au ion. The transition form factors fo
41Ca are described by either the Goldhaber-Teller model or
shell-model quadrupole densities transforming as (2,0) or (2,2)
resentations of SU~3!. The Goldhaber-Teller transition and the~2,0!
SU~3! transition both represent giant quadrupole transitions and
volve the same leadinguqu dependence in the transition form fa
tors. The~2,2! SU~3! transition corresponds to a retarded transit
that does not contribute in leading order in the long-wavelen
limit. As in the case of the dipole transitions, the quadrupole cr
sections are found to be sensitive only to the leading term in
form factors and to the relative normalization of the transverse
Coulomb form factors.
cal-

c-

the
the
sults

V. COMPARISON WITH DATA

In Ref. @10#, a crude estimate of the heavy-ion-induc
electromagnetic cross section was made by assuming tha
of theE1/E2 strength was concentrated in a discrete stat
the peak of the giant resonance energy. While this led t
cross section that was significantly lower than that obtain
with the corresponding semiclassical calculation, the res
were still larger than the data. When the finite width of t
giant resonance is taken into account, the semiclassical
diction for the heavy-ion cross section is reduced. A simi
reduction was expected in the fully quantum-mechani
cross section in Ref.@10#, but a quantitative comparison wit
data could not be performed without resorting to unjustifi
assumptions concerning the effects of nuclear structure.
central result of the present work is that with a few simp
fying assumptions it is now feasible to calculate the hea
ion-induced cross section in exactly the same manner as
does semiclassically.

We focus our attention on the data of Hillet al. @18# for
single-neutron removal, leaving a consideration of all t
data for a later effort. The advantage of this particular d
set is that the cross section for each target is studied w
several projectiles, simplifying the search for systematic
fects. The total single-neutron-removal cross section, incl
ing a component produced by strong interactions in graz
collisions, was measured for each projectile-target comb
tion. In order to extract the electromagnetic cross section
is necessary first to subtract the strong interaction contr
tion. For light projectiles, the extracted electromagnetic cr
section is sensitive to the method used in estimating
strong contribution. Tables III and IV list the data sets for t
electromagnetic contribution to the single-neutron-remo
cross section for197Au and 59Co targets. The cross section
accounting for the strong interaction contribution obtain
from the limiting fragmentation scheme of Ref.@20# and
from the Glauber estimate of Ref.@12# are listed in columns
4 and 5 of the tables, respectively.

Also shown in Tables III and IV are theoretical predi
tions for the cross sections obtained with the semiclassi
equivalent photon flux and with the effective photon flux
derived in the last section. The cross section is given by

sHI5E
v thresh

vmax
dvT@nE1~vT!sE1

g ~vT!1nE2~vT!sE2
g ~vT!#,

~11!

where v thresh is the threshold for single-neutron remov
from the target@8 ~11! MeV for Au ~Co!#, vmax is an upper
limit for the integration, taken to be 50 MeV,nEl are photon
fluxes, andsEl

g are the cross sections for single-neutron
moval by a real photon of the indicated multipolarity.

To separate theE1 andE2 contributions to the total pho
toneutron cross section, we assumed that theE2 cross sec-
tion is dominated by the isoscalar giant quadrupole re
nance and is described by@9#

sE2
g ~v!5

sEWSRv
2

11~v22vGQR
2 !2/v2G2 , ~12!

wheresEWSR50.22f ZA2/3/(pG/2) mb MeV21, vGQR is the
energy of the giant quadrupole resonance,G is the resonance
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TABLE III. Comparison of the single-neutron-removal cross section calculated semiclassically wit
fully quantum-mechanical photon spectrum derived in the text with data on197Au targets.

Projectile~energy/nucleon!

sHI ~mb!

Classical Quantum Expt.~lim. frag.! Expt. ~Glauber!

12C ~2.1 GeV! 48 40 75614 5167

20Ne ~1.7 GeV! 117 96 151613 107613

20Ne ~2.1 GeV! 125 105 153618 133611

40Ar ~1.9 GeV! 352 288 348634 315630

56Fe ~1.9 GeV! 684 553 601654 552652

86K ~1.0 GeV! 1001 762 820662 793662

139La ~1.26 GeV! 2472 1886 19706130 19526130

197Au ~1.0 GeV! 3967 2912 30776200 30666200

209Bi ~1.0 GeV/nucleon! 4211 3154 32446205 32336205

238U ~0.96 GeV/nucleon! 5024 3630 31606230 32486210
-

e

et

-

-

n

i-
width, and f is the fractional saturation of the energy
weighted sum rule. Values for these parameters were ta
from Ref. @9#.

For convenience, the total cross sections (sE1
g 1sE2

g ) for
single-neutron removal were not taken directly from da
but were calculated from the parametrizations of Berm
@19#. These parametrized fits overestimate the total pho
neutron cross sections, which in turn leads to an overestim
of the calculated heavy-ion cross sections. The size of t
effect can be estimated by comparing the semiclassical p
dictions obtained using the parametrized fits with those
Ref. @9#, where the photoneutron data were used direct
This indicates use of the parametrized fits leads to heavy-
cross sections that are larger by about 5% for Au and
about 10% for Co.

The predictions for the Coulomb-excitation cross sectio
using both the semiclassical and quantum expressions for
equivalent-photon fluxes, are listed in Table III for the A
-
ken

ta,
an
to-
ate
his
re-
of
ly.
ion
by

n,
the
u

targets and in Table IV for the Co target. The quantum cal
culation provides a significantly improved description of the
data, particularly if the Glauber picture is used to estimat
the strong interaction contribution to the cross section.

VI. SUMMARY

We have examined the sensitivity of heavy-ion-induced
electromagnetic cross sections to the structure of the targ
and projectile nuclei. For typical transitions, we have shown
that the cross section is only mildly dependent on the projec
tile charge radius and more sensitive to the leadinguqu de-
pendence and the relative normalization of the target’s Cou
lomb and transverse form factors.

Using these results, we extracted a new equivalent-photo
spectra forE1 and E2 transitions, based on the fully
quantum-mechanical cross section derived in Ref.@10#. The
new spectra may be used in the same fashion as their sem
the
TABLE IV. Comparison of the single-neutron-removal cross section calculated semiclassically with
fully quantum-mechanical photon spectrum derived in the text with data on59Co targets.

Projectile~energy/nucleon!

sHI ~mb!

Classical Quantum Expt.~lim. frag.! Expt. ~Glauber!

12C ~2.1 GeV! 9 8 669 2565

20Ne ~2.1 GeV! 23 20 32611 3067

56Fe ~1.9 GeV! 122 98 88614 7269

139La ~1.26 GeV! 413 304 302640 304640
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classical counterparts to obtain model-independent pred
tions for electromagnetic processes in relativistic heavy-i
collisions. Moreover, the new spectra provide an explanati
for some anomalously small measured cross sections
terms of single-photon exchange and leave little room f
more exotic multiphoton mechanisms required to expla
these cross sections in a semiclassical analysis@20,21#.
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APPENDIX

In this appendix we discuss the shell-model transitio
form factors and their classification under the SU~3! scheme.
We also discuss the use of the continuity equation for t
relative normalizations of the Coulomb and transverse fo
factors.

The Coulomb and the electric transverse form factors f
a transition of multipolarityJ are defined in terms of the
nuclear charge and current transition densities as

FJ
C~q!5A4p

Z2
2Jf11

2Ji11E0
`

rJ~r ! j J~qr !r
2dr, ~A1!

FJ
E~q!5A4p

Z2
J11

2J11E0
`

rJ,J21~r ! j J21~qr !r
2dr

1A4p

Z2
J

2J11E0
`

rJ,J11~r ! j J11~qr !r
2dr. ~A2!

The transition charge and current densities are defined
terms of the reduced matrix elements of the charge and c
rent operators as

rJ~r !5E ^Jf uur~r !YJ~ r̂ !uuJi&dr̂ , ~A3!

rJ,J8~r !5E ^Jf uuJ„r …–YJJ81~ r̂ !uuJi&dr̂ . ~A4!

Donnelly and Haxton@17# have derived expressions for
the single-particle matrix elements of the electromagne
operators that can be used with one-body density-matrix
ements~OBDME’s! defined inj j coupling. The form factors
appropriate to SU~3! coupling are linear combinations of
these. They can be obtained by expanding the SU~3!
OBDME’s in terms of thej j OBDME’s. For this, we write
ic-
on
on
in
or
in

s-

ant
of
f

n

he
rm

or

in
ur-

tic
el-

^JfTf uu@a~Q10!
† ã~0Q2!#

~lm!k~DLDS!DJDTuuJiTi&

5 (
l 1l 2

~2 !Q2^~Q10!l 1~0Q2!l 2i~lm!kL&

3(
j 1 j 2

S l 1
1
2 j 1

l 2
1
2 j 2

DL DS DJ
D ^ f i~aj 1

1ã j 2!
DJDTi i &,

where the unitary 9-J symbol is that equal to the 9-J symbol
of Brink and Satchler@22# multiplied by ĵ 1 ĵ 2D̂LD̂S with
ĵ5A2 j11. The SU~3!.R~3! Clebsch-Gordon coefficient is
that of Draayer and Akiyama@23#, and the reduced matrix
elements are defined by Brink and Satchler.

Tables I and II list the resulting SU~3! form factors for
dipole and quadrupole transitions that do not involve a sp
flip, i.e., DS50. For the dipole form factors we conside
dipole transitions across one (D\v051) and across three
(D\v053) oscillator shells, and in the case of the quadr
pole form factors we consider in-shell (D\v050) transi-
tions and transitions across two shells (D\v052). As can
be seen from the tables, the SU~3! classification corresponds
to a separation of the shell-model densities into an un
tarded transition and into a set of transitions that are retard
to various orders inq2. The unretarded dipole form factor
transforms as (l,m)5(1,0), and contains all the dipole pho
ton strength in the long-wavelength approximation. For t
quadrupole transitions there are two unretarded form fact
corresponding toD\v050 andD\v052 transitions, and
these transform as~1,1! and~2,0! under SU~3!, respectively.

In determining the relative normalizations of the Coulom
and transverse form factors it is important to ensure that
continuity equation is satisfied. The continuity equation r
lates the transition current densitiesrJ,J21 andrJ,J11 to the
transition charge densityrJ by

A J

2J11
qE

0

`

rJ,J21~r ! j J21~qr !r
2dr

5
vT

c E
0

`

rJ~r ! j J~qr !r
2dr

1A J11

2J11
qE

0

`

rJ,J11~r ! j J11~qr !r
2dr.

Thus, the transverse electric form factor can be expresse
terms of the Coulomb form factor and the current densiti
rJ,J11 as

FJ
E~q2!5

vT

cq
AJ11

J
FJ
C

1A2J11

J E
0

`

rJ,J11~r ! j J11~qr !r
2dr. ~A5!

Alternatively, one could eliminate the current densit
rJ,J11(r ), and expressFJ

E in terms ofFJ
C andrJ,J21(r ).

For the (l,m)5~1,0! dipole and~1,1! and ~2,2! quadru-
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pole transitions the integral involving the transition curre
rJ,J11 is identically zero. Thus, the relative normalization
of the Coulomb and electric transverse form factors are
same as for the Goldhaber-Teller transitions@Eq. ~5!#. For
the retarded transitions the situation is more complicat
and the relation betweenF l

T and F l
C generally depends on

~l,m!. For harmonic-oscillator wave functions of oscillato
nt
s
the

ed,

r

frequencyv0, the integral*0
`rJ,J11 j J11r

2dr is proportional
to (v0/cq) *0

`r j j Jr
2dr, and the constants of proportionali

are given in Tables I and II. Note that Eq.~17! implies that
only one of two distinct combinations of current terms c
be written in terms of the charge density@24#. The remaining
term is determined by different physics, and in our mo
this term is distinguished byv0 rather thanvT .
s
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