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There aretwo types of scalespresent simultaneously in the spacelike as well as in the timelike directions in
a model class describing a cylindrically symmetric, finite, three-dimensionally expanding boson source. One
type of scale is related to the finite lifetime or geometrical size of the system, and the other type is governe
by the rate of change of the local momentum distribution in the considered temporal or spatial direction. The
parameters of the Bose-Einstein correlation function may obey anMt scaling, as observed in S1Pb and Pb1Pb
reactions at CERN SPS. ThisMt scaling may imply that the Bose-Einstein correlation functions view only a
small part of a large and expanding system. The full sizes of the expanding system at the last interaction a
shown to be measurable with the help of the invariant momentum distribution of the emitted particles. A
vanishing duration parameter can also be generated, with a specificMt dependence, in the considered model
class.@S0556-2813~96!01208-3#

PACS number~s!: 12.38.Mh, 25.75.1r, 24.60.2k, 24.85.1p
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I. INTRODUCTION

The method of intensity interferometry has recently b
come a widely used tool for determining the space-time p
ture of high-energy heavy-ion collisions. Originally, th
method was invented@1# to measure angular diameters o
distant stars. The objects under study were approximat
static and the length scales astronomical. In principle, t
same method is applied to measure space-time characteri
of high-energy heavy-ion collisions, where the objects a
expanding systems, with lifetimes of a few fm/c ~10223 sec!
and length scales of a few fm~10215 m!.

In the case of high-energy heavy-ion collisions, intens
interferometry is pursued to infer the equation of state a
identify the possible formation of a transient quark-gluo
plasma state from a determination of the freeze-out hyp
surface, as scanned by the Bose-Einstein correlation func
~BECF!; see, e.g., the contributions of the NA35, NA44, an
WA80 Collaborations in Refs.@2,3#. For an introduction and
review on Bose-Einstein correlations, see Refs.@4,5#. Non-
trivial effects arising from correlations among space-tim
and momentum-space variables were studied in Ref.@6#.

The recent32S1197Pb reactions at 200A GeV laboratory
bombarding energy resulted in a nonexpected, symmetr
BECF-s@3# if measured in the the longitudinally comoving
system~LCMS! of the boson pairs@7#. The longitudinal ra-
dius parameter was shown to measure a length scale,RL

}1/Amt, introduced in Ref.@8# for an infinite, longitudinally
expanding Bjorken tube. Theside radius parameter was
thought to measure the geometrical radius and theout com-
ponent to be sensitive to the duration of the particle freez
out times@7,9#. All radius component parameters turned ou
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to be equal within the experimental errors. Although this
might be just a coincidence, in this work we show thatsuch
a scaling behavior, valid in a certainmt interval,may also be
a natural consequence of a cylindrically symmetric thre
dimensional hydrodynamic expansion.1 In this case the loca
temperature, the gradients of the temperature distribut
and the flow gradients generate ‘‘thermal’’ length scales
all these spacelike directions. Changes in the local temp
ture during the particle emission induce a temporal scale,
thermal duration. Recently, it became clear that the par
eters of the BECF-s measure thelengths of homogeneity
@8,10–12#, which in turn were shown to be expressible
terms of the geometrical and the thermal lengths@13,9,12#.

We shall derive here general relationships among
functional forms of the BECF-s as given in the laboratory
~lab! frame, the LCMS frame, and the longitudinal sadd
point system~LSPS! in which the functional form of the
BECF-s turns out to be the simplest one.

A new class of analytically solvable models is introduc
thereafter, describing a three-dimensionally expanding,
lindrically symmetric system for which the geometrical siz
and the duration of the particle emission are finite. In t
class of the models, there are two length scales present i
directions, including the temporal one. The BECF is found
be dominated by the shorter, while the momentum distri
tion by the longer of these scales. The interplay between
finite ‘‘geometrical scales’’ of the boson-emitting source a
the finite ‘‘thermal scales’’ shall be considered in detail.

.se

1Many earlier works discussed themt dependences of the rad
parameters, but they did not consider the possible equality of
simultaneousmt scaling for the transverse radius parameters.
recommend the paper by U. A. Wiedemann, P. Scotto, and
Heinz, Phys. Rev. C53, 918 ~1996!, for an up-to-date list of refer-
ences on this specific topic.
1390 © 1996 The American Physical Society
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II. FORMALISM

Both the momentum spectra and the BECF-s are p
scribed in the applied Wigner-function formalism@14,5#. In
this formalism the BECF is calculated from the two-bod
Wigner function assuming chaotic particle emission. In th
final expression the time derivative of the~nonrelativistic!
Wigner function is approximated@7,14# by a classical emis-
sion functionS(x;p), which is the probability that a boson is
produced at a givenx5~t,r !5(t,r x ,r y ,r z) point in space-
time with four-momentump5~E,p!5(E,px ,py ,pz). The
emission function has been related to the covariant Wign
transform of the density matrix of pion sources in Ref
@14,5# and most recently in Ref.@15#, where the relation of
Wigner-function formalism to the covariant current forma
ism @16# has also been clarified. The~off-shell! two-particle
Wigner functions shall be approximated by the off-shell co
tinuation of the on-shell Wigner-functions@14,13,9#. The
particle is on the mass shell,m25E22p2. Please note the
difference betweenx, indicating a four-vector in space-time
and the subscript sizedx, which indexes a direction in coor-
dinate space.

A useful auxiliary function is the Fourier-transformed
emission function

S̃~Dk;K !5E d4x S~x;K !exp~ iDk•x!, ~1!

where

Dk5p12p2 , K5
p11p2
2

, ~2!

andDk•x stands for the inner product of the four-vectors
Then the one-particle inclusive invariant momentum dist
bution ~IMD ! of the emitted particles,N1~p! is given by

N1~p!5S̃~Dk50; K5p!5
E

s tot

ds

dp
, ~3!

wherestot is the total inelastic cross section. This IMD is
normalized to the mean multiplicitŷn& as

E dp

E
N1~p!5^n&. ~4!

In the present paper effects arising from the final-state Co
lomb and Yukawa interactions shall be neglected. The tw
particle BECF can be calculated from the emission functi
with the help of the well-established approximation

C~Dk;K !5
^n&2

^n~n21!&

N2~p1 ,p2!

N1~p1!N1~p2!
.11

uS̃~Dk;K !u2

uS̃~0;K !u2
,

~5!

utilized also in Ref.@13#; see Ref.@14# for further details.
The corrections to this expression are known to be as sm
as 4–5%@12#. Note that among the eight components ofDk
andK only six are independent due to the two constrain
p 1
25p 2

25m2. These constraints can be formulated altern
tively as Dk•K50 and K25m22Dk2/4. Thus the two-
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particle BECF depends on the off-shell emission function
which we approximate by the off-shell continuation of the
on-shell emission functions.

A similar but not identical approximation used by severa
authors is to replaceS̃(Dk;K) by S̃(Dk;K8) where the off-
shell K is changed to an on shellK8. The latter mean mo-
mentum is defined to be on shell asK805m22K 82 where
K 85K5~p11p2!/2. The differences between these two ap
proximation schemes are ofO(Dk2/m2). The above two ap-
proximation schemes coincide in theDk2→0 limit where the
Bose-Einstein correlations are maximal. Since we shall mak
use of theDk•K50 constraint which is exact only if theK
four-vector is off shell, we shall approximate the off-shell
emission function in Eq.~5! with the off-shell continuation
of the on-shell emission function.

III. GENERAL CONSIDERATIONS

We model the emission function in terms of the longitu-
dinally boost-invariant variables. The~longitudinal! proper
time is t5At22r z

2, the space-time rapidity is
h50.5 ln[(t1r z)/(t2r z)], the transverse mass ismt

5AE22pz
2 and the momentum-space rapidity reads a

y50.5 ln[(E1pz)/(E2pz)]. In the transverse direction, the
transverse radiusr t5Ar x21r y

2 is introduced. We have

t5t cosh~h!, r z5t sinh~h!. ~6!

For systems undergoing a boost-invariant longitudinal ex
pansion, the emission function may be a function of boos
invariant variables only. These aret, r x , r y , px , py, and
h2y. However, for finite systems the exact longitudinal
boost invariance cannot be achieved and the emission fun
tion becomes a function ofh2y0 too, wherey0 stands for the
midrapidity. Approximate boost invariance is recovered in
the midrapidity region only, where terms proportional to
h2y0 can be neglected. Thus for finite systems undergoing
boost-invariant longitudinal expansion the emission functio
can be given in terms of these variables as

S~x;K !d4x5S* ~t,h,r x ,r y!dt t0 dh drx dry . ~7!

Here we introduced the constantt0 in front of dh due to
dimensional reasons and included the Jacobian from thed4x
to the dt dh drx dry variables into the emission function
S
*
(t,h,r x ,r y). The subscript* indicates that the functional

form of the emission function is changed with the change o
the variables. Further, dependences on the mean moment
K as well as on the mid rapidityy0 are also indicated with
the subscript* . The effective, momentum-dependent param
eters of the emission functionS

*
(t,h,r x ,r y) shall also be

indexed with* in the forthcoming. The subscripts stands for
the point where the emission function is maximal@we as-
sume thatS(x;K) has only one maximum for any values of
K#. We do not assume at this point whether the functio
2ln S(x;K) is expandable into a~multivariate! Taylor series
@12# around its unique minimum at the saddle pointxs or not;
merely, we assume that the Fourier-transformedS̃(Dk;K)
exists. See the Appendix for a clarifying example. We sup
pose, however, that the Fourier-transformedS̃(Dk;K) can be
evaluated in terms of thet andh variables in the smallDk
region relevant for the analysis of the BECF-s. This is pos



al
es
o
a
bles
i-

in

of

ther
e
es
,
um

-
,

n-

i-
of
o-

e
d
y

tted

by

he

is

1392 54T. CSÖRGŐAND B. LÖRSTAD
sible if the region aroundxs(K), where the Fourier integrals
pick up the dominant contribution from, is sufficiently sma
so that within this region thet andh dependences oft andr z
can be linearized as

t.t cosh@hs#1~h2hs!ts sinh@hs#, ~8!

r z.t sinh@hs#1~h2hs!ts cosh@hs#, ~9!

with negligible second-order corrections. This condition
fulfilled if the characteristic sizesDt

*
andDh of the consid-

ered region aroundxs(K) satisfiedDt
*
2 !ts

2 andDh
*
2 !1.

The principal directions for the decomposition of the re
tive momentum at a given value of the mean fou
momentumK are given as follows@17#: The out direction
is parallel to the component ofK , which is perpendicular to
the beam, indexed with ‘‘out’’, thelongitudinal or long di-
rection is parallel to the beam axisr z ~this component of the
relative momentum is indexed withL!, and the remaining
direction orthogonal to bothlongitudinalandout is called the
sidedirection, indexed with ‘‘side’’. Thus the mean and th
relative momenta are decomposed asK5~K0 ,Kout,0,KL! and
Dk5~Q0 ,Qout,Qside,QL!.

Since the particles are on mass shell, we have

05K•Dk5K0Q02KoutQout2KLQL . ~10!

Thus the energy differenceQ0 can be expressed as

Q05boutQout1bLQL , ~11!

where we have introduced the longitudinal and the outw
component of the velocity of the pair,bL5KL/K0 and
bout5Kout/K0, respectively. These relations become furth
simplified in the LCMS, the longitudinally comoving system
introduced first in Ref.@7#. The LCMS is the frame where
KL50 and thusbL50. We also havebout5bt wheret stands
for transverse, e.g.,r t5Ar x21r y

2 and mt5Am21px
21py

2.
Note that the relationbout5bt is independent of the longitu
dinal boosts, but both sides of this equation transform l
1/K0.

Let us express the Fourier integrals in terms of thet and
h variables in the laboratory reference frame~lab!, utilizing
Eqs. ~8! and ~9!. The results in the LCMS can be obtaine
from the more complicated results in the lab frame by t
substitutionbL50 andbout5bt . To simplify the notation, let
us rewrite

Dk•x5Q0t2Qoutr x2Qsider y2QLr z

.Qtt2Qoutr x2Qsider y2Qhts~h2hs!, ~12!

utilizing the linearized equations~8! and~9!. We have intro-
duced the coefficients of thet and thets(h2hs) as new
variables given by

Qt5Q0cosh@hs#2QL sinh@hs#

5~b tQout1bLQL!cosh@hs#2QL sinh@hs#, ~13!

Qh5QLcosh@hs#2Q0 sinh@hs#

5QLcosh@hs#2~b tQout1bLQL!sinh@hs#. ~14!
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From these relations it follows that

C~Dk;K !.11
uS̃~Dk;K !u2

uS̃~0;K !u2

.11
uS̃* ~Qt ,Qh ,Qout,Qside!u2

uS̃* ~0,0,0,0!u2
. ~15!

Note that this expression contains a four-dimension
Fourier-transformed function, and among the four variabl
Qt , Qh , Qout, andQside only three are independent due t
Eq. ~11!. Note also that at this point the BECF may have
non-Gaussian structure, and its dependence on its varia
does not factorize. The main limitation of the last approx
mation in Eq.~15! is that it is valid only for systems with
small lengths of homogeneity,Dt

*
2 !ts

2 andDh
*
2 !1. As we

shall see in the forthcoming, this gives a lower limit inmt for
the applicability of the simple analytic results for a certa
class of emission functions.

IV. CORE-HALO MODEL

If the system under consideration consists of acorechar-
acterized by a hydrodynamic expansion and small regions
homogeneity and a surroundinghalo of long-lived reso-
nances, then the above general expression can be fur
evaluated if the halo is characterized by sufficiently larg
regions of homogeneity. Indeed, the long-lived resonanc
may decay in a large volume proportional to their lifetime
and the decay products are emitted with a given moment
distribution from the whole volume of the decay.

The key point is the following: Let us consider an en
semble of long-lived resonances with similar momentum
emitted from a given small volume of the core. The mome
tum distribution of thedecay productsof these resonances
will be similar to each other, independently of the approx
mate position of the decay. Now the approximate position
the decay is randomly distributed along the line of the res
nance propagation with the weightP(t)} exp~2mresGres/
Eres!. Thus the decay products will be emitted with the sam
momentum distribution from a volume which is elongate
along the line of resonance propagation, given b
Vdecay.A0upresu/~mresGres!, whereA0 is the initial transverse
size of the surface through which the resonances are emi
with a momentumpresapproximately at the time of the decay
of the core,ts .

Thus the halo of long-lived resonances is characterized
large regions of homogeneity.~In the case of the pionic halo,
the dominant long-lived resonances arev, h, h8, andK0, all
with lifetimes 1/Gres greater than 20 fm/c.! If the emission
function is a sum of the emission function of the core and t
halo,

S~x;K !5S* ,c~t,h,r x ,r y!1Sh~x;K !, ~16!

and the Fourier-transformed emission function of the halo
sufficiently narrow to vanish at the finite resolutionQmin of
the relative momentumDk in a given experiment, then one
can show@18# that

N1~p!5N1,c~p!1N1,h~p!, ~17!
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C~Dk;K !511l*
uS̃* ,c~Qt ,Qh ,Qout,Qside!u2

uS̃* ,c~0,0,0,0!u
2

, ~18!

whereN1,i~p! indicates the number of particles emitted from
the halo or from the core fori5h,c and the effective inter-
cept parameter

l*5l* ~K.p;Qmin!5FN1,c~p!

N1~p! G2 ~19!

is the square of the ratio of the number of particles emitt
from the core to the number of all the emitted particles wi
a given momentump. This effective intercept paramete
arises due to the finite relative momentum resolution, whi
is typicallyQmin510 MeV in current heavy-ion experiments
@2,3#, and the comparably large region of homogeneity ch
acterizing the halo part of the system. See Ref.@18# and
references therein for a more complete account on the or
of this parameterl

*
.

We would like to raise a warning flag here: The volum
which the decay products of the long-lived resonances o
given momentum are emitted from, is large only if the d
caying resonances haveupu/~mresGres!@1 fm/c. This in turn
implies that the above simple picture may need further c
rections for very lowpt pions at rapidityy50.

There is a gap in the lifetime distribution of abundan
hadronic resonances: 1/Gr.1.3 fm/c, 1/GN*

.0.56 fm/c,
1/GD.1.6 fm/c, and 1/GK*

.3.9 fm/c, which lifetimes are of
the same order of magnitude as the timescales for resca
ing at the time of the last hadronic interactions. These lif
times are also all a factor of 5–10 shorter than the lifetime
thev meson, which is the long-lived resonance with shorte
lifetime.2 Thus the decay product of the short-lived res
nances will mainly contribute to the core, which is resolvab
by BEC measurements, while the decay products of lon
lived hadronic resonances will mainly belong to the hal
redefined alternatively as the part of the emission functi
which is not resolvable in a given Bose-Einstein measu
ment.

V. CLASSES OF SIMPLE CORE FUNCTIONS

If the emission function of the core can be factorized,

S* ,c~t,h,r x ,r y!5H* ~t!G* ~h!I * ~r x ,r y!, ~20!

whereH
*
~t! stands for the effective emission function i

proper time,G
*
~h! stands for the effective emission functio

in space-time rapidity, andI
*
(r x ,r y) stands for the effective

emission function in the transverse directions, then the
pression for the BECF can be further simplified as

C~Dk;K !511l*
uH̃* ~Qt!u2uG̃* ~Qh!u2u Ĩ * ~Qout,Qside!u2

uH̃* ~0!u2uG̃* ~0!u2u Ĩ * ~0,0!u2
.

~21!

2Note that with a resolution of typicallyQmin510 MeV, the reso-
nancev will be considered as long-lived resonance@18#.
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If the I
*
(r x ,r y) function is symmetric for rotations in the

(r x ,r y) plane around its maximum pointr x,s , then one may
introduceQt5AQside

2 1Qout
2 to find

C~Dk;K !511l*
uH̃* ~Qt!u2uG̃* ~Qh!u2u Ĩ * ~Qt!u2

uH̃* ~0!u2uG̃* ~0!u2u Ĩ * ~0!u2
.

~22!

Such factorization around the saddle point happens, e.g.,
the new class of analytically solvable models if certain con
ditions are satisfied, as discussed in the subsequent p
From the above expression it is clear that for this type
model the dependence of the BECF on the components
the relative momentum can be diagonalized with an appr
priate choice of the three independent components of t
relative momentum. Note that the assumed existence of
Fourier-transformed distribution functions is a weaker con
dition than the assumption of the analytic form of th
Fourier-transformed function; see the Appendix for an e
ample. Another example was given, e.g., in Ref.@19# for a
H~t! distribution for whichH̃(Qt) is not analytic function at
Qt50 anduH(Qt)u

2 does not start with a quadratic term. In
mathematical statistics it is well known that the Fourier
transformed stable distributions are not analytic atQ50 @20#.
On the other hand, there are many physically interestin
Gaussian models which correspond to the multivaria
second-order Taylor expansion of the above general resu
i.e., the analytic form of the corresponding Fourier
transformed function. The out-longitudinal cross term@12#
has been recently discovered also in this context. To stu
the properties of the BECF, let us apply a Gaussian appro
mation to the effective distribution functions as

H* ~t!}exp@2~t2ts!
2/~2Dt

*
2 !#, ~23!

G* ~h!}exp@2~h2hs!
2/~2Dh

*
2 !#, ~24!

I * ~r x ,r y!}exp$2@~r x2r x,s!
21~r y2r y,s!

2#/~2R
*
2 !%.

~25!

Apart from the momentum-dependent parametersDt
*
, Dh

*
,

andR
*
, the mean emission point may also be momentu

dependent in the above expression,ts5ts(K), hs5hs(K),
r x,s5r x,s(K) and r y,s5r y,s(K). For the sake of simplicity
we do not specify the normalization constants in Eq.~25!
since they cancel from the BECF, which is given by

C~Dk;K !511l* exp~2Qt
2Dt

*
2 2Qh

2ts
2Dh

*
2 2Qt

2R
*
2 !.
~26!

This is a diagonal form of the BECF-s for which the factor-
ization property, Eq.~20!, and the Gaussian approximation
for the core, Eqs.~23!–~25!, are simultaneously satisfied. In
the present form of the BECF, there are no cross term
among the chosen variables. Now, let us rewrite this for
using the standard HBT coordinate system@17# to find

C~Dk;K !511l* exp~2Rside
2 Qside

2 2Rout
2 Qout

2 2RL
2QL

2

22Rout,L
2 QoutQL!, ~27!

Rside
2 5R

*
2 , ~28!
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Rout
2 5R

*
2 1dRout

2 , ~29!

dRout
2 5b t

2~cosh2@hs#Dt
*
2 1sinh2@hs#ts

2Dh
*
2 !, ~30!

RL
25~bL sinh@hs#2cosh@hs# !2ts

2Dh
*
2

1~bL cosh@hs#2sinh@hs# !2Dt
*
2 , ~31!

Rout,L
2 5b t cosh@hs#~bL cosh@hs#2sinh@hs# !Dt

*
2

1b t sinh@hs#~bL sinh@hs#2cosh@hs# !ts
2Dh

*
2 .

~32!

This result is nonperturbative in terms of the variablehs and
is valid in any frame. The main limitations of this result a
the assumed Gaussian model class@Eqs.~23!–~25!# and the
assumed smallness of the emission region aroundxs(K) so
that t and r z dependences could be linearized in terms ot
andh.

The above equations simplify a lot in the LCMS syste
wherebL50:

dRout
2 5b t

2~cosh2@hs#Dt
*
2 1sinh2@hs#ts

2Dh
*
2 !, ~33!

RL
25cosh2@hs#ts

2Dh
*
2 1sinh2@hs#Dt

*
2 , ~34!

Rout,L
2 52b t sinh@hs#cosh@hs#~Dt

*
2 1ts

2Dh
*
2 !.

~35!

The lifetime informationDt
*
2 and the invariant measure o

the longitudinal size along thets5const hyperbola,ts
2Dh

*
2 ,

appear in a mixed form in theRout
2 , RL

2, and theRout,L
2 source

parameters even in the LCMS frame. The amount of th
mixings is controlled by the value ofhs

LCMS. This relation-
ship clarifies the physical significance of thehs

LCMS, the
space-time rapidity of the maximum of the emission funct
in the LCMS frame:hs

LCMS is thecross-term generating hy
perbolic mixing anglefor cylindrically symmetric, finite sys-
tems undergoing longitudinal expansion and satisfying
factorization property, Eq.~20!. If hs

LCMS50, no mixing of
temporal and longitudinal components appear in the LCM
In some limited sense one may callhs the cross-term gener
ating hyperbolic mixing angle in any frame, because ifhs50
in a certain frame, then cross terms can be diagonalized a
as follows.

Let us define the LSPS, the longitudinal saddle-point s
tem, to be the frame wherehs50. Sincehs is a function ofK
in a fixed frame,hs5hs(K), the LSPS frame may depend o
K ~e.g., on transverse mass of the pair!. In the LSPS frame
the out-long cross term and the mixing of the temporal a
timelike information can be diagonalized. We have, in t
LSPS,

dRout
2 5b t

2Dt
*
2 , ~36!

RL
25ts

2Dh
*
2 1bL

2Dt
*
2 , ~37!

Rout,L
2 5b tbLDt

*
2 , ~38!
e

,
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as follows from Eqs.~30!–~32!. Introducing the new vari-
ablesQ05b tQout1bLQL andQt5AQout

2 1Qside
2 , we obtain

for the correlation function

C~Dk;K !511l* exp~2Dt
*
2Q0

22ts
2Dh

*
2QL

22R
*
2Qt

2!.
~39!

From this relationship we also see thatQ0~LSPS!5Qt and
QL~LSPS!5Qh ; cf. Eq. ~26!.

Let us study an expansion in terms ofe5uY2y0u/Dh,
whereY is the rapidity belonging toK the mean momentum
of the pair andDh is the geometrical size of the expandin
system in the space-time rapidity variable, satisfyi
Dh . Dh

*
. It is obvious that in the lab framehs

lab5Y
1O(e), since in thee→0 limit we recover boost invariance
and the particle emission must be centered around the o
scale: the rapidity of the pair. Similarly, we see th
hs
LCMS501O(e). It follows that the cross term and th

crossing of temporal and longitudinal information in the la
frame comprise a leading-order effect,

dRout
2 5b t

2~cosh2@Y#Dt
*
2 1sinh2@Y#ts

2Dh
*
2 !1O~e!,

~40!

RL
25

ts
2Dh

*
2

cosh2@Y#
1O~e!, ~41!

Rout,L
2 52b t

sinh@Y#

cosh@Y#
ts
2Dh

*
2 1O~e!. ~42!

On the other hand, the mixing of the temporal and longi
dinal information is only next-to leading order in the LCM
according to Eq.~35!, i.e., Rout,L

2 ~LCMS!501O(e). How-
ever, if theuY2y0u!Dh condition is not satisfied, the out
long cross term might be large even in the LCMS, as h
been demonstrated numerically in Ref.@21#.

The cross-term generating mixing anglehs vanishes ex-
actly in the LSPS frame, becomes a small parameter in
LCMS if uY2y0u/Dh !1, and becomes leading order in an
frame significantly different from the LSPS or LCMS. Thu
we confirm the recent finding@22# that the out-longitudinal
cross term can be diagonalized away if one finds the~trans-
verse mass dependent! longitudinal rest frame of the source

Note that cylindrical symmetry around the cent
of the particle emission as assumed by Eqs.~23!–~25!
is a stronger requirement than the cylindrical symme
of the emission function around the beam axis. This lat
symmetry implies only that both the requiremen
S~t,r x ,r y ,r z ; K0,Kout,KL! 5S~t,2 r x ,r y ,r z ;K0 ,2 Kout,KL!
and S~t,r x ,r y ,r z ;K0 ,Kout,KL!5S~t,r x ,2r y ,r z ;K0 ,Kout,
KL! should be simultaneously fulfilled. Thus cylindrica
symmetry around the beam axis is compatible with a diff
ent Gaussian radius in the side and out directions,

I * ~r x ,r y! } expS 2
@r x2r x,s~K !#2

2R
* ,x
2 2

r y
2

2R
* ,y
2 D , ~43!

with R
* ,x

ÞR
* ,y

. Cylindrical symmetry around the beam
axis implies only that r x,s~K0 ,Kout,KL!52r x,s~K0 ,
2Kout,KL! andr y,s(K)50. In the low transverse momentum
limit, when Kout50, the relations r x,s~Kout50!50 and
R
* ,x

~Kout50!5R
* ,y

~Kout50! also follow from cylindrical
symmetry around the beam axis. IfR

* ,x
ÞR

* ,y
at a given
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nonvanishing value of the mean transverse momentumKout,
the generalized version of Eqs.~26! and ~39! for the BECF
reads as

C~Dk;K !511l* exp~2Dt
*
2Qt

22Dh
*
2 ts

2Qh
22R

* ,x
2 Qout

2

2R
* ,y
2 Qside

2 !. ~44!

In such a case, Eqs.~28! and ~29! are also modified as

Rside
2 5R

* ,y
2 , ~45!

Rout
2 5R

* ,x
2 1dRout

2 . ~46!

This implies that the difference between the out and si
radius parameters isnot restrictedby cylindrical symmetry
around the beam axis to positive values only, sinceRout

2

2Rside
2 5dRout

2 1R
* ,x
2 2R

* ,y
2 which can also be negative if

R
* ,y

is sufficiently large@23#. However, cylindrical symme-
try does imply thatRout5Rside in theKout→0 limit.

Up to this point, we have reviewed the properties o
BECF-s without reference to any particular model, for som
more and more limited classes of simple emission function
We have obtained certain model-independent relations@cf.
Eqs. ~15!, ~18!, and ~22!# which are valid for some non-
Gaussian as well as Gaussian source functions. We h
studied the relations between source parameters with
s

de

f
e
s.

ave
a

method which is nonperturbative in terms ofhs , but pertur-
bative in terms ofDh

*
2 andDt

*
2 /ts

2.
Let us study the properties of an analytically solvab

model class in the subsequent parts.

VI. NEW CLASS
OF ANALYTICALLY SOLVABLE MODELS

For central heavy-ion collisions at high energies the be
or r z axis becomes a symmetry axis. Since the initial state
the reaction is axially symmetric and the equations of mot
do not break this pattern, the final state must be axially sy
metric too. However, in order to generate the thermal len
scales in the transverse directions, the flow field must
either three dimensional or the temperature distribution m
have significant gradients in the transverse directions. F
thermore, the local temperature may either increase du
the duration of the particle emission because of the rehea
of the system caused by the hadronization@24# and/or inten-
sive rescattering processes or decrease because of the e
sion and the emission of the most energetic particles fr
the interaction region. An example for such a time-depend
temperature was given, e.g., by the solid line of Fig. 1.
Ref. @25#.

We study the following model emission function for high
energy heavy-ion reactions:
S~x;K ! d4x5
g

~2p!3
mt cosh~h2y! expS 2

K•u~x!

T~x!
1

m~x!

T~x! DH~t! dt t0 dh drx dry . ~47!

Here g is the degeneracy factor, the prefactormt cosh~h2y! corresponds to the flux of the particles through at5const
hypersurface according to the Cooper-Frye formula@26# and the four-velocityu(x) is

u~x!5Xcosh@h#S 11b2
r x
21r y

2

t0
2 D ~1/2!

, b
r x
t0
, b

r y
t0
, sinh@h#S 11b2

r x
21r y

2

t0
2 D ~1/2!C

.Xcosh@h#S 11b2
r x
21r y

2

2t0
2 D , b

r x
t0
, b

r y
t0
, sinh@h#S 11b2

r x
21r y

2

2t0
2 D C, ~48!
f
ng

-
of
r-

e

the
e

which describes a scaling longitudinal flow field merge
with a linear transverse flow profile. The transverse flow
assumed to be nonrelativistic in the region where there i
significant contribution to particle production. The local tem
perature distributionT(x) at the last interaction points is as
sumed to have the form

1

T~x!
5

1

T0
S 11a2

r x
21r y

2

2t0
2 D S 11d2

~t2t0!
2

2t0
2 D , ~49!

and the local rest density distribution is controlled by th
chemical potentialm(x) for which we have the ansatz

m~x!

T~x!
5

m0

T0
2
r x
21r y

2

2RG
2 2

~h2y0!
2

2Dh2 . ~50!
d
is
a
-
-

e

The parametersRG andDh control the density distribution
with finite geometrical sizes. The proper-time distribution o
the last interaction points is assumed to have the followi
simple form:

H~t!5
1

~2pDt2!~1/2! exp@2~t2t0!
2/~2Dt2!#. ~51!

The parameterDt stands for the width of the freeze-out hy
persurface distribution; i.e., the emission is from a layer
hypersurfaces which tends to an infinitely narrow hypersu
face in theDt→0 limit.

The emission function, specified by Eqs.~47!–~51!, is not
invariant to boosts, neither in the longitudinal nor in th
transverse directions. Although the flow profile, Eq.~48!,
was assumed to be invariant under longitudinal boosts,
finite longitudinal size which enters the model through th
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chemical potential in Eq.~50! breaks the longitudinal boost
invariance of the emission function.@Note that the longitudi-
nal boost invariance of the flow profile is supported by th
NA35, NA49, and NA44 measurements forRL(Mt), to the
best currently available experimental precision@2,3,27##.

This emission function corresponds to a Boltzmann a
proximation to the local momentum distribution of a long
tudinally expanding, finite system which expands into th
transverse directions with a transverse flow which is nonr
ativistic at the saddle point. The transverse gradients of
local temperature at the last interaction points are control
by the parametera. The strength of the flow is controlled by
the parameterb. The parameterc51 is reserved to denote
the speed of light, and the parameterd controls the strength
of the change of the local temperature during the course
particle emission.

Note that other shapes of the temperature profile lead
the same result if 1/T(x) starts with the same second-orde
Taylor expansion aroundr x5r y50. The physical signifi-
cance of the transverse temperature profile is that it conc
trates the emission of the particles with high transverse m
to a region which is centered aroundr x5r y50 and which
narrows as the transverse mass increases. The Gaussia
proximation to the inverse temperature profile is thus a tec
nical simplification only; other decreasing temperature pr
files have similar effects as follows from the above pictur
Similarly, the significance of the temporal changes of th
temperature is that it creates different effective emissi
times for particles with different transverse mass, and t
Gaussian approximation is a technical simplification.

For the case ofa5b5d50, we recover the case of lon-
gitudinally expanding finite systems as presented in Ref.@9#.
The finite geometrical and temporal length scales are rep
sented by the transverse geometrical sizeRG , the geometri-
cal width of the space-time rapidity distributionDh, and the
mean duration of the particle emissionDt. Effects arising
from the finite longitudinal size were calculated analytical
first in Ref.@28# in certain limited regions of the phase spac
We assume here that the finite geometrical and tempo
scales as well as the transverse radius and proper-time
pendence of the inverse of the local temperature can be r
resented by the mean and the variance of the respective v
ables; i.e., we apply a Gaussian approximatio
corresponding to the forms listed above, in order to get an
lytically tractable results. We have first proposed thea50,
b51, andd50 version of the present model, and elaborate
also thea5b5d50 model@9# corresponding to longitudi-
nally expanding finite systems with a constant freeze-o
temperature and no transverse flow. Soon after the param
b was introduced@12# and it has been realized that the max
mum of the emission function for a given mean momentu
K has to be close to the beam axis, fulfillingr x,z!t0, in
order to get a transverse mass scaling law for the parame
of the Bose-Einstein correlation functions in certain limitin
cases@29#. In this region around the beam axis, however, th
transverse flow is nonrelativistic@12# even for the caseb51
if this region is sufficiently small. Sinyukov and collabora
tors classified the various cases of ultrarelativistic transve
flows @11,30#, and introduced a parameter which controls th
transverse temperature profile, corresponding to theaÞb50
e
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case. We have studied@29# the model classaÞ0, bÞ0, and
d50, which we extend here to thedÞ0 case too.

The integrals of the emission function are evaluated usin
the saddle-point method@8,10,12#. The saddle point coin-
cides with the maximum of the emission function, param
etrized by (ts ,hs ,r x,s ,r y,s). These coordinate values solve
simultaneously the equations

]S

]t
5

]S

]h
5

]S

]r x
5

]S

]r y
50. ~52!

These saddle-point equations are solved in the LCMS, th
longitudinally comoving system, forhs

LCMS!1 andr x,s!t0.
The approximations are self-consistent ifuY2y0u!1
1Dh2mt/T02Dh2 and b t!ts

2Dh
*
2 /(bR

*
2 ), which for the

considered model can be simplified asb t5pt/mt
!(a21b2)/b/max~1,a,b!. The transverse flow is nonrelativ-
istic at the saddle point ifb t!(a21b2)/b2/max~1,a,b!. We
assume thatDt ,t0 so that the Fourier integrals involving
H~t! in the 0<t ,` domain can be extended to the2`
, t ,` domain. The radius parameters are evaluated here
the leading order inr x,s/t0. Thus terms ofO(r x,s/t0) are
neglected; however, we keep all the higher-order correctio
terms arising from the nonvanishing value ofhs in the
LCMS. We calculate both the radius parameters and the in
variant momentum distribution in Gaussian saddle-point ap
proximation. We shall discuss the limitations of the saddle
point method after presenting these results on the BECF an
IMD.

For the model of Eq.~47! the saddle-point approximation
for the integrals leads to an effective emission function
which can be factorized similarly to Eq.~20!. Thus the radius
parameters of the model are expressible in terms of the h
mogeneity lengthsDh

*
, R
*
, andDt

*
and the position of the

saddle poinths , i.e., the cross-term generating hyperbolic
mixing angle. The saddle point in the LCMS is given by
ts5t0, hs

LCMS5(y02Y)/@11Dh2(1/DhT
221)#, r x,s

5b tbR*
2 /(t0DhT

2), andr y,s50. Note that the space-time ra-
pidity of the saddle poinths

LCMS depends on the boost-
invariant differencey02Y which can be evaluated in any
frame. The radius parameters orlengths of homogeneity
@8,12# are given in the LCMS by Eqs.~27!–~29! and ~33!–
~35!, and we obtain

1

R
*
2 5

1

RG
2 1

1

RT
2 cosh@hs

LCMS#, ~53!

1

Dh
*
2 5

1

Dh2 1
1

DhT
2 cosh@hs

LCMS#2
1

cosh2@hs
LCMS#

,

~54!

1

Dt
*
2 5

1

Dt2
1

1

DtT
2 cosh@hs

LCMS#. ~55!

where thethermal length scalesare given by

RT
25

t0
2

a21b2
T0
Mt

, ~56!
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DhT
25

T0
Mt

, ~57!

DtT
25

t0
2

d2
T0
Mt

. ~58!

HereMt5AK0
22KL

2 is the transverse mass belonging to th
mean momentumK. In the region of the Bose-Einstein en
hancement, where the relative momentum of the pair
small, Mt satisfies Mt5

1
2 (mt,11mt,2) @11O(y12y2)

1O„(mt,12mt,2)/(mt,11mt,2)…#. Note the distinction be-
tween the subscripts for the transverse direction, indicated
t and the use subscripts for the ‘‘thermal’’ scales indicat
by T. It is timely to emphasize at this point that the param
eters of the Bose-Einstein correlation function coincide wi
the ~rapidity and transverse mass dependent! lengths of ho-
mogeneity@8# in the source, which physically can be ident
fied with that region in coordinate space where particles w
a given momentum are emitted from. The above relatio
indicate that these lengths of homogeneity for simple therm
models can be basically obtained from two type of scales
the framework of the saddle-point method. These scales h
different momentum dependence and are referred to
‘‘thermal’’ and ‘‘geometrical’’ scales.

In contrast to the homogeneity lengths, which can be d
fined even without thermalization, the ‘‘thermal scales’’ ca
not be introduced without at least approximate local therm
ization. Thus the thermal scales originate from the fac
exp[2p•u(x)/T(x)]. They measure that region in space
time where thermal smearing can compensate the chang
the local momentum distribution which in turn is induced b
either the gradients of the flow field or the gradients of th
temperature field. This is to be contrasted to the ‘‘geome
cal’’ scales, which originate from the exp[m(x)/T(x)] factor
which controls the density distribution. The geometric
scales can be interpreted as the regions in space-time w
there is significant density to have particle emission. Ob
ously, for locally thermalized systems both the geometric
and thermal scales influence the regions of homogeneity
the smaller scale will be the dominant one. Since the fo
momentump is explicit in the factor exp@2p•u(x)/T(x)#
and enters the ‘‘geometrical’’ scales only through the m
mentum dependence of the saddle point, the momentum
pendences for the ‘‘thermal’’ and ‘‘geometrical’’ scales sha
be in general different from each other. Note also that in t
above expression forDh

*
a third type of scale is also presen

in the term 21/cosh2@hs#, which stems from the
mt cosh@h2y# Cooper-Frye prefactor in Eq.~47!. Thus this
term is related to the shape of the freeze-out hypersurf
distribution ~which distribution tends to a single hypersur
face if Dt→0!.

The parameters of the BECF-s are dominated by t
smaller of the geometrical and the thermal scales not only
the spatial directions, but in the temporal direction too a
cording to Eqs.~53!–~58!. These analytic expressions sho
that even a complete measurement of the parameters of
BECF as a function of the mean momentum K may not
sufficient to determine uniquely the underlying phase-spa
distribution @29,8,9,12,13#. We also can see that the LCMS
frame approximately coincides with the LSPS frame f
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pairs with uy02Yu!11Dh2Mt/T02Dh2 and the terms
arising from the nonvanishing values ofhs can be neglected
In this approximation, the cross-term generating hyperb
mixing anglehs'0; thus, we find the leading-order LCM
result

C~Dk;K !511l* exp~2RL
2QL

22Rside
2 Qside

2 2Rout
2 Qout

2 !,
~59!

with a vanishing out-long cross termRout,L50. To leading
order, the parameters of the correlation function are given

Rside
2 5R

*
2 , ~60!

Rout
2 5R

*
2 1b t

2Dt
*
2 , ~61!

RL
25t0

2Dh
*
2 . ~62!

Observe that the difference of the side and out radius par
eters is dominated by the lifetimeparameterDt

*
. Thus a

vanishing difference between theRout
2 andRside

2 can be gen-
erated dynamically if the duration of the particle emission
large, but the thermal durationDtT becomes sufficiently
small @cf. Eq. ~55!#. This in turn can be associated with in
tensive changes in the local temperature distribution du
the course of the particle emission.

Observe, that the BECF in an arbitrary frame can be
tained from combining Eqs.~53!–~58! with the general ex-
pressions given by Eqs.~27!–~32!. In that case, the value o
hs5Y1hs

LCMS5Y1(y02Y)/@11Dh2(1/DhT
221)# has to

be used in Eqs.~27!–~32!.
Note also that in our results higher-order terms aris

from the nonvanishing value ofhs in the LCMS are summed
up, while in Refs.@12# the first subleading corrections we
found.

VII. INVARIANT MOMENTUM DISTRIBUTIONS

The IMD plays acomplementary roleto the measured
Bose-Einstein correlation function@9,13,29#. Thus asimulta-
neous analysisof the Bose-Einstein correlation functions a
the IMD may reveal information both on the temperature a
flow profiles and on the geometrical sizes.

For the considered model, Eq.~47!, the invariant momen-
tum distribution can be calculated in such a manner that
Cooper-Frye prefactormt cosh~h2y! is kept exactly and the
saddle-point approximation is applied to the remaining B
zmann and proper-time factors, exp[2p•u/T(x)1m(x)/
T(x)]H(t). This calculation yields

N1,c~p!5
g

~2p!3
~2pDh

*
2 t0

2!1/2~2pR̄
*
2 !

Dt*
Dt

3mt cosh@hs#exp~1Dh
*
2 /2!

3exp@2p•u~ x̄s!/T~ x̄s!1m~ x̄s!/T~ x̄s!#.

~63!

The quantitiesDh
*
2 andhs are defined as

1

Dh
*
2 5

1

Dh2 1
1

DhT
2 cosh@hs#, hs5

~y02y!

11Dh2/DhT
2 ,

~64!
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and the modified saddle point is located in the LCM
at t̄s5ts5t0 , hs, r x,s5b tbR̄*

2 /(t0DhT
2) and r y,s50. The

modified radius and lifetime parameters can be obtained
evaluating theR

*
andDt

*
parameters at the space-time r

pidity coordinate of the modified saddle point,R*
5R* (hs

LCMS→hs) and Dt*5Dt* (hs
LCMS→hs). Thus the

modified quantities~indicated by overline! differ from the
unmodified parameters of the saddle-point approximation
the contributions of the Cooper-Frye prefactor. This happ
because Eq.~63! is obtained by applying the saddle-poin
method for Eq.~3! with the model emission function, Eq
~47!, in such a way that the Cooper-Frye prefact
mtcosh@h2y# is kept exactly and the remaining factors a
approximated with the saddle-point technique in the LCM
@29#, described in detail in the previous section. Note th
R*.R* and Dt*.Dt* in the midrapidity region, where
hs
LCMS, hs!1.
In Eq. ~63! the exact shape of the four-velocity field ca

be used, which is given in the first line of Eq.~48!. When
evaluatingm(xs)/T(xs) in any frame, the invariant differ-
encehs2y0

LCMS5hs1y2y0 should be used.
The momentum distribution as given in Eq.~63! can be

rewritten into a more explicit shape, which is more suitab
S

by
a-

by
ens
t
.
or
re
S
at

n

le

for analytic study. This can be done if one neglects terms
O(r x,s

3/t0
3) in the exponent, which is the same order of a

curacy which has been utilized for the solution of the sadd
point equations. Further, a term in the expone
(mt /T0)cosh(hs) is approximated by its second-order Taylo
expansion (mt /T0)(110.5hs

2). These approximations yield

expS 2
p•u~ x̄s!

T~ x̄s!
1

m~ x̄s!

T~ x̄s!
D

.expS m0

T0
D S 2

~y2y0!
2

2~Dh21DhT
2!D

3expF2
mt

T0
S 12 f

b t
2

2

TG

T01TG cosh@hs#
D G ,

where the geometrical contribution to the effective tempe
ture is indicated by TG(mt)5T0RG

2 /RT
2(mt)

5(a21b2)mtRG
2 /t 0

2 and the fraction f is defined as
f5b2/(a21b2), satisfying 0< f <1.
The Boltzmann factor is further simplified in the midra

pidity region uy2y0u!11(mt/T0)Dh2, where cosh(hs).1.
The resulting expression for the IMD is given by
N1,c~p!5
g

~2p!3
~2pDh

*
2 t0

2!1/2~2pR
*
2 !

Dt*
Dt

mtcosh@hs#exp~1Dh
*
2 /2! exp~m0 /T0!

3expS 2
~y2y0!

2

2~Dh21DhT
2!

DexpF2
mt

T0
S 12 f

b t
2

2 D GexpS 2 f
mtb t

2

2~T01TG!
D , ~65!
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which is describing a momentum distribution peaked
midrapidity, corresponding to the finiteness of the conside
source. A detailed analytic study of the invariant momentu
distribution of Eq.~65! can be performed as follows.

For the considered model, the rapidity widthDy(mt) of
the invariant momentum distribution at a givenmt shall be
dominated by thelonger of the thermal and geometrica
length scales. If the conditiona.0 is fulfilled, i.e., f'1, the
longer of the thermal and geometrical scales shall also do
nate T

*
, the effective temperature~slope parameter! at a

midrapidity y0. The following relations hold:

Dy2~mt!5Dh21DhT
2~mt!,

1

T*
5

f

T01TG~mt5m!
1
12 f

T0
. ~66!

That is why the IMD measurements can be considered to
complementary to the BECF data.

In the special limiting case when gradients of the te
perature are negligible,a50 and f51, we have
T
*

5T01mb2RG
2 /t 0

2. If the flow velocity at the geometrica
radius^ut&[bRG/t0 is independent of the particle type, w
obtain a relation

T*5T01m^ut&
2. ~67!
at
ed
m

l
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A similar relation for the mass dependence of the mea
~transverse! kinetic energy was introduced in Ref.@31# for
longitudinally expanding systems with nonrelativistic trans
verse flows. This simple relation~67! for the effective tem-
perature can be considered as a special case of the m
general Eq.~66!.

The measured IMD can be obtained from the IMD of th
core as given above and from the measuredl

*
~p! parameters

of the BECF as

N1~p!5
1

Al* ~p!
N1,c~p!; ~68!

see, e.g., Ref.@18# for further details.
The invariant momentum distribution described by Eq

~65! features two types of low transverse momentum e
hancement as compared to a static thermal source with
slope parameterT

*
. One may introduce thevolume factoror

V
*
(y,mt) which yields the momentum-dependent size of th

region, where the particles with a given momentum are em
ted from

V* ~y,mt!5~2pDh
*
2 t0

2!1/2~2pR
*
2 !

Dt*
Dt

. ~69!
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The rapidity-independent low-pt enhancementis a conse-
quence of the transverse mass dependence of this effec
volume, which may depend onmt for certain limiting cases
in the following way:

V* ~y,mt!}S T0mt
D k/2, ~70!

where k50 for a static fireball ~a5b5d50 and
Dh T

2 @Dh2!. The casek51 is satisfied fora5b5d50 and
Dh2@Dh T

2, which describes long, one-dimensionally ex
panding finite systems@9#. The casek52 corresponds to
a5b50Þd and Dh2@Dh T

2, describing longitudinally ex-
panding systems with cooling. The casek53 corresponds to
aÞ0, bÞ05d, i.e., three-dimensionally expanding, cylindri
cally symmetric, finite systems possibly with a transver
temperature profile@29#, and thek54 case corresponds to
the same but with adÞ0 parameter, describing the tempora
changes in the local temperature during the particle emiss
process appended with the conditionDtT!Dt. Thus the in-
clusion of this effectivemt-dependent volume factor into the
data analysis not only would undoubtedly increase the pre
sion of the measurements of the slope parameters, but in
it also could shed light on the dynamics of the particle em
sion from such complex systems.

Note that themt-dependent effective volume factor, Eq
~70!, enhances the production of direct pions at lowpt , as
compared to that of heavy resonances with massMh at low
pt , by a factor of f e5V

*
(mp)/V*

(Mh)5(Mh/Mp)
(k/2),

wherek50, 1, 2, 3, or 4 is related to the dimension of th
expansion. We argue in Sec. IX that thek53 or k54 case is
supported by NA44 data. This yields an enhancement fac
of f e5(770/140)(k/2)512.90 or 30.25, respectively, for the
production of direct pions from the core at lowpt as com-
pared tor mesons. See also Fig. 2. of Ref.@18# for a more
detailed account on this topic.

The rapidity-dependent low-pt enhancement, which is a
generic property of the longitudinally expanding finite sy
tems @32#, reveals itself in the rapidity dependence of th
effective temperature, defined as the slope of the exponen
factors in the IMD in the low-pt limit at a given value of the
rapidity. The leading order@32# result is

Teff~y!5
T*

11a~y2y0!
2 with a5

T0T*
2m2 S Dh21

T0
m D 22

.

~71!

Please note that this analysis of the low transverse mass
gion of the IMD relies on the applicability of the saddle
point method in the low transverse momentum region to
Thus it may be valid for kaons or heavier particles~as well as
locally very cold pionic systems!. However, in case of pions,
the self-consistency of the applied formulas and their regi
of validity has to be very carefully checked. This region o
the applicability of the saddle-point technique for the consi
ered finite systems is discussed in detail in the next secti
Note that the low transverse momentum region is popula
by a number of resonance decays. For the long-lived re
nances, thus, a nontrivial 1/Al* (p) factor may appear and
contribute to both the rapidity-dependent and the rapidi
independent low-pt enhancement. Although this factor i
tive
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measurable from the shape analysis of the BECF, care
required to study the contribution of the decay products
short-lived resonances to the momentum distribution
pions. Kaons or other heavier particles thus provide a clea
test for these analytic results as compared to pions@33#.

Thehigh-pt enhancement or decreaserefers to the change
of the effective temperature at midrapidity with increasin
mt . The large transverse mass limitT` shall be in general
different from the effective temperature at lowpt given by
T
*
since

T`5
2T0
22 f

,
T`

T*
5

2

22 f S 12 f
TG~m!

T01TG~m! D . ~72!

Utilizing TG/T05RG
2 /RT

2, the high-pt enhancement or de-
crease turns out to be controlled by the ratio of the therm
radiusRT(mt5m) to the geometrical radiusRG . One obtains
T`.T

*
if RT

2(m).RG
2 and similarly T`,T

*
if

RT
2(m),RG

2 . Since for large colliding nucleiRG is expected
to increase, a possible high-pt decrease in these reaction
may become a geometrical effect, a consequence of the la
size.

VIII. LIMITATIONS

The simple analytic formulas presented in the previo
sections are obtained in a saddle-point approximation for t
evaluation of the space-time integrals. This approximation
known to converge to the exact result in the limit the inte
grated function develops a sufficiently narrow peak; i.e., bo
Dh

*
2 !1 andDt

*
2 /ts

2!1 are required. This in turn gives a
lower limit in mt for the applicability of the formulas for the
class of models presented in the previous section.~However,
the saddle-point method may give precise results even wh
the integrand does not develop a narrow peak. For the em
sion function of Ref.@13# the saddle-point method gives an
exact result, because that emission function can
rewritten in Gaussian form.!

From the requirementDh
*
2 !1, we have

mt cosh@hs#/T0@111/cosh2@hs#21/Dh2. ~73!

From the requirementDt
*
2 /ts

2!1, one gets

mt cosh@hs#/T0@~12ts
2/Dt2!/d2. ~74!

These are the conditions governing the validity of the calc
lation of the parameters of the BECF as presented in Sec.
Compared to the condition~73!, the condition of validity of
the calculation of the invariant momentum distribution is les
stringent, since one needs to satisfy onlyDh

*
2 !1, which

yields

mt cosh@h̄s#/T0@121/Dh2. ~75!

For the case of the NA44 measurement, one mayestimate
the region of reliability for the analytic formulas presented i
the previous parts using inequalities~73! and~74!. Since the
data indicate Rside.Rout within errors, the inequality
Dt

*
2 /ts

2!1 and its consequence, Eq.~74!, seem to be well
justified. In the inequality~73! the finite longitudinal size
plays an important role. For infinite systems,Dh5`, the cal-
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culations of BECF parameters are reliable formt@2T0
~sincehs50 for infinite systems in the LCMS!, while the
calculations for the IMD are reliable tomt@T0 . In the mid-
rapidity region where NA44 data were taken, one hashs.0
and forfinite systems one findsmt@T0~221/Dh2!. Note that
this estimated lower limit inmt is extremely sensitive to the
precise value ofDh in the regionDh.1/&'0.7. Thus for
finite systems the region of applicability of our results e
tends to lower values ofmt than for infinite systems which
were recently studied in great detail in Ref.@23#. The in-
equality~73! can be used in basically two ways: Either on
assumes a value forT0 and then obtains the lower limit inmt
for the applicability of the saddle-point method, or one a
sumes that the saddle-point method is applicable to a cer
value ofmt ~e.g., in case it gives a good description of data!,
and then one obtains an upper limit for the correspondingT0
parameter, the central temperature at the mean time of
interactions.

An upper transverse momentum limit is obtained for th
validity of the calculations in Secs. VI and VII from the
requirementtx,s/t0,1 or r x,s

2 /t0
2!1. This condition and the

requirementbrx,s/t0,1 are fulfilled simultaneously if

b t!
a21b2

b max~1,b!max~1,a,b!
. ~76!

If a21b2.1, this condition simplifies tobt!1/b.
When comparing to data, detailed numerical studies m

be necessary@23# to check the precision of the saddle-poin
integration. In a subsequent paper we plan to present th
studies together with a detailed comparison of the model
the available NA44 data.

IX. LIMITING CASES

Observe that both the thermal and the geometrical len
scales enter both the parameters of the Bose-Einstein co
lation function and those of the invariant momentum dist
bution. We limit the discussion in this part to the midrapidit
regionhs

LCMS.0 and we assumeDh
*
2 !1; i.e., we neglect

the 1/ cosh2@hs# term in Eq.~54!. Various limiting cases can
be obtained as combinations of basically the relative size
the thermal and the geometrical scales in the transverse,
gitudinal, and temporal directions. These in turn are the f
lowing.

~i! If RT(Mt)@RG in a certainMt interval, we have also
T0@TG(mt) at the same transverse mass scale. In this
gion, the side radius parameter shall be determined by
geometrical sizeRside5R

*
.RG ; hence, it shall be transverse

mass independent.
Themt distribution at midrapidity shall be proportional to

exp~2mt/T0!.
~ii ! If DhT@Dh, we haveRL.t0Dh and the rapidity

width of the IMD shall be dominated by the thermal scal
Dy2(mt).Dh T

25T0/mt .
~iii ! If DtT@Dt, the temporal duration shall be measure

byRout
2 2Rside

2 .b t
2Dt2. The invariant momentum distribution

shall be influenced only through theDt
*
/Dt'1 factor inV

*
.

These cases are rather conventional limiting cases.
unconventional limit complements each as follows.

~iv! If RT(Mt)!RG in a certainMt interval, we have also
x-
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T0!TG(mt) at the same transverse mass scale. In this r
gion, the side radius parameter shall be determined by th
thermal sizeRside5R

*
.RT(Mt); hence, it shall be trans-

verse mass dependent,Rside
2 }t 0

2T0/Mt .
Themt distribution at midrapidity shall be proportional to

exp~2mt/T*
!. If a2!b2, we haveT

*
.TG(m) as follows

from Eq. ~66!.
~v! If DhT!Dh, we have the leading order LCMS result

RL.t0DhT.t0AT0 /Mt, and the rapidity width of the IMD
shall be dominated by the geometrical scale,Dy2.Dh2.

~vi! If DtT!Dt, the thermal duration shall be measured
by Rout

2 2Rside
2 .b t

2Dt T
2.b t

2t 0
2T0/(d

2Mt). For large values
of the transverse mass, the model thus shall feature a d
namically generated vanishing duration parameter, which h
a specific transverse mass dependence. The invariant m
mentum distribution shall be influenced only through the
Dt* /Dt.1/Amt factor inV*

.
Some combinations of cases~i!–~vi!, are especially inter-

esting, such as the following.
~vii ! If all the finite geometrical source sizesRG , Dh and

Dt are large compared to the corresponding thermal leng
scales, we have, in the LCMS,

Dt
*
2 .

t0
2

d2
T0
Mt

, ~77!

RL
2.t0

2 T0
Mt

, ~78!

Rside
2 .

t0
2

a21b2
T0
Mt

. ~79!

Thus, if d2@a21b2'1, the model may featurea dynami-
cally generated vanishing duration parameter. In this case,
the modelpredicts an Mt scaling for the duration parameter
as

Dt
*
2 }

1

Mt
. ~80!

This prediction could be checked experimentally if the erro
bars of the measured radius parameters were decreased
such a level that the difference between the out and sid
radius parameters would be significant.

Alternatively, if the vanishing duration parameter of the
BECF is generated due to a very fast hadronization proce
as discussed in Ref.@25#, then one has

Dt
*
2 .Dt2}const; ~81!

i.e., in this case the duration parameter becomes independ
of the transverse mass.

If the finite source sizes are large compared to the therm
length scales and if we also havea21b2'1, one obtains an
Mt scaling for the parameters of the BECF,

Rside
2 .Rout

2 .RL
2.t0

2 T0
Mt

, ~82!

valid for bt!1/b.
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Note that this relation is independent of the particle typ
and has been observed in the recent NA44 data in S1Pb
reactions at CERN SPS@3#. Preliminary NA49 data for
Pb1Pb at CERN SPS are also compatible with this scali
law @27#. This Mt scaling may be valid to arbitrarily large
transverse masses withbt'1 if b!1. The lower limit of the
validity of this relation is given by the applicability of the
saddle-point method, Eqs.~73! and~74!. To generate a van-
ishing difference between the side and out radii and anMt
scaling for the BECF radii simultaneously, the paramete
have to satisfy the inequalities~73! and ~74! as well as
b!a21b2'1!d2, i.e., the cooling should be the fastes
process, the next dominant process within this phenome
logical picture has to be the development of the transve
temperature profile, and finally the transverse flow shall
relatively weak. If the temporal changes of the temperatu
are not intensive enough, then a small lifetime parameter
also be obtained by a fast hadronization and simultane
freeze-out as discussed in Ref.@25# with Dt'0.

We would like to emphasize that there area number of
conditionsin the model which need to be satisfied simulta
neously to get the scaling behavior, which is supported
nine NA44 data points~three for kaons and six for pions@3#!.
One has to wait forfuture data pointsto learn more about the
experimental status of the scaling. The model presented
this papermay describe more complextransverse momentum
dependences of the parameters of the Bose-Einstein corr
tion function, too; theMt scaling is only one of its virtues in
a specific limiting case. However, it is rather difficult to ge
a limiting case withRL'Rside'Rout}1/AMt in analytically
solvable models. Such a behavior is related to the cylindri
symmetry of the emission function.

Thus the symmetry of the BECF in the LCMS can b
considered as a strong indication for athree-dimensionally
expanding, cylindrically symmetricsource, possibly with a
transverse and temporal temperature profile. The LCM
frame is selected if the mean emission point or saddle po
stays close to the symmetry axis even for particles with
large transverse mass,r x,s(mt)!t0, and if the finite longitu-
dinal size introduces only small difference between t
LCMS and LSPS frames, i.e.,uy2y0u!11Dh2(mt/T021).
In this case considered in Sec. VI the emission function
cylindrically symmetric and so the BECF is symmetric in th
LCMS of the pair~andnot in the center of mass system o
the pair@34#!.

~viii ! It is interesting to investigate the other limiting cas
when RT@RG , DhT@Dh and DtT@Dt by combining the
limiting cases~i!–~iii !. In this case one obtains

RL
2.t0

2Dh25RL,G
2 , Rside

2 .RG
2 , Rout

2 .RG
2 1b t

2Dt2,
~83!

Dy2~mt!.DhT
25

T0
mt

, T*5T0 . ~84!

Thus, if the thermal length scales are larger than the g
metrical sizes in all directions, the BECF measurement d
termines the geometrical sizes properly, and thept and the
dn/dy distributions are determined by the temperature of t
source. In this case the momentum distribution reads as
e
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N1~p!}mtcosh~y2y0!expS 2
mtcosh~y2y0!

T0
D , ~85!

which is a thermal distribution for a static source located a
the midrapidityy0.

Thus, two length scales are presentin all the three prin-
cipal directions of three-dimensionally expanding systems
The BECF radius parameters are dominated by theshorterof
the thermal and geometrical length scales. However, the r
pidity width of the d2N/dy/dmt

2 distribution,Dy2(mt), is
the quadratic sum of the geometrical and the thermal leng
scales; thus, it is dominated by thelonger of the two. Simi-
larly, the effective temperature is dominated by thehigherof
the two temperature scales forf'1 according to Eq.~66!.
The effective temperature of themt distribution is decreasing
in the target and projectile rapidity region in this class o
analytically solvable models.

This study is a generalization of the basic ideas presente
and illustrated in Ref. @13# for the case of three-
dimensionally expanding, cylindrically expanding, cylindri-
cally symmetric finite systems with a scaling longitudinal
flow, weak transverse flow, and a transverse and tempor
temperature profile.

X. SUMMARY

A general formulation is presented for the two-particle
Bose-Einstein correlation function for cylindrically symmet-
ric systems undergoing collective hydrodynamic expansion
cf. Eqs.~15!, ~18!, ~21!, and ~22!. Note that these relations
were shown to be valid for certain limited classes of emis
sion functions. The resulting class of Bose-Einstein correla
tion functions, however, includes non-Gaussian correlatio
functions too. The case of Gaussian correlation functions
studied in detail and the radius parameters are expressed
the lab, LCMS, and LSPS systems, where the functiona
form of the correlation functions becomes more and mor
simplified. The cross-term generating hyperbolic mixing
angle is identified with the value of theh variable of the
saddle point in the considered frame.

A class of Gaussian models is introduced which in som
regions of the model parameters may obey anMt scaling for
the side, out, and longitudinal radius parameters. A vanish-
ing effective duration of the particle emission may be gener
ated by the temporal changes of the local temperature duri
the evaporation. The model predicts anMt scaling also for
the duration parameterin this limiting case.

Finally, we stress thatboth the invariant momentum dis-
tribution and the Bose-Einstein correlation function may
carry only partial information about the phase-space distr
bution of particle emission. However, theirsimultaneous
analysissheds more light on the dynamics and the geometr
cal source-sizes.

Note added in proof. We would like to draw attention to a
recent paper by T. Cso¨rgő, P. Lévai, and B. Lörstad~Report
No. hep-ph/9603373, to be published in Acta Physica Slo
vaca!, where the model and the analytical approximation
presented above were subjected to a careful numerical stu
in various domains of the parameter space and the resu
were shown in 16 figures, completed after this manuscrip
had been submitted for publication. For graphical illustration
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of the main ideas presented in the present article, we rec
mend another paper: T. Cso¨rgő and B. Lörstad, Report No.
hep-ph/9511404, inProceedings of the XXVth Internation
Symposium on Multiparticle Dynamics, Stara Lesna, Slova
kia, 1995 edited by L. Sandoret al. ~World Scientific, Sin-
gapore, 1996!.
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APPENDIX

In this appendix we give a simple example when
Fourier-transformed emission function exists, but the Ga
ian version of the saddle-point method is not applicable.
us consider the one-dimensional Lorentzian distribut
function

S~r !5
1

pR

1

~11r 2/R2!
. ~A1!

Herer is a real variable~in one dimension!. The correspond
ing correlation function is

C~q!511uS̃~q!u2, ~A2!

with
om-

l
-

.
nd

i-
nd
.

-
A

he
ss-
Let
ion

S̃~q!5E
2`

`

dr S~r !exp~2 iqr !, ~A3!

which yields

C~q!511exp~22uquR!. ~A4!

This function is not analytic atq50 because it depends on
the modulus ofq, and for positive values ofq its Taylor
expansion starts with a linear term. This is to be contras
with the results for the saddle-point method. If the Gaussi
version of the saddle-point method is applicable, thenS̃(q)
can be expanded into a Taylor series aroundq50 as

S̃~q!511 i ^r &q2^r 2&q2/21••• . ~A5!

Here the average of a function of variabler is defined as

^ f ~r !&5E
2`

`

dr f ~r !S~r !, ~A6!

and the two-particle correlation function can be written as

C~q!'22q2RG
2'11exp~2q2RG

2 !, ~A7!

with

RG
2 5^r 2&2^r &2. ~A8!

Since for the considered functionRG
2 5`, the Gaussian

saddle-point method is not applicable. Still, the Fourie
transformed emission function and the BECF exist, as giv
by Eq. ~A4!.

Cases similar to this are characterized by non-Gauss
correlation functions@20#. Similar examples can be found
among multivariate distributions, too.
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@18# T. Csörgő, B. Lörstad, and J. Zima´nyi, Z. Phys. C~to be pub-
lished!; hep-ph/9411307.
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@25# T. Csörgő and L. P. Csernai, Phys. Lett. B333, 494 ~1994!.
@26# F. Cooper and G. Frye, Phys. Rev. D10, 186 ~1974!.
@27# T. Alber et al., NA49 Collaboration, Nucl. Phys.A590, 453c

~1995!.
@28# V. A. Averchenkov, A. N. Makhlin, and Yu. M. Sinyukov,

Yad. Phys.46, 1525 ~1987! @Sov. J. Nucl. Phys.46, 905
~1987!#.
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