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There argwo types of scalegresent simultaneously in the spacelike as well as in the timelike directions in
a model class describing a cylindrically symmetric, finite, three-dimensionally expanding boson source. One
type of scale is related to the finite lifetime or geometrical size of the system, and the other type is governed
by the rate of change of the local momentum distribution in the considered temporal or spatial direction. The
parameters of the Bose-Einstein correlation function may obey @caling, as observed it8b and Pb-Pb
reactions at CERN SPS. Thid, scaling may imply that the Bose-Einstein correlation functions view only a
small part of a large and expanding system. The full sizes of the expanding system at the last interaction are
shown to be measurable with the help of the invariant momentum distribution of the emitted particles. A
vanishing duration parameter can also be generated, with a spdgifiependence, in the considered model
class.[S0556-28186)01208-3

PACS numbe(s): 12.38.Mh, 25.75tr, 24.60—k, 24.85+p

[. INTRODUCTION to be equal within the experimental errordlthough this
might be just a coincidence, in this work we show thath
The method of intensity interferometry has recently be-a scaling behavigrvalid in a certaimm, interval,may also be

come a widely used tool for determining the space-time pic2 natural consequence of a cylindrically symmetric three-
ture of high-energy heavy-ion collisions. Originally, the dimensional hydrodynamic expansibm this case the local

method was inventefil] to measure angular diameters of temperature, the gradients of the temperature distribution,

distant stars. The objects under study were approximatel Ir|1dhthe flow grlalziiegts generateh“thermal” rl}enlgth Iscales in

. ' . oo these spacelike directions. Changes in the local tempera-
star::c rin?hthdei Iengtlr; Ziak:: astrronom|ca[.tirl: prr:ncilplf,riﬂli ure during the particle emission induce a temporal scale, the
same method 1S applied to measure space-time charactenstigs, o1 g ration. Recently, it became clear that the param-
of hlgh-_energy heavy-_lon_co_lllsmns, where the PZEJeCtS Ar€,1ors of the BECE-s measure thengths of homogeneity
expanding systems, with I|fet|m§?50f afew fm/l0 " se0 g 19_13 which in turn were shown to be expressible in
and length scales of a few (10" m). . , _ terms of the geometrical and the thermal lendit,9,19.
_ Inthe case of high-energy heavy-ion collisions, intensity \ye shall derive here general relationships among the
interferometry is pursued to infer the equation of state angynctional forms of the BECE-as given in the laboratory
identify the possible formation of a transient quark-gluon(jap) frame, the LCMS frame, and the longitudinal saddle

plasma state from a determination of the freeze-out hyperpoint system(LSP9 in which the functional form of the
surface, as scanned by the Bose-Einstein correlation functioBECFs turns out to be the simplest one.

(BECP); see, e.g., the contributions of the NA35, NA44, and A new class of analytically solvable models is introduced
WAB8O Collaborations in Ref§2,3]. For an introduction and thereafter, describing a three-dimensionally expanding, cy-

review on Bose-Einstein correlations, see Rffs5]. Non-  lindrically symmetric system for which the geometrical sizes
trivial effects arising from correlations among space-timeand the duration of the particle emission are finite. In this
and momentum-space variables were studied in [éf. class of the models, there are two length scales present in all

The recenf?S+°"Pb reactions at 208 GeV laboratory  directions, including the temporal one. The BECF is found to
bombarding energy resulted in a nonexpected, symmetricdle dominated by the shorter, while the momentum distribu-
BECF-s[3] if measured in the the longitudinally comoving tion by the longer of these scales. The interplay between the
system(LCMS) of the boson pair§7]. The longitudinal ra- finite “geometrical scales” of the boson-emitting source and
dius parameter was shown to measure a length s&le, the finite “thermal scales” shall be considered in detail.
«1/\/my, introduced in Ref[8] for an infinite, longitudinally
expanding Bjorken tube. Thside radius parameter was
thought to measure the geometrical radius andotlitecom- Many earlier works discussed the, dependences of the radii
ponent to be sensitive to the duration of the particle freezeparameters, but they did not consider the possible equality of and
out times[7,9]. All radius component parameters turned out simultaneousm, scaling for the transverse radius parameters. We

recommend the paper by U. A. Wiedemann, P. Scotto, and U.
Heinz, Phys. Rev. G3, 918(1996, for an up-to-date list of refer-
*Electronic address: csorgo@sunserv.kfki.hu, bengt@quark.lu.sences on this specific topic.
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Il. FORMALISM particle BECF depends on the off-shell emission function,

Both the momentum spectra and the BECF-s are preWh'Ch we approximate by the off-shell continuation of the

: . : . : . on-shell emission functions.
tsrg:igb]%c: n|1r;1 Itir;; atﬁghgcliz (\évlégir;e:: ;Tgﬁg?endf?rr(r)nn?lItsf[?eﬂ{\?\]/;)-IEOdy A similar but not identical approximation used by several
Wigner function assuming chaotic particle emission. In theauthors_|s {0 replac(Ak;K) by S(Ak;K") where the off
final expression the time derivative of tmaonrelativiétio shell K is changed to an on shell’. The latter mean mo-
\ pression. . ; " mentum is defined to be on shell #$°=m?—K'? where
Wigner function is approximatel¥,14] by a classical emis-

. . ) S i . K'=K=(p;+p,)/2. The differences between these two ap-
sion functionS(x; p), WEICh |ithe probability t'hat_a boson is proximation schemes are Gi(Ak%/m?). The above two ap-
produced at a givex=(t,r)=(t,r,,r,,r,) point in space-

time with four-momentump=(E.p)=(E.p,.p.p,). The proximation schemes coincide in thé?—0 limit where the
- [ - 'Mx1 My Mz)-

Co. . / . Bose-Einstein correlations are maximal. Since we shall make
emission function has been related to the covariant Wigner

transform of the density matrix of pion sources in Refs use of theAI_<-K=O constraint which is exact only if thig

[14,5 and most recently in Ref15], where the relation of 'four—vgctor is 9ff s_heII, we s.hall approximate thg off—.shell
o ) : ' ; emission function in Eq(5) with the off-shell continuation

Wigner-function formalism to the covariant current formal- of the on-shell emission function

ism [16] has also been clarified. THeff-shell) two-particle '

Wigner functions shall be approximated by the off-shell con-

tinuation of the on-shell Wigner-functionsl4,13,9. The

: R 2_pE2 2 .. . . .
particle is on the mass shelh”=E“—p®. Please note the  \e model the emission function in terms of the longitu-
difference between, indicating a four-vector in space-time, dinally boost-invariant variables. Thgongitudina) proper
and the subscript sized which indexes a direction in coor- time is 7=+i2—r2. the space-time  rapidity s

z

dinzte sp]:aul:e. i function is the Fourier-t ‘ q 7=0.5In[(t+r,)/(t—r,)], the transverse mass isn

emisslijc?r? ;’ungﬁg'n'ary unction 15 the rouner-ransiormed _ /E2—-p7 and the momentum-space rapidity reads as
y=0.5In[(E+p,)/(E—p,)]. In the transverse direction, the

transverse radius,= \/rXZJrry2 is introduced. We have

IIl. GENERAL CONSIDERATIONS

"s'(Ak;K):f d*x S(x;K)exp(iAk-x), )
t=7cosk7n), r,=7sinh 7). (6)
where For systems undergoing a boost-invariant longitudinal ex-
pansion, the emission function may be a function of boost-
AK=py—p,, K= P1tP2 @ invariant variables only. These arery, r,, py, p,, and
' 2 n—Yy. However, for finite systems the exact longitudinal

boost invariance cannot be achieved and the emission func-
and Ak-x stands for the inner product of the four-vectors. tion becomes a function of—y, too, wherey, stands for the
Then the one-particle inclusive invariant momentum distri-midrapidity. Approximate boost invariance is recovered in

bution (IMD) of the emitted particles\;(p) is given by the midrapidity region only, where terms proportional to
17—Yo can be neglected. Thus for finite systems undergoing a
~ ] E do boost-invariant longitudinal expansion the emission function
Ni(p)=S(ak=0; K=p)= O dp’ 3 can be given in terms of these variables as
where oy, is the total inelastic cross section. This IMD is S(x;K)d*x=8, (7,7.1x.1y)d7 o dyp drcdry.  (7)

normaliz he mean multiplici . .
ormalized to the mean multiplicin) as Here we introduced the constant in front of d» due to

dp dimensional reasons and included the Jacobian frondtke
— N =(n). 4 to thedr d# dr, dr, variables into the emission function
= Nu(p) @ y variables in ,
S, (7,m,1y,ry). The subscript indicates that the functional
. i form of the emission function is changed with the change of
In the present paper effects arising from the final-state Cout'he variables. Further, dependences on the mean momentum
lomb and Yukawa interactions shall be neglected. The tWOR o5 well as on the ﬁwid rapidity, are also indicated with

particle BECF can be calculated from the emission functiory, subscript. The effective, momentum-dependent param-
with the help of the well-established approximation eters of the emission functios, (7,7.1.r,) shall also be

5 ~ indexed with* in the forthcoming. The subscriptstands for
C(AKK) = (n) N2(P1,P2) 14 |§£Ak*K)| the point where the emission function is maxinfele as-
' (n(n—1)) N;(p1)N1(py) |S(0;K)|? ' sume thatS(x;K) has only one maximum for any values of
(5) K]. We do not assume at this point whether the function
—In S(x;K) is expandable into émultivariate Taylor series
utilized also in Ref[13]; see Ref[14] for further details. [12] around its unique minimum at the saddle poinbr not;
The corrections to this expression are known to be as smaitherely, we assume that the Fourier-transforn@dk;K)
as 4-59%12]. Note that among the eight components\ddf ~ exists. See the Appendix for a clarifying_example. We sup-
andK only six are independent due to the two constraintspose, however, that the Fourier-transforngd k; K) can be
p2=p3=m? These constraints can be formulated alterna-evaluated in terms of the and » variables in the smalhk
tively as Ak-K=0 and K?=m?—Ak®/4. Thus the two- region relevant for the analysis of the BECF-s. This is pos-
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sible if the region around,(K), where the Fourier integrals From these relations it follows that
pick up the dominant contribution from, is sufficiently small

so that within this region the and » dependences dfandr, C(AKK)=1 |AS'(Ak;K)|2
can be linearized as K)=1+ —=——"—-
|S(0;K)/?
t=7 cos +(n— sin , 8 ~
T r[nS] (77 TIS)TS H:775] ( ) |S*(QT=Q7,:Qout7Qside)|2
. =1+ ——= ; (15
r,= 7 sini ns]+ (n— ns) 75 cosh 7], 9 |S*(010101Q|

with negligible second-order corrections. This condition isNote that this expression contains a four-dimensional
fulfilled if the characteristic sizedr, andA of the consid-  Fourier-transformed function, and among the four variables
ered region around (K) satisfiedA 72> <72 and A 72 <1. Q- Q, Qou andQgi4e ONly three are independent due to
The principal directions for the decomposition of the rela-Ed. (11). Note also that at this point the BECF may have a
tive momentum at a given value of the mean four-non-Gaussian structure, and its dependence on its variables
momentumK are given as follow§17]: The out direction does not factorize. The main limitation of the last approxi-
is parallel to the component &, which is perpendicular to mMation in Eq.(15) is that it is valid only for systems with
the beam, indexed with “out”, théongitudinal or long di-  small lengths of homogeneitp, 7 < 72 andA 5% <1. As we
rection is parallel to the beam axis (this component of the shall see in the forthcoming, this gives a lower limitnm for
relative momentum is indexed with), and the remaining the applicability of the simple analytic results for a certain
direction orthogonal to botlongitudinalandoutis called the  class of emission functions.
sidedirection, indexed with “side”. Thus the mean and the

relative momenta are decomposedas(K,,K,,:,0K,) and IV. CORE-HALO MODEL
Ak=(Qo,QoutQside:QL)- . . .
Since the particles are on mass shell, we have If the system under consideration consists @bae char-
acterized by a hydrodynamic expansion and small regions of
0=K-Ak=KqQop— KouQou—K.Q . (10 homogeneity and a surroundingalo of long-lived reso-
nances, then the above general expression can be further
Thus the energy differenc®, can be expressed as evaluated if the halo is characterized by sufficiently large
regions of homogeneity. Indeed, the long-lived resonances
Qo= BouQoutt BLQL (1)  may decay in a large volume proportional to their lifetime,

and the decay products are emitted with a given momentum

where we have introduced the longitudinal and the outwar@jistribution from the whole volume of the decay.
component of the velocity of the pai =K, /K, and The key point is the following: Let us consider an en-
Bou=KoulKo, respectively. These relations become furthersemble of long-lived resonances with similar momentum,
simplified in the LCMS, the longitudinally comoving system, emitted from a given small volume of the core. The momen-
introduced first in Ref[7]. The LCMS is the frame where tum distribution of thedecay product®f these resonances
K =0 and thus3_=0. We also haveg, =6, wheret stands  will be similar to each other, independently of the approxi-
for transverse, e.g.f;= \/rx2+ ry2 and m,=\m?+ pX2+ py2. mate position of the decay. Now the approximate position of
Note that the relatiorB, .~ B, is independent of the longitu- the decay is randomly distributed along the line of the reso-
dinal boosts, but both sides of this equation transform likenance propagation with the weigR(t)e exp(—mod 1ed
1K,. E,9- Thus the decay products will be emitted with the same

Let us express the Fourier integrals in terms of end  momentum distribution from a volume which is elongated
n variables in the laboratory reference frafffeb), utilizing  along the line of resonance propagation, given by
Egs.(8) and (9). The results in the LCMS can be obtained Vgeca=Ag|Pred/(Mied red, Where A, is the initial transverse
from the more complicated results in the lab frame by thesize of the surface through which the resonances are emitted
substitutiong, =0 andB,,=B; . To simplify the notation, let with a momentunp,..approximately at the time of the decay

us rewrite of the core,rs.
Thus the halo of long-lived resonances is characterized by
Ak-X=Qot— Qouf x— Qsiad'y — QL2 large regions of homogeneitfin the case of the pionic halo,

P _ B _ the dominant long-lived resonances arez, 7', andK?®, all
=Q:7= Qouf x~ Qsiad y = Qy7s( 7= 7). (12) with lifetimes 1I',.c greater than 20 fna/) If the emission
function is a sum of the emission function of the core and the

utilizing the linearized equation®) and(9). We have intro- halo

duced the coefficients of the and ther(n— n) as new
variables given by

Q= Qocost 75] = Qv sint{ 7] and the Fourier-transformed emission function of the halo is

=(BQout BLQL)COSH 7] —Q, sinH 5s], (13  sufficiently narrow to vanish at the finite resoluti@y,;, of
the relative momentumAk in a given experiment, then one

Q,=Qcosti 7]~ Qo it 7] can show{ 18] that
=Q_cosh 7] = (BiQourt BLQL)SINH 75].  (14) N1(p)=Nyc(p)+Nyp(p), (17)

S(X;K):S*,C(Trﬂarx!ry)+Sh(X;K)a (16)
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S 0., Q)2 If the 1, (ry,ry) function is symmetric for rotations in the
C(AK;K)=1+N\, | *’C(gT Qy Qou ?S'dm , (18  (ry.ry) plane around its maximum poin s, then one may
S+ .(0,0,0,0] introduceQ, = \/QZ 4o+ Q2 to find
whereNy;(p) indicates the number of particles emitted from A 2IG 2 2
the halo or from the core fdr=h,c and the effective inter- C(AK;K)=1+\, | ’L(QT)| 2| ~*(Q”)2|~| *(Qt2)|
cept parameter [H. (0)|%|G (0)|*[1,.(0)]
2
N1c(P) (19) Such factorization around the saddle point happens, e.g., for

N =N (K=p;Qpin) =

N1(p) the new class of analytically solvable models if certain con-
ditions are satisfied, as discussed in the subsequent part.
is the square of the ratio of the number of particles emitted=rom the above expression it is clear that for this type of
from the core to the number of all the emitted particles withmodel the dependence of the BECF on the components of
a given momentunp. This effective intercept parameter the relative momentum can be diagonalized with an appro-
arises due to the finite relative momentum resolution, whictpriate choice of the three independent components of the
is typically Q=10 MeV in current heavy-ion experiments relative momentum. Note that the assumed existence of the
[2,3], and the comparably large region of homogeneity charFourier-transformed distribution functions is a weaker con-
acterizing the halo part of the system. See R&8] and dition than the assumption of the analytic form of the
references therein for a more complete account on the origiRFourier-transformed function; see the Appendix for an ex-
of this parameteh,, . ample. Another example was given, e.g., in RéB] for a

We would like to raise a warning flag here: The volume,H () distribution for whichH(Q,) is not analytic function at
which the decay products of the long-lived resonances of &.=0 and|H(Q,)|? does not start with a quadratic term. In
given momentum are emitted from, is large only if the de-mathematical statistics it is well known that the Fourier-
caying resonances haye|/(m.de9>1 fm/c. This in turn  transformed stable distributions are not analyti®at0 [20].
implies that the above simple picture may need further corOn the other hand, there are many physically interesting

rections for very lowpt pions at rapidityy=0. Gaussian models which correspond to the multivariate
There is a gap in the lifetime distribution of abundantsecond-order Taylor expansion of the above general results,
hadronic resonances: I1~1.3 fmk, 1T, =0.56 fmk, i.e.,, the analytic form of the corresponding Fourier-

1M ,=1.6 fmk, and 1I'y, =3.9 fmk, which lifetimes are of transformed function. The out-longitudinal cross tefrh?]

the same order of magnitude as the timescales for rescattenas been recently discovered also in this context. To study
ing at the time of the last hadronic interactions. These lifethe properties of the BECF, let us apply a Gaussian approxi-
times are also all a factor of 5—10 shorter than the lifetime oimation to the effective distribution functions as

the w meson, which is the long-lived resonance with shortest

lifetime.2 Thus the decay product of the short-lived reso- H, (r)ocex — (7— 75)%/(2A75)], 23
nances will mainly contribute to the core, which is resolvable )
by BEC measurements, while the decay products of long- G, (mcexd — (n—1s)?/(2A73)], (24

lived hadronic resonances will mainly belong to the halo,
redefined alternatively as the part of the emission function I*(rx,ry)ocexp[—[(rx—rxvs)2+(ry—ryys)z]/(ZRi)}.
which is not resolvable in a given Bose-Einstein measure- (25

ment.
Apart from the momentum-dependent paramefets, Az, ,

andR, , the mean emission point may also be momentum
dependent in the above expressiegs 75(K), 7= 1K),
If the emission function of the core can be factorized, xs='xs(K) andrys=ry (K). For the sake of simplicity
we do not specify the normalization constants in Ezp)
Se (1T =H (DG, (), (1) (20) since they cancel from the BECF, which is given by
%, v ’ * * * ’ ’

V. CLASSES OF SIMPLE CORE FUNCTIONS

. . L K)y=1+ - Q%A — Q%72 A 72 —Q°R?).
where H, (7) stands for the effective emission function in ClAKK)=1HA, exp(~Q7A7, — QA 7, —Qt *()26)
proper timeG, (#) stands for the effective emission function
in space-time rapidity, antj, (r,,ry) stands for the effective This is a diagonal form of the BEC&for which the factor-
emission function in the transverse directions, then the eXzation property, Eq(20), and the Gaussian approximation

pression for the BECF can be further simplified as for the core, Eqs(23)—(25), are simultaneously satisfied. In
the present form of the BECF, there are no cross terms
|ﬁ*(QT)|2|6*(QT,)lle*(Qout,Qside)|2 among the chosen variables. Now, let us rewrite this form

C(AKK)=1+\, using the standard HBT coordinate systEiid] to find

|H, (0)[2G, (0)]4[1, (0,0
C(AK;K) =14\, exp(—RZ;Q%¢ RoQau— RZQL
- 2Rgut,LQothL)1 (27)

Note that with a resolution of typicall®,,,=10 MeV, the reso- 5 5
nancew will be considered as long-lived resonarjds]. Rsige= R » (28)
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R2,=R2+6R2,, (290  as follows from Eqs(30)—(32). Introducing the new vgri—
ablesQp= BiQoutBLQL and Q= Q2+ Q% We obtain
SR2 = B(coSK[ 7] A7 + sint?[ 7] 72A 72), (30) for the correlation function
C(AK;K)=1+\, exp—A72Q5— 2A 72 Q7 —R2QD).
R?= (B sinH 7] costi ns])*72A 7 (39)
+ (B, cosh 7] —sin 7])2A 72, (31) From this relationship we also see tH@g§(LSP9=Q, and

QL(LSPS=Q,; cf. Eq.(26).
5 _ 5 Let us study an expansion in terms ef|Y —y,|/Axn,
RoutL = Bt coshi ns](BL cosh ns] —sint ns]) A7 whereY is the rapidity belonging t¢& the mean momentum
. . 20 2 of the pair andA# is the geometrical size of the expandin
By sint 7s)(By sinfl 7] = cosh 7s]) 75A 75 . systemp in the 77s;pace-f?me rapidity variable, sF;tisfyingg
(32 An>An,. It is obvious that in the lab frame;2°=Y
+0(e€), since in thee—0 limit we recover boost invariance
This result is nonperturbative in terms of the varialeand  and the particle emission must be centered around the only
is valid in any frame. The main limitations of this result are scale: the rapidity of the pair. Similarly, we see that
the assumed Gaussian model clfsgs.(23)—(25] and the  5:“S=0+0(e). It follows that the cross term and the

assumed smallness of the emission region arou(l) so  crossing of temporal and longitudinal information in the lab
thatt andr, dependences could be linearized in terms-of frame comprise a leading-order effect,

and . .
The above equations simplify a lot in the LCMS system,  ORu= Bt(cos[Y]A 72 +sintP[Y]75A 75) +O(e),

where 8, =0: (40
. ZA 2

SRGu= BE(cOSH] ns]A 7L +sin[ ] 2An%),  (33) Rgzcz)z_'&+o(e), (41)
R? = cosH[ ns] 72A 75 +sint?[ 5] A 7%, (34) SinH Y]

Rout= "Bt cosfiy] sA7 tO(e). (42

R3,u =~ B SinH 75]cos nsl(A 72 + 724 73). - _
(35)  On the other hand, the mixing of the temporal and longitu-
dinal information is only next-to leading order in the LCMS
The lifetime informationA 72 and the invariant measure of according to Eq(35), i.e., Rg, (LCMS)=0+0(e). How-
the longitudinal size along the,=const hyperbolar2A 52,  ever, if the|Y—yo|<A# condition is not satisfied, the out-
appear in a mixed form in thgutr R2 and theRgutL source long cross term might be .Iarge even in the LCMS, as has
parameters even in the LCMS frame. The amount of thesB®en demonstrated numerically in REZ1].

mixings is controlled by the value of-°MS. This relation- The cross-term generating mixing angje vanishes ex-
ship clarifies the physical significansce of thﬁgCMS the actly in the LSPS frame, becomes a small parameter in the

: - ; ;S . LCMS if |Y—y,|/A<1, and becomes leading order in any
isnptar::;-ilg\j srirr);jr:?é-o[g:"es ?;atﬁ;nclJroms(s)iter;?nen;ls:lrggrf}un;]: t'_onframe significantly different from the LSPS or LCMS. Thus
S 77s D generating Ny \ve confirm the recent findinfR2] that the out-longitudinal
perbolic mixing angléo_r cy!lndrlcally symmetric, f|n.|te SYS® ' cross term can be diagonalized away if one finds(thens-
tems _und_ergomg longitudinal eXpE‘QjS'O” and sa_t|_sfy|ng MSerse mass dependetdngitudinal rest frame of the source.
factorization property, Eq20). If #s~""=0, no mixing of Note that cylindrical symmetry around the center
temporal and longitudinal components appear in the LCMS

A of the particle emission as assumed by E@&3)—(25)
In some limited sense one may cal the cross-term gener- s 5 gronger requirement than the cylindrical symmetry
ating hyperbolic mixing angle in any frame, becausegi#0

) . . 4 of the emission function around the beam axis. This latter
in a certain frame, then cross terms can be diagonalized AW mmetry implies only that both the requirements

as follows. . _ .
S(t,ry,ry,r, Ko, Koyt KL) = St — 1y, 1y, 1, Ko, — Koy, K
Let us define the LSPS, the longitudinal saddle-point sysagd “Qtr ;0 rOl'HKO "})< t |(<L):SX(t o 'KSUtK "t)

_ . . . ixalyslzy yNout» b yilzs yNouts
tem, to be the frame wherg=0. Sincezis afunction oKy should be simultaneously fulfilled. Thus cylindrical
in a fixed frame,ns= 75(K), the LSPS frame may depend on gy mmetry around the beam axis is compatible with a differ-
K'(e.g., on transverse mass of the pain the LSPS frame ot Gaussian radius in the side and out directions,
the out-long cross term and the mixing of the temporal an

timelike information can be diagonalized. We have, in the [ry—rys(K)1? r§
LSPS, l*(rx,ry)xexrﬂ<— 2RE, 2R, (43
OR3,=BZAT2, (36)  with R, ,#R, ,. Cylindrical symmetry around the beam
axis implies only that r, (Ko,Kou,Kp)=—ry (Ko,
RE: TﬁA 77,2< +BEA Ti: (37) —Kou:K() andry, ((K)=0. In the low transverse momentum

limit, when K,,=0, the relationsr, ¢(K,,~=0)=0 and
Re x(Kou=0)=R, (Ko,=0) also follow from cylindrical
RouL=BiBLATS, (38 symmetry around the beam axis. f, ,#R, , at a given
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nonvanishing value of the mean transverse momenyn method which is nonperturbative in terms gf, but pertur-
the generalized version of Eq6) and (39) for the BECF  bative in terms ofA 2 andA72/72.

reads as Let us study the properties of an analytically solvable

) model class in the subsequent parts.
C(Ak;K)=1+\, expg(—AT2Q? A?‘]*TSQ ~-R? xQout

R ,Qéuo- (44) VI. NEW CLASS
» OF ANALYTICALLY SOLVABLE MODELS
In such a case, Eq§28) and (29) are also modified as ) o ) .
For central heavy-ion collisions at high energies the beam

R24=R2 o (45  orr, axis becomes a symmetry axis. Since the initial state of
the reaction is axially symmetric and the equations of motion
R =RZ (+ 0R%,: (46)  do not break this pattern, the final state must be axially sym-

metric too. However, in order to generate the thermal length
This implies that the difference between the out and sidgcales in the transverse directions, the flow field must be
radius parameters isot restrictedby cylindrical symmetry  eijther three dimensional or the temperature distribution must
around the beam axis to positive values only, silRg;  have significant gradients in the transverse directions. Fur-

R2,=O0R%,+R2 ,—R2 .y Which can also be negative if thermore, the local temperature may either increase during
Ry .y is sufﬁmently Iarge[23] However, cylindrical symme- the duration of the particle emission because of the reheating
try does imply thalR, ;= Rgjge in the K,,—0 limit. of the system caused by the hadronizaf{ia4] and/or inten-

Up to this point, we have reviewed the properties ofsive rescattering processes or decrease because of the expan-
BECF=s without reference to any particular model, for somesion and the emission of the most energetic particles from
more and more limited classes of simple emission functionsthe interaction region. An example for such a time-dependent
We have obtained certain model-independent relatj@hs temperature was given, e.g., by the solid line of Fig. 1. in
Egs. (15), (18), and (22)] which are valid for some non- Ref.[25].

Gaussian as well as Gaussian source functions. We have We study the following model emission function for high-
studied the relations between source parameters with @nergy heavy-ion reactions:

K-u(x) M(X)
T T

Here g is the degeneracy factor, the prefactoy cosi{n—y) corresponds to the flux of the particles through=aconst
hypersurface according to the Cooper-Frye forni@@] and the four-velocityu(x) is

2, .2\ (12
1+b? rXHV) )

S(x;K) d*x= (2917)3 m, cosh( 7—y) ex;{ - )H(r) dr 7o dz dry dry. (47)

2 (112 r r
1+b2x—7_2—y) : bT—Z, bT—Z, sini 7]
0

u(x)= (cosr[ 7]

;0
2 2 2 2
ro+r r r ro+r
~|coshi5]| 1+b%2 =—=Y|, b=, b=, sin{y]| 1+b%2 =~ ) (48)
2713 70 To 2715

which describes a scaling longitudinal flow field mergedThe parameter®; and A» control the density distribution
with a linear transverse flow profile. The transverse flow iswith finite geometrical sizes. The proper-time distribution of
assumed to be nonrelativistic in the region where there is ¢he last interaction points is assumed to have the following
significant contribution to particle production. The local tem-simple form:

perature distributiorT(x) at the last interaction points is as-
sumed to have the form 1 ) )
H(T)—mexq (17— 79) [(2A T )] (52

2 2
xTr ( - O)
1+a? Zsz) ( 1+d? T) (49 The parameteAr stands for the width of the freeze-out hy-
0 0 persurface distribution; i.e., the emission is from a layer of
hypersurfaces which tends to an infinitely narrow hypersur-
and the local rest density distribution is controlled by theface in theAr—0 limit.
chemical potentiak(x) for which we have the ansatz The emission function, specified by E¢47)—(51), is not
invariant to boosts, neither in the longitudinal nor in the
2 2 transverse directions. Although the flow profile, E48),
M Ho_f +ry_ (7~ Yo) (500 was assumed to be invariant under longitudinal boosts, the
T(x) To 2RE  2Ay finite longitudinal size which enters the model through the
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chemical potential in Eq(50) breaks the longitudinal boost case. We have studid@9] the model clasa#0, b#0, and

invariance of the emission functiofNote that the longitudi- d=0, which we extend here to thee#0 case too.

nal boost invariance of the flow profile is supported by the The integrals of the emission function are evaluated using

NA35, NA49, and NA44 measurements 8 (M,), to the  the saddle-point methofB,10,12. The saddle point coin-

best currently available experimental precisj@rB,27]. cides with the maximum of the emission function, param-
This emission function corresponds to a Boltzmann ap®trized by @s,7s,rxs.lys). These coordinate values solve

proximation to the local momentum distribution of a longi- Simultaneously the equations

tudinally expanding, finite system which expands into the

transverse directions with a transverse flow which is nonrel- 9S_9S_ IS _9S 52

ativistic at the saddle point. The transverse gradients of the gt dm  dry dry

local temperature at the last interaction points are controlled

by the parametea.. The strength of the flow is controlled by These saddle-point equations are solved in the LCMS, the

the parameteb. The parametec=1 is reserved to denote longitudinally comoving system, fops“™S<1 andr, (<.

the speed of light, and the parametecontrols the strength The approximations are self-consistent |fY —yg|<1

of the change of the local temperature during the course of A %°m/To—A 7> and B,<72A72/(bR2), which for the

particle emission. considered model can be simplified a@,=p/m;
Note that other shapes of the temperature profile lead te<(a®+b?)/b/max1,a,b). The transverse flow is nonrelativ-

the same result if Ti(x) starts with the same second-order istic at the saddle point iB,<(a%+b?)/b%max1,a,b). We

Taylor expansion around,=r,=0. The physical signifi- assume tha\ <7, so that the Fourier integrals involving

cance of the transverse temperature profile is that it concefd(7) in the Os7<e domain can be extended to thex

trates the emission of the particles with high transverse mass 7<° domain. The radius parameters are evaluated here to

to a region which is centered aroung=r,=0 and which the leading order im, J/7. Thus terms ofO(ry /7o) are

narrows as the transverse mass increases. The Gaussian gpglected; however, we keep all the higher-order correction

proximation to the inverse temperature profile is thus a techl€MS_arising from the nonvanishing value gf in the

nical simplification only; other decreasing temperature pro-CMS. We calculate both the radius parameters and the in-

files have similar effects as follows from the above picture.varlant momentum distribution in Gaussian saddle-point ap-

Similarly, the significance of the temporal changes of theprc.)X|mat|on. We shall dISC.USS the limitations of the saddle-
. ) . : .__._point method after presenting these results on the BECF and
temperature is that it creates different effective emissio

) . X ; MD.
times for partlcle_s W'.th c_ln‘ferent transverse mass, and the " £or the model of Eq(47) the saddle-point approximation
Gaussian approximation is a technical simplification.

for the integrals leads to an effective emission function
_For the case oa=b=d=0, we recover the case of lon- \hich can be factorized similarly to E0). Thus the radius
gitudinally expanding finite systems as presented in B8f.  parameters of the model are expressible in terms of the ho-
The finite geometrical and temporal length scales are reprénogeneity lengthd 7, , R, , andAr, and the position of the
sented by the transverse geometrical $k%g the geometri-  saddle pointy, i.e., the cross-term generating hyperbolic

cal width of the Space-time rapldlty d|Str|bUt|m177, and the mixing ang|e_ The saddle point in the LCMS is given by

mean duration of the particle emissidwr. Effects arising . — M= (yo— )1+ A 2(UA 72— 1)],  Tys

from the finite longitudinal size were calculated analytically _ bR2/(mA n2). andr. .=0. Note that the space-time ra-
firstin Ref.[28] in certain limited regions of the phase space. AR, /(70d 7). VS P

- . idity of the saddle point7-“™° depends on the boost-
We assume here that the finite geo_metrlcal and te.mpor%variant differencey,—Y which can be evaluated in any
scales as well as the transverse radius and proper-time d

endence of the inverse of the local temperature can be reﬁ—éme' The radius parameters tngths of homogeneity
P : P . 8,12] are given in the LCMS by Eq$27)—(29) and (33)—
resented by the mean and the variance of the respective va 5 .
R . ) .~ ~(35), and we obtain
ables; i.e., we apply a Gaussian approximation,
corresponding to the forms listed above, in order to get ana-

lytically tractable results. We have first proposed &0, i: i i LCMS

— _ : 7 7+ =z cosling ], (53
b=1, andd=0 version of the present model, and elaborated R Rz Rt

also thea=b=d=0 model[9] corresponding to longitudi-

nally expanding finite systems with a constant freeze-out 1 1 1 1
temperature and no transverse flow. Soon after the parameter  +—7=3—7+ +— coshf 75“Ms]— oSOV

b was introduced12] and it has been realized that the maxi- T T cosft] 7

mum of the emission function for a given mean momentum (54)
K has to be close to the beam axis, fulfillimg, <, in

order to get a transverse mass scaling law for the parameters 1 1 + 1 LCMS (55)
of the Bose-Einstein correlation functions in certain limiting A AT AR cosh 7],

cased29]. In this region around the beam axis, however, the

transverse flow is nonrelativist{d 2] even for the casb=1  \\here thethermal length scaleare given by

if this region is sufficiently small. Sinyukov and collabora-

tors classified the various cases of ultrarelativistic transverse 2 1

flows[11,30], and introduced a parameter which controls the R2 70 0 (56)

transverse temperature profile, corresponding tcathé =0 T a*+b* M’



54 BOSE-EINSTEIN CORRELATIONS FOR THREE. . 1397

, To pairs with |y,—Y|<1+A#%’M/T,—A%? and the terms
A = (57 arising from the nonvanishing values gf can be neglected.
t In this approximation, the cross-term generating hyperbolic
5 mixing angle 5,~0; thus, we find the leading-order LCMS
> To To result
TT_? M_t . (58)

C(AK;K)=1+X, expl — RIQf — REuQéae~ RouQbu,

. . 59
Here M= \/KOZ— KZL is the transverse mass belonging to the (59
mean momentuni. In the region of the Bose-Einstein en- with a vanishing out-long cross terf,, =0. To leading

hancement, where the relative momentum of the pair irder, the parameters of the correlation function are given by
small, M, satisfies M=3(m ;+m ;) [1+O0(y1—Ya)

+0((m;—m; ))/(m ;+m;,)]. Note the distinction be- REae= Rz, (60)
tween the subscripts for the transverse direction, indicated by ) 5 o
t and the use subscripts for the “thermal” scales indicated Rou= R + BiA Ty, (61)
by T. It is timely to emphasize at this point that the param-

. . . . .. . RZZ TZA 2 (62)
eters of the Bose-Einstein correlation function coincide with L= 702 7% -

tmhg (gﬂg&}é]aiadﬂ::aagcs)\lﬁézevrvr;l?c?r? dﬁ p;gg ﬁmu cgz]atgsbgfiggr}ti- Observe that the difference of the side and out radius param-
9 ' Py y eters is dominated by the lifetimgarameterAr, . Thus a

fied with that region in coordinate space where particles with”_~ .~ ° . 5
; : . vanishing difference between th®,, and R4, can be gen-

a given momentum are emitted from. The above relations rated dynamically if the duration of the particle emission is

indicate that these lengths of homogeneity for simple therma{ilr e b&lt the th?a/rmal duration becopmes sufficientl

models can be basically obtained from two type of scales in ge, m y

the framework of the saddle-point method. These scales havsemall [cf. Eq. (55)]. This in turn can be associated with in-

. ténsive changes in the local temperature distribution during
different momentum dependence and are referred to 8% e course of the particle emission
“thermal” and “geometrical” scales. : .

In contrast to the homogeneity lengths, which can be de- Observe, that the BECF in an arbitrary frame can be ob-

fined even without thermalization, the “thermal scales” can—talned from combining Eqd53)~(58) with the general ex-

not be introduced without at least approximate local thermalP re_ssmnng,l\)I/Se_n by Eq&27)~(32). In tzhat C""?e’ the value of
ization. Thus the thermal scales originate from the factors~ Y+ 7s = Y+(Yo=Y)/[1+A7*(1/Anr—1)] has to
exp[—p-u(x)/T(x)]. They measure that region in space- be used in Eqs(.27)_—(32). : -
time where thermal smearing can compensate the change Pf Note also tha}t In our results. higher-order terms arising
the local momentum distribution which in turn is induced by rom th_e n_onvanlshmg vaIL!e ofs in the !‘CMS are ;ummed
either the gradients of the flow field or the gradients of the!'P: while in Refs[12] the first subleading corrections were
temperature field. This is to be contrasted to the “geometri—ound'

cal” scales, which originate from the exp[x)/T(x)] factor
which controls the density distribution. The geometrical
scales can be interpreted as the regions in space-time where The |MD plays acomplementary roldo the measured
there is significant density to have particle emission. Obvi-gose-Einstein correlation functid®,13,29. Thus asimulta-
ously, for locally thermalized systems both the geometricaheous analysisf the Bose-Einstein correlation functions and
and thermal scales influence the regions of homogeneity ange |MD may reveal information both on the temperature and
the smaller scale will be the dominant one. Since the fourfiow profiles and on the geometrical sizes.

momentump is explicit in the factor exp-p-u(x)/T(x)] For the considered model, E@L7), the invariant momen-
and enters the “geometrical” scales only through the mo-yym distribution can be calculated in such a manner that the
mentum dependence of the saddle point, the momentum deooper-Frye prefactan, cosi{z—y) is kept exactly and the
pendences for the “thermal” and “geometrical” scales shall saqdle-point approximation is applied to the remaining Bolt-

above expression fak, a third type of scale is also present T(x)]H(7). This calculation yields

in the term —1/cosH7], which stems from the

m; cosi »—y] Cooper-Frye prefactor in Eq47). Thus this —> o s o3 ATy
term is related to the shape of the freeze-out hypersurface Nyc(p)= (2m)3 (2mAm 70) " (2mRy ) AT
distribution (which distribution tends to a single hypersur-

VII. INVARIANT MOMENTUM DISTRIBUTIONS

face if A7—0). X m; cosh ng]exp(+A 72 /2)

The parameters of the BECF-s are dominated by the - -
smaller of the geometrical and the thermal scales not only in XexH — p-u(Xs)/ T(Xs) + u(Xs)/ T(Xs) |-
the spatial directions, but in the temporal direction too ac- (63

cording to Egs(53)—(58). These analytic expressions show _

thateven a complete measurement of the parameters of tHEne quantitiesA 2 and 7, are defined as

BECF as a function of the mean momentum K may not be

sufficient to determine uniquely the underlying phase-space _ 1 n 1 costizel, 7= (Yo—y)
distribution [29,8,9,12,18 We also can see that the LCMS ~ A7: A7n® Az Ish ST I AN R
frame approximately coincides with the LSPS frame for (64)
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and the modified saddle point is located in the LCMSfor analytic study. This can be done if one neglects terms of
at 7e=74=To, 7 Txs=BDR2/(7oA7?) andT, =0. The  O(rys¥/7p) in the exponent, which is the same order of ac-
modified radius and lifetime parameters can be obtained bguracy which has been utilized for the solution of the saddle-
evaluating theR, andAr, parameters at the space-time ra- point equations. Further, a term in the exponent
pidity coordinate of the modified saddle poinR, (m;/Ty)coshiyy) is approximated by its second-order Taylor
=R, (7:"M°=7%y) and A7, =A7, (75M5—7,). Thus the expansion ,/Ty)(1+0.57¢%). These approximations yield
modified quantitiegiindicated by overling differ from the _ _
unmodified parameters of the saddle-point approximation by exp( P “ﬁs) '“(é)
the contributions of the Cooper-Frye prefactor. This happens T(Xs) T(Xs)
because Eq(63) is obtained by applying the saddle-point

method for Eq.(3) with the model emission function, Eq. _ p(,Mo

(47), in such a way that the Cooper-Frye prefactor
m;cosh[»—Yy] is kept exactly and the remaining factors are

 y—yo)?
2(An*+AnT)

approximated with the saddle-point technique in the LCMS X ,Btz Ts

[29], described in detail in the previous section. Note that Xexg — T- 1-f 7——) ,

R,=R, andAr,=Ar, in the midrapidity region, where 0 To+Tg cosh 7]

ﬂéCMsy 7s<1. where the geometrical contribution to the effective tempera-
In Eq. (63) the exact shape of the four-velocity field can tyre is indicated by Tg(m)=T,R3/R3(m,)

be used, which is given in the first line of E@8). When  =(a?+b%*)m,R2/73 and the fractionf is defined as

evaluating u(xs)/T(xs) in any frame, the invariant differ- f=p?/(a?+b?), satisfying 0<f <1.

ence7s— Y5~ M°=74+y—yo should be used. The Boltzmann factor is further simplified in the midra-

The momentum distribution as given in E@3) can be  pidity region|y—y,| <1+ (m/To)A 5%, where coshfg)=1.
rewritten into a more explicit shape, which is more suitableThe resulting expression for the IMD is given by

g — AT _ —
NielP)= 3 (2mAni ) A2 mRY) - micostinglexi(+An{/2) expluo/To)

o g MBC
2(To+Tg)

(Y—Yo)? : Bf)
‘m)exp[‘ﬂ(l‘f? ' (©9

which is describing a momentum distribution peaked atA similar relation for the mass dependence of the mean

midrapidity, corresponding to the finiteness of the consideredtransversg kinetic energy was introduced in Rdf31] for

source. A detailed analytic study of the invariant momentunlongitudinally expanding systems with nonrelativistic trans-

distribution of Eq.(65) can be performed as follows. verse flows. This simple relatiof®7) for the effective tem-
For the considered model, the rapidity widly(m,) of  perature can be considered as a special case of the more

the invariant momentum distribution at a givem shall be  general Eq(66).

dominated by thelonger of the thermal and geometrical The measured IMD can be obtained from the IMD of the

length scales. If the conditioa=0 is fulfilled, i.e.,f~1, the  core as given above and from the measug@) parameters

longer of the thermal and geometrical scales shall also domisf the BECF as

nate T, , the effective temperaturéslope parametgrat a

midrapidity y,. The following relations hold:

N = ———— Ny(p);
Ay2(m)=An?+A73(m)), 1(P) W) 1c(P)

i: f + 1_f. (66)  See. e.g., Ref.18] for further details.
T TotTe(m=m) Ty The invariant momentum distribution described by Eq.
(65 features two types of low transverse momentum en-
That is why the IMD measurements can be considered to bgancement as compared to a static thermal source with a
complementary to the BECF data. slope parameteF, . One may introduce theolume factoror
In the special limiting case when gradients of the tem-y_(y m,) which yields the momentum-dependent size of the

perature are nezgligible,azo and f=1, we have regjon, where the particles with a given momentum are emit-
T, =Tyt mb°Rg/75. If the flow velocity at the geometrical ted from

radius{u,)=bRg/ 7, is independent of the particle type, we
obtain a relation

(68)

AT,

Vi ly,mo) = (2mA 7} 7o) YA 2mRE)

T, =To+m{uy)? (67) (69
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The rapidity-independent lowspenhancemenis a conse- measurable from the shape analysis of the BECF, care is
guence of the transverse mass dependence of this effectivequired to study the contribution of the decay products of
volume, which may depend am, for certain limiting cases short-lived resonances to the momentum distribution of

in the following way: pions. Kaons or other heavier patrticles thus provide a cleaner
test for these analytic results as compared to pjG3$
To\? The high-p, enhancement or decreasgfers to the change
V*(y'mt)“(ﬁt) ' (70 of the effective temperature at midrapidity with increasing

m,. The large transverse mass linfit, shall be in general
where k=0 for a static fireball (a=b=d=0 and different from the effective temperature at lgw given by
An? >A7P). The cask=1 is satisfied fom=b=d=0 and T« Since
A7">An2, which describes long, one-dimensionally ex-
panding finite system$§9]. The casek=2 corresponds to T
a=b=0+d and A7*>A72, describing longitudinally ex- -
panding systems with cooling. The cdse3 corresponds to - 2102 ,
a+#0,b#0=d, i.e., three-dimensionally expanding, cylindri- Utilizing Te/To=Rg/R7, the highp, enhancement or de-
cally symmetric, finite systems possibly with a transversefT€ase turns out to be controlled by the ratio of the thermal
temperature profilé29], and thek=4 case corresponds to radlusRT(mt=mg to the gzeometrlcallra.duBG. One obtains
the same but with d+0 parameter, describing the temporal T05>T* “; R¥(m)>Rg and similarly T.<T, if
changes in the local temperature during the particle emissioR 7(M) <Rg. Since for large colliding nuclei; is expected
process appended with the conditidmy<A7. Thus the in- to increase, a p055|ble_ higit- decrease in these reactions
clusion of this effectiven,-dependent volume factor into the MaY become a geometrical effect, a consequence of the large
data analysis not only would undoubtedly increase the preci'Z€-
sion of the measurements of the slope parameters, but in turn
it also could shed light on the dynamics of the particle emis- VIII. LIMITATIONS
sion from such complex systems.

Note that them,-dependent effective volume factor, Eq.
(70), enhances the production of direct pions at Ipw as
compared to that of heavy resonances with nidgsat low
p;, by a factor of f,=V,(m_)/V,(My)=M/M_)K2
wherek=0, 1, 2, 3, or 4 is related to the dimension of the
expansion. We argue in Sec. IX that tke3 ork=4 case is
supported by NA44 data. This yields an enhancement fact
of f,=(770/140§%?=12.90 or 30.25, respectively, for the
production of direct pions from the core at Iqwy as com-
pared top mesons. See also Fig. 2. of REi8] for a more
detailed account on this topic.

The rapidity-dependent lowspenhancementwhich is a
generic property of the longitudinally expanding finite sys-
tems[32], reveals itself in the rapidity dependence of the
effective temperature, defined as the slope of the exponential
factors in the IMD in the lowpt limit at a given value of the
rapidity. The leading ord€i32] result is

2Ty T 2( . To(m

T2of T, 2 T0+TG(m))' (72

The simple analytic formulas presented in the previous
sections are obtained in a saddle-point approximation for the
evaluation of the space-time integrals. This approximation is
known to converge to the exact result in the limit the inte-
grated function develops a sufficiently narrow peak; i.e., both
An2<1 andA72/72<1 are required. This in turn gives a
dpwer limit in m; for the applicability of the formulas for the
class of models presented in the previous sectidowever,
the saddle-point method may give precise results even when
the integrand does not develop a narrow peak. For the emis-
sion function of Ref[13] the saddle-point method gives an
exact result, because that emission function can be
rewritten in Gaussian form.

From the requiremen ni<1, we have

m, cosh 7]/ To>1+1/cosK s]— LA %%, (73

From the requiremeni 72/72<1, one gets

-2
Toy)= with 4 ToTx ( At E) _ my cost nel/To>(1— 72/A 72)/d2. (74

Ty

1+a(y—yo)? 2m? m

(71)  These are the conditions governing the validity of the calcu-

lation of the parameters of the BECF as presented in Sec. VI.

Please note that this analysis of the low transverse mass reompared to the conditiofv3), the condition of validity of
gion of the IMD relies on the applicability of the saddle- the calculation of the invariant momentum distribution is less
point method in the low transverse momentum region toostringent, since one needs to satisfy odly)2 <1, which
Thus it may be valid for kaons or heavier particlas well as  yjelds
locally very cold pionic systemsHowever, in case of pions,
the self-consistency of the applied formulas and their region m, cosh 7]/ To>1—1/A 7. (75
of validity has to be very carefully checked. This region of
the applicability of the saddle-point technique for the consid- For the case of the NA44 measurement, one estimate
ered finite systems is discussed in detail in the next sectiorihe region of reliability for the analytic formulas presented in
Note that the low transverse momentum region is populatethe previous parts using inequalitié&3) and(74). Since the
by a number of resonance decays. For the long-lived resadata indicate Rgge=R,,; Within errors, the inequality
nances, thus, a nontrivial {X, (p) factor may appear and A72/72<1 and its consequence, E4), seem to be well
contribute to both the rapidity-dependent and the rapidityjustified. In the inequality(73) the finite longitudinal size
independent lows; enhancement. Although this factor is plays an important role. For infinite systersy=oe, the cal-
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culations of BECF parameters are reliable fox>2T, T,<Tg(m,) at the same transverse mass scale. In this re-
(since ;=0 for infinite systems in the LCMS while the  gion, the side radius parameter shall be determined by the
calculations for the IMD are reliable tm:>T,. In the mid-  thermal sizeRy4=R,=R(M,); hence, it shall be trans-
rapidity region where NA44 data were taken, one has0O  verse mass dependeZ< 75T /M.
and forfinite systems one finds,>T,(2—1/A7?). Note that Them; distribution at midrapidity shall be proportional to
this estimated lower limit irm, is extremely sensitive to the exp(—m,/T,). If a?<b? we haveT, =Tg(m) as follows
precise value ofAy in the regionA»=1#/2~0.7. Thus for from Eq. (66).
finite systems the region of applicability of our results ex- (v) If Apr<Az, we have the leading order LCMS result
tends to lower values ah, than for infinite systems which R, = 7yA 51=74\T/M,, and the rapidity width of the IMD
were recently studied in great detail in RE23]. The in-  shall be dominated by the geometrical scalg?=A 7.
equality(73) can be used in basically two ways: Either one  (vi) If Ar<A7, the thermal duration shall be measured
assumes a value fdf, and then obtains the lower limitim, by R2,—RZ,~=B2A72=B272T,/(d*M,). For large values
for the applicability of the saddle-point method, or one as-of the transverse mass, the model thus shall feature a dy-
sumes that the saddle-point method is applicable to a certaimamically generated vanishing duration parameter, which has
value ofm; (e.g., in case it gives a good description of dlata a specific transverse mass dependence. The invariant mo-
and then one obtains an upper limit for the correspondifng mentum distribution shall be influenced only through the
parameter, the central temperature at the mean time of lagt7, /A 7= ﬂﬁ factor inV, .
interactions. Some combinations of casé@s—(vi), are especially inter-

An upper transverse momentum limit is obtained for theesting, such as the following.
validity of the calculations in Secs. VI and VII from the  (vii) If all the finite geometrical source siz&;, Ay and
requirementr, /7o<1 or r ; J/76<1. This condition and the Ar are large compared to the corresponding thermal length

requiremenbr, J/7,<<1 are fulfilled simultaneously if scales, we have, in the LCMS,
2 2 2
as+b 7 T
< . 200
P b max1b)max1,a,b) (76) ATy dz M’ (77
If a®+b2=1, this condition simplifies tg,<1/b. , . To
When comparing to data, detailed numerical studies may Ri=7g M. (78)
be necessar}23] to check the precision of the saddle-point t
integration. In a subsequent paper we plan to present these 2
studies together with a detailed comparison of the model to RZ .~ o E' (79
the available NA44 data. side a2+ p? M,

Thus, if d>>a%+b?~1, the model may featura dynami-

cally generated vanishing duration parametém this case,
Observe that both the thermal and the geometrical lengtthe modelpredicts an M scaling for the duration parameter

scales enter both the parameters of the Bose-Einstein corr@s

lation function and those of the invariant momentum distri-

IX. LIMITING CASES

bution. We limit the discussion in this part to the midrapidity , 1
: LCMS 2 4. Arioc—. (80)
region 7 -=0 and we assumd n; <1; i.e., we neglect M,

the 1/ cosH 7] term in Eq.(54). Various limiting cases can

be obtained as combinations of basically the relative size ofhis prediction could be checked experimentally if the error
the thermal and the geometrical scales in the transverse, lohars of the measured radius parameters were decreased to
gitudinal, and temporal directions. These in turn are the fol-such a level that the difference between the out and side
lowing. radius parameters would be significant.

(i) If R{(M)>Rg in a certainM, interval, we have also Alternatively, if the vanishing duration parameter of the
To>Tg(m,) at the same transverse mass scale. In this reBECF is generated due to a very fast hadronization process
gion, the side radius parameter shall be determined by thas discussed in Reff25], then one has
geometrical siz®y4=R, =R ; hence, it shall be transverse

mass independent. Ari =A72xconst; (81
Them, distribution at midrapidity shall be proportional to
exp(—m/Ty). i.e., in this case the duration parameter becomes independent

(i) If Apr>Azy, we haveR =nA7n and the rapidity Of the transverse mass.
width of the IMD shall be dominated by the thermal scale, If the finite source sizes are large compared to the thermal
Ay (m)=An3=Ty/m,. length scales and if we also haaé+b?~1, one obtains an
(iii) If A7>Ar, the temporal duration shall be measuredM; scalingfor the parameters of the BECF,
by R2,—R24e=B2A7. The invariant momentum distribution
shall be influenced only through ther, /A7~1 factor inV .
These cases are rather conventional limiting cases. An
unconventional limit complements each as follows.
(iv) If Ry(M,)<Rg in a certainM, interval, we have also valid for g;<1/b.

To

RZ4~=R2,~=R’=175 M, (82

out
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Note that this relation is independent of the particle type
and has been observed in the recent NA44 data-PIS Nl(p)mmtcoshy_yo)ex% -
reactions at CERN SP$3]. Preliminary NA49 data for
Pb+Pb at C.ERN SPS. are also comp_aﬂble W'.th th'S S’Ca“n%\/hich is a thermal distribution for a static source located at
law [27]. This M, scaling may be valid to arbitrarily large the midrapidityy
transverse masses wih~1 if b<<1. The lower limit of the Thus, two Iengﬁh scales are preseint all the three prin-

validity of this relation is given by the applicability of the . o . : :

. cipal directions of three-dimensionally expanding systems.
saddle-point method, Eqer3) and(74). To generate a van- Tr?e BECF radius parameters are dom)i/natepd b)smgnrte);of
|sh|r_lg difference between__the_: side and out radii andvin the thermal and geometrical length scales. However, the ra-
scaling for the BECF radii simultaneously, the parameter%idity width of the dN/dy/dm? distribution, Ay2(m,), is

have to satisfy the inequalitie&3) and (74) as well as . .
22 o2 : the quadratic sum of the geometrical and the thermal length
b<a”tb’~1<d" ie. the cooling should be the fastest scales; thus, it is dominated by thenger of the two. Simi-

process, the next dominant process within this phenomenqérly, the effective temperature is dominated by kiigher of

logical picture has to be the development of the transversﬁ,]e two temperature scales for-1 according to Eq(66)

temperature profile, and finally the transverse flow shall beI'he effective temperature of tme, distribution is decreasing
relatlvel_y wea_k. If the temporal change_s O.f the temperaturg, target and projectile rapidity region in this class of
are not intensive enough, then a small lifetime parameter Cagnalytically solvable models

also be obtained by a fast hadronization and simultaneous This study is a generalization of the basic ideas presented

fres\je—out ?ds Iqlisctjssed iﬂ R_BS]tr\:vitthtﬁwO. b f and illustrated in Ref.[13] for the case of three-
€ would like 1o emphasize that there arenumber o dimensionally expanding, cylindrically expanding, cylindri-

conditionsin the model which need to be satisfied S'mU|ta'caIIy symmetric finite systems with a scaling longitudinal

neously to get the scaling behavior, which is supported b
nine NA44 data pointgthree for kaons and six for pio3]). Tgﬁ%ggﬁlﬁeﬂ;ﬁﬁ:rse flow, and a transverse and temporal

One has to wait fofuture data pointgo learn more about the
experimental status of the scaling. The model presented in

this papemay describe more compléansverse momentum X. SUMMARY
dependences of the parameters of the Bose-Einstein correla-

tion fur}c_uo_n, too; theM, scaling is qn!y one of IS VINUeS In 56 Finstein correlation function for cylindrically symmet-
a specific limiting case. However, it is rather difficult to get ;. systems undergoing collective hydrodynamic expansion:;
a limiting case WithR ~ Ry~ Roye 1/VMy in analytically Egs.(15), (18), (21), and(22). Note that these relations
solvable models. Such a behavior is related to the cylindrica),ere shown to be valid for certain limited classes of emis-
symmetry of the emission function. . sion functions. The resulting class of Bose-Einstein correla-
Thus the symmetry of the BECF in the LCMS can bejon fynctions, however, includes non-Gaussian correlation
considered as a strong indication fortreee-dimensionally ¢, ctions too. The case of Gaussian correlation functions is
expanding, cylindrically symmetrisource, possibly with @ gygied in detail and the radius parameters are expressed in
transverse and temporal temperature profile. The LCM$ye lab, LCMS, and LSPS systems, where the functional
frame is selected if the mean emission point or saddle poinfyrm of the correlation functions becomes more and more

stays close to the symmetry axis even for particles with &;mpjiied. The cross-term generating hyperbolic mixing
large transverse mass, ((m,) <7, and if the finite longitu-  gngje s identified with the value of the variable of the

dinal size introduces only small differenge between thegagdle point in the considered frame.
LCMS and LSPS frames, i.dy—yo|<1+A7°(M/To—1). A class of Gaussian models is introduced which in some
In this case considered in Sec. VI the emission function i$egions of the model parameters may obewgrscaling for
cylindrically sym_metric anc_l so the BECF is symmetric in the i, side, out, and longitudinal radius parametefsvanish-
LCMS of the pair(andnot in the center of mass system of ;g effective duration of the particle emission may be gener-
the pair[34)). , _ , L ated by the temporal changes of the local temperature during
(viii) It is interesting to investigate the other limiting case o evaporation. The model predicts ki scaling also for
when Rr>Rg, Anr>A7 and A7r>A7 by combining the e qyration parametein this limiting case.
limiting cases(i)—(iii). In this case one obtains Finally, we stress thaboth the invariant momentum dis-
tribution and the Bose-Einstein correlation function may
RI=75A7°=R? s, Riq~R&, RS,~=R5+BAT, carry only partial information about the phase-space distri-
(83 bution of particle emission. However, thesimultaneous
analysissheds more light on the dynamics and the geometri-
cal source-sizes.

m,coshty —yo)

T, . (89

A general formulation is presented for the two-particle

Ay?(my)=A 77%:&, T,=To. (84) Note added in prooMWe would like to draw attention to a
m recent paper by T. Csgo, P. Levai, and B. Lastad(Report

No. hep-ph/9603373, to be published in Acta Physica Slo-
Thus, if the thermal length scales are larger than the georacg, where the model and the analytical approximations
metrical sizes in all directions, the BECF measurement depresented above were subjected to a careful numerical study
termines the geometrical sizes properly, and phe&nd the in various domains of the parameter space and the results
dn/dy distributions are determined by the temperature of thevere shown in 16 figures, completed after this manuscript
source. In this case the momentum distribution reads as had been submitted for publication. For graphical illustration



1402 T. CSCRGO AND B. LORSTAD 54

of the main ideas presented in the present article, we recom- _ o )

mend another paper: T. Ogd and B. Lastad, Report No. S(a)= f_xdr S(r)exp(—iqr), (A3)

hep-ph/9511404, iProceedings of the XXVth International

Symposium on Multiparticle DynamicStara Lesna, Slova- | nhich yields

kia, 1995 edited by L. Sandat al. (World Scientific, Sin-

gapore, 1996 C(q)=1+exp —2|q|R). (A4)
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(f(r)>=J drf(r)S(r), (A6)

APPENDIX -

In this appendix we give a simple example when the@nd the two-particle correlation function can be written as

Fourier-transformed emission function exists, but the Gauss-

~9_A2DR2 ~ _~2Pp2
ian version of the saddle-point method is not applicable. Let C(a)~2-g°Rg~1+exp—q°Rg), (A7)
us consider the one-dimensional Lorentzian distribution ith
function wi
1 RE=(r?)—(r)%. (A8)

1
S(N=—% =757 (A1)
7R (1+r%/R%) Since for the considered functioR%=ox, the Gaussian
saddle-point method is not applicable. Still, the Fourier-

Herer is a real variabléin one dimension The correspond- ~H . . '
transformed emission function and the BECF exist, as given

ing correlation function is

by Eq. (A4).
C(q)=l+|§(q)|2, (A2) Cases similar to this are characterized by non-Gaussian
correlation functiond20]. Similar examples can be found
with among multivariate distributions, too.
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