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The structure of the mirror nucléiBe and®B is studied in a microscopia+ a+n and e+ a+ p three-
cluster model using a fully antisymmetrized nine-nucleon wave function. The two-nucleon interaction includes
central and spin-orbit components together with the Coulomb potential. The ground st&e if obtained
accurately with the stochastic variational method, while several particle-unbound states ®Bbathd®B are
investigated with the complex scaling method. The calculatior{Ber supports the recent identification for the
existence of two broad states around 6.5 MeV, and predicts thee8id 5/Z states at about 4.5 MeV and 8
MeV, respectively. The similarity of the calculated spectra’B& and°B enables one to identify unknown
spins and parities of th&B states. Available data on electromagnetic moments and elastic electron scatterings
are reproduced very well. The enhancement of Bietransition of the first excited state i?Be is well
accounted for. The calculated density #e is found to reproduce the reaction cross section on a carbon
target. The analysis of the beta decay’bf to °Be clearly shows that the wave function #e must contain
a small component that cannot be described by the simple+n model. This small component can be well
accounted for by extending a configuration space to include the distortion of tharticle tot+p and
h+n partitions.[S0556-28186)02607-9

PACS numbds): 27.20+n, 21.60.Gx, 23.206-g, 23.40.Hc

I. INTRODUCTION a+ a+n threshold. Recent experimen{t§,6] have, how-
ever, isolated the broad level at 6.76 MEX] to two states,
There has been a growing interest in the study of neutronthe 7/2°, 6.38 MeV state and the 972 6.76 MeV state.

rich nuclei since the advent of radioactive nuclear beams. It A few theoretical studies ofBe have already been done
was found[1] that some light nuclei near the neutron drip in various models. A projected Hartree-Fock calculafigh
line exhibit neutron-halo structure or have thick neutron-skingas carried out to study the electromagnetic properties of
clouds. The halo structure, a new form of the nuclear mattersge A shell-model calculation in 0+ 1% basis[5,9]
is characterized by a spatially extended low density distribu—ga\,e a reasonable spectrum but predicted too small dipole

tion around the core part of normal density. It is interestingyangjtion strength for the first excited state. There are several
to know how a nucleus changes its structure with the in-

- calculations using am+ o+ N three-cluster model. Earlier
crease of the number of neutrons and how the binding of thgalculations[lo,ll] emphasized the three-body aspect of

neutrons is attained in such a system. In the very light nUdebBe to exolain its low-Iving spectrum. These treated the
the mean field is not stable enough to generate the regular el P ructurel ying tp | d. dered it
shell structure but, instead, the clustering of the nucleond?@licle as a structureiess particlée and considered Its Compos-

especially thex clustering plays an important role in deter- iteness by rgdefining the potentiql with the Pauli correction.
mining their structure. Because of this the light nuclei showRecently, this type of macroscopic approach has been exten-

individual features which have strong dependence on th&Vely applied to the study ofBe and gB_ nuclei [12], by
number of nucleons. The Be isotopes are of special interedfcluding the @a)N-type arrangement in the calculation.
in this respect because they show some anomalous featur@¥ the other hand, some microscopic cluster-model calcula-
which are not easily understood in a simple shell modeltions starting from nine-nucleon wave functions were accom-
Because thé’Be nucleus is known to be a typical cluster plished in the resonating group methfdtB] or in the gen-
state of twoa particles, it is interesting to attempt at describ- erator coordinate method[14—-16. Our microscopic
ing heavier Be isotopes in a unified framework of two  multicluster model has the advantage that the distortion of
particles and extra neutrons. Our basic question is: How welhe constituent clusters, e.g., tle particle, when needed,
does this picture give us a consistent understanding of the Bean be included in the calculation in a consistent way. An
isotopes? This question naturally leads us to the applicatioexample indicating this necessity will be discussed later in
of a multicluster model. A fully microscopic multicluster case of the3 decay of°Li to ®Be. The macroscopic model
model utilizes aA-nucleon wave function, incorporating the has, however, a difficulty in taking the possibility of the
Pauli principle exactly. It has various applications in thecluster distortion into account.
structure study for the halo nucl¢2] and in the nuclear The calculation of Refl13] considered the three channels
astrophysicg$3,4]. of 8Be(0")+n, SHe(g.s)+«, and ®Be(2%)+n to describe
The spectrum of’Be is poorly known. This is probably the levels of °Be. A molecular model was applied in the
because all the levels but the ground state are above thgenerator coordinate framework to study the structure of
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°Be [14,15. The calculation of Ref[16] included only (SVM) [23—-25, in which we set up the “important” basis
8Be+N channel, where the motion of the twoparticles in  states stepwise by using an admittance test. This procedure
8Be was described in a restricted space. The two generatavas successfully applied to study the exotic nuf®?5,24
coordinate method calculations gave reasonable agreememitd also to few-body systeni23].
with experiment. There are, however, some noticeable dis- The plan of this paper is as follows. In Sec. Il we give a
agreements between the theory and experiment. Both of therief outline of our formalism. The microscopic three-cluster
macroscopic and microscopic calculations done so far wergodel is presented in Sec. Il A. The scaling methods which
limited either in taking the Pauli principle into account or in we apply to determine the position and width of a resonance
treating the three-body dynamics. Further improvement willstate are briefly explained in Sec. Il B. Section Il contains
be attainable by treating the three-body dynamics more conthe results of calculations. The input parameters are given in
pletely. Sec. lll A. The relative importance of the arrangements and
As the first of the series of studies on the Be isotopes wéhe angular momentum channels are discussed in Sec. Ill B.
show in this paper the results of calculation fe in a  Energies, radii, magnetic and quadrupole moments, electron
microscopica+ a+n model. At the same time we consider scattering form factors are compared with experiment in Sec.
its mirror nucleus®B in an a+ a+p three-cluster model. Il C. The density distributions and the spectroscopic ampli-
One of the main objectives in this paper is to assess théiides are discussed in Sec. Ill D. Thedecay of°Li to the
validity of our basic assumption in case WBe. This is sub-  states of°Be is discussed in Sec. Ill E. In the last section we
stantially important for the study on heavier Be isotopes. Tosummarize the most important conclusions.
this end we carry out an extensive three-cluster model calcu-

lation that has no limitations mentioned above, and investi- Il. FORMALISM
gate carefully some important properties of the low-lying _ )
states of°Be, that is, the energy spectrum, the magnetic and A. A microscopic three-cluster model

quadrupole moments of the 3/yround state, and the elec-  To describe the system consistingef «+ n for °Be or

tron scattering form factors. Of particular interest is the enof o+ o+ p for °B, we build up a trial function which is a
hancement of the electric dipole transition from the first ex-sum over two cluster arrangements u;=(aa)N and u,
cited 1/2° state to the ground stafd.7,18. This reduced = (aN)a, with N=n or p. Each arrangement is associated
transition probability is nearly as large as the well-knownyyith a particular set of intercluster Jacobi coordingiésnd

one of 'Be. The mechanism of the enhancement in theses The coordinateg’ and p# in the arrangemen; are
cases may beg rglated to each other. A”"]}gher Interest IS M 5sen to stand for the relative coordinate of thparticles

B decay from°Li to the low-lying states of'Be [19]. We a4 the nucleon coordinate measured from the center-of-
will show that thisg decay is useful to reveal small compo- .2<s coordinate of twa's. while. in the arrangement,

nents contalnedgln the wave function &Be. they represent the relative distance vector between the

The levels of°B are all particle-unbound and only few of ;cleon andy and the relative coordinate of anotherfrom
them have spin assignmeifi. There are discussions on the e center-of-mass coordinate of the nucleon andThe
missing 1/2" state from the viewpoint of the Coulomg dis- arrangementu, is suited to describe the component corre-
placement energf20,21. As a mirror nucleus ofBe, °B sponding to the®Be+N decomposition at large distances,
can be described in am+ a+ p three-cluster model. A clus- |\ hile the arrangemeng, corresponds to théHe+a de-

ter mode_l has a funique af"a”Fage tr;lat itdcﬁn dgscribzﬂ}f‘omposition. The total orbital angular momentumis ob-
asymptotic part of a wave function well and thereby predict, _ . - . o b ha.
the position and width of a resonance. This is a very import-tamed by coupling the orbital angular momentg=/" be

tant ingredient for a detailed structure study of b8Be and Io.?ﬁl?hget?otgfs‘]aﬁg b_' Cﬁgrgéna;ﬁﬁeatn;:;lh:g It ll;crzgﬂii_
B because their states are mostly unbound. Wi pinS = g gu

In our approach the total wave function is given as antum J. See Fig. 1a). The intrinsic wave function of ther

antisymmetrized product of the internal states of the cluster article is constructed from a harmonic-oscillator Slater de-

and the function of the relative motion. The antisymmetriza-cirrr:,:g;‘:";f_n\:\gtshs %J{?:r? ?%Z:WZ?/?Eit;?ogyofilglinnatlgrcglutsrt]gr
tion of all the nucleons is exactly taken into account. Two :

types of cluster arrangementsy€)N and (@N)e, are com- motion is approximated by a linear combination of nodeless

bined to include the different correlation between the Clus_harmonlc-oscnlator functiongor “Gaussians’) of different

ters. The nucleon in theda) N arrangement corresponds to size parameters:
moving in a “molecular” orbit around théBe=(aa) core. T =G —p2
=\ /m(v.p)=GC (v)exp(—vp?) Y, m(p), ey
On the contrary, the {N)« arrangement is suited to de- " "
scribe an “atomic” orbit of the nucleon around the par-
ticle. This analogy should not, however, be taken so literally

particularly when the particles come closer, because the con- 02/ 4712,/ +3/2] 12

X . . 14 ~
figurations of the two arrangements have considerable over- G (,)=|—————| | 3, (x)=x"Y,(X).
lap. The function of the relative motion is approximated by a Vr(27+ 1)

linear combination of nodeless harmonic-oscillator functions 2

of different size parameters. Our experien2e,23 shows

that the approximation with such functions gives an accurate The wave function with the angular momenta
description up to large distances. To keep the dimension dfS, (/14 ,)L]IM (S=1/2) in the arrangement can be writ-
the basis low, we apply the stochastic variational methoden as
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The partial waves in a given cluster arrangement form a

(a) 3-body cluster arrangement complete set of states and the different Jacobi coordinate
systems are, therefore, equivalent in principle. One might
N N thus think that we only need to choose a particular arrange-

ment, u, Or u,, and to decompose the wave function into a
complete set of partial waves in this arrangement, and that
the inclusion of both the arrangements implied in E4).

o l o o ’
' ¢ would be redundant. Our experienf®2] shows, however,
(0 N (o N)o that the convergence of energy in a fixed arrangement is
rather slow. The reason is that the components
M1 M2 .
(b) 4-body cluster arrangement Vis(y/pLm and ‘I'[S,(/i/é)Lr]JM in the arrangementg

and u, are rather different, especially, at large distances and
N N N N that any componen¥ /2 can only be represented

5 0 S s y e T IS.(/1/2)L1IM
) 2 by an infinite sum in terms of the arrangement. More-
ls 1 b over, the inclusion of high partial waves in the calculation is
“ @ 3 quite expensive. Our favorite choice is, therefore(Zpde-
o 3N compose the wave function into partial waves in a given
arrangement(2) truncate the higher partial waves, a(g)
(3N, Nye))N (3N, N) (e N) (BN, N)N)) o complete the wave function by the inclusion of low partial
waves of different arrangements.
FIG. 1. Different arrangements used in the three-b@jyand The arrangements and the angular momenta combined

four-body (b) calculations. The small circles are nucleons, thewith the size parameters in the expansion make the dimen-
medium-size circle is ther particle, and the gray circle is theN3  sjon of the basis large. These basis functions are, however,
cluster,t or h. The orbital angular momenta for the relative motion nonorthogonal to each other and not all of them are equally
between the clusters connected by solid lines are denoted, by important. In a previous papg25] we tested different meth-
The spin of the clusters i§=1/2; the spin of thex particle is zero ods to select the parameters that span most adequately the

|

and it is omitted. . . . . .
state space, while the dimension of the basis is kept feasible.
The most efficient procedure found is the stochastic selection
© _ © “ [22,23: We generate size parameter sets by a random choice
W[S'</1/2)L]JM EK: CK’&/l/Z)"A{[q)S[F/l( Vkl’pf) from a regio% which is ph)F/)sicaIIy important)./ The parameter
sets that satisfy an admittance condition are chosen to gen-
XL/ ( Vﬁz’pg )1 lmbs 3 erate basis states. The calculation was repeated several times
to check the convergence. The dimension for {Be ground

wherevf; is thekth size parameter of thi¢h relative motion state is around 90.

in the cluster arrangement, A is the intercluster antisym-
metrizer normalized such that the normalization kernel ap-
proaches the unit operator in the limit of infinite cluster sepa- Except for the ground state dBe, all the states ofBe
ration, <I>SMS is a product of the intrinsic wave functions of and °B are above the three-body threshold. The*1/2.68

the two a-particles and the nucleon’s spin-isospin function,MeV state of°Be lies just 111 keV above the threshold, but
andK stands for the set of the indicé&;,k,} of the size has a width of 21Z 10 keV. The 5/2, 2.43 MeV state has
parameters. By using an integral transformafi®8], the an- a narrow width. The widths of other states of isospin 1/2
tisymmetrized product in Eq3) can be rewritten as a linear range from several hundreds keV to about 1 MeV. The states
combination of Slater determinants of Gaussian wave-packatf °B have generally wider widths than the corresponding
single-particle functions. The matrix elements between Slatestates of°Be.

determinants of these nonorthogonal single-particle states are Resonances are associated with complex eigenvalues of
easily evaluated and can be expressed in a closed analytidhle time-independent Schdimger equation. It is not trivial to

B. The scaling method for resonances

form. calculate the energy and the width of a resonance state for a
The variational trial function is a combination of different complex system. Several methods have been developed to
arrangements and intercluster angular momenta: obtain these complex eigenvalues using square integrable

functions. The most well-known methods are the complex
scaling[27] and the stabilizatiof28] methods.
Viu= E {\I,ELSlx(/l/z)L]JM+‘I'ELSZr(/l/z)L]JM}' (4) . The pomplex scalin_g method uses the unitary transforma-
(7172L tion which dilates the internal coordinates of the system ac-
cording to x—xe'?, making the resonant wave functions
It is noted that our wave function is fully antisymmetrized, square integrable. The eigenvalues that are associated with
free from the spurious center-of-mass moti@ctually the  metastable resonance states appear as such complex eigen-
total center-of-mass motion is eliminajednd has a good values that are independent of the scaling adglehen it is
total angular momentum and parity. Our calculation is thelarger than a critical angle, and the eigenvalues that are as-
so-called “variation after projection” type. sociated with nonresonant continuum states appear as com-
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plex eigenvalues which are dependent on the scaling angkufficiently large basis of Eq3). The resonance energy re-
[27]. One can expand the eigenfunctions of the complexmains rather stable against the change of the basis set within
scaled Hamiltonian in terms of square integrable basis funca reasonable range. The wave function obtained in this way
tions as we did for bound states. The variation of the energys used to calculate the electromagnetic transition rates. It is
functional with respect to the trial function, however, yields very difficult to do better than this because enclosing the
a stationary rather than a minimum principle. Therefore, thevave function in a box as required by the stabilization
stochastic basis selection procedure cannot be applied hemgthod is not trivial for the three-body system.
but instead, we will work on a basis with fixed nonlinear To apply the complex scaling method to the present case,
parameters. we define the transformatiod (#) which acts on the func-
The stabilization metho28] utilizes the discrete states tion of the intercluster Jacobi coordinatgd, and p4 ,
calculated in a box of large size. The stabilization method

can be combined with the stochastic variational method. In U(O)f(p.p5)=e3"f(ple'’ pie). 5
this case we select the basis parameters from a confined in-
terval. The eigenvalue problem of the transformed Hamiltonian

These methods have been widely applied for two- and4,=U(¢)HU(6) ! is solved for eactd value. A resonance
three-body resonances in atomic physics. Recently, nucleatate corresponds to a square integrable solution of the trans-
physicists have also began to use the complex scalinformed Hamiltonian and may be described as in Ej.
method as a useful tool to locate twi®9] and three-body When the basis function of E3) is employed, the opera-
[30] resonances of nuclear systems. tion U(6) ~* on the relative motion function is equivalent to

_Due to the complexity of the problem both methods re-myltiplying the size parametersf:l and ,,52, by e 2%, The
T s ooy sy o e hGTETOYER and (he WG of a esonance are bained as
reliable results. That is, we used the stabilization method foﬁ‘]e real and_|mag|nary parts of a gomplex eigenvalue,

) ' =Egr—(1/2)il'g, of H,, which remains unchanged for
narrow resonances, and calculated only the resonance energ itrary values o within an appropriate range
because the calculation of the width would require an exces- ’
sively large computational burden. For these quasibound
states the stabilized wave functions can directly be used to . RESULTS
calculate the matrix element of a physical operator because
they are real. To locate wider resonances we used the com-
plex scaling method. In this case we calculated both the The internal state of the particle was approximated by
width and the position. 0s harmonic-oscillator Slater determinant wave function of a

We have found that the energy of the narrow 5ktate  size parameter=mw/2%. The value ofv was chosen to be
can well be obtained by diagonalizing the Hamiltonian in a0.26 fm~2 to reproduce the experimental charge radius of

A. Input parameters

TABLE I. A set of arrangements and angular momenta included in the three-cluster model calculation for
%Be (N=n) and °B (N=p). See Fig. 1a) for the angular momente; and/,.

J7 Arrangement Angular momentuny’(,/’,)L
1/2 (aa)N 0,1 2,91 2,31
(aN)a (1,01 (1,21
1/2* (aa)N (0,00 (2,20 2,21
(aN)a (1,20 (1,11
3/2° (aa)N 0,D1 2,01 2,12
(aN)a 0,D1 (1,01 2,01 (1,21 2,12 1,22
3/2* (aa)N (2,21 (0,22 (2,02 (2,22 (2,42 (4,22
(aN) 1,191 1,12 1,32
5/2~ (aa)N 2,12 2,32 (0,33 (2,13 (2,33
(aN)a (1,22 (1,23
5/2* (aa)N (0,22 (2,02 (2,22 (2,23
(aN)a (1,02 (1,92 (1,33
712 (aa)N 2,03 0,33 2,33 (4,93 (2,34 (4,4
(aN)a (1,23 (1,93 (1,94
9/2" (aa)N (2,24 (0,44 (4,04 (2,44 (4,24 (4,94
(2,45 (4,25 (4,45

(aN)« 1,34 1,54 (1,55
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the « particle. The results are insensitive to the choice of the 0.0— , , ,
size parameter within a reasonable limit. ~,

We used Minnesota nucleon-nucleon interacti@®i], .
which is a sum of central and spin-orbit potentials of Gauss- \;
ian form. The Coulomb potential was included. The strength 0.5 2 Sy -
of the spin-orbit force was taken from the set IV of Reich- P -
stein and Tang, which gives a good fithbt « phase shifts. =
The central part of the Minnesota potential contains an §
exchange-mixture parameter The potential withu=1 cor- 5 -1.0F Ce . e

k=

responds to a Serber-type mixture. Decreasing the value of
u from unity implies increasing repulsion in odd partial
waves, while keeping the strength of even partial waves un- (L
changed. It was set ta=0.94 in order to reproduce the 1.5 (@ °Be:3/2 .
ground state energy ofBe. The value ofu=0.94 is very .
close to the valu€0.95 which is needed to well describe the 6=02

a+ a scattering in the resonating group metH&d]. Thus
our choice should give a realistic interaction betweendhe 2.0, 1‘ 2' ?" .
particles. The value afi=0.94 is, however, slightly smaller

than the value of 0.97 recommended for the description of Re (E) [MeV]

N+« scattering. By fixing theu and v parameters as de-

scribed above, the model contains no free parameter. No 0 \u T T T T

change of the potential parameters was made betwBen

and °B. . .
.

B. Cluster arrangements and angular momentum channels ) ¥. .

In our model the total spin is uniquely given By 1/2 so
that the total orbital angular momentum can take either
L=J-1/2 orL=J+1/2. Let us show that both values of
L are needed by taking an example of the magnetic moment
of °Be. Quite probablyand this will be confirmed latgthe
orbital motion of the protons gives a moderate contribution S .
to the magnetic moment dBe and only the spin part needs a3k 9 o RN -
to be considered to get a reasonable estimate of the magnetic (b) “Be:7/2 ]
moment. The magnetic moment is then approximated by 0=03
(J=3/2,L=1 andL=2) .

Im (E) [MeV]

w=(V 35l | ¥ 53) 0 1 2 3 4 5 6
Re (E) [MeV]

2 2
=g(n)2c(2 SMeL M, [3J M)
s Tt MgM < S L| )Ms FIG. 2. Complex eigenvalues fdf=3/2" (a) and 7/2 (b) of
Be. The rotation anglé is in units of rad. The point indicated by

[J(I+1)+S(S+1)—L(L+ 1)]‘]) (6)  @n open circle corresponds to a resonance.

— 2
=0, CL( 23(3+1)

the a+ «+n threshold is obtained as1.431 MeV and the
root mean squar@ms) radius of point nucleon is 2.50 fm.
wheregq(n) = —3.826 is the spirg factor of the neutron in Let us call this a full calculation. When we exclude three sets
units of nuclear magneton amwg is the amplitude of the total belonging to the arrangemept = (aN) a with ;=0 or 2,
orbital angular momenturh in the ground state wave func- both energy and radius hardly change from the result of the
tion. If the ground state is purely &f=1, then the magnetic full calculation; the overlap of the approximate wave func-
moment becomes 1.913uy, which is in disagreement with tion with the full wave function is 0.9995. This result is
the observed value Qiey,=—1.1778y. An L=2 compo-  physically acceptable because fhevave is of prime impor-
nent of about 20% admixture is needed to reproduce th&ance for the interaction between the neutron andathpar-
observed value. We will see later that the potential chosetficle. If we further exclude three sets belonging to e
gives just the needed admixture. It is instructive to note thaarrangement with/;=1, then the energy increases to
the magnetic moment for pure=1 case is equal to the —0.32 MeV and the radius increases to 2.57 fm. This sug-
Schmidt value of the singlps, neutron. gests that the arrangement=(aa)N (8Be+n-type con-
Table | lists a set of arrangements and angular momentguration alone is imperfect to describe the ground state
used in the present calculation. We did several pilot calculaeven though the andd waves are taken into account for the
tions to know the relative importance of the arrangementsnotion of the twoa particles. This consideration leads us to
and the angular momentum channels. When all the nine sethe remark that the calculations of Ref&2,16 using only
of Table | are used for the 372ground state, the energy from the 8Be+N channel should be accepted with some reserva-
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@@ °Be
8§~
— A - .
> [ 312
=
T
20 R
5 12—
|| s el
0
iea g 20+n
s et T e FIG. 3. Experimental and cal-
NS - ’ culated energies ofBe (a) and
— °B (b) from the three-body thresh-

old. The data are from Refs.
Exp. Present Ref[151] Ref.[16] Ref.[12] [5-7]. The 3.065 MeV state of
B is assumed to be 52

Energy [MeV]

20+p

Exp. Present

tions. On the other hand, if we exclude three sets belongingas a good correspondence with the observed spectrum. The
to theu, arrangement, then the result is very close to the fullsecond 3/2 resonance is obtained at 4.3 MeV excitation

calculation; the energy loss is merely 34 keV and the overlagnergy. The other calculationgl4—16 also predict the

of the wave functions is 0.9991. We can thus conclude thaglzz— state. Although no such state is cited in REf], the
the °He+ a-type configuration withy’; =1 constitutes a very _

A | calculated resonance may correspond to the state at 5.59
good approximation to the ground state wave function. As ISVleV mentioned in Ref[6]. We get two broad overlapping
seen f_rom T"’.‘bledl' ?e_angfular rﬂomentum in thearrange- resonances with 7/2 and 9/2° at about 6.5 MeV. This
ment is restricted to”, =1 for other states. . agrees with the conclusion of the recent experimégsis].

For resonance states, particularly for high spin resonanc : .
the inclusion of high partial waves becomes important to e_co.uld not f|nd. a resonance W'.th T/zaround 8 MeV
obtain stable resonance parameters in the complex scalirrgfc'tat'on energy in accqrdance with _Re[§,6], although
method. The complex eigenvalue of the rotated Hamiltoniapch @ State is parenthetically quoted in R&. Instead of
H, is obtained by using the basis function of E§). The th_ls a 5/Z resonance is obtained at 7.9 MeV, wh|.ch agrees
size parameters of the basis function are not selected raMith the result of Refs[14,15. The spectrum ofB is less
domly but are chosen ag‘=rop* ! (k=1,...K). The known experimentally compared to that tBe. The calcu-
stable values for its energy and width. The adopted value dihe energy and the width of several resonance$Brwith
K is about 10 in the present calculation. The basis dimensioth€ same accuracy as the case °@fe. For example, our
used to diagonalize the rotated HamiltoniarKis times the ~ calculation predicts a missing 1/Xtate at 2.43 MeV, which
number of the sets listed in Table I. Figure 2 displays aris in agreement with the result of a receige(p,n) reaction
example of the complex scaled spectra 8Be for [32] that located the 1/2 state at 2.83 MeV. Although no
J7=3/2" and 7/2Z. One can see, besides the discretizeddefinitive spin assignment is made to the state at 2.788 MeV
points corresponding to the three-body continuum, thosexcitation energy7], our calculation supports a 5/2assign-
points which lie on straight lines starting from the positionsment rather than 372
of the resonances of the subsystems. Table Il lists the energies and the widths of the unbound
states calculated by the complex scaling method. The ener-
gies of the 5/2 states of both®Be and °B are in good
The calculated spectra dBe and®B are compared with agreement with experiment. Their widths, though extremely
experiment in Fig. 3. The theoretical level sequencéBe  narrow, are reasonably reproduced; the calculated width of

C. Energy spectrum and electromagnetic properties
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TABLE II. Energies and widths of the unbound stateSBe and®B. The energy is from the three-body
threshold. The spin and parity of the 3.065 MeV statéBfis assumed to be 5/2

Expt? Calc.
J7 E (MeV=keV) I' (MeV=keV) E (MeV) ' (MeV)
3/2” —-1.5735 —_— —-1.431 e
1/2* 0.111+7 0.21710
5/2~ 0.8559+1.3 0.0007%0.15 0.84 0.001
1/2~ 1.21+120 1.08(+110 1.20 0.46
5/2* 1.476:9 0.282+11 1.98 0.6
°Be 3/2* 3.131+25 0.743:55 3.3 1.6
312, 4.02+100 1.33+360 2.9 0.8
712 4.81+60° 1.21+230 5.03 1.2
92t 5.19+ 60° 1.33+90 4.9 2.9
(1/2°) 6.37+ 80 ~1.0
5/2, 6.5 2.1
3/2” 0.277 0.00054 0.21 0.30 0.004
1/2* (1.9 =0.7
5/2~ 2.638+5 0.081t5 2.55 0.044
1/27 3.11 3.1 2.73 1.0
5/2* 3.065+ 30 0.550+40 35 1.2
°B 3/2* 4.6 2.7
312, 4.2 1.4
7127 7.25+60 2.0=200 7.0 1.7
9/2* 6.6 3.3
5/2, 8.4 2.4
3Referencd7].
Referencd6].
‘Referencd32).

°Be is about two times larger than the observed value, whil&€1 transition strength depends on the description of the tail
the width of °B is about a half of the experiment. The cal- part of the wave function. Withu=1.0 the energy of the
culation reproduces the widths of other states within a facton/2* state changes to 593 keV below the threshold and the
of 2. Our result is in better agreement with experiment tharB(El) value becomes 0.24 W.u. in good agreement with
the calculation of Ref{16]. _ experiment. Withu=0.98 the energy goes up to 206 keV

_ There has been considerable effort to determine the 10Cgse|ow the threshold and the exterior part of the wave func-
tion of the 1/2" state from the point of view of a Thomas- ion that does not contribute to the transition grows, thereby
Ehrman shift{33]. We applied the complex scaling method reducing theB(E1) value to 0.18 W.u. To our best knowl-

. applied the :
to find a resonance with”=1/2" by including the arrange- o460 this is the first theoretical calculation which has been

ments and the anguliar momenturr_1 cha_nnels listed in Table hble to reproduce thgl transition probability in a consistent
The present calculation could not identify such a stable com- ay. Reference[18] argues that the experimentdil

plex eigenvalue that can be interpreted as a resonance. : .
estimate theéE1 transition strength, we increase the value Ofs?rength IS enhapced to 0.38)'07 W.u. if the unbound na-
ture of the state is taken into account.

u to make the 1/2 state particle-bound. i
The electromagnetic moments and the rms radii of proton Table Il includes the results of other mo‘?'e's- T;Inean_d
neutron, and nucleon, assuming pointlike nucleons, are in? mements of the shell model were determined by using an
cluded in Table IIl. Bare operators are used in the calculagffective interaction which was chosen to reproduce both en-
tion. The charge radius dBe with the effect of the proton’s €rgies and static moments op&hell nuclei[9]. These val-
finite size becomes 2.54 fm and fits the experimental value ofies are rather close to those of Cohen-Kur@i6) POT
2.519+0.012 fm[7]. The rms radius of neutron is larger than calculation[34,5]. A shell-model calculation of0+1)% w
that of proton by 0.2 fm. Both the magnetic and the quadrumodel spac¢9] cannot account for the enhancement of the
pole moments of°Be are reproduced very well. As was B(E2) transition; with the effective charge of 03§ gives
stated in Sec. Ill B, the contribution of the proton’s orbital about one third of the experimental value. Ti# transition
motion to the magnetic moment is rather snf@lR8u,) and  probability of the lowest 1/2 state to the ground state was
the contribution of the spin part; 1.45u,, corresponds to predicted to be only 0.03 W.[9]. Another shell-model cal-
15.1% admixture of thé&e=2 component. ThéM1 andE2  culation in a similar basi§5] reproduces reasonably the
transition probabilities of the 572 state to the ground state B(E2) value by using a large effective charge for neutron,
are also well reproduced. The strolg transition of the but again gives a very smaB(E1l) value. Although the
1/2" state is in reasonable agreement with experiment. Thealculation of Ref[16] using only the®Be+n channel gives
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TABLE lIl. Radii and electromagnetic properties 6Be. The reduced matrix elements are given in
Weisskopf units. The bare-nucleon charges grfactors are used in the present calculation. The effective
charges were used in the shell-model calculation of R&f8] to calculate the quadrupole moment and the
E2 strength. See text for th@(E1) value of the present calculation.

J™ Expt2 Present Refl15] Ref.[16] Ref.[5] Ref.[9]
3/12° E (MeV) —1.5735 —1.431 —0.89
rm (fm) 2.50 2.62
rp (fm) 2.37+0.01 2.39
r, (fm) 2.58
() —1.1778-0.0009 -1.169 —1.23 -1.52 —-1.27 —1.070
Q (efm?) 5.3+0.3 5.13 5.76 4.77 4.35 4.66
o (Mb) 825+ 20 850
5/2~ E (MeV) 0.8559 0.883 1.89
B(E2;3 -3 24.4+1.8 22.0 24.7 23.5 125 ~7
B(M1;3 =32 0.30+0.03 0.229 0.10 0.23
1/2* E (MeV) 0.111 0.05 0.75
B(E1;3"—2") 0.22+0.09 0.24 0.68 0.03 0.03
0.18
3Referencd7].
bReferencd 46].
a reasonable agreement with experiment, we have already (—1)%

pointed out that théHe+« type configuration leads to fur- (IM[THI'M")= MU'M "k IM)(I[TH3").
ther improvement. A similar remark applies to the calcula-
tion of Ref.[12], which indicates that the charge radius and

the quadrupole moment are considerably smaller than experj|=he charge density multipole operalﬁrc"“'(q) which oc-
ment. /m

A further test of the wave function of th&Be ground curs in the form factor is given as a function of momentum

state is performed by the electron scattering da&. The transferg from the charge density operator
longitudinal electron scattering form factor is calculated in a A1,

. 3 . H ~ . A~ 3|
first-order plane wave Born approximation through M/Cg‘m(q):f J/(qr)Y/m(r)Z‘l 5 8(r;—Rgm—r)dr,
C)

where r; is the nucleon coordinate and.,, is the total

whereZe s the charge of the nucleus and the reduced matri€nter-of-mass coordinate. Note that our wave function con-
element of the operatoT'f((q) is defined by

8
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FIG. 4. Elastic charge form factor fofBe. The data are from FIG. 5. Elastic transverse form factor fdBe. The data are from

Refs.[36—38. Refs.[40,41].
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tains no center-of-mass motion. Figure 4 compares the cal- 0.08 | , T T ,
culated charge form factor with the experimgd6—3§. The

correction for the finite proton size is taken into account by 0.07 - ~ neutron .
multiplying the form factor with the proton’s form factor (a)

used in Ref.[39]. Both monopole CO) and quadrupole 0.06[-." .

(C2) terms contribute to the charge form factor. No effort
has so far been made to separate those contributions experi-
mentally. Polarized electrons and targets will be needed to Z.
do such experiments. The agreement between theory and ex- 2 0.04

fm™> ]
[=]
g

1

periment is good. This is perhaps not very surprising because §
the present model reproduces both charge radius and quad- = o0.03 -
rupole moment accurately. It is clear that the quadrupole
deformation of the charge density is important at higtyer 0.02 -
values. The deformation of the proton and neutron density
distributions will be discussed in the next subsection. 0.01 -
The transverse electron scattering form factor gives infor-
mation on the nuclear current density. It is calculated from 0.00 L
the expression s 6
= o Am S v, [T w )2
| T(q)l _ZZ(ZJH‘].) - {|< Jf” /(q)H Ji>| 0.035 T T T T T
+ (W, I TP )W 5)1% (10 0.030 - (b) N
proton
The symmetry consideration on parity and time reversal 0.025 -
shows that the elastic form factor receives no contribution of
the transverse electric multipoles of the current density "-’E 0.020 _
f(r). The transverse magnetic multipoles are defined by hat ;
%’ 00151 :,.-' neutron |
~ ~ o : B
i) - [0V ima.  an 3
0.010 -
Here the vector spherical harmonics are defined with unit 1
vectore as 0.0051
. . , _ 1 | L B !
Y7, (D) =Y D)€l (12 0099 1 2 3 4 5 6
r[fm]
and the current density consists of the convection and mag- FIG. 6. Monopole(a) and quadrupoléb) density distributions
netization currents: of protons and neutrons for the ground state’Be.
A 1—1q D. Density distributions and spectroscopic amplitudes
° i
i(ry= mzl — PN =Rem=T) The proton and the neutron density distributions, defined
= by
+5(ri_Rc.m._r)pi} A
hod p<r>=<\lf” 2, A(ri—Rem=1)P, \Ifu>
V| Zmey M~ Rem—D)oy | (13) -
_ _ =po(N)+ 2, pANY o) (14
Here p; is the momentum of the nucleon in the center-of- /#0

mass system and, is the magnetic moment of the nucleon .
in units of nuclear magneton. Figure 5 compares the calcuWhereP; projects out the protons or neutronare also de-

lated transverse form factor with the data of R4#0,4].  termined. For the ground state 8Be we have monopole and
Both M1 andM3 contributions are important to get a satis- duadrupole {=2) densities. The density distributions,
factory reproduction of experiment. Shell-model calculationso(r) andp(r), are shown in Figs.(@) and @b). They are

[5] needed a quenching factor of about 0.7 for the transversielated to the rms radius and the quadrupole moment as be-
form factors, while no quenching is needed in our model. wdow:

can conclude that the ground state wave function of the

pre_sent mod_el reproduces consistently all the electromag- (rz):4—wfxp0(r)r4dr, (15)

netic properties ofBe. Z Jo
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5

167\ 12 (= 4 0.08 T T T T T
po(r)redr. (16)
0

0.07

An analogous relation can be defined for the neutron case. .
The quadrupole moment becomes 5.13?ffor the proton 0.06
and 3.86 fnf for the neutron. The fact that the neutron quad- _
rupole moment is smaller than the proton quadrupole mo-«_  0-05
ment is understood by noting that the single neutron cluster <=
moves between the twe-particles for the most of time and 5,  ©0-04
thus makes the neutron density less deformed.

The 2.43 MeV, 5/2 and 6.38 MeV, 7/2 states of°Be
together with the ground state approximately follow a
J(J+1) rule and can be considered to form a rotational band 0.02-
with K=3/2 [5,6]. From the experimental quadrupole mo-
ment of the ground state, the intrinsic quadrupole moment 0.01
Qo of the band is estimated as 26.5%y using the relation
Q=[J(23-1)/(3+1)(23+3)]Qo=(1/5)Q, [42]. The E2 0.00
transition probability within the band is related, in the col-
lective model, to th&), value by

density

0.03

5 .
B(Ez;KJﬁKJZ)=EeZquleouzK)z, (17 ‘°§ — (b)

which predicts 23.9e?fm* and 9.98 e’ fm* for the 2
5/2~—3/2" and 7/Z —3/2" transitions, respectively. The
corresponding experimental values are 27210 e? fm* and
7.0+3.0 €2 fm* [7]. Since the collective model prediction
agrees reasonably well with experiment, it may be possible
to extract the intrinsic deformation paramef@g by using E N
the relation Bo=\7/5Qy/(Z(r?)). Our theory gives [ neutron:3/2
Bo=0.89, which is close to the empirical deformation param- I
eters of neighbouring nuclei, e.g3,~1.13 for 1%Be and 10
Bo~0.82 for 1°C, while the correspondin@, values are
22.9 fm? and 25.0 fnf, respectively{43]. The deformation
parameter3 associated with the density of E(L4) is esti- 5 L1 I
mated by assuming that it can be approximated by o 1 2 3 4 5 8
p r/(1—(1/4m) B+ BY,(F))] from a spherical shape r[fm]
ps(r). The extracted value oB is close to 1/5 of thes, FIG. 7. Monopole density distributions of protons and neutrons,
value as expected by the collective model. (@ in linear scale andb) in logarithmic scale, for the excited
The monopole densities of the protons and the neutron&/2” state and the 3/2ground state ofBe. The value ofi=1.0 is
may be used to calculate the total reaction cross section 4g€d for the 1/2 state.
high energies. It is given, in the Glauber thed#y], as

proton : 1/2 *

neutron : 172+

density [ fm™ ]
>
|

L
L

\
A\,
RS
7

8 9 10

[45]. The interaction cross section measured by Tanihata
_ _ _ et al.[1] is not exactly the same as but approximately equal
GR_J [1=exp{=2Imx(b)}]db, (18 15 the reaction cross section. Their value is 8@ mb,
which is in a fair agreement with theory. The reaction cross
whereb is the impact parameter and the phase shift functionsection of’Be on a Cu target was measured by Saint-Laurent
Y, is related to the densities of the target and the projectil€t al-[46] at about 45 MeV/nucleon. They extracted the re-
through the thickness functiofi(s) = [ p(s,z)dz, by duced strong absorption radiug,~1.13 fm, for °Be by fit-
ting their measured cross sections to the formula by Kox
et al. [47]. This formula predictsrg=825*+20 mb for the
iy(b)=— f f To(9TH((b+s—t)dsdt. (19  °Be+ ’C system at relativistic energies as listed in Table Ill.
We again confirm that our density is reliable enough to re-
produce the experiment.
Here T is the profile function for theNN scattering. The We showed in the previous subsection that the enhance-
monopole densities of the proton and the neutron were usetent of theE1 transition of the first excited state itBe is
to construct the density ofBe. Theoy value of °Be for a  reproduced well. To understand this we note that Hie
carbon target at 800 MeV/nucleon is calculated to be 850 mleperator is recast toNZ/A)e3/47w(R,—Ry), where R,
with the parametrization of the profile function used in Ref.andRy are the center-of-mass coordinates of the protons and
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FIG. 8. Spectroscopic amplitudes of the ground stat&Bsf for FIG. 9. Spectroscopic amplitudes of the ground stat&Bsf for

the 8Be+n arrangement. The symbalsandR denote the distances the *He+« arrangement. The symbolis the distance betweem
of two a-particles and oh from their center-of-mass. The set of and« andR the distance between their center-of-mass andhe
angular momenta iga) /=0, /,=1, L=1, (b) /1=2, /,=1, set of angular momenta &) /=1, /»,=0, L=1, (b) /=1,
L=1, and(c) /1=2,/,=1,L=2. /»=2,L=1, and(c) /1=1,/,=2,L=2.

the neutrons, respectively. The enhancement of the transitio® fm. The proton and neutron rms radii increased from 2.39
should be therefore related to the excitation of the correto 2.94 fm and from 2.58 to 5.59 fm, respectively. Though
sponding motion in the excited state. In the- «+n model  the increase of the proton size is moderate, that of the neu-
the E1 excitation is caused by the valence neutron. Figure Tron size is dramatic. The picture emerging from this analysis
compares the monopole density of the "1/@tate obtained is the following: The valence neutron in the ground state is
with u= 1.0 with that of the ground state. The proton densitymostly confined between the twe particles but, in the ex-
becomes smaller near the center but reaches up to largeited 1/2° state, moves around them in a spatially wider
distances, indicating the increase in the mean distance beegion. It is easy to understand that the laEfe transition
tween the twax particles. The neutron density shows a sub-strength has naturally come out from the structure change of
stantial decrease at 1-2 fm and a significant increase beyorthe underlying states.
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Another interesting quantity that helps to reveal informa-that the spatial symmetry of the main component®Be is
tion on the wave function is the spectroscopic amplitudedifferent from that of°Li [34]. The Gamow-TellefGT) ma-
which, in the angular momentum projected basis, is definedrix element,

by o
1 . . MGT(i—>f)=<‘I’J(gBe) > t(k)U(k)H‘I’Ji(gLi)>,
9 pL(1R)= W<A{[®5[Y/1(PT)Y/2(P/§)]L]JM f k=1 2
X 3(py—1)8(p5—R)[¥;m). (20 {0 any state ofBe, if it is described by ther+ a+n three-

cluster model, always vanishes regardless of the wave func-
tion of °Li. This is most easily understood by acting the
Hermitian conjugate of the GT operator on tfBe wave

Figures &a), 8(b), and §c) display the spectroscopic ampli-
tudes of the ground state dBe for some channels of the
?rranger??ﬂnﬁ(aa)n{ Ilettlng:ja?(:r:? repr?sen:c the (tjf:S_' function and by noting that the spin-isospin part of the

ances ot the twax particles and of the neutron irom their a-particle wave function is fully occupied.

center of mass, respectively. Some remarkable features are The above discussion indicates that the simple three-

that all the amplitudes have a peak Bt+3.2 fm and 9 e .
, cluster model for’Be must be modified to explain thg

R~2.3bfm andF’z—lndegerEjgnft nofdes r?t: 1 fn; éfor the s decay in spite of the successful results obtained in the previ-

wave betweern's) andr=2 fm (for the s andd waves. ous subsections. The modification must be small enough not

Thelse charactelristicsl are ?nﬁderstocr)]d by the mlcroso;»pkl‘c to destroy the agreement between experiment and the three-
@ cus'ger-mode analysis 1o Be. The appearance o the cluster model calculation. One possible way for the modifi-
nodes is understood in relation to the existence of the Pa“'Eation is to introduce the distortion of the particle into
forbidden state$48]. The norm of the amplitude, which is +p and h+n configurations. To explore the consequence
called the spectroscopic factor, becomes .1'03.’ 0.77, and 0. this modification, let us assume that the intrinsic wave
corresponding to three channels shown in Fig. 8. We Note  tion of thea particle can be expressed by

that the norm is different from the so-called amount of clus-
tering. The amplitudes corresponding to the arrangement b,=1-c2¢ 0 +ce'®, (22)
o= (an)a are plotted in Fig. 9, wheneis now the distance “ “

betweem anda andR the distance between their center of where ¢ represents the part which can be described by the
mass andx. The nodes appear also in this case but theilps harmonic-oscillator Slater determinant, whié® the dis-
positions alter particularly at large This is due to the fact 5 teq part which is orthogonal ‘). The °Be wave func-

that R is approximately equal to the-« distance at small o, jn 3 more realistic three-cluster model can therefore be
r but deviates largely from it with increasimg The spectro- approximated by

scopic factor is 0.84 and 0.61, respectively.
|W,,(°Be)) =M (1—c?)| ¥ (°Be))

E. Beta decay of the®Li ground state to °Be +2¢cV1-c? ¢ 20 n) +¢? '@ En)}.

Because the ground state and the™5/2.43 MeV state (23
are described well by the present model, thelecay of the o ) )
9i ground state to these states is expected to further test tHdere the normalization constant/, is close to unity when
accuracy of their wave functions or an available wave func i8 small and it is suppressed below. The first term,
tion of °Li. The experimental value of Idg for the 8 decay |q’5?)(939)>:|¢&0)¢&0)n>' is nothing but the one described
to the °Be ground state is about 5.37,19], indicating that by the @+ a+n model and has no contribution to the
the B-decay matrix element is fairly suppressed despite thelecay. By neglecting the last term, the GT matrix element is
allowed transition. The weal decay is ascribed to the fact given by

9
MGT<ief)=2c¢1—c2< o dn| 2, t-(Ka(k) H \PJi<9Li>> =2(v{(°Be)| W) (°Be))

9

2 (koK) H\PJi<9Li>> (24)

><<~1f 5(°Be)

with Equations(24) and (25) are our basic equations to calculate
the B8 decay matrix element when the distortion of the
, particle is included.
|W3,(°Be))=1-c?| W (° Be)) +c| 4, b)), The wave function of Eq(25) is obtained by extending
(25 the three-cluster model to the four-cluster model which in-
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TABLE IV. A set of arrangements and angular momenta included in the four-cluster model calculation
for the °Be ground state. See Fig( for the angular moment&;, /», and/;. The spin of the nucleon
clusters is coupled te,3. The total spinS is restricted to 1/2.

J7 Arrangement Angular momentuf/’y,/5)/ 10,/ 3]L So3
Be: 3/2° [(tp)a]n [(0,00,1]1 [(0,22,1]1 [(0,22,1]2 1
(tp) (an) [(0,00,1]1 [(0,22,1]1 [(0,22,1]2 1
[(tp)n]e [(0,11,011 [(0,11,2]1 [(0,1)1,2]2 1
[(tn)a]p [(0,00,1]1 [(0,22,1]1 [(0,22,1]2 1
(tn)(ap) [(0,00,1]1 [(0,22,1]1 [(0,22,1]2 1
[(tn)p]e [(0,1,0]1 [(0,11,2]1 [(0,1)1,2]2 1
[(hn)a]n [(0,00,1]1 [(0,22,1]1 [(0,22,1]2 0
(hn)(an) [(0,00,1]1 [(0,22,1]1 [(0,22,1]2 0
[(hn)n]a [(0,11,011 [(0,11,2]2 [(0,11,2]2 0
cludesa+t+p-+n and a+h+n+n partitions. In order to IV. SUMMARY

avoid excessive numerical calculations, the angular momen- . : : :
s The microscopic multicluster model was applied to the
tum channels and the cluster arrangements are rather limited ; 9 .
. X study of the mirror nuclePBe and®B. They were described
See Fig. 1b) and Table IV. The spins of all the clusters were in a three-cluster model comprisin articles and a
coupled toS=1/2. The isospins were not coupled to a defi- P 9 P

) : ?ingle nucleon. The two-nucleon interaction consists of the
nite value so that the wave function of the extended mOdecentral and spin-orbit potentials together with the Coulomb
may in general contain the total isospin Bf 1/2 and 3/2. P P 9

) B i potential. The same two-nucleon potential was employed for
Egg potential favorsT=1/2 for the low-lying states of ), opo 4nyoB. The ground state ofBe, an only particle-
o . bound state in this study, was obtained with the stochastic
The intrinsic wave function of thé and h cluster was y

q ibed by 6 h . illator Slater determinant of th variational method, while the other particle-unbound states
escribed by Sharmonic-osciiiator Sfater determinant ot tine o o o4 gjed by the complex scaling and the stabilization
same size parameteras that of thex particle. The ground

) ) X ._methods. The three-body dynamics of the clusters was taken
state wave function obtained in the four-cluster model using . o account by including both of the arrangementsafN
the Minnesota potential afi=0.94 has the overlap integral . :
of 0.971 with the one obtained in the three-cluster modeland (@N)a, and by using relevant partial waves between the

: X i .~ “'felative motion of the clusters. The calculated spectrum of
Therefore, this new wave function should yield substantlallygBe below an excitation energy of 8 MeV was in fair agree-

) o .09 e,rrlﬁent with experiment. We obtained two broad overlapping
properties. This is just what we have expected to maintain INesonances withl™=7/2~ and 9/2 around 6.5 MeV, in
extending the model space. 3 ~ agreement with the conclusion of the recent experiments.
To calculate thep-decay probability we use th@'—'_ Two states, 3/2 and 5/2 , were predicted at about 4.5 MeV
ground state wave function which was obta|'ned In a MICroynd 8 MeV in excitation energy, respectively. The spectrum
scopica+t+n+n four-cluster mode[22]. This model for 4 98 was found to be similar to that cfBe. The spin and
°Li reproduced both magnetic and quadrupole moments barity of several states of8 were predicted. The first ex-
the ground state very well. To fit the energy of tiBe cited 1/2° state was not localized in the present study and
ground state to its experimental value from the four-bodythus no definite argument was possible on a Thomas-Ehrman
threshold, we changed the parameter to 0.88 in the four- shift in this case.
cluster model calculation. The overlap integral of the wave The theory reproduced very well the electromagnetic
functions between the three-cluster and four-cluster modelproperties of the’Be ground state such as the charge radius,
becomes 0.973 and the resulting flogralue is 5.60. The the magnetic moment, the quadrupole moment, and the elas-
logft value is still a little too large compared to the experi- tic electron scattering form factors. The calculated ground
mental value of 5.31, but this calculation strongly indicatesstate density was consistent with the total reaction cross sec-
that we are on the right track. A further refined four-clustertion data. The intrinsic deformation parameter of the density
model calculation for boti?Be and®Li will reduce the dis- was found to be 0.89. The 172+3/2" E1 transition and the
agreement between experiment and theory because suchb&® —3/2~ E2/M1 transitions were studied by treating the
calculation is expected to enhance the GT matrix elemenexcited states as bound. The calculated transition rates were
The shell-model calculatio®9] gives the lodit value in the in good agreement with experiment.
range 4.86-5.64, depending on the interaction used. It is The fact that the present calculation reproduced all the
interesting to analyze in the way presented aboveg@tie-  data well strongly supports that the three-cluster model is
cay of °C to the low-lying states ofB and an asymmetry in quite appropriate for describing the structure ¥#e and
the B-decay matrix elements =9 nuclei[49,19. °B, provided a full account of the dynamics is taken into
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account in the calculation. We were also able to understantivo « particles and several neutrons.
the B decay of °Li to °Be by admixing the small compo-

nents that are induced by the distortion of thgarticle into -
t+p and h+n configurations. A unique advantage of the Research{No. 05243102 and No. 0664088f the Ministry

microscopic multicluster model was exemplified by being®f Education, Science and Cultutdapan and by OTKA
able to accommodate such distortion in the model consis®rant No. T17298Hungary. Most of the calculations were
tently. The study on heavier Be isotopes is in progress in thdone with the use of RIKEN's VPP500 computer.
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