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The structure of the mirror nuclei9Be and9B is studied in a microscopica1a1n anda1a1p three-
cluster model using a fully antisymmetrized nine-nucleon wave function. The two-nucleon interaction includ
central and spin-orbit components together with the Coulomb potential. The ground state of9Be is obtained
accurately with the stochastic variational method, while several particle-unbound states of both9Be and9B are
investigated with the complex scaling method. The calculation for9Be supports the recent identification for the
existence of two broad states around 6.5 MeV, and predicts the 3/22

2 and 5/22
2 states at about 4.5 MeV and 8

MeV, respectively. The similarity of the calculated spectra of9Be and9B enables one to identify unknown
spins and parities of the9B states. Available data on electromagnetic moments and elastic electron scatterin
are reproduced very well. The enhancement of theE1 transition of the first excited state in9Be is well
accounted for. The calculated density of9Be is found to reproduce the reaction cross section on a carbo
target. The analysis of the beta decay of9Li to 9Be clearly shows that the wave function of9Be must contain
a small component that cannot be described by the simplea1a1n model. This small component can be well
accounted for by extending a configuration space to include the distortion of thea particle to t1p and
h1n partitions.@S0556-2813~96!02607-6#

PACS number~s!: 27.20.1n, 21.60.Gx, 23.20.2g, 23.40.Hc
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I. INTRODUCTION

There has been a growing interest in the study of neutro
rich nuclei since the advent of radioactive nuclear beams
was found@1# that some light nuclei near the neutron dri
line exhibit neutron-halo structure or have thick neutron-sk
clouds. The halo structure, a new form of the nuclear matt
is characterized by a spatially extended low density distrib
tion around the core part of normal density. It is interestin
to know how a nucleus changes its structure with the i
crease of the number of neutrons and how the binding of
neutrons is attained in such a system. In the very light nuc
the mean field is not stable enough to generate the regu
shell structure but, instead, the clustering of the nucleo
especially thea clustering plays an important role in deter
mining their structure. Because of this the light nuclei sho
individual features which have strong dependence on
number of nucleons. The Be isotopes are of special inter
in this respect because they show some anomalous feat
which are not easily understood in a simple shell mod
Because the8Be nucleus is known to be a typical cluste
state of twoa particles, it is interesting to attempt at describ
ing heavier Be isotopes in a unified framework of twoa
particles and extra neutrons. Our basic question is: How w
does this picture give us a consistent understanding of the
isotopes? This question naturally leads us to the applicat
of a multicluster model. A fully microscopic multicluster
model utilizes anA-nucleon wave function, incorporating the
Pauli principle exactly. It has various applications in th
structure study for the halo nuclei@2# and in the nuclear
astrophysics@3,4#.

The spectrum of9Be is poorly known. This is probably
because all the levels but the ground state are above
54/96/54~1!/132~15!/$10.00
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a1a1n threshold. Recent experiments@5,6# have, how-
ever, isolated the broad level at 6.76 MeV@7# to two states,
the 7/22, 6.38 MeV state and the 9/21, 6.76 MeV state.

A few theoretical studies on9Be have already been don
in various models. A projected Hartree-Fock calculation@8#
was carried out to study the electromagnetic properties
9Be. A shell-model calculation in a~011!\v basis @5,9#
gave a reasonable spectrum but predicted too small di
transition strength for the first excited state. There are sev
calculations using ana1a1N three-cluster model. Earlie
calculations @10,11# emphasized the three-body aspect
9Be to explain its low-lying spectrum. These treated thea
particle as a structureless particle and considered its com
iteness by redefining the potential with the Pauli correcti
Recently, this type of macroscopic approach has been ex
sively applied to the study of9Be and 9B nuclei @12#, by
including the (aa)N-type arrangement in the calculation
On the other hand, some microscopic cluster-model calc
tions starting from nine-nucleon wave functions were acco
plished in the resonating group method@13# or in the gen-
erator coordinate method@14–16#. Our microscopic
multicluster model has the advantage that the distortion
the constituent clusters, e.g., thea particle, when needed
can be included in the calculation in a consistent way.
example indicating this necessity will be discussed later
case of theb decay of 9Li to 9Be. The macroscopic mode
has, however, a difficulty in taking the possibility of th
cluster distortion into account.

The calculation of Ref.@13# considered the three channe
of 8Be~01)1n, 5He~g.s.!1a, and 8Be~21)1n to describe
the levels of 9Be. A molecular model was applied in th
generator coordinate framework to study the structure
132 © 1996 The American Physical Society
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9Be @14,15#. The calculation of Ref.@16# included only
8Be1N channel, where the motion of the twoa particles in
8Be was described in a restricted space. The two gener
coordinate method calculations gave reasonable agreem
with experiment. There are, however, some noticeable
agreements between the theory and experiment. Both of
macroscopic and microscopic calculations done so far w
limited either in taking the Pauli principle into account or
treating the three-body dynamics. Further improvement w
be attainable by treating the three-body dynamics more c
pletely.

As the first of the series of studies on the Be isotopes
show in this paper the results of calculation for9Be in a
microscopica1a1n model. At the same time we conside
its mirror nucleus9B in an a1a1p three-cluster model.
One of the main objectives in this paper is to assess
validity of our basic assumption in case of9Be. This is sub-
stantially important for the study on heavier Be isotopes.
this end we carry out an extensive three-cluster model ca
lation that has no limitations mentioned above, and inve
gate carefully some important properties of the low-lyin
states of9Be, that is, the energy spectrum, the magnetic a
quadrupole moments of the 3/22 ground state, and the elec
tron scattering form factors. Of particular interest is the e
hancement of the electric dipole transition from the first e
cited 1/21 state to the ground state@17,18#. This reduced
transition probability is nearly as large as the well-know
one of 11Be. The mechanism of the enhancement in th
cases may be related to each other. Another interest is
b decay from9Li to the low-lying states of9Be @19#. We
will show that thisb decay is useful to reveal small compo
nents contained in the wave function of9Be.

The levels of9B are all particle-unbound and only few o
them have spin assignments@7#. There are discussions on th
missing 1/21 state from the viewpoint of the Coulomb dis
placement energy@20,21#. As a mirror nucleus of9Be, 9B
can be described in ana1a1p three-cluster model. A clus-
ter model has a unique advantage that it can describe
asymptotic part of a wave function well and thereby pred
the position and width of a resonance. This is a very imp
tant ingredient for a detailed structure study of both9Be and
9B because their states are mostly unbound.
In our approach the total wave function is given as

antisymmetrized product of the internal states of the clus
and the function of the relative motion. The antisymmetriz
tion of all the nucleons is exactly taken into account. Tw
types of cluster arrangements, (aa)N and (aN)a, are com-
bined to include the different correlation between the clu
ters. The nucleon in the (aa)N arrangement corresponds t
moving in a ‘‘molecular’’ orbit around the8Be5(aa) core.
On the contrary, the (aN)a arrangement is suited to de
scribe an ‘‘atomic’’ orbit of the nucleon around thea par-
ticle. This analogy should not, however, be taken so litera
particularly when the particles come closer, because the c
figurations of the two arrangements have considerable o
lap. The function of the relative motion is approximated by
linear combination of nodeless harmonic-oscillator functio
of different size parameters. Our experience@22,23# shows
that the approximation with such functions gives an accur
description up to large distances. To keep the dimension
the basis low, we apply the stochastic variational meth
ator
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~SVM! @23–25#, in which we set up the ‘‘important’’ basis
states stepwise by using an admittance test. This proced
was successfully applied to study the exotic nuclei@2,25,26#
and also to few-body systems@23#.

The plan of this paper is as follows. In Sec. II we give
brief outline of our formalism. The microscopic three-cluste
model is presented in Sec. II A. The scaling methods whi
we apply to determine the position and width of a resonan
state are briefly explained in Sec. II B. Section III contain
the results of calculations. The input parameters are given
Sec. III A. The relative importance of the arrangements a
the angular momentum channels are discussed in Sec. II
Energies, radii, magnetic and quadrupole moments, elect
scattering form factors are compared with experiment in S
III C. The density distributions and the spectroscopic amp
tudes are discussed in Sec. III D. Theb decay of9Li to the
states of9Be is discussed in Sec. III E. In the last section w
summarize the most important conclusions.

II. FORMALISM

A. A microscopic three-cluster model

To describe the system consisting ofa1a1n for 9Be or
of a1a1p for 9B, we build up a trial function which is a
sum over two cluster arrangementsm, m15(aa)N andm2
5(aN)a, with N5n or p. Each arrangement is associate
with a particular set of intercluster Jacobi coordinatesr1

m and
r2

m . The coordinatesr1
m and r2

m in the arrangementm1 are
chosen to stand for the relative coordinate of thea particles
and the nucleon coordinate measured from the center-
mass coordinate of twoa ’s, while, in the arrangementm2 ,
they represent the relative distance vector between
nucleon anda and the relative coordinate of anothera from
the center-of-mass coordinate of the nucleon anda. The
arrangementm1 is suited to describe the component corre
sponding to the8Be1N decomposition at large distances
while the arrangementm2 corresponds to the5He1a de-
composition. The total orbital angular momentumL is ob-
tained by coupling the orbital angular momental i[l i

m be-
longing to the Jacobi coordinatesri

m , and then it is coupled
with the total spinS 5 1/2 to get the total angular momen
tum J. See Fig. 1~a!. The intrinsic wave function of thea
particle is constructed from a harmonic-oscillator Slater d
terminant with a fixed size parameter by eliminating th
center-of-mass motion. The wave function of the interclus
motion is approximated by a linear combination of nodele
harmonic-oscillator functions~or ‘‘Gaussians’’! of different
size parameters:

G l m~n,r!5Gl ~n!exp~2nr2!Yl m~r!, ~1!

with

Gl ~n!5F 22l 17/2n l 13/2

Ap~2l 11!!!
G 1/2, Yl m~x!5xl Yl m~ x̂!.

~2!

The wave function with the angular moment
@S,(l 1l 2)L#JM (S51/2) in the arrangementm can be writ-
ten as
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C@S,~ l 1l 2!L#JM
m 5(

K
CK,S~ l 1l 2!L

m A$†FS@G l 1~nk1
m ,r1

m!

3G l 2~nk2
m ,r2

m!#L‡JM%, ~3!

wherenki
m is thekth size parameter of thei th relative motion

in the cluster arrangementm, A is the intercluster antisym-
metrizer normalized such that the normalization kernel a
proaches the unit operator in the limit of infinite cluster sep
ration,FSMS

is a product of the intrinsic wave functions o

the twoa-particles and the nucleon’s spin-isospin functio
andK stands for the set of the indices$k1 ,k2% of the size
parameters. By using an integral transformation@23#, the an-
tisymmetrized product in Eq.~3! can be rewritten as a linear
combination of Slater determinants of Gaussian wave-pac
single-particle functions. The matrix elements between Sla
determinants of these nonorthogonal single-particle states
easily evaluated and can be expressed in a closed analy
form.

The variational trial function is a combination of differen
arrangements and intercluster angular momenta:

CJM5 (
~ l 1l 2!L

$C@S,~ l 1l 2!L#JM
m1 1C

@S,~ l 1l 2!L#JM
m2 %. ~4!

It is noted that our wave function is fully antisymmetrized
free from the spurious center-of-mass motion~actually the
total center-of-mass motion is eliminated! and has a good
total angular momentum and parity. Our calculation is t
so-called ‘‘variation after projection’’ type.

FIG. 1. Different arrangements used in the three-body~a! and
four-body ~b! calculations. The small circles are nucleons, th
medium-size circle is thea particle, and the gray circle is the 3N
cluster,t or h. The orbital angular momenta for the relative motio
between the clusters connected by solid lines are denoted byl i .
The spin of the clusters issi51/2; the spin of thea particle is zero
and it is omitted.
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The partial waves in a given cluster arrangement form
complete set of states and the different Jacobi coordin
systems are, therefore, equivalent in principle. One mig
thus think that we only need to choose a particular arrang
ment,m1 or m2 , and to decompose the wave function into
complete set of partial waves in this arrangement, and t
the inclusion of both the arrangements implied in Eq.~4!
would be redundant. Our experience@22# shows, however,
that the convergence of energy in a fixed arrangement
rather slow. The reason is that the componen

C
@S,(l 1l 2)L#JM
m1 andC

@S,(l 18l 28)L8#JM

m2 in the arrangementsm1

andm2 are rather different, especially, at large distances a
that any componentC

@S,(l 1l 2)L#JM
m1 can only be represented

by an infinite sum in terms of the arrangementm2 . More-
over, the inclusion of high partial waves in the calculation
quite expensive. Our favorite choice is, therefore, to~1! de-
compose the wave function into partial waves in a give
arrangement,~2! truncate the higher partial waves, and~3!
complete the wave function by the inclusion of low partia
waves of different arrangements.

The arrangements and the angular momenta combin
with the size parameters in the expansion make the dim
sion of the basis large. These basis functions are, howe
nonorthogonal to each other and not all of them are equa
important. In a previous paper@25# we tested different meth-
ods to select the parametersnki

m that span most adequately th

state space, while the dimension of the basis is kept feasi
The most efficient procedure found is the stochastic select
@22,23#: We generate size parameter sets by a random cho
from a region which is physically important. The paramet
sets that satisfy an admittance condition are chosen to g
erate basis states. The calculation was repeated several t
to check the convergence. The dimension for the9Be ground
state is around 90.

B. The scaling method for resonances

Except for the ground state of9Be, all the states of9Be
and 9B are above the three-body threshold. The 1/21, 1.68
MeV state of9Be lies just 111 keV above the threshold, bu
has a width of 217610 keV. The 5/22, 2.43 MeV state has
a narrow width. The widths of other states of isospin 1
range from several hundreds keV to about 1 MeV. The sta
of 9B have generally wider widths than the correspondin
states of9Be.

Resonances are associated with complex eigenvalue
the time-independent Schro¨dinger equation. It is not trivial to
calculate the energy and the width of a resonance state fo
complex system. Several methods have been develope
obtain these complex eigenvalues using square integra
functions. The most well-known methods are the compl
scaling@27# and the stabilization@28# methods.

The complex scaling method uses the unitary transform
tion which dilates the internal coordinates of the system a
cording to x→xeiu, making the resonant wave function
square integrable. The eigenvalues that are associated
metastable resonance states appear as such complex e
values that are independent of the scaling angleu, when it is
larger than a critical angle, and the eigenvalues that are
sociated with nonresonant continuum states appear as c
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plex eigenvalues which are dependent on the scaling an
@27#. One can expand the eigenfunctions of the compl
scaled Hamiltonian in terms of square integrable basis fu
tions as we did for bound states. The variation of the ene
functional with respect to the trial function, however, yield
a stationary rather than a minimum principle. Therefore, t
stochastic basis selection procedure cannot be applied h
but instead, we will work on a basis with fixed nonlinea
parameters.

The stabilization method@28# utilizes the discrete states
calculated in a box of large size. The stabilization meth
can be combined with the stochastic variational method.
this case we select the basis parameters from a confined
terval.

These methods have been widely applied for two- a
three-body resonances in atomic physics. Recently, nuc
physicists have also began to use the complex scal
method as a useful tool to locate two-@29# and three-body
@30# resonances of nuclear systems.

Due to the complexity of the problem both methods r
quire extreme numerical accuracy. To be on the safe side,
used these methods only when they are certainly able to g
reliable results. That is, we used the stabilization method
narrow resonances, and calculated only the resonance en
because the calculation of the width would require an exc
sively large computational burden. For these quasibou
states the stabilized wave functions can directly be used
calculate the matrix element of a physical operator beca
they are real. To locate wider resonances we used the c
plex scaling method. In this case we calculated both t
width and the position.

We have found that the energy of the narrow 5/22 state
can well be obtained by diagonalizing the Hamiltonian in
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sufficiently large basis of Eq.~3!. The resonance energy re
mains rather stable against the change of the basis set wi
a reasonable range. The wave function obtained in this w
is used to calculate the electromagnetic transition rates. I
very difficult to do better than this because enclosing th
wave function in a box as required by the stabilizatio
method is not trivial for the three-body system.

To apply the complex scaling method to the present ca
we define the transformationU(u) which acts on the func-
tion of the intercluster Jacobi coordinates,r1

m andr2
m ,

U~u! f ~r1
m ,r2

m!5e3iu/2f ~r1
meiu,r1

meiu!. ~5!

The eigenvalue problem of the transformed Hamiltonia
Hu5U(u)HU(u)21 is solved for eachu value. A resonance
state corresponds to a square integrable solution of the tra
formed Hamiltonian and may be described as in Eq.~4!.
When the basis function of Eq.~3! is employed, the opera-
tion U(u)21 on the relative motion function is equivalent to
multiplying the size parameters,nk1

m andnk2
m , by e22iu. The

energyER and the widthGR of a resonance are obtained a
the real and imaginary parts of a complex eigenvalu
Eu5ER2(1/2)iGR , of Hu , which remains unchanged for
arbitrary values ofu within an appropriate range.

III. RESULTS

A. Input parameters

The internal state of thea particle was approximated by
0s harmonic-oscillator Slater determinant wave function of
size parametern5mv/2\. The value ofn was chosen to be
0.26 fm22 to reproduce the experimental charge radius
for
TABLE I. A set of arrangements and angular momenta included in the three-cluster model calculation
9Be (N5n) and 9B (N5p). See Fig. 1~a! for the angular momental 1 and l 2 .

Jp Arrangement Angular momentum (l 1 ,l 2)L

1/22 (aa)N ~0,1!1 ~2,1!1 ~2,3!1
(aN)a ~1,0!1 ~1,2!1

1/21 (aa)N ~0,0!0 ~2,2!0 ~2,2!1
(aN)a ~1,1!0 ~1,1!1

3/22 (aa)N ~0,1!1 ~2,1!1 ~2,1!2
(aN)a ~0,1!1 ~1,0!1 ~2,1!1 ~1,2!1 ~2,1!2 ~1,2!2

3/21 (aa)N ~2,2!1 ~0,2!2 ~2,0!2 ~2,2!2 ~2,4!2 ~4,2!2
(aN)a ~1,1!1 ~1,1!2 ~1,3!2

5/22 (aa)N ~2,1!2 ~2,3!2 ~0,3!3 ~2,1!3 ~2,3!3
(aN)a ~1,2!2 ~1,2!3

5/21 (aa)N ~0,2!2 ~2,0!2 ~2,2!2 ~2,2!3
(aN)a ~1,1!2 ~1,3!2 ~1,3!3

7/22 (aa)N ~2,1!3 ~0,3!3 ~2,3!3 ~4,1!3 ~2,3!4 ~4,1!4
(aN)a ~1,2!3 ~1,4!3 ~1,4!4

9/21 (aa)N ~2,2!4 ~0,4!4 ~4,0!4 ~2,4!4 ~4,2!4 ~4,4!4
~2,4!5 ~4,2!5 ~4,4!5

(aN)a ~1,3!4 ~1,5!4 ~1,5!5
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thea particle. The results are insensitive to the choice of
size parameter within a reasonable limit.

We used Minnesota nucleon-nucleon interaction@31#,
which is a sum of central and spin-orbit potentials of Gau
ian form. The Coulomb potential was included. The stren
of the spin-orbit force was taken from the set IV of Reic
stein and Tang, which gives a good fit toN1a phase shifts.
The central part of the Minnesota potential contains
exchange-mixture parameteru. The potential withu51 cor-
responds to a Serber-type mixture. Decreasing the valu
u from unity implies increasing repulsion in odd parti
waves, while keeping the strength of even partial waves
changed. It was set tou50.94 in order to reproduce the
ground state energy of9Be. The value ofu50.94 is very
close to the value~0.95! which is needed to well describe th
a1a scattering in the resonating group method@31#. Thus
our choice should give a realistic interaction between thea
particles. The value ofu50.94 is, however, slightly smalle
than the value of 0.97 recommended for the description
N1a scattering. By fixing theu and n parameters as de
scribed above, the model contains no free parameter.
change of the potential parameters was made between9Be
and 9B.

B. Cluster arrangements and angular momentum channels

In our model the total spin is uniquely given byS51/2 so
that the total orbital angular momentum can take eith
L5J21/2 or L5J11/2. Let us show that both values o
L are needed by taking an example of the magnetic mom
of 9Be. Quite probably~and this will be confirmed later! the
orbital motion of the protons gives a moderate contributi
to the magnetic moment of9Be and only the spin part need
to be considered to get a reasonable estimate of the mag
moment. The magnetic moment is then approximated
(J53/2, L51 andL52)

m5^CJJumzuCJJ&

5gs~n!(
L

cL
2S (

MSML

^SMSLMLuJJ&2MSD
5gs~n!(

L
cL
2S @J~J11!1S~S11!2L~L11!#J

2J~J11! D , ~6!

wheregs(n)523.826 is the sping factor of the neutron in
units of nuclear magneton andcL is the amplitude of the tota
orbital angular momentumL in the ground state wave func
tion. If the ground state is purely ofL51, then the magnetic
moment becomes21.913mN , which is in disagreement with
the observed value ofmexpt521.1778mN . An L52 compo-
nent of about 20% admixture is needed to reproduce
observed value. We will see later that the potential cho
gives just the needed admixture. It is instructive to note t
the magnetic moment for pureL51 case is equal to the
Schmidt value of the singlep3/2 neutron.

Table I lists a set of arrangements and angular mome
used in the present calculation. We did several pilot calcu
tions to know the relative importance of the arrangeme
and the angular momentum channels. When all the nine
of Table I are used for the 3/22 ground state, the energy from
he
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thea1a1n threshold is obtained as21.431 MeV and the
root mean square~rms! radius of point nucleon is 2.50 fm.
Let us call this a full calculation. When we exclude three se
belonging to the arrangementm25(aN)a with l 150 or 2,
both energy and radius hardly change from the result of t
full calculation; the overlap of the approximate wave func
tion with the full wave function is 0.9995. This result is
physically acceptable because thep wave is of prime impor-
tance for the interaction between the neutron and thea par-
ticle. If we further exclude three sets belonging to them2
arrangement withl 151, then the energy increases t
20.32 MeV and the radius increases to 2.57 fm. This su
gests that the arrangementm15(aa)N (8Be1n-type con-
figuration! alone is imperfect to describe the ground sta
even though thes andd waves are taken into account for th
motion of the twoa particles. This consideration leads us t
the remark that the calculations of Refs.@12,16# using only
the 8Be1N channel should be accepted with some reserv

FIG. 2. Complex eigenvalues forJp53/22 ~a! and 7/22 ~b! of
9Be. The rotation angleu is in units of rad. The point indicated by
an open circle corresponds to a resonance.
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FIG. 3. Experimental and cal-
culated energies of9Be ~a! and
9B ~b! from the three-body thresh-
old. The data are from Refs.
@5–7#. The 3.065 MeV state of
9B is assumed to be 5/21.
u
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of
tions. On the other hand, if we exclude three sets belong
to them1 arrangement, then the result is very close to the f
calculation; the energy loss is merely 34 keV and the over
of the wave functions is 0.9991. We can thus conclude th
the 5He1a-type configuration withl 151 constitutes a very
good approximation to the ground state wave function. As
seen from Table I, the angular momentum in them2 arrange-
ment is restricted tol 151 for other states.

For resonance states, particularly for high spin resonan
the inclusion of high partial waves becomes important
obtain stable resonance parameters in the complex sca
method. The complex eigenvalue of the rotated Hamiltoni
Hu is obtained by using the basis function of Eq.~3!. The
size parameters of the basis function are not selected r
domly but are chosen asnk

m5n0p
k21 (k51, . . . ,K). The

values ofn0 and K are varied for each resonance to g
stable values for its energy and width. The adopted value
K is about 10 in the present calculation. The basis dimens
used to diagonalize the rotated Hamiltonian isK2 times the
number of the sets listed in Table I. Figure 2 displays
example of the complex scaled spectra of9Be for
Jp53/22 and 7/22. One can see, besides the discretiz
points corresponding to the three-body continuum, tho
points which lie on straight lines starting from the position
of the resonances of the subsystems.

C. Energy spectrum and electromagnetic properties

The calculated spectra of9Be and9B are compared with
experiment in Fig. 3. The theoretical level sequence in9Be
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has a good correspondence with the observed spectrum.
second 3/22 resonance is obtained at 4.3 MeV excitatio
energy. The other calculations@14–16# also predict the
3/22

2 state. Although no such state is cited in Ref.@7#, the
calculated resonance may correspond to the state at 5
MeV mentioned in Ref.@6#. We get two broad overlapping
resonances with 7/22 and 9/21 at about 6.5 MeV. This
agrees with the conclusion of the recent experiments@5,6#.
We could not find a resonance with 1/22 around 8 MeV
excitation energy in accordance with Refs.@5,6#, although
such a state is parenthetically quoted in Ref.@7#. Instead of
this a 5/22 resonance is obtained at 7.9 MeV, which agre
with the result of Refs.@14,15#. The spectrum of9B is less
known experimentally compared to that of9Be. The calcu-
lated spectrum is similar to the one of9Be. We can predict
the energy and the width of several resonances in9B with
the same accuracy as the case of9Be. For example, our
calculation predicts a missing 1/22 state at 2.43 MeV, which
is in agreement with the result of a recent9Be(p,n) reaction
@32# that located the 1/22 state at 2.83 MeV. Although no
definitive spin assignment is made to the state at 2.788 M
excitation energy@7#, our calculation supports a 5/21 assign-
ment rather than 3/21.

Table II lists the energies and the widths of the unbou
states calculated by the complex scaling method. The en
gies of the 5/22 states of both9Be and 9B are in good
agreement with experiment. Their widths, though extreme
narrow, are reasonably reproduced; the calculated width
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TABLE II. Energies and widths of the unbound states in9Be and9B. The energy is from the three-body
threshold. The spin and parity of the 3.065 MeV state of9B is assumed to be 5/21.

Expt.a Calc.
Jp E ~MeV6keV! G ~MeV6keV! E ~MeV! G ~MeV!

3/22 21.5735 ——- 21.431 ——-
1/21 0.11167 0.217610
5/22 0.855961.3 0.0007760.15 0.84 0.001
1/22 1.216120 1.0806110 1.20 0.46
5/21 1.47669 0.282611 1.98 0.6

9Be 3/21 3.131625 0.743655 3.3 1.6
3/22

2 4.026100b 1.336360 2.9 0.8
7/22 4.81660b 1.216230 5.03 1.2
9/21 5.19660b 1.33690 4.9 2.9
(1/22) 6.37680 ;1.0
5/22

2 6.5 2.1

3/22 0.277 0.0005460.21 0.30 0.004
1/21 ~1.9! .0.7
5/22 2.63865 0.08165 2.55 0.044
1/22 3.11c 3.1 2.73 1.0
5/21 3.065630 0.550640 3.5 1.2

9B 3/21 4.6 2.7
3/22

2 4.2 1.4
7/22 7.25660 2.06200 7.0 1.7
9/21 6.6 3.3
5/22

2 8.4 2.4

aReference@7#.
bReference@6#.
cReference@32#.
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9Be is about two times larger than the observed value, w
the width of 9B is about a half of the experiment. The ca
culation reproduces the widths of other states within a fac
of 2. Our result is in better agreement with experiment th
the calculation of Ref.@16#.

There has been considerable effort to determine the lo
tion of the 1/21 state from the point of view of a Thomas
Ehrman shift@33#. We applied the complex scaling metho
to find a resonance withJp51/21 by including the arrange-
ments and the angular momentum channels listed in Tab
The present calculation could not identify such a stable co
plex eigenvalue that can be interpreted as a resonance
estimate theE1 transition strength, we increase the value
u to make the 1/21 state particle-bound.

The electromagnetic moments and the rms radii of prot
neutron, and nucleon, assuming pointlike nucleons, are
cluded in Table III. Bare operators are used in the calcu
tion. The charge radius of9Be with the effect of the proton’s
finite size becomes 2.54 fm and fits the experimental value
2.51960.012 fm@7#. The rms radius of neutron is larger tha
that of proton by 0.2 fm. Both the magnetic and the quad
pole moments of9Be are reproduced very well. As wa
stated in Sec. III B, the contribution of the proton’s orbit
motion to the magnetic moment is rather small~0.28mN) and
the contribution of the spin part,21.45mN , corresponds to
15.1% admixture of theL52 component. TheM1 andE2
transition probabilities of the 5/22 state to the ground stat
are also well reproduced. The strongE1 transition of the
1/21 state is in reasonable agreement with experiment.
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E1 transition strength depends on the description of the ta
part of the wave function. Withu51.0 the energy of the
1/21 state changes to 593 keV below the threshold and th
B(E1) value becomes 0.24 W.u. in good agreement wit
experiment. Withu50.98 the energy goes up to 206 keV
below the threshold and the exterior part of the wave func
tion that does not contribute to the transition grows, thereb
reducing theB(E1) value to 0.18 W.u. To our best knowl-
edge, this is the first theoretical calculation which has bee
able to reproduce theE1 transition probability in a consistent
way. Reference@18# argues that the experimentalE1
strength is enhanced to 0.3860.07 W.u. if the unbound na-
ture of the state is taken into account.

Table III includes the results of other models. Them and
Q moments of the shell model were determined by using a
effective interaction which was chosen to reproduce both en
ergies and static moments of 0p-shell nuclei@9#. These val-
ues are rather close to those of Cohen-Kurath~8-16! POT
calculation @34,5#. A shell-model calculation of~011!\v
model space@9# cannot account for the enhancement of the
B(E2) transition; with the effective charge of 0.35e it gives
about one third of the experimental value. TheE1 transition
probability of the lowest 1/21 state to the ground state was
predicted to be only 0.03 W.u@9#. Another shell-model cal-
culation in a similar basis@5# reproduces reasonably the
B(E2) value by using a large effective charge for neutron
but again gives a very smallB(E1) value. Although the
calculation of Ref.@16# using only the8Be1n channel gives
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TABLE III. Radii and electromagnetic properties of9Be. The reduced matrix elements are given in
Weisskopf units. The bare-nucleon charges andg factors are used in the present calculation. The effectiv
charges were used in the shell-model calculation of Refs.@5,9# to calculate the quadrupole moment and the
E2 strength. See text for theB(E1) value of the present calculation.

Jp Expt.a Present Ref.@15# Ref. @16# Ref. @5# Ref. @9#

3/22 E ~MeV! 21.5735 21.431 20.89
rm ~fm! 2.50 2.62
r p ~fm! 2.3760.01 2.39
r n ~fm! 2.58
m (mN) 21.177860.0009 21.169 21.23 21.52 21.27 21.070

Q (e fm2) 5.360.3 5.13 5.76 4.77 4.35 4.66
sR ~mb! 825620b 850

5/22 E ~MeV! 0.8559 0.883 1.89
B(E2; 52

2→ 3
2

2) 24.461.8 22.0 24.7 23.5 12.5 ; 7
B(M1; 52

2→ 3
2

2) 0.3060.03 0.229 0.10 0.23

1/21 E ~MeV! 0.111 0.05 0.75
B(E1; 12

1→ 3
2

2) 0.2260.09 0.24 0.68 0.03 0.03
0.18

aReference@7#.
bReference@46#.
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a reasonable agreement with experiment, we have alre
pointed out that the5He1a type configuration leads to fur
ther improvement. A similar remark applies to the calcu
tion of Ref. @12#, which indicates that the charge radius a
the quadrupole moment are considerably smaller than exp
ment.

A further test of the wave function of the9Be ground
state is performed by the electron scattering data@35#. The
longitudinal electron scattering form factor is calculated in
first-order plane wave Born approximation through

uFL~q!u25
4p

Z2~2Ji11!(l u^CJf
iM̂ l

Coul~q!iCJi
&u2, ~7!

whereZe is the charge of the nucleus and the reduced ma
element of the operatorTk

k(q) is defined by

FIG. 4. Elastic charge form factor for9Be. The data are from
Refs.@36–38#.
ady

a-
d
eri-

a

rix

^JMuTk
k uJ8M 8&5

~21!2k

A2J11
^J8M 8kkuJM&^JiTkiJ8&.

~8!

The charge density multipole operatorM̂ l m
Coul(q) which oc-

curs in the form factor is given as a function of momentu
transferq from the charge density operator

M̂ l m
Coul~q!5E j l ~qr !Yl m~ r̂ !(

i51

A 12t3i
2

d~r i2Rc.m.2r !dr ,

~9!

where r i is the nucleon coordinate andRc.m. is the total
center-of-mass coordinate. Note that our wave function co

FIG. 5. Elastic transverse form factor for9Be. The data are from
Refs.@40,41#.
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tains no center-of-mass motion. Figure 4 compares the
culated charge form factor with the experiment@36–38#. The
correction for the finite proton size is taken into account
multiplying the form factor with the proton’s form facto
used in Ref.@39#. Both monopole (C0! and quadrupole
(C2! terms contribute to the charge form factor. No effo
has so far been made to separate those contributions ex
mentally. Polarized electrons and targets will be needed
do such experiments. The agreement between theory an
periment is good. This is perhaps not very surprising beca
the present model reproduces both charge radius and q
rupole moment accurately. It is clear that the quadrup
deformation of the charge density is important at higherq2

values. The deformation of the proton and neutron den
distributions will be discussed in the next subsection.

The transverse electron scattering form factor gives in
mation on the nuclear current density. It is calculated fr
the expression

uFT~q!u25
4p

Z2~2Ji11!(l { u^CJf
iT̂l

el~q!iCJi
&u2

1u^CJf
iT̂l

mag~q!iCJi
&u2}. ~10!

The symmetry consideration on parity and time rever
shows that the elastic form factor receives no contribution
the transverse electric multipoles of the current den

ĵ (r ). The transverse magnetic multipoles are defined by

T̂l m
mag~q!5E j l ~qr !Yl l 1

m ~ r̂ !• ĵ ~r !dr . ~11!

Here the vector spherical harmonics are defined with u
vectore as

Yl 8l 1
m

~ r̂ !5@Yl ~ r̂ !e#m
l 8 ~12!

and the current density consists of the convection and m
netization currents:

ĵ ~r !5
1

2mc(i51

A 12t3i
2

$pid~r i2Rc.m.2r !

1d~r i2Rc.m.2r !pi%

1¹S \

2mc(i51

A

m id~r i2Rc.m.2r !si D . ~13!

Here pi is the momentum of the nucleon in the center-
mass system andm i is the magnetic moment of the nucleo
in units of nuclear magneton. Figure 5 compares the ca
lated transverse form factor with the data of Refs.@40,41#.
BothM1 andM3 contributions are important to get a sat
factory reproduction of experiment. Shell-model calculatio
@5# needed a quenching factor of about 0.7 for the transve
form factors, while no quenching is needed in our model.
can conclude that the ground state wave function of
present model reproduces consistently all the electrom
netic properties of9Be.
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D. Density distributions and spectroscopic amplitudes

The proton and the neutron density distributions, defin
by

r~r !5K CJJU(
i51

A

d~r i2Rc.m.2r !PiUCJJL
5r0~r !1 (

l Þ0
r l ~r !Yl 0~ r̂ ! ~14!

~wherePi projects out the protons or neutrons!, are also de-
termined. For the ground state of9Be we have monopole and
quadrupole (l 52) densities. The density distributions
r0(r ) andr2(r ), are shown in Figs. 6~a! and 6~b!. They are
related to the rms radius and the quadrupole moment as
low:

^r 2&5
4p

Z E
0

`

r0~r !r 4dr, ~15!

FIG. 6. Monopole~a! and quadrupole~b! density distributions
of protons and neutrons for the ground state of9Be.
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Q5S 16p5 D 1/2E
0

`

r2~r !r 4dr. ~16!

An analogous relation can be defined for the neutron ca
The quadrupole moment becomes 5.13 fm2 for the proton
and 3.86 fm2 for the neutron. The fact that the neutron qua
rupole moment is smaller than the proton quadrupole m
ment is understood by noting that the single neutron clus
moves between the twoa-particles for the most of time and
thus makes the neutron density less deformed.

The 2.43 MeV, 5/22 and 6.38 MeV, 7/22 states of9Be
together with the ground state approximately follow
J(J11) rule and can be considered to form a rotational ba
with K53/2 @5,6#. From the experimental quadrupole mo
ment of the ground state, the intrinsic quadrupole mom
Q0 of the band is estimated as 26.5 fm

2 by using the relation
Q5@J(2J21)/(J11)(2J13)#Q05(1/5)Q0 @42#. The E2
transition probability within the band is related, in the co
lective model, to theQ0 value by

B~E2;KJ1→KJ2!5
5

16p
e2Q0

2^J1K20uJ2K&2, ~17!

which predicts 23.9e2 fm4 and 9.98 e2 fm4 for the
5/22→3/22 and 7/22→3/22 transitions, respectively. The
corresponding experimental values are 27.162.0e2 fm4 and
7.063.0 e2 fm4 @7#. Since the collective model predictio
agrees reasonably well with experiment, it may be poss
to extract the intrinsic deformation parameterb0 by using
the relation b05Ap/5Q0 /(Z^r 2&). Our theory gives
b050.89, which is close to the empirical deformation para
eters of neighbouring nuclei, e.g.,b0;1.13 for 10Be and
b0;0.82 for 10C, while the correspondingQ0 values are
22.9 fm2 and 25.0 fm2, respectively@43#. The deformation
parameterb associated with the density of Eq.~14! is esti-
mated by assuming that it can be approximated
rs@r /„12(1/4p)b21bY20( r̂ )…# from a spherical shape
rs(r ). The extracted value ofb is close to 1/5 of theb0
value as expected by the collective model.

The monopole densities of the protons and the neutr
may be used to calculate the total reaction cross sectio
high energies. It is given, in the Glauber theory@44#, as

sR5E @12exp$22Imx~b!%#db, ~18!

whereb is the impact parameter and the phase shift functi
x, is related to the densities of the target and the projec
through the thickness function,T(s)5*r(s,z)dz, by

ix~b!52E E TP~s!TT~ t!G~b1s2t!dsdt. ~19!

Here G is the profile function for theNN scattering. The
monopole densities of the proton and the neutron were u
to construct the density of9Be. ThesR value of 9Be for a
carbon target at 800 MeV/nucleon is calculated to be 850
with the parametrization of the profile function used in R
se.
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@45#. The interaction cross section measured by Tanih
et al. @1# is not exactly the same as but approximately equ
to the reaction cross section. Their value is 80669 mb,
which is in a fair agreement with theory. The reaction cro
section of9Be on a Cu target was measured by Saint-Laure
et al. @46# at about 45 MeV/nucleon. They extracted the r
duced strong absorption radius,r 0;1.13 fm, for 9Be by fit-
ting their measured cross sections to the formula by K
et al. @47#. This formula predictssR5825620 mb for the
9Be1 12C system at relativistic energies as listed in Table I
We again confirm that our density is reliable enough to r
produce the experiment.

We showed in the previous subsection that the enhan
ment of theE1 transition of the first excited state in9Be is
reproduced well. To understand this we note that theE1
operator is recast to (NZ/A)eA3/4p(RZ2RN), whereRZ
andRN are the center-of-mass coordinates of the protons a

FIG. 7. Monopole density distributions of protons and neutron
~a! in linear scale and~b! in logarithmic scale, for the excited
1/21 state and the 3/22 ground state of9Be. The value ofu51.0 is
used for the 1/21 state.
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the neutrons, respectively. The enhancement of the trans
should be therefore related to the excitation of the cor
sponding motion in the excited state. In thea1a1n model
theE1 excitation is caused by the valence neutron. Figur
compares the monopole density of the 1/21 state obtained
with u51.0 with that of the ground state. The proton dens
becomes smaller near the center but reaches up to la
distances, indicating the increase in the mean distance
tween the twoa particles. The neutron density shows a su
stantial decrease at 1–2 fm and a significant increase bey

FIG. 8. Spectroscopic amplitudes of the ground state of9Be for
the 8Be1n arrangement. The symbolsr andR denote the distances
of two a-particles and ofn from their center-of-mass. The set o
angular momenta is~a! l 150, l 251, L51, ~b! l 152, l 251,
L51, and~c! l 152, l 251, L52.
ition
re-

e 7

ity
rger
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b-
ond

3 fm. The proton and neutron rms radii increased from 2.3
to 2.94 fm and from 2.58 to 5.59 fm, respectively. Thoug
the increase of the proton size is moderate, that of the ne
tron size is dramatic. The picture emerging from this analys
is the following: The valence neutron in the ground state
mostly confined between the twoa particles but, in the ex-
cited 1/21 state, moves around them in a spatially wide
region. It is easy to understand that the largeE1 transition
strength has naturally come out from the structure change
the underlying states.

f

FIG. 9. Spectroscopic amplitudes of the ground state of9Be for
the 5He1a arrangement. The symbolr is the distance betweenn
anda andR the distance between their center-of-mass anda. The
set of angular momenta is~a! l 151, l 250, L51, ~b! l 151,
l 252, L51, and~c! l 151, l 252, L52.
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Another interesting quantity that helps to reveal inform
tion on the wave function is the spectroscopic amplitu
which, in the angular momentum projected basis, is defi
by

g~ l 1l 2!L
m ~r ,R!5

1

r 2R2 ^A$†FS@Yl 1~ r̂1
m!Yl 2~ r̂2

m!#L‡JM

3d~r1
m2r !d~r2

m2R!uCJM&. ~20!

Figures 8~a!, 8~b!, and 8~c! display the spectroscopic ampl
tudes of the ground state of9Be for some channels of th
arrangementm15(aa)n, letting r andR represent the dis
tances of the twoa particles and of the neutron from the
center of mass, respectively. Some remarkable features
that all the amplitudes have a peak atr;3.2 fm and
R;2.3 fm andR-independent nodes atr51 fm ~for the s
wave betweena ’s! and r52 fm ~for the s and d waves!.
These characteristics are understood by the microscopia-
a cluster-model analysis for8Be. The appearance of th
nodes is understood in relation to the existence of the Pa
forbidden states@48#. The norm of the amplitude, which i
called the spectroscopic factor, becomes 1.03, 0.77, and
corresponding to three channels shown in Fig. 8. We n
that the norm is different from the so-called amount of clu
tering. The amplitudes corresponding to the arrangem
m25(an)a are plotted in Fig. 9, wherer is now the distance
betweenn anda andR the distance between their center
mass anda. The nodes appear also in this case but th
positions alter particularly at larger . This is due to the fact
that R is approximately equal to thea-a distance at smal
r but deviates largely from it with increasingr . The spectro-
scopic factor is 0.84 and 0.61, respectively.

E. Beta decay of the9Li ground state to 9Be

Because the ground state and the 5/22, 2.43 MeV state
are described well by the present model, theb decay of the
9Li ground state to these states is expected to further tes
accuracy of their wave functions or an available wave fu
tion of 9Li. The experimental value of logf t for theb decay
to the 9Be ground state is about 5.31@7,19#, indicating that
the b-decay matrix element is fairly suppressed despite
allowed transition. The weakb decay is ascribed to the fac
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that the spatial symmetry of the main component of9Be is
different from that of9Li @34#. The Gamow-Teller~GT! ma-
trix element,

MGT~ i→ f !5K CJf
~9Be!I (

k51

9

t2~k!s~k!ICJi
~9Li !L ,

~21!

to any state of9Be, if it is described by thea1a1n three-
cluster model, always vanishes regardless of the wave fu
tion of 9Li. This is most easily understood by acting th
Hermitian conjugate of the GT operator on the9Be wave
function and by noting that the spin-isospin part of t
a-particle wave function is fully occupied.

The above discussion indicates that the simple thr
cluster model for9Be must be modified to explain theb
decay in spite of the successful results obtained in the pr
ous subsections. The modification must be small enough
to destroy the agreement between experiment and the th
cluster model calculation. One possible way for the mod
cation is to introduce the distortion of thea particle into
t1p and h1n configurations. To explore the consequen
of this modification, let us assume that the intrinsic wa
function of thea particle can be expressed by

fa5A12c2fa
~0!1cfa

~e! , ~22!

wherefa
(0) represents the part which can be described by

0s harmonic-oscillator Slater determinant, whilefa
(e) the dis-

torted part which is orthogonal tofa
(0) . The 9Be wave func-

tion in a more realistic three-cluster model can therefore
approximated by

uCJf
~9Be!&5N$~12c2!uCJf

~0!~9Be!&

12cA12c2ufa
~0!fa

~e!n&1c2ufa
~e!fa

~e!n&%.

~23!

Here the normalization constant,N, is close to unity when
c is small and it is suppressed below. The first ter
uCJf

(0)(9Be)&5ufa
(0)fa

(0)n&, is nothing but the one describe

by the a1a1n model and has no contribution to theb
decay. By neglecting the last term, the GT matrix elemen
given by
te

in-
MGT~ i→ f !52cA12c2K fa
~0!fa

~e!nI (
k51

9

t2~k!s~k!ICJi
~9Li !L 52^CJf

~0!~9Be!uCJf
8 ~9Be!&

3K CJf
8 ~9Be!I (

k51

9

t2~k!s~k!ICJi
~9Li !L ~24!

with

uCJf
8 ~9Be!&5A12c2uCJf

~0!~9 Be!&1cufa
~0!fa

~e!n&.
~25!

Equations~24! and ~25! are our basic equations to calcula
the b decay matrix element when the distortion of thea
particle is included.

The wave function of Eq.~25! is obtained by extending
the three-cluster model to the four-cluster model which
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TABLE IV. A set of arrangements and angular momenta included in the four-cluster model calculat
for the 9Be ground state. See Fig. 1~b! for the angular momental 1 , l 2 , andl 3 . The spin of the nucleon
clusters is coupled tos23. The total spinS is restricted to 1/2.

Jp Arrangement Angular momentum@(l 1 ,l 2)l 12,l 3#L s23

9Be: 3/22 @(tp)a#n @~0,0!0,1#1 @~0,2!2,1#1 @~0,2!2,1#2 1

(tp)(an) @~0,0!0,1#1 @~0,2!2,1#1 @~0,2!2,1#2 1

@(tp)n#a @~0,1!1,0#1 @~0,1!1,2#1 @~0,1!1,2#2 1

@(tn)a#p @~0,0!0,1#1 @~0,2!2,1#1 @~0,2!2,1#2 1

(tn)(ap) @~0,0!0,1#1 @~0,2!2,1#1 @~0,2!2,1#2 1

@(tn)p#a @~0,1!1,0#1 @~0,1!1,2#1 @~0,1!1,2#2 1

@(hn)a#n @~0,0!0,1#1 @~0,2!2,1#1 @~0,2!2,1#2 0

(hn)(an) @~0,0!0,1#1 @~0,2!2,1#1 @~0,2!2,1#2 0

@(hn)n#a @~0,1!1,0#1 @~0,1!1,2#1 @~0,1!1,2#2 0
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cludesa1t1p1n anda1h1n1n partitions. In order to
avoid excessive numerical calculations, the angular mom
tum channels and the cluster arrangements are rather lim
See Fig. 1~b! and Table IV. The spins of all the clusters we
coupled toS51/2. The isospins were not coupled to a de
nite value so that the wave function of the extended mo
may in general contain the total isospin ofT51/2 and 3/2.
The potential favorsT51/2 for the low-lying states of
9Be.
The intrinsic wave function of thet and h cluster was

described by 0s harmonic-oscillator Slater determinant of th
same size parametern as that of thea particle. The ground
state wave function obtained in the four-cluster model us
the Minnesota potential ofu50.94 has the overlap integra
of 0.971 with the one obtained in the three-cluster mod
Therefore, this new wave function should yield substantia
the same results as the previous one for the electromagn
properties. This is just what we have expected to maintain
extending the model space.

To calculate theb-decay probability we use the9Li
ground state wave function which was obtained in a mic
scopica1t1n1n four-cluster model@22#. This model for
9Li reproduced both magnetic and quadrupole moments
the ground state very well. To fit the energy of the9Be
ground state to its experimental value from the four-bo
threshold, we changed theu parameter to 0.88 in the four
cluster model calculation. The overlap integral of the wa
functions between the three-cluster and four-cluster mod
becomes 0.973 and the resulting logf t value is 5.60. The
log ft value is still a little too large compared to the expe
mental value of 5.31, but this calculation strongly indicat
that we are on the right track. A further refined four-clus
model calculation for both9Be and9Li will reduce the dis-
agreement between experiment and theory because su
calculation is expected to enhance the GT matrix elem
The shell-model calculation@49# gives the logf t value in the
range 4.86–5.64, depending on the interaction used. I
interesting to analyze in the way presented above theb de-
cay of 9C to the low-lying states of9B and an asymmetry in
theb-decay matrix elements ofA59 nuclei @49,19#.
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IV. SUMMARY

The microscopic multicluster model was applied to the
study of the mirror nuclei9Be and9B. They were described
in a three-cluster model comprising twoa particles and a
single nucleon. The two-nucleon interaction consists of th
central and spin-orbit potentials together with the Coulom
potential. The same two-nucleon potential was employed fo
both 9Be and9B. The ground state of9Be, an only particle-
bound state in this study, was obtained with the stochast
variational method, while the other particle-unbound state
were studied by the complex scaling and the stabilizatio
methods. The three-body dynamics of the clusters was tak
into account by including both of the arrangements, (aa)N
and (aN)a, and by using relevant partial waves between th
relative motion of the clusters. The calculated spectrum o
9Be below an excitation energy of 8 MeV was in fair agree
ment with experiment. We obtained two broad overlappin
resonances withJp57/22 and 9/21 around 6.5 MeV, in
agreement with the conclusion of the recent experiment
Two states, 3/22

2 and 5/22
2 , were predicted at about 4.5 MeV

and 8 MeV in excitation energy, respectively. The spectrum
of 9B was found to be similar to that of9Be. The spin and
parity of several states of9B were predicted. The first ex-
cited 1/21 state was not localized in the present study an
thus no definite argument was possible on a Thomas-Ehrm
shift in this case.

The theory reproduced very well the electromagneti
properties of the9Be ground state such as the charge radius
the magnetic moment, the quadrupole moment, and the ela
tic electron scattering form factors. The calculated groun
state density was consistent with the total reaction cross se
tion data. The intrinsic deformation parameter of the densit
was found to be 0.89. The 1/21→3/22 E1 transition and the
5/22→3/22 E2/M1 transitions were studied by treating the
excited states as bound. The calculated transition rates we
in good agreement with experiment.

The fact that the present calculation reproduced all th
data well strongly supports that the three-cluster model
quite appropriate for describing the structure of9Be and
9B, provided a full account of the dynamics is taken into
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account in the calculation. We were also able to understa
the b decay of 9Li to 9Be by admixing the small compo-
nents that are induced by the distortion of thea particle into
t1p and h1n configurations. A unique advantage of th
microscopic multicluster model was exemplified by bein
able to accommodate such distortion in the model cons
tently. The study on heavier Be isotopes is in progress in t
frame-work of the microscopic multicluster model includin
N

y

n

,

nd

g
is-
he

two a particles and several neutrons.
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