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Pairs of supersymmetric transformations allow one to remove square-integrable solutions from a complex
potential without modifying its complex phase shifts. This technique is appli¢dQe- 10 scattering where
deep and shallow optical potentials provide essentially similar fits of excitation functions over the 10—-35 MeV
range in the center-of-mass system. After removing complex normalizable solutions from the deep optical
potential of Kondoet al, the resulting potential resembles the shallow potential of Chatival., except for
the fact that it is singular at the origin. The transformation succeeds in removing bound states and also narrow
resonances from the real part of the deep potential. Different theoretical aspects of scattering with complex
potentials are also discussed such as the behavior of complex phase shifts in the vicinity of a resonant or
normalizable state, and the Levinson theorem. In order to explain phase-shift behaviors, resonance locations
are calculated by the complex rotation method, combined with numerical methods valid for determining
square-integrable solutions of a Safirger equation involving a complex potential. In phase-equivalent pairs
of supersymmetric transformations, the apparent contradiction between removing a square-integrable solution
which corresponds to a pole of the scattering matrix, and keepin thiatrix unchanged is explained with the
Jost function][S0556-28136)00109-4

PACS numbgs): 25.70.Bc, 24.10.Ht, 03.65.Nk

I. INTRODUCTION independent solution§6,7]. Such solutions correspond to
states in the relative motion of the colliding nuclei which are
The 60+ %60 system is of particular interest for a study forbidden by the Pauli principle in the full microscopic wave
of the interaction between heavy ions. Detailed excitatiorfunction. An extension of the Levinson theorem due to Swan
functions are available at different anglds2]. Analyses of shows that the number of forbidden states must be added to
these data show that the optical potential is transparent, i.ehe number of physical bound states in the calculation of the
that its internal part can be probed with low-energy elasticdifference between the phase shifts at zero and infinite ener-
collisions. A shallow potential, with a common Woods- gies[10]. Detailed analyses of the microscopic model indi-
Saxon form factor for both the real and imaginary partscate that a potential reproducing RGM phase shifts must be
could be deduced from data ranging from 10 to 35 MeV indeep[11]. It is therefore not surprising that attempts to de-
the center-of-mas&.m) frame[2]. The quality of the fit has rive a deep®0+'%0 potential agreeing with the micro-
been improved by modifying the treatment of absorption inscopic interpretation became succes$fi?,13. These po-
order to take an explicit account of transparency. Two varitentials have a squared Woods-Saxon form factor for the real
ants exist: an energy-dependent angular-momentum cutoffart and an imaginary part of the same type as in the shallow
[3] or a reduced radius for the Woods-Saxon form fapdgr  potential of Ref[3]. Such a potential now exists not only in
The depth of the real part of these potentials is 17 MeV andhe energy range where the shallow potential is available but
the fact that the potential is shallow seemed to be establisheglso atE; ,,=175 MeV[14] andE.,=72.5 MeV[15]. Al-
without ambiguity. The shallow nature of tHéO+ %0 in-  though the shape slightly varies with energy, the different
teraction was confirmed by a microscopic calculation basedeep potentials obviously belong to a unique fanl].
on a two-center model with projection on the relative orbital In fact, the same evolution had already been encountered
momentun5]. In that model, the mean value of the micro- in the analysis of the much simpler+« scattering. Early
scopic Hamiltonian is assimilated to a nucleus-nucleus popotentials were shallow and angular-momentum dependent
tential in a nuclear equivalent of the Born-Oppenheimer ap{16,17]. They did however not follow the same Levinson
proximation. For each partial wave, the microscopictheorem as microscopically derived phase sHi@s]. An
“potential” is very close to the common real part of the energy-independent deep potential based on the correct num-
potentials of Refs[2-4]. ber of forbidden states was proposed in 1918]. These
Dynamical microscopic calculations are possible in theefforts became totally successful with the derivation of a
framework of variants of the resonating-group methodtwo-parameter deep Gaussian potential able to reproduce all
(RGM) [6,7]. When phase shifts for th#0+ %0 scattering  the @+« phase shifts up t& ,,=20 MeV [19]. The coex-
were obtained with this method in a single-channel approxiistence of deep-independent and shallolvdependent po-
mation [8], they displayed an energy dependence which igentials can be explained using supersymmetric transforma-
not compatible with shallow potentials. These phase shifts dtions [20]. Supersymmetry allows one to “remove” all
not follow the Levinson theorerf9] of a potential without bound states from a real potential without affecting the phase
any bound state. The reason for this effect is due to thehifts. The deep potential of R€fl9] is transformed into a
so-called forbidden states. The nonlocal equations of th@hase-equivalent shallow potential very close to the potential
RGM allow the existence of a finite number of energy-of Ref.[17]. However, the transformed potential presents an
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r 2 singularity at the origin which allows it to follow the (where u is the reduced mass of the sysierthe radial
same Levinson theorem as the deep potential. Indeed, ag&chralinger equation at orbital momentuim for any com-
other theorem due to Swan shows how this singularity afplex energyEsz, reads
fects the phase-shift variatid@1]. The shallow potential of
Ref.[17] can be considered as a regular approximation of the d? | | 5
singular potential equivalent to the deep potential of Ref. —gretV) gkr)=ky(kr). @)
[19].

The technique of supersymmetric transformations has rerhe complex effective potentiaV'(r)=U"(r)+iW'(r),

ceived several generalizations in the context of real potenyherew! is negative, behaves asymptotically as
tials [22—29. The complex case was more delicate because

it did not seem possible to remove bound states from the real I(1+1) 27k
part without modifying the phase shifts. Recently, however, VIi(r) — 2 + - 2
it was realized that the same goal can be reached by remov- r—

ing complex“bound states,” i.e., normalizable solutions of ) )

the Schrdinger equation with the full complex potential Wheren=2Z,Z,e’/2k is the Sommerfeld parameter. This po-
[26]. Let us stress here that these complex normalizable sdential is bounded except possibly near the origin. Near
lutions do not have a direct physical meaning in the case of=0, it behaves as
an optical potential. They do not imply the existence of any o
physical bound system. Bound states of teal part of this | vi(v+1)

potential, at negative energies, can sometimes be interpreted Vi(r) HO (2 )

as approximate physical states of the fused nucleus. Narrow "

resonances of th|§ real part are n principle observable. H_0 where' is a positive integer. For regular potentials, such as
ever the square-integrable solutions of the complex optic hose in Refs[3,12], +' is equal tol. In the following, we

potential are meaningless since the imaginary part is Onl%hall also use singular potentials with+1 resulting from

used to simulate the flux removal from the elastic channe ic t f i Th dri X
due to other open channels. The real parts of the Corresponaypersy_mme fic transtormations. 1he Supers rggipearing
the different notations refers to the orbital momentum of

ing energies may resemble the physical energies of boun X O
states or resonances and their imaginary parts may be relatéf Partial wave, which is not affected by the supersymmet-

to widths of structures observed in the phase shifts. Anyway//C translformatlons considered in the following. .
the application of this new technique to different solvable Let ¢'(k,r) be a solution of Eq(1) vanishing at the ori-
potentials and to thex+ 0 elastic scatterind26] has  gin. If, for some complex energo=kj, this solution also
shown that removing complex normalizable states transvanishes at infinity, the potential is said to have a normaliz-
forms a deep potential into a shallow one, without affectingable solution aE,.

the scattering properties of this potential. The aim of the For positive energiesk(>0), a physical wave function is
present paper is to apply this technique to the well-a solution of Eq.(1) regular atr=0 with the asymptotic
documented*®0+ %0 case and to make a comparison be-behavior

tween the two families of optical potentials. We shall com-

pare the potential of Konddrobson, and Smitfil2] with a P (k,r) — sin(kr— 317 — gIn2kr+o'(k) + 8'(k)), (4)
shallow potential valid over the same energy range, with the r—e

same type of absorption, i.e., the potential of Chatwin, Eck, Lo .
Robson, and Richt€l3]. Since the supersymmetry method wherel o'(K)zargF(I +1+iy) |.s'the Coulomp phase shift
can be applied to-dependent potentials but not to energy- and &' (k) is the complex additional or quasinuclear phase

: : ift, defined by Eq(4) up to a multiple ofsr.

gsgszc:g;;%ngs’ we shall perform the comparison at differerfl’ From the Coylomb and additional phase shifts, one de-

The principle of supersymmetric transformations and theéluces thes matrix
necessary algorithms are summarized in Sec. Il. The problem N S .
is specialized to the'®0+1%0 case. Section Il can be S'(k)=exd 2io'(k)Jex 21 &'(k)]
skipped by the reader interested if0+ 0 results only. It =exf 2io' (k) A" (k)ex 2i £ (k)]. (5)
contains a more detailed analysis of collision-matrix proper-
ties for complex potentials. In particular, the influence ofFor realk, the reflection coefficienf'(k) and phase' (k)
complex square-integrable states and of resonances on phage real. For a real potential, the additional phase shift
shifts is discussed, the relevant Levinson theorem is pres'(k) is real and the reflection coefficient is unity. The phase
sented and the origin of phase equivalence in supersymmeshifts allow one to calculate the elastic scattering cross sec-
ric transformations is elucidated on the Jost function. Theaions[9].
physical comparison between th&O-+ %0 potentials is per-
formed in Sec. IV. The origin of the phase-shift behavior is B. Optical potentials for 10+ 160 scattering

clarified. Concluding remarks are presented in Sec. V. ) .
Let us now present the two potentials(r) which pro-

Il. PRESENTATION OF THE METHOD vide a good fit of the elasti¢®0+ %0 excitation functions,

in the energy range 10 Me¥E_ ,<35 MeV. In addition to

the centrifugal term and to a point-sphere Coulomb potential,
Let us first recall some definitions related to elastic scatthey both contain energy-dependent and angular-momentum-

tering with a complex optical potential. Fak?/2u=1 dependent imaginary parts with a Woods-Saxon form factor.

A. Basic definitions
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C. Supersymmetry between deep
and shallow optical potentials

Very different phenomenological potentials can reproduce
the same experimental data. Actually, both potentials not
only share approximately the same cross sections, but also
nearly share the same phase sHifise Sec. IY. How can so
different potentials, with so different bound spectra, share

L4
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200 £ ] the same phase shifts? This question is answered by super-
B ] symmetry: removing a normalizable solution from a deep
-250 £ ] potential with a pair of supersymmetric transformations pro-
} ] vides a shallower potential without modifying phase shifts.
800 o In some cases, the shallow potential obtained after several

iterations is very similar to a shallow phenomenological po-
tential[20]. With a method generalized to complex potentials
[26], this will also happen for thé®0+ 0 scattering.

A supersymmetric or Darboux transformation is based on
a factorization of the Hamiltonian into two first-order differ-
ential operator§27]. It makes use of a solution of the Schro
dinger equationthe factorization solutionat a certain en-
ergy (the factorization energyand generates a new potential
which shares the bound spectrum of the initial potential, ex-
cept possibly at the factorization energy. In the case of inter-
est for the present work, two successive transformations are
performed, with the same factorization energy. The first
transformation uses a square-integrable solution of the initial
potentiaIV'O(r). The resulting potentia‘l/'l(r) has one nor-
malizable state leggt the factorization energybut does not
have the same phase shifts\é}gr). A second transforma-

FIG. 1. Potentials of Chatwiet al. (Ref.[3], dotted linesand tion restores the initial phase shifts. This second transforma-
of Kondo et al. (Ref. [12], full lines) for =0 at 20, 25, and 30 tjgn uses a nonphysical solution Vfl(l‘), vanishing at the
MeV. origin, but exponentially increasing at infinity.

Let ¢h(ko,r) be a normalizable solution ofh(r) at the

However, the shapes and depths of their real parts are sigomplex energyE,=k3. The potential resulting from the
nificantly different as discussed in the Introduction. pair of supersymmetric transformations ref#2,26|

The potential of Chatwiret al. [3] improves an earlier

W (MeV)

potential of Mahetet al.[2] with the introduction of a more Vi) =V (1) — 2% (Ko, r)? ®
elaborate imaginary part depending on both energy and an- 2 0 dr | foo(ko,t)2dt)”

gular momentum. For=0, it is represented by dotted lines

in Fig. 1, at 20, 25, and 30 MeV. Its real part neither dependShe solutions of the new Schiimger equation at any energy
on energy nor on angular momentum. The depth of the&an also be expressed in terms of solutions of the initial
imaginary part increases with energy, in agreement with thequation as

increasing number of nonelastic channels. With a depth of

about 17 MeV, theeal part of this “shallow” potential does Shi(Ko,t) wp(k,t)dt
I _ 4l ol ’ '
not support any bound state. However we shall see later that  #2(K,1) = ¢/o(K,1) = ¢g(ko,r) Ik (Ko,t)2dt
the wholecomplexpotential has normalizable solutions, con- 0¥ol Ko, @

nected to resonances of its real part, because of the increase
of its imaginary part with energy. These solutions have N haicylar, for real positive energies, this implies up to a
precise physical meaning but play a definite role in the eNultiple of 7
ergy dependence of the phase shifts.

The second potential, introduced by Konelpal. in 1989
[12], has an imaginary part very similar to that of the pre-
ceding potential. Its real part has a squared Woods-Saxon . ) .
shape with a depth of about 260 MeV and slightly depends'Ncé the. sgcpnd term in th|e rlght-har|1d side gf e_q_van-
on angular momentum. Thie=0 nuclear potential is also ishes at infinity. Potential¥/o(r) and Vy(r) satisfying Eq.
represented in Fig. (full lines), for the same energies. The (8) are said to be phase equivalent. Equatithalso shows
real part of this “deep” potential has several bound statesthat #%(Ko,r) vanishes. Normalizable solutions do not exist
We shall see later that these bound states correspond to n@ry more at energi,. This energy is “removed” from the
malizable solutions of the whole complex potential, but thatspectrum of the complex potentl‘dL. This removal usually
some other normalizable solutions, related to resonances obrresponds to a reduction of the real-part depth. The new
the real part, also occur. potential is shallower than the original one.

8y(k)= (k) ®
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Relation (6) can be iterated in order to remove several flitkr)= i1 10— oi
. . : ) *Tk,r)=expizlm)W+; 2ikr), 11
square-integrable solutions from a potential. Starting from a o ) Rzl mWsiy1 ?(+ ) (D

o I L2 .
solution y(ky,r) of V at an energyE, =ki where the ini- whereW, , is a Whittaker functiofi31]. In Ref.[9], the Jost

tial potentialVy has another normalizable solution, one CaNgg|utions for the Coulomb case are defined with a different
transformVy into V,,, and so on. The potentialy, is ob-  normalization and only for Re>0.

tained whem normalizable solutions are removed. Starting  Near the origin, the function$'(=k,r) are in general
from a deep potential with a number of bound stafes
narrow resonances as we shall see in Seg.slypported by
its real part, one can obtain an equivalent shallow potential. W(E (k1) f'(—k,r)=(— 1)V'+12ikexp(_ enm)
As in the real cas§23], compact formulas based on de- o ' ' (12)
terminants involving normalizable solutions of the initial po-
tential can be derived in place of these iterations. MoreovernvhereW(f,g) is the Wronskianfg’' —f’g.
the problem considered here, i.e., removing normalizable so- The regular solutionp'(k,r) is the solution of Eq(1)
lutions, can be extended to adding such solutions, modifyingatisfying
their energy, and any combination of such modifications, by
generalizing the contents of Ref@2-285. |
In the present application, we limit ourselves to the re- e (kr) — 2 S+ (13
moval of normalizable states. When several such states have 0
to be removed, we iterate formu(6) rather than use a com- |; is even ink as a solution of the even equatioh) and

pact formula for the final potential: this allows us to CheCkboundary conditior{13). Let us write it as a linear combina-

proportional tor ', They are linearly independent since

]

the intermediate potentials and their phase shifts. tion of the Jost solutions
The numerical implementation of formul®) is rather
simple: we first have to find the complex eigenvalues and the o'(k,r)="Lik " lexp enm)[F'(K)f'(—k,r)
corresponding normalizable solutions of potenﬁdj. In |
Ref.[26], two numerical methods are found to be efficient in —(—1)"F (=K f'(k,n]. (14

determining these solutions. The first one is based on finite ] o S _
differences, while the second one uses Lagrange meshésdefines the Jost functiof'(k), which is dimensionless.
[28,29. The implementation of formul#6) then only re-  Using Eqs(12)—(14), the Jost function can also be written as
quires traditional integration and differentiation numerical | | | |
methods. Fi(k)=(=k)"W(f'(k,r),¢'(kr))
|
(k"
lll. S-MATRIX PROPERTIES =T lim rrfi(kr). (15
/=",

The reader mostly interested by the physical application
of supersymmetry td°0+ %0 scattering may directly pro- In the pure Coulomb case, Eqd5 and (11) provide the
ceed to Sec. IV. The subjects covered here are more matdost function
ematical and not essential for applying our method. They are | )
however useful to understand in detail the behavior of the Fe(k)=T(I+1)/T(1+1+ip), (16)
phase shifts of a complex potential, and the way they are

kept unchanged by supersymmetric transformations. which tends towards 1 wheji| tends to |nf|n_|ty.
In the general case of a complex potential, the Jost func-

tion has no particular symmetry, whereas it verifies the rela-
A. Jost function and S matrix tion

For any complexk, the Jost solutions of Eql) are L%y — el |
uniquely defined by their asymptotic behavior F(=k)=Fd9 (V' rea) (17

| 1 o . for a real potentia[9,32]. The S matrix is defined for any
fi(xk,r) — exdizv'wxikrFigIin(*2ikr)], (9

o complexk by

S(k)=F'(=k)/F'(k). (18

with a cut along the negative imaginakyaxis. In this ex-

pressiork, ik, and—ik are related by It has the symmetry property

_ . o S(-k=8(k* (19

—ik=exp —izmk=exp —iem)ik, (10

and, for a real potential, one deduces from H),

wheree=sgn Ré&. These conventions keep the argument of S(—k*)=SK* (V' real. (20)

the complex number in the logarithm betweenr and .

Except for the phase factor €x(l/2)v'7] which is intro-  |n particular, theS matrix for the Coulomb case reads
duced for convenience, E(p) is inspired as in Ref.30] by

the asymptotic form of the Jost solutions for the pure Cou- S'C(k)=exr(2io'(k))=l“(l +1+in)/I'(I+1—in).
lomb case (21
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The Coulomb phase shiét' (k) is an odd function ok. Let us finally emphasize that this theorem only applies to
In the general case of a Coulomb plus short-range poterpotentials which do not depend on energy. Therefore, it is
tial, let us factorize the Jost function as not valid for the %0+ %0 potentials discussed in Sec. Il B
but it can be helpful when these potentials are considered at
F'(k)=Fc(k)G'(kyexd —id'(k)], (22 afixed energy, as studied in Sec. IV A.

where Fi.(k) is given by Eq.(16) and whereG'(k) and
8'(k) are, respectively, even and odd functionskofWith
Eqg. (18) and this definition, the first expressidh) of the

C. Influence of normalizable states
and resonances on the complex phase shift

scattering matrix is recovered for compl&x The function Zeros of the Jost function in {lk>0} correspond to
8'(k) introduced in Eq(22) extends the complex phase shift square-integrable solutions. The Jost funcfidk) can also
to complexk values. When|»'—1| is even as in pairs of have zeros in {Ilk<0}, leading to poles of theS matrix.

supersymmetric transformatiofsee Sec. Il E it is equiva- These zeros are not associated with square-integrable solu-
lent to the phase shift defined in E@). With Eq. (9), Egs. tions of Eq.(1); they correspond to resonances. If they are
(14) and(22) provide the asymptotic behavit#) for k real,  close enough to the real axis, their presence can have an

up to a multiplicative factor. influence on the phase shift.
A very important difference between complex and real
B. Normalizable states and Levinson theorem potentials is the fact that, for complex potentials, square-

) integrable states can also have an influence on the phase shift
~ Equations(14) and (9) show that Ezq.(ll) has a square- 5; nositive energies. The zeros of the Jost function in
|n|tegrable solution at energ¥Eo=kp, if and only if K> 0) must be close enough to the real axis. For real
F'(ko)=0 for Imko>0. For real potentials, the energies of potentials, the reality of bound-state energies leads to zeros
normalizable solutions have to be real and negative, wheregs ! on the positive imaginark axis. Therefore they can
for complex potentials, they are complex and their real Parbnly have an influence on the phase shift nEar0.
is either negative or positivésee Ref[26] and references Consequently, a systematic study of the phase-shift be-
therein. L , havior near a pole of th& matrix is also necessary for a
_Equation(18) shows that a zero dF' in {Imk=>0} im-  complex potential. The simplest way to establish it is to ex-
plies a pole ofS' in {Imk>0}, whereas a pole d&& does not  yanq S near its poles and zerd82]. For aresonanceof a
necessarily imply a zero ¢ : it can correspond to a pole of real potential atk,, with Imk,<0, theS matrix has poles at
F' in {Imk<0}. In other words, theS matrix may have a ko and—Kk?* , and zeros &k and—k,. On the reak axis, in

pole in {Imk>0} which does not correspond to any normal- o neighborhood of- Rek,, the S matrix can be written as
izable solution. For instance, this is the case with some po-

tentials derived from supersymmetric transformatigase . k+ko k—K3
Sec. Il B. S'(k)=exd 2i (s'bg(k)]m ey
The Levinson theoren9,32] establishes a link between 0 K+ Ko
the numbem' of bound states and the phase shlftk) ofa _ _
real regular potential decreasing faster thaf for r tending I agreement with the symmetry relatiofi9) and (20). In
towards infinity. It was extended to the Coulomb c38]  this expressiongy is a background phase shift, which is
and generalized21] to potentials with a singularity at the real since the potential is real. The resonant part of the phase
origin. In the former case, the theorem applies to the addishift is given by half the phase of the second and third fac-
tional phase shift, i.e., to the difference between the total antPrs; it increases byr ask increases pagReko|.
Coulomb phase shifts. Proofs for short-range regular poten- For a resonanceof a complex potential atko, with
tials in the real case can be transposed without significarlfNko<0, the S matrix has only a pole &t, and a zero at
modification to complex potentials. Taking into account all — Ko, in agreement with E¢(19); relation(20) is not verified
these generalizations, we conjecture a theorem valid for aRny more. TheS matrix along the reak axis is thus in this
complex potentials containing a Coulomb term and a poscase
sible r ~2 singularity at the origin. It reads

(V' rea), (24

N | _ k+ko
Al(0)=Al()=1, S(k)=exp[2|5'bg(k)]k_—ko. (25)

g0)=[n'+3(+'=N]m,
The second factor corresponds t@@mplexresonant phase
£(0)=0, (23)  shift. Let us study its behavior on the positive real axis, near
|Reky|. Equation(25) shows thaid! (k) has a maximum near
wheren' is the number of normalizable solutions. Here we|Reko| when Ré;>0 or a minimum when Rg<0. As k
do not follow Swan’s conventiofi2l], where ¢'(0)=n'w.  increases beyonéReko|, &'(k) increases ofw/2 (not ).
With the present convention, the phase shift remains unThese behaviors are schematically represented in Fig. 2 for
changed after pairs of supersymmetric transformatices 64bg=0.
Sec. Il B. The theorem may have to be modified in the The behavior of a resonance ofraal potential can be
wave when a square-integrable state exists at zero energpterpreted as the combined effect of two poles of e
[32], but this case does not occur when the potential containgatrix, one with REy<0 and one with Rie,>0. Each of
a Coulomb terni33]. them leads to an increase af2 in the real partt' of the



1314 J.-M. SPARENBERG AND D. BAYE 54

the behavior of the phase shift can be deduced from the
preceding discussions? (k) has a discontinuity ofr/2 at

|kol, andA'(k) has a pole or a zero depending on whether
Rek, is positive or negative.

D. Numerical calculation of resonance energies

The numerical methods of Ref26] mentioned above
only allow one to calculate normalizable-state energies, i.e.,
poles of theS matrix in the upper halk plane. However,
since these energies are already complex, these methods can
be directly generalized to calculate resonance energies, by
using the complex rotation techniqid7]. Replacingr by
e'r in Eq. (1) and multiplying bye?? lead to a new Schro
dinger equation

¢ (rad)

d? . . . . .
— P_|_e2|0\/l(e|6’r) lzll(k,euer):ezmkzwl(k'emr)_
(26)

In the following, V!(e'’r) is assumed to be bounded for
r>0.

Let ¢'(ko,r) be a solution of Eq(1), vanishing at the
origin but not normalizable, corresponding to a zero of the
Jost function(and hence to a pole of tf&matrix) atkq with
Im ko=<0. Theny/!(kq,e'’r) is a solution of Eq(26). Using
k expressior(14) and the asymptotic behavi¢®), one has

'(ko,e'r ) f!(ko,€''r)
FIG. 2. Schematic behavior of the pha8eand modulusA' of ¥k 0
the quasinuclear scattering matrix near a normalizable-state

(Imko>0) or resonance (lky<0) pole located ak,. — exgiRe(kye'))rlexd —Im(kqe'))r],
r—o
phase shift, but with compensating effects on its imaginary 27)
part and hence on the reflection coeffici@hwhich remains
equal to unity. where for simplicity we neglect constant and logarithmic

For anormalizable statef a complexpotential ako, with  terms with respect to linear terms in the arguments of expo-
Imko>0, theS matrix has a pole at, and a zero at-ko as  pentials. Equatiofi27) shows that the solutiog! (ko ,e'°r) is

in the preceding case. Expansid@S) of S shows thal normalizable wherd satisfies the condition
Al(k) has the same behavior as for a resonance, but that the

real parté'(k) of the resonant phase shift behaves differ- Im(kqe'?)>0. (28)
ently: it decreasedy /2 ask increases pagRek,|. The

possible behaviors are also schematically represented in Fighe complex rotation technique has changed a resonance
2. into a square-integrable state, and the energy of this state can

A pair of poles atk, and in the close vicinity of-ko e calculated by solving E¢26) with the techniques of Ref.
introduces two inverse factors whose product is close tg2g].

unity. In this case, the effect of these poles is weak and the gqr any ko, condition (28) can be fulfilled for
phase shift reduces to its background value. It should be_(1/2)7,< 6<(1/2)m. In traditional presentations of the
noted that the effect of a pole with Re>0 is always com-  complex rotation method for real potentials, one searches the
pensated by other poles in such a way thetk) remains  resonances ifiRek>0} and one makes use of positive val-
smaller than unity as required by the negative imaginary paries of 6. Since a real potential has symmetric resonances
of the potential. This type of behavior is for example ob-yith respect to the imaginark axis, the complex rotation
served on phase shifts obtained with a phenomenologicghethod could also be used to find the resonances in
potential fitting **C+ %O cross sectiongsee Fig. 2 in Ref. Rek<0! with negatives values. In the following, we need

[34]). Complex potentials are able to simulate the well-poth positive and negative values since the resonances of a
known variations of a scattering matrix in the vicinity of a complex potential are not symmetric any more.

resonance in the presence of two open charliieBs]. Such
behaviors are also reported for optical potentials usec.for
hypernuclear states in RdB6].

For a complex potential, a third case can in principle oc- Let us first establish formul&7) in more detail. For a
cur: theS matrix may have a polen the real axis. This is single supersymmetric transformation with a factorization
just the intermediate case between the previous cases, afithction zﬂ'o(ko,r) regular at the origin, the solutions of the

E. Modification of the Jost function by supersymmetry
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transformed potential can be expressed in terms of the solug 1)(2vh+ 3)Crfu'072_ From Egs.(15) and (31), the Jost
tions of the initial potential in two different mann€fa2] function Flz(k) of the transformed potentia\l/'z(r) is then

o) w2V Wolko 1) ki) deduced as
0

I Ko, (29) k2
o(Ko,1) F'Z(k):wF'o(k). (32
0

P(k,r)=—(

or
This equation shows thdt) the zero of the Jost function at

ko is removed,(ii) a pole of the Jost function appears at

I L2 L2 1/2f5'f/’13(k0vt)‘/’5(k’t)dt —ko, and(iii) the S matrix defined in Eq(18) remains un-
gi(k,r)=(k“—kp) T (30 : :
o(Ko,1) changed after the transformation pair,
Sy(k)=Sy(k), (33

Formula(7) i; obtained by choosing the integral formulation which confirms Eq(8). For the singular transformed poten-
(30) for the first transformatiotwhich removes the normal- tial V}, the zeros of the Jost function and the poles of the
izable statg and (up to a phase factpthe Wronskian or S matrix are not identical. Removing a normalizable solution

differential formulation (29) for the second trans- without modifying theS matrix implies replacing a zero of
formation (which restores the initial phase shiftin the  the Jost function by a pole.

second step, z,/;'o(ko,r) is replaced by the solution

[#0(ko.1)1™ S o¥io(ko, t)?dt, vanishing at the origin but in- IV. APPLICATION TO 1%0+1%0 SCATTERING
creasing at infinity, of the transformed Sctiloger equation ) ) _
at energyEo. A. Properties of the potential of Kondo et al.

Using Eq.(30) twice allows us to compare the behaviors  The potential of Ref[12], which fits elastic scattering
of solutions near the origin. Sincey(k,r) behaves like data for 160+ 60 in the energy range 10 Me¥ E. ,,<35
r"o*l, leading terms of series expansions show thafMeV, depends on angular momentum and energy. Super-
|

1//'2(k,r) behaves like *0* 3, Therefore the singularity param- symmetric transformations can be performed _for each partial
ter v\ of potentialV! i by tw i wave separately but assume that the potential does not de-
elerv; of potentialVz increases by two units, pend on energy. To this end, we first freeze the energy de-
pendence of the potential at 25 MeV and focus on the domi-

vh=vh+2. (3) nant |=18 partial wave at this energy4]. The 1=18
effective potential folE; ,, =25 MeV is represented in Fig. 5
(thick line).

The strength/!(#' + 1) of the potential singularity at the ori-

L : : In order to apply supersymmetric transformations, we
gin increases at each state removal. This explains how suc- ; .
i . : . -Need the complex energies of the square-integrable states of
cessive potentials can provide the same phase shifts wi

h . ; .
different numbers of normalizable states. They all verify thetthls potential. For completenes;, we glso consider its reso-
nances and phase-shift properties. Figure 3 shows the first

generalized Levinson theoreri23). They share the same poles of thd =18 S matrix (zeros of the Jost functignn the

| i : ; [ [
€(0) in spite of differentn’ and »* values, because of a complexk andE planes(full dots). The poles are numbered

common sum' +(1/2)r'. by increasing real parts of the energy; a letter indicates
. . . | . y
Equations(29) and (30) remain valid whenyqg(k,r) is whether the pole corresponds to a normalizable state

replaced by a nonphysical solution behaving |:'1@V| near  (N,Imky,>0) or to a resonanceR|Imk,<0). Empty dots
the origin[23]. Consequently, Eq(7) is also valid for this  represent the poles related to the real part of the effective
kind of solution. As seen in Sec. I C, E(f) clearly reveals potential.
the phase equivalence since the physical solutigg(k,r) Poles above the redl axis, which correspond to square-
and y5(k,r) (k rea) have exactly the same asymptotic be-integrable solutions of Eq1), are calculated with the finite-
havior. The same argument applies to the nonphysical Joslifference technique presented in RE&6]. An accuracy of
solutionsf{)(k,r) andf'z(k,r). According to Eq.(31), these about 10°° is achieved with 2000 points and a step of 0.01
solutions follow exactly the same asymptotic behavior andm. Poles under the redl axis, which correspond to reso-
normalization(9) up to a sign. The transformed Jost solution nances, are calculated with the same technique, combined
fL(k,r) is thus expressed in terms eff'o(k,r) with Eq. (7).  with the complex rotation method, as explained in Sec. Il D.
Equivalently, applying Eqs(29) and (30) to f'o(k,r) pro-  This method requires an analytic continuation of the poten-
vides fh(k,r). tial of Kondoet al. in the complex plane. This continuation
Near the origin, the Jost solutioﬁ{)(k,r) behaves as IS obvious for the nuclear and centrifugal terms, which both

| . : have infinitely differentiable analytic expressions, but does
Cr™", whereC is related to the Jost functidfo(k) through o rigorouslil/ exist for a point—s);)here FEjoulomb potential.
Eq. (15)_ Lljsmg Eq.(29 tV\./lce-prOVId_eS the trgnsformed JQSt We obtain satisfactory results with a piece-analytic potential,
funcnon Fz(k).. The so'lut|on in the intermediate step', \(vhlch discontinuous afz]=Rc, whereR¢ is the radius of the
is not normalized as in EIC{Q), behaves near the origin as charged sphere. As an example, resonaR6erequires a
(k?—Kk3)~Y%(2v,+1)Cr~ " 1. The final solution, which is minimum rotation angle of-4.78°. This angle has to be

the Jost solutionfh(k,r), behaves as k(z—kg)‘l(zu'0 negative as discussed in Sec. lli(Bee also Fig. B An ac-
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FIG. 3. Poles of thé=18 S matrix for the deep potential of Ref. FIG. 4.1=18 phase shift of the real part of the potential of Ref.
[12] at 25 MeV in the complek andE planes(full dots). The poles  [12] at 25 MeV (thin ling), and phase and modulus of tBematrix
of normalizable statesN) or resonancesR) are numbered by in- for the full complex potentialthick lines.
creasing real parts of their energy. Empty dots represent the poles of

he . .
the real partU™ of the effective potential. In Sec. lll C, we have examined the influence of the poles

of the S matrix on the complex phase shiftee Fig. 2 for a
curacy of 10° can be obtained for slightly larger angles summary. Figure 4 compares the phase shifts of the real part
(>—4.9°). The locations of poleR5’ andR6’ are not eas- of the potential(thin line) and of the full complex(thick
ily determined. For these poles, the angle has to be positivdines) | = 18 potential. The Levinson theoref@3) is verified
Starting from the corresponding poles of the real part of then both cases. The phase shift of the real potential starts from
potential is helpful. 27 at E=0 since the potential has two bound states. The

The real part of the potential has two bound states with aomplex phase shift starts frommSat E=0 since the com-
positive-imaginary wave numbénegative real energyThe  plex potential has five normalizable statdd to N5. We
S-matrix poles representing resonances of this real part argerified numerically thag®~)=0 andA¥(«)=1. Let us
symmetric with respect to the imaginakyaxis (real E axis), recall that the Levinson theorem is verified here because the
according to Eq(20). The first two resonances are very closeenergy dependence of the potential is frozen. Both phases
to the reak axis, and therefore very narrofwith widths of  become almost identical beyond 30 MeV in spite of the fact
about 1013 MeV and 103 MeV, respectively. The addi- that A8 s still far from unity.
tion of an absorptivénegative imaginary part to the poten- The influence of the poles on the phase shift can be seen
tial modifies these properties. Normalizable-stktealues in Fig. 4. For the real potential, two narrow resonances and a
(N1 and N2) become complex, with a negative real partbroader resonance clearly appear. For the full complex po-
(energies have a negative imaginary paResonances on the tential, the influence of the first two resonances disappears.
right-hand side of thé plane move away from the real axis This is due to the fact that the pol&8 andN4 in Fig. 3 are,
and become broadeR@’ to R6’). Some resonances on the respectively, nearly symmetric 3’ and R4’ with respect
left-hand side cross the real axis and change into normalizo thek-plane origin. The phase shift results from a compen-
able states. The first three resonances become squamgstion between two opposite behaviors shown in Fig. 2 as
integrable solutiondN3 to N5 with ReE positive. Conse- discussed in Sec. Il C. On the other hand, a broad resonance
qguently, the complex potential has five normalizablearises from the poleR5’, while the associated polé&l5
solutions. The other resonances remain under thekraals  changes into a square-integrable state. The resulting effect on
and become narrower such R6. Resonance energies are the phase shift combines a broad-resonance behéigpr2,
not any more symmetric with respect to the imaginary axislmko<0, R&ky>0) and a narrow-normalizable-state behav-
Such a motion of the poles of tH& matrix has been quali- ior (Fig. 2, Inkg>0, Re&ky<<0). A fast decrease is superim-
tatively predicted in Ref{36]. posed on a slower increase in the ph&¥e The influence of
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FIG. 6. Energy location of th&matrix pole which mostly in-
fluences thd =18 phase shift, for the energy-dependent potentials
FIG. 5. Real partd)'® and imaginary partsv'® of the =18  of Ref. [3] (triangles and of Ref.[12] (dotg, at energies varying

potential V3® of Ref.[12] (thick line), of the phase-equivalent po- between 20 MeV and 30 MeV by 1 MeV steps.

tentialsV3?, ..., V18 (thin lines, labeled by &), and of the shallow

potential of Ref[3] (dotted ling, at 25 MeV. The imaginary po- It occurs according to Eq@49) of that reference when a
tentials W3 to Wg® are almost indistinguishable from the initial removed square-integrable solution is located at sdge
imaginary part. which satisfies

. . . < .
the normalizable state appears to be dominaniAfdrsince [1Imko| <|Reko| (34)

the modulus of thes matrix cannot exceed unity. However, as shown in Sec. Ill C, an additional condition is

_ that another pole neark, does not cancel its effect. The
B. Removal of normalizable states closeness oN5 to the imaginank axis and the asymmetry
As an illustration of the method exposed in Sec. Il C, webetweenN5 andR5’ are therefore simultaneously respon-
construct a family of potentials which are phase equivalent tsible for the shape of33. In the following, we shall not keep
the effective potential studied in Sec. IV famely the this kind of strange potential.
|=18, E=25 MeV potential of Kondcet al). We remove Figure 5 shows that the potential singularity at the origin
the states according to increasing real parts of the energfjcreases at each state removal, in accordance witli3gy.
(i.e., we successively remove statés, N2, ... N5 in Fig. A positive singular core repels positive-energy wave func-

3). The evolution of the potential shape can be followed ations from the origin and simulates in some sense the or-
each step. The real and imaginary parts of the potential@ogonal'ay ?lf shcattenlng stqtes|W|th ﬁupr’)re?sfedbr}do(;mahzable
V18, V18 . V8 are shown in Fig. 5. For the first four states, which themselves simulate the Pauli forbidden states.
transformed potentials, the comments are identical: th Finally, Fig. 5 compares the supersymmetric partners of
. . ’ - . - Nehe deep potential of Kondet al. with the shallow potential
imaginary part of the potential is almost not modified, while of Chatwinet al.[3] (dotted ling. This last potential is close
the di“gh of the real part regularly decreases. The last pqtepd potential Vég obtained by removing four normalizable
tial Vi is very different. The requirements on this potential gia405 from the deep potential. A more detailed comparison
are quite restrictive: it has to share the same phase shift §ween these potentials is done in the next subsection.
Vo', but without the normalizable state &6 which has a In conclusion, a family of regularly shaped potentials
visible influence on the phase shift in Fig. 4. Consequentlywhich have the same complex phase shifts can be derived
its shape is quite unusual, with oscillations and a much largewith supersymmetric transformations. They approximately
extension than for other potentials. Moreover, its imaginaryshare the same absorptive part, but the depths of their real
part becomes positive for some ranges @glues. This kind parts and hence the numbers of bound states but also of
of behavior has already been met and described in[R6f.  narrow resonances of these real parts are different. Similar
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the Kondopotential. For the potential of Kondet al. at 25
MeV, we have already encountered this normalizable state in
Sec. IV A(dot N5 in Fig. 3, but it is worth insisting on the
fact that this state can also be square integrable for the “shal-
\J ] low” potential. The main difference between the deep and
» = : shallow phenomenological potentials is that this normaliz-
/6 L i ] able state is the fifth one for the deep potential, while it is the
" ] first one for the shallow potential.
i ] Figure 7 displays thé=18 complex phase shifts of the
w3 | N7 energy-dependent potentials. Here Eb). is solved with a
different potential at each energy. Therefore the phase shifts
b do not verify the Levinson theore(@3). The influence of the
S-matrix pole followed in Fig. 6 can clearly be seen: when
the energy increases, the number of normalizable states in-
IR I RN creases and the reflection coefficient decreases towards zero
N at high energies. Indeed the imaginary part of the potential
increases with energy and the reflection coefficient becomes
very small over some energy range. The relevant poles of the
potential move with energy in such a way that the reflection
] coefficient remains small at high energies. This kind of be-
1 havior also occurs for the other partial waves, but at different
] energies. Consequently, each partial wave is predominant
1 over a limited energy range, as explained in Réf. More-
] over, the transition between a resonant behavior and a
normalizable-state behavior can be seen on the realépart

&' (rad)

)

40 of the complex phase shift, which increases up to 25 MeV
and then decreases in agreement with the schematic behavior
of Fig. 2.
FIG. 7. Phase and modulus of ti& matrix for the energy- Figures 6 and 7 clearly reveal similarities between deep
dependent deeffull lines) and shallow(dotted line$ | =18 poten-  and shallow potentials, which explain why they both fit the
tials. data so well. The difference between the real phasést

higher energies is not relevant for the cross sections since the
results are obtained for other partial waves, but with a dif-reflection coefficient is already very small.
ferent number of transformations. These families of poten- By removing all normalizable states which lead to
tials explain the well-known discrete ambiguity encounterednonoscillating potentials, the resulting supersymmetric part-

in optical-model fits of heavy-ion elastic scattering cross secher of the deep potential of Reff12] is very close to the
tions. shallow potential of Ref[3] over the whole energy range

considered. The appropriate supersymmetric partners of ef-
fective deep potentialsl=12 to 1=20, at energies
E.m=20, 25, and 30 MeV are presented in Fig&)8(b),
Deep and shallow potentials which correctly reproduceand(c), respectively. The potentials are close to one another,
data in the energy range 10 Me&\E. ,<35 MeV [3,12] particularly for the dominant partial waves at each energy,
have common characteristid$) their real part depends nei- namelyl=12 and 14 at 20 MeVl=16 and 18 at 25 MeV,
ther on energy nor on angular momentganslightl depen- andl=18 and 20 at 30 MeV.
dence exists for the potential of Kond al., but a similar The characteristics of the transformed potentials are very
potential can be obtained without this dependgrd&d), and  similar to those discussed in Sec. IV B. The relative differ-
(i) the depth of their imaginary part increases with energyence between the imaginary parts of the initial and final po-
according to a parametrization based on a cutoff angular mdentials does not exceed 10%. The depth of the real part
mentum. This type of imaginary part can be criticized with decreases because of the normalizable-state removals. The
causality arguments based on dispersion relati@8% This  singularity at the origin increases in order to maintain the
criticism does however not concern the narrow energy dophase shift. Moreover, the effect of supersymmetric transfor-
main considered here. mations on the real part of the potential is almost identical at
Figure 6 shows the location of ti&matrix pole which the three energies. Consequently, the real part of the super-
mostly influences the= 18 phase shift, for both potentials of symmetric partner does not depend on energy in this domain,
Chatwin et al. (triangles and of Kondoet al. (dotg, with  in agreement with a property of the shallow phenomenologi-
E.m varying between 20 MeV and 30 MeV by 1 MeV steps. cal potential. This real part depends on angular momentum
At the energies where this partial wave dominates, both pobut can be simulated over a limited energy range by an
tentials display a pole at about the same location. Since thkindependent potential.
depth of the imaginary part of the potential increases with Deep potentials also exist & ,,=175 MeV [14] and
energy, the resonance becomes a normalizable state beyoBd,,=72.5 MeV[15]. Shallow potentials are not available at
25 MeV for the Chatwin potential and beyond 24 MeV for these energies. Constructing them with supersymmetry is

C. Energy dependence of the"*0+ %0 potentials
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FIG. 8. Supersymmetric partners of effective deep poteniialslines) and effective shallow potentia{glotted lines for | =12 to 20, at
energiesE, ,,=20 MeV (a), 25 MeV (b), and 30 MeV(c).

still possible but not very interesting. Indeed, the number ofalmost equal to zero would be modified. The dominant par-
forbidden states predicted by microscopic models igial waves are beyont=24 at 72.5 MeV and at 175 MeV
(24—1)/2 for | smaller than the critical nhumber 24 for and do not have any forbidden normalizable state or reso-
160+ 180 [5] and zero beyond. Therefore only the potentialsnance. Consequently, supersymmetry cannot usefully modify
of low partial waves for which the reflection coefficient is the effective potentials for these partial waves.
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V. CONCLUSION row resonances without affecting the rest of the phase shift.

Except for its role for narrow resonances, the imaginary part
16 16, '
The O+ ™0 system offers an almost perfect example thas a rather small influence on the transformation of the real

the practical use of supersymmetry in heavy-ion scatterin 1 X

N . 4 . art as already observed for the+ %0 system in Ref[26].
The availability of hlgh-qualllty potenual; for bOFh deep andglrC))n the contrgry the evolution of they imaginary E)ar]t al-
shallow types allows a detailed comparison which leads to ﬁwough rather Wéak requires a full complex treatment '
simple explanation of their coexistence. The shallow poten- We have also t’aken advantage of the opportun.ity to

e el diferent aspects o scatering theory wih complex
the deep potentials of Ref12]. These normalizable states potentials and effects of supersymmetry on such potentials.

TPe behavior of a complex phase shift in the vicinity of a
correspond to bound states but also to narrow resonances Aeonance and. more unusually, of a normalizable state has

. . ] . : “heen explained as summarized in Fig. 2. The apparent con-
is that the equivalent potentials have a singularity dependmgradiction between removing a square-integrable solution

on the _orbltal momentum V.Vh'Ch does not appear in phenom\ivhich corresponds to a pole of the scattering matrix while
enological shallow potentials. Because of absorption, thi

; . e e %eeping thisS matrix unchanged for phase equivalence has
singularity does not significantly affect the phase shifts in theoeeﬁ e?(plained on the transf%rmatioﬁ of the ?Jost function
considered energy range. '

It is interesting to observe that the real parts of some
equivalent complex potentials are very close to the real po-
tentials obtained by removing bound states from the real part We acknowledge interesting discussions with Gvdie
only. However in order to reach the final equivalent poten-during early stages of this work. This text presents research
tial, one should also remove narrow resonances from the reaésults of the Belgian program on interuniversity attraction
part. This is not possible for purely real potentials sincepoles initiated by the Belgian State Federal Services for Sci-
eliminating resonances results in a modification of the phasentific, Technical and Cultural Affairs. J.-M. Sparenberg was
shifts incompatible with phase equivalence. The introductioralso supported by the Fonds National de la Recherche Sci-
of a weak imaginary term provides a way of removing nar-entifique of Belgium.
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