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Supersymmetry between deep and shallow optical potentials for16O1 16O scattering

J.-M. Sparenberg and D. Baye
Physique Nucle´aire Théorique et Physique Mathe´matique, C.P. 229, Universite´ Libre de Bruxelles, B-1050 Brussels, Belgium

~Received 21 March 1996!

Pairs of supersymmetric transformations allow one to remove square-integrable solutions from a complex
potential without modifying its complex phase shifts. This technique is applied to16O116O scattering where
deep and shallow optical potentials provide essentially similar fits of excitation functions over the 10–35 MeV
range in the center-of-mass system. After removing complex normalizable solutions from the deep optical
potential of Kondōet al., the resulting potential resembles the shallow potential of Chatwinet al., except for
the fact that it is singular at the origin. The transformation succeeds in removing bound states and also narrow
resonances from the real part of the deep potential. Different theoretical aspects of scattering with complex
potentials are also discussed such as the behavior of complex phase shifts in the vicinity of a resonant or
normalizable state, and the Levinson theorem. In order to explain phase-shift behaviors, resonance locations
are calculated by the complex rotation method, combined with numerical methods valid for determining
square-integrable solutions of a Schro¨dinger equation involving a complex potential. In phase-equivalent pairs
of supersymmetric transformations, the apparent contradiction between removing a square-integrable solution
which corresponds to a pole of the scattering matrix, and keeping thisSmatrix unchanged is explained with the
Jost function.@S0556-2813~96!00109-4#

PACS number~s!: 25.70.Bc, 24.10.Ht, 03.65.Nk
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I. INTRODUCTION

The 16O1 16O system is of particular interest for a stud
of the interaction between heavy ions. Detailed excitat
functions are available at different angles@1,2#. Analyses of
these data show that the optical potential is transparent,
that its internal part can be probed with low-energy elas
collisions. A shallow potential, with a common Wood
Saxon form factor for both the real and imaginary par
could be deduced from data ranging from 10 to 35 MeV
the center-of-mass~c.m.! frame@2#. The quality of the fit has
been improved by modifying the treatment of absorption
order to take an explicit account of transparency. Two va
ants exist: an energy-dependent angular-momentum cu
@3# or a reduced radius for the Woods-Saxon form factor@4#.
The depth of the real part of these potentials is 17 MeV a
the fact that the potential is shallow seemed to be establis
without ambiguity. The shallow nature of the16O1 16O in-
teraction was confirmed by a microscopic calculation ba
on a two-center model with projection on the relative orbi
momentum@5#. In that model, the mean value of the micro
scopic Hamiltonian is assimilated to a nucleus-nucleus
tential in a nuclear equivalent of the Born-Oppenheimer
proximation. For each partial wave, the microscop
‘‘potential’’ is very close to the common real part of th
potentials of Refs.@2–4#.

Dynamical microscopic calculations are possible in t
framework of variants of the resonating-group meth
~RGM! @6,7#. When phase shifts for the16O1 16O scattering
were obtained with this method in a single-channel appro
mation @8#, they displayed an energy dependence which
not compatible with shallow potentials. These phase shifts
not follow the Levinson theorem@9# of a potential without
any bound state. The reason for this effect is due to
so-called forbidden states. The nonlocal equations of
RGM allow the existence of a finite number of energ
5456-2813/96/54~3!/1309~13!/$10.00
y
on

i.e.,
tic
-
ts,
in

in
ri-
toff

nd
hed

ed
al
-
o-
p-
ic

e
d

xi-
is
do

the
the
-

independent solutions@6,7#. Such solutions correspond to
states in the relative motion of the colliding nuclei which are
forbidden by the Pauli principle in the full microscopic wave
function. An extension of the Levinson theorem due to Swa
shows that the number of forbidden states must be added
the number of physical bound states in the calculation of th
difference between the phase shifts at zero and infinite ene
gies @10#. Detailed analyses of the microscopic model indi-
cate that a potential reproducing RGM phase shifts must b
deep@11#. It is therefore not surprising that attempts to de
rive a deep 16O1 16O potential agreeing with the micro-
scopic interpretation became successful@12,13#. These po-
tentials have a squared Woods-Saxon form factor for the re
part and an imaginary part of the same type as in the shallo
potential of Ref.@3#. Such a potential now exists not only in
the energy range where the shallow potential is available b
also atEc.m.5175 MeV @14# andEc.m.572.5 MeV @15#. Al-
though the shape slightly varies with energy, the differen
deep potentials obviously belong to a unique family@15#.

In fact, the same evolution had already been encounter
in the analysis of the much simplera1a scattering. Early
potentials were shallow and angular-momentum depende
@16,17#. They did however not follow the same Levinson
theorem as microscopically derived phase shifts@6,7#. An
energy-independent deep potential based on the correct nu
ber of forbidden states was proposed in 1971@18#. These
efforts became totally successful with the derivation of a
two-parameter deep Gaussian potential able to reproduce
thea1a phase shifts up toEc.m.520 MeV @19#. The coex-
istence of deepl -independent and shallowl -dependent po-
tentials can be explained using supersymmetric transform
tions @20#. Supersymmetry allows one to ‘‘remove’’ all
bound states from a real potential without affecting the phas
shifts. The deep potential of Ref.@19# is transformed into a
phase-equivalent shallow potential very close to the potenti
of Ref. @17#. However, the transformed potential presents a
1309 © 1996 The American Physical Society
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1310 54J.-M. SPARENBERG AND D. BAYE
r22 singularity at the origin which allows it to follow the
same Levinson theorem as the deep potential. Indeed,
other theorem due to Swan shows how this singularity
fects the phase-shift variation@21#. The shallow potential of
Ref. @17# can be considered as a regular approximation of
singular potential equivalent to the deep potential of R
@19#.

The technique of supersymmetric transformations has
ceived several generalizations in the context of real po
tials @22–25#. The complex case was more delicate beca
it did not seem possible to remove bound states from the
part without modifying the phase shifts. Recently, howev
it was realized that the same goal can be reached by rem
ing complex‘‘bound states,’’ i.e., normalizable solutions o
the Schro¨dinger equation with the full complex potentia
@26#. Let us stress here that these complex normalizable
lutions do not have a direct physical meaning in the case
an optical potential. They do not imply the existence of a
physical bound system. Bound states of thereal part of this
potential, at negative energies, can sometimes be interpr
as approximate physical states of the fused nucleus. Na
resonances of this real part are in principle observable. H
ever the square-integrable solutions of the complex opt
potential are meaningless since the imaginary part is o
used to simulate the flux removal from the elastic chan
due to other open channels. The real parts of the corresp
ing energies may resemble the physical energies of bo
states or resonances and their imaginary parts may be re
to widths of structures observed in the phase shifts. Anyw
the application of this new technique to different solvab
potentials and to thea1 16O elastic scattering@26# has
shown that removing complex normalizable states tra
forms a deep potential into a shallow one, without affect
the scattering properties of this potential. The aim of
present paper is to apply this technique to the w
documented16O1 16O case and to make a comparison b
tween the two families of optical potentials. We shall co
pare the potential of Kondo,̄ Robson, and Smith@12# with a
shallow potential valid over the same energy range, with
same type of absorption, i.e., the potential of Chatwin, E
Robson, and Richter@3#. Since the supersymmetry metho
can be applied tol -dependent potentials but not to energ
dependent ones, we shall perform the comparison at diffe
fixed energies.

The principle of supersymmetric transformations and
necessary algorithms are summarized in Sec. II. The prob
is specialized to the16O1 16O case. Section III can be
skipped by the reader interested in16O1 16O results only. It
contains a more detailed analysis of collision-matrix prop
ties for complex potentials. In particular, the influence
complex square-integrable states and of resonances on p
shifts is discussed, the relevant Levinson theorem is p
sented and the origin of phase equivalence in supersym
ric transformations is elucidated on the Jost function. T
physical comparison between the16O1 16O potentials is per-
formed in Sec. IV. The origin of the phase-shift behavior
clarified. Concluding remarks are presented in Sec. V.

II. PRESENTATION OF THE METHOD

A. Basic definitions

Let us first recall some definitions related to elastic sc
tering with a complex optical potential. For\2/2m51
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~where m is the reduced mass of the system!, the radial
Schrödinger equation at orbital momentuml , for any com-
plex energyE5k2, reads

S 2
d2

dr2
1Vl~r ! Dc l~k,r !5k2c l~k,r !. ~1!

The complex effective potentialVl(r )5Ul(r )1 iWl(r ),
whereWl is negative, behaves asymptotically as

Vl~r ! →
r→`

l ~ l11!

r 2
1
2hk

r
, ~2!

whereh5Z1Z2e
2/2k is the Sommerfeld parameter. This po

tential is bounded except possibly near the origin. Ne
r50, it behaves as

Vl~r !→
r→0

n l~n l11!

r 2
, ~3!

wheren l is a positive integer. For regular potentials, such
those in Refs.@3,12#, n l is equal tol . In the following, we
shall also use singular potentials withn lÞ l resulting from
supersymmetric transformations. The superscriptl appearing
in the different notations refers to the orbital momentum
the partial wave, which is not affected by the supersymm
ric transformations considered in the following.

Let c l(k,r ) be a solution of Eq.~1! vanishing at the ori-
gin. If, for some complex energyE05k0

2, this solution also
vanishes at infinity, the potential is said to have a normal
able solution atE0.

For positive energies (k.0), a physical wave function is
a solution of Eq.~1! regular atr50 with the asymptotic
behavior

c l~k,r ! →
r→`

sin„kr2 1
2 lp2h ln2kr1s l~k!1d l~k!…, ~4!

wheres l(k)5argG( l111 ih) is the Coulomb phase shift,
and d l(k) is the complex additional or quasinuclear phas
shift, defined by Eq.~4! up to a multiple ofp.

From the Coulomb and additional phase shifts, one d
duces theSmatrix

Sl~k!5exp@2is l~k!#exp@2id l~k!#

5exp@2is l~k!#Al~k!exp@2i j l~k!#. ~5!

For realk, the reflection coefficientAl(k) and phasej l(k)
are real. For a real potential, the additional phase sh
d l(k) is real and the reflection coefficient is unity. The pha
shifts allow one to calculate the elastic scattering cross s
tions @9#.

B. Optical potentials for 16O116O scattering

Let us now present the two potentialsVl(r ) which pro-
vide a good fit of the elastic16O1 16O excitation functions,
in the energy range 10 MeV,Ec.m.,35 MeV. In addition to
the centrifugal term and to a point-sphere Coulomb potent
they both contain energy-dependent and angular-momentu
dependent imaginary parts with a Woods-Saxon form fact
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54 1311SUPERSYMMETRY BETWEEN DEEP AND SHALLOW . . .
However, the shapes and depths of their real parts are
nificantly different as discussed in the Introduction.

The potential of Chatwinet al. @3# improves an earlier
potential of Maheret al. @2# with the introduction of a more
elaborate imaginary part depending on both energy and
gular momentum. Forl50, it is represented by dotted lines
in Fig. 1, at 20, 25, and 30 MeV. Its real part neither depen
on energy nor on angular momentum. The depth of t
imaginary part increases with energy, in agreement with t
increasing number of nonelastic channels. With a depth
about 17 MeV, thereal part of this ‘‘shallow’’ potential does
not support any bound state. However we shall see later t
the wholecomplexpotential has normalizable solutions, con
nected to resonances of its real part, because of the incre
of its imaginary part with energy. These solutions have n
precise physical meaning but play a definite role in the e
ergy dependence of the phase shifts.

The second potential, introduced by Kondoēt al. in 1989
@12#, has an imaginary part very similar to that of the pre
ceding potential. Its real part has a squared Woods-Sax
shape with a depth of about 260 MeV and slightly depen
on angular momentum. Thel50 nuclear potential is also
represented in Fig. 1~full lines!, for the same energies. The
real part of this ‘‘deep’’ potential has several bound state
We shall see later that these bound states correspond to
malizable solutions of the whole complex potential, but th
some other normalizable solutions, related to resonances
the real part, also occur.

FIG. 1. Potentials of Chatwinet al. ~Ref. @3#, dotted lines! and
of Kondō et al. ~Ref. @12#, full lines! for l50 at 20, 25, and 30
MeV.
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C. Supersymmetry between deep
and shallow optical potentials

Very different phenomenological potentials can reprodu
the same experimental data. Actually, both potentials n
only share approximately the same cross sections, but a
nearly share the same phase shifts~see Sec. IV!. How can so
different potentials, with so different bound spectra, sha
the same phase shifts? This question is answered by su
symmetry: removing a normalizable solution from a dee
potential with a pair of supersymmetric transformations pr
vides a shallower potential without modifying phase shift
In some cases, the shallow potential obtained after seve
iterations is very similar to a shallow phenomenological p
tential@20#. With a method generalized to complex potentia
@26#, this will also happen for the16O1 16O scattering.

A supersymmetric or Darboux transformation is based
a factorization of the Hamiltonian into two first-order differ
ential operators@27#. It makes use of a solution of the Schro¨-
dinger equation~the factorization solution! at a certain en-
ergy ~the factorization energy! and generates a new potentia
which shares the bound spectrum of the initial potential, e
cept possibly at the factorization energy. In the case of inte
est for the present work, two successive transformations
performed, with the same factorization energy. The fir
transformation uses a square-integrable solution of the init
potentialV0

l (r ). The resulting potentialV1
l (r ) has one nor-

malizable state less~at the factorization energy!, but does not
have the same phase shifts asV0

l (r ). A second transforma-
tion restores the initial phase shifts. This second transform
tion uses a nonphysical solution ofV1

l (r ), vanishing at the
origin, but exponentially increasing at infinity.

Let c0
l (k0 ,r ) be a normalizable solution ofV0

l (r ) at the
complex energyE05k0

2. The potential resulting from the
pair of supersymmetric transformations reads@22,26#

V2
l ~r !5V0

l ~r !22
d

dr S c0
l ~k0 ,r !2

*0
r c0

l ~k0 ,t !
2dtD . ~6!

The solutions of the new Schro¨dinger equation at any energy
can also be expressed in terms of solutions of the init
equation as

c2
l ~k,r !5c0

l ~k,r !2c0
l ~k0 ,r !

*0
r c0

l ~k0 ,t !c0
l ~k,t !dt

*0
r c0

l ~k0 ,t !
2dt

.

~7!

In particular, for real positive energies, this implies up to
multiple of p

d2
l ~k!5d0

l ~k! ~8!

since the second term in the right-hand side of Eq.~7! van-
ishes at infinity. PotentialsV0

l (r ) andV2
l (r ) satisfying Eq.

~8! are said to be phase equivalent. Equation~7! also shows
thatc2

l (k0 ,r ) vanishes. Normalizable solutions do not exis
any more at energyE0. This energy is ‘‘removed’’ from the
spectrum of the complex potentialV2

l . This removal usually
corresponds to a reduction of the real-part depth. The n
potential is shallower than the original one.
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Relation ~6! can be iterated in order to remove sever
square-integrable solutions from a potential. Starting from
solutionc2

l (k1 ,r ) of V2
l at an energyE15k1

2 where the ini-
tial potentialV0

l has another normalizable solution, one ca
transformV2

l into V4
l , and so on. The potentialV2n

l is ob-
tained whenn normalizable solutions are removed. Startin
from a deep potential with a number of bound states~or
narrow resonances as we shall see in Sec. IV! supported by
its real part, one can obtain an equivalent shallow potenti

As in the real case@23#, compact formulas based on de
terminants involving normalizable solutions of the initial po
tential can be derived in place of these iterations. Moreov
the problem considered here, i.e., removing normalizable
lutions, can be extended to adding such solutions, modifyi
their energy, and any combination of such modifications,
generalizing the contents of Refs.@22–25#.

In the present application, we limit ourselves to the r
moval of normalizable states. When several such states h
to be removed, we iterate formula~6! rather than use a com-
pact formula for the final potential: this allows us to chec
the intermediate potentials and their phase shifts.

The numerical implementation of formula~6! is rather
simple: we first have to find the complex eigenvalues and t
corresponding normalizable solutions of potentialV0

l . In
Ref. @26#, two numerical methods are found to be efficient i
determining these solutions. The first one is based on fin
differences, while the second one uses Lagrange mes
@28,29#. The implementation of formula~6! then only re-
quires traditional integration and differentiation numeric
methods.

III. S-MATRIX PROPERTIES

The reader mostly interested by the physical applicati
of supersymmetry to16O1 16O scattering may directly pro-
ceed to Sec. IV. The subjects covered here are more ma
ematical and not essential for applying our method. They a
however useful to understand in detail the behavior of t
phase shifts of a complex potential, and the way they a
kept unchanged by supersymmetric transformations.

A. Jost function and S matrix

For any complexk, the Jost solutions of Eq.~1! are
uniquely defined by their asymptotic behavior

f l~6k,r ! →
r→`

exp@ i 12n lp6 ikr7 ih ln~72ikr !#, ~9!

with a cut along the negative imaginaryk axis. In this ex-
pressionk, ik, and2 ik are related by

2 ik5exp~2 i 12p!k5exp~2 i ep!ik, ~10!

wheree5sgn Rek. These conventions keep the argument
the complex number in the logarithm between2p andp.
Except for the phase factor exp@i(1/2)n lp# which is intro-
duced for convenience, Eq.~9! is inspired as in Ref.@30# by
the asymptotic form of the Jost solutions for the pure Co
lomb case
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l ~6k,r !5exp~ i 12 lp!W7 ih,l1

1
2
~72ikr !, ~11!

whereWk,m is a Whittaker function@31#. In Ref. @9#, the Jost
solutions for the Coulomb case are defined with a differe
normalization and only for Rek.0.

Near the origin, the functionsf l(6k,r ) are in general
proportional tor2n l. They are linearly independent since

W„f l~k,r !, f l~2k,r !…5~21!n l112ikexp~2ehp!,
~12!

whereW( f ,g) is the Wronskianf g82 f 8g.
The regular solutionw l(k,r ) is the solution of Eq.~1!

satisfying

w l~k,r !→
r→0

r n l11

~2n l11!!!
. ~13!

It is even in k as a solution of the even equation~1! and
boundary condition~13!. Let us write it as a linear combina
tion of the Jost solutions

w l~k,r !5 1
2 ik

2n l21exp~ehp!@Fl~k! f l~2k,r !

2~21!n lF l~2k! f l~k,r !#. ~14!

It defines the Jost functionFl(k), which is dimensionless.
Using Eqs.~12!–~14!, the Jost function can also be written a

Fl~k!5~2k!n lW~ f l~k,r !,w l~k,r !!

5
~2k!n l

~2n l21!!!
lim
r→0

r n l f l~k,r !. ~15!

In the pure Coulomb case, Eqs.~15! and ~11! provide the
Jost function

FC
l ~k!5G~ l11!/G~ l111 ih!, ~16!

which tends towards 1 whenuku tends to infinity.
In the general case of a complex potential, the Jost fu

tion has no particular symmetry, whereas it verifies the re
tion

Fl~2k* !5Fl~k!* ~Vl real! ~17!

for a real potential@9,32#. The S matrix is defined for any
complexk by

Sl~k!5Fl~2k!/Fl~k!. ~18!

It has the symmetry property

Sl~2k!5Sl~k!21 ~19!

and, for a real potential, one deduces from Eq.~17!,

Sl~2k* !5Sl~k!* ~Vl real!. ~20!

In particular, theSmatrix for the Coulomb case reads

SC
l ~k!5exp~2is l~k!!5G~ l111 ih!/G~ l112 ih!.

~21!
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54 1313SUPERSYMMETRY BETWEEN DEEP AND SHALLOW . . .
The Coulomb phase shifts l(k) is an odd function ofk.
In the general case of a Coulomb plus short-range po

tial, let us factorize the Jost function as

Fl~k!5FC
l ~k!Gl~k!exp@2 id l~k!#, ~22!

where FC
l (k) is given by Eq.~16! and whereGl(k) and

d l(k) are, respectively, even and odd functions ofk. With
Eq. ~18! and this definition, the first expression~5! of the
scattering matrix is recovered for complexk. The function
d l(k) introduced in Eq.~22! extends the complex phase sh
to complexk values. Whenun l2 l u is even as in pairs o
supersymmetric transformations~see Sec. III E!, it is equiva-
lent to the phase shift defined in Eq.~4!. With Eq. ~9!, Eqs.
~14! and~22! provide the asymptotic behavior~4! for k real,
up to a multiplicative factor.

B. Normalizable states and Levinson theorem

Equations~14! and ~9! show that Eq.~1! has a square
integrable solution at energyE05k0

2, if and only if
Fl(k0)50 for Imk0.0. For real potentials, the energies
normalizable solutions have to be real and negative, whe
for complex potentials, they are complex and their real p
is either negative or positive~see Ref.@26# and references
therein!.

Equation~18! shows that a zero ofFl in {Imk.0} im-
plies a pole ofSl in {Imk.0}, whereas a pole ofSl does not
necessarily imply a zero ofFl : it can correspond to a pole o
Fl in {Imk,0}. In other words, theS matrix may have a
pole in {Imk.0} which does not correspond to any norma
izable solution. For instance, this is the case with some
tentials derived from supersymmetric transformations~see
Sec. III E!.

The Levinson theorem@9,32# establishes a link betwee
the numbernl of bound states and the phase shiftd l(k) of a
real regular potential decreasing faster thanr22 for r tending
towards infinity. It was extended to the Coulomb case@33#
and generalized@21# to potentials with a singularity at th
origin. In the former case, the theorem applies to the a
tional phase shift, i.e., to the difference between the total
Coulomb phase shifts. Proofs for short-range regular po
tials in the real case can be transposed without signifi
modification to complex potentials. Taking into account
these generalizations, we conjecture a theorem valid fo
complex potentials containing a Coulomb term and a p
sible r22 singularity at the origin. It reads

Al~0!5Al~`!51,

j l~0!5@nl1 1
2 ~n l2 l !#p,

j l~`!50, ~23!

wherenl is the number of normalizable solutions. Here
do not follow Swan’s convention@21#, wherej l(0)5nlp.
With the present convention, the phase shift remains
changed after pairs of supersymmetric transformations~see
Sec. III E!. The theorem may have to be modified in thes
wave when a square-integrable state exists at zero en
@32#, but this case does not occur when the potential cont
a Coulomb term@33#.
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Let us finally emphasize that this theorem only applies t
potentials which do not depend on energy. Therefore, it i
not valid for the 16O1 16O potentials discussed in Sec. II B
but it can be helpful when these potentials are considered
a fixed energy, as studied in Sec. IV A.

C. Influence of normalizable states
and resonances on the complex phase shift

Zeros of the Jost function in {Imk.0} correspond to
square-integrable solutions. The Jost functionFl(k) can also
have zeros in {Imk,0}, leading to poles of theS matrix.
These zeros are not associated with square-integrable so
tions of Eq.~1!; they correspond to resonances. If they are
close enough to the real axis, their presence can have
influence on the phase shift.

A very important difference between complex and rea
potentials is the fact that, for complex potentials, square
integrable states can also have an influence on the phase s
at positive energies. The zeros of the Jost function i
{Imk.0} must be close enough to the real axis. For rea
potentials, the reality of bound-state energies leads to zer
of Fl on the positive imaginaryk axis. Therefore they can
only have an influence on the phase shift nearE50.

Consequently, a systematic study of the phase-shift b
havior near a pole of theS matrix is also necessary for a
complex potential. The simplest way to establish it is to ex
pandS near its poles and zeros@32#. For a resonanceof a
real potential atk0, with Imk0,0, theSmatrix has poles at
k0 and2k0* , and zeros atk0* and2k0. On the realk axis, in
the neighborhood of6Rek0, theSmatrix can be written as

Sl~k!5exp@2idbg
l ~k!#

k1k0
k2k0

k2k0*

k1k0*
~Vl real!, ~24!

in agreement with the symmetry relations~19! and ~20!. In
this expression,dbg

l is a background phase shift, which is
real since the potential is real. The resonant part of the pha
shift is given by half the phase of the second and third fac
tors; it increases byp ask increases pastuRek0u.

For a resonanceof a complex potential at k0, with
Imk0,0, theS matrix has only a pole atk0 and a zero at
2k0, in agreement with Eq.~19!; relation~20! is not verified
any more. TheS matrix along the realk axis is thus in this
case

Sl~k!5exp@2idbg
l ~k!#

k1k0
k2k0

. ~25!

The second factor corresponds to acomplexresonant phase
shift. Let us study its behavior on the positive real axis, nea
uRek0u. Equation~25! shows thatAl(k) has a maximum near
uRek0u when Rek0.0 or a minimum when Rek0,0. As k
increases beyonduRek0u, j l(k) increases ofp/2 ~not p).
These behaviors are schematically represented in Fig. 2 f
dbg
l 50.
The behavior of a resonance of areal potential can be

interpreted as the combined effect of two poles of theS
matrix, one with Rek0,0 and one with Rek0.0. Each of
them leads to an increase ofp/2 in the real partj l of the
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1314 54J.-M. SPARENBERG AND D. BAYE
phase shift, but with compensating effects on its imagina
part and hence on the reflection coefficientAl which remains
equal to unity.

For anormalizable stateof acomplexpotential atk0, with
Imk0.0, theSmatrix has a pole atk0 and a zero at2k0 as
in the preceding case. Expansion~25! of S shows that
Al(k) has the same behavior as for a resonance, but that
real partj l(k) of the resonant phase shift behaves diffe
ently: it decreasesby p/2 ask increases pastuRek0u. The
possible behaviors are also schematically represented in
2.

A pair of poles atk0 and in the close vicinity of2k0
introduces two inverse factors whose product is close
unity. In this case, the effect of these poles is weak and
phase shift reduces to its background value. It should
noted that the effect of a pole with Rek0.0 is always com-
pensated by other poles in such a way thatAl(k) remains
smaller than unity as required by the negative imaginary p
of the potential. This type of behavior is for example ob
served on phase shifts obtained with a phenomenolog
potential fitting 12C1 16O cross sections~see Fig. 2 in Ref.
@34#!. Complex potentials are able to simulate the we
known variations of a scattering matrix in the vicinity of
resonance in the presence of two open channels@6,35#. Such
behaviors are also reported for optical potentials used forS
hypernuclear states in Ref.@36#.

For a complex potential, a third case can in principle o
cur: theS matrix may have a poleon the real axis. This is
just the intermediate case between the previous cases,

FIG. 2. Schematic behavior of the phasej l and modulusAl of
the quasinuclear scattering matrix near a normalizable-st
(Imk0.0) or resonance (Imk0,0) pole located atk0.
ry
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the behavior of the phase shift can be deduced from t
preceding discussions:j l(k) has a discontinuity ofp/2 at
uk0u, andAl(k) has a pole or a zero depending on whethe
Rek0 is positive or negative.

D. Numerical calculation of resonance energies

The numerical methods of Ref.@26# mentioned above
only allow one to calculate normalizable-state energies, i.e
poles of theS matrix in the upper halfk plane. However,
since these energies are already complex, these methods
be directly generalized to calculate resonance energies,
using the complex rotation technique@37#. Replacingr by
eiur in Eq. ~1! and multiplying bye2iu lead to a new Schro¨-
dinger equation

S 2
d2

dr2
1e2iuVl~eiur ! Dc l~k,eiur !5e2iuk2c l~k,eiur !.

~26!

In the following, Vl(eiur ) is assumed to be bounded for
r.0.

Let c l(k0 ,r ) be a solution of Eq.~1!, vanishing at the
origin but not normalizable, corresponding to a zero of th
Jost function~and hence to a pole of theSmatrix! at k0 with
Im k0<0. Thenc l(k0 ,e

iur ) is a solution of Eq.~26!. Using
expression~14! and the asymptotic behavior~9!, one has

c l~k0 ,e
iur !} f l~k0 ,e

iur !

→
r→`

exp@ iRe~k0e
iu!r #exp@2Im~k0e

iu!r #,

~27!

where for simplicity we neglect constant and logarithmi
terms with respect to linear terms in the arguments of exp
nentials. Equation~27! shows that the solutionc l(k0 ,e

iur ) is
normalizable whenu satisfies the condition

Im~k0e
iu!.0. ~28!

The complex rotation technique has changed a resonan
into a square-integrable state, and the energy of this state
be calculated by solving Eq.~26! with the techniques of Ref.
@26#.

For any k0, condition ~28! can be fulfilled for
2(1/2)p,u,(1/2)p. In traditional presentations of the
complex rotation method for real potentials, one searches t
resonances in$Rek.0% and one makes use of positive val-
ues of u. Since a real potential has symmetric resonanc
with respect to the imaginaryk axis, the complex rotation
method could also be used to find the resonances
$Rek,0% with negativeu values. In the following, we need
both positive and negativeu values since the resonances of a
complex potential are not symmetric any more.

E. Modification of the Jost function by supersymmetry

Let us first establish formula~7! in more detail. For a
single supersymmetric transformation with a factorizatio
function c0

l (k0 ,r ) regular at the origin, the solutions of the

ate
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transformed potential can be expressed in terms of the s
tions of the initial potential in two different manners@22#

c1
l ~k,r !52~k22k0

2!21/2
W~c0

l ~k0 ,r !,c0
l ~k,r !!

c0
l ~k0 ,r !

~29!

or

c1
l ~k,r !5~k22k0

2!1/2
*0
r c0

l ~k0 ,t !c0
l ~k,t !dt

c0
l ~k0 ,r !

. ~30!

Formula~7! is obtained by choosing the integral formulatio
~30! for the first transformation~which removes the normal-
izable state!, and ~up to a phase factor! the Wronskian or
differential formulation ~29! for the second trans-
formation ~which restores the initial phase shift!. In the
second step, c0

l (k0 ,r ) is replaced by the solution
@c0

l (k0 ,r )#
21*0

r c0
l (k0 ,t)

2dt, vanishing at the origin but in-
creasing at infinity, of the transformed Schro¨dinger equation
at energyE0.

Using Eq.~30! twice allows us to compare the behavior
of solutions near the origin. Sincec0

l (k,r ) behaves like

r n0
l
11, leading terms of series expansions show th

c2
l (k,r ) behaves liker n0

l
13. Therefore the singularity param

etern2
l of potentialV2

l increases by two units,

n2
l 5n0

l 12. ~31!

The strengthn l(n l11) of the potential singularity at the ori-
gin increases at each state removal. This explains how s
cessive potentials can provide the same phase shifts w
different numbers of normalizable states. They all verify th
generalized Levinson theorem~23!. They share the same
j l(0) in spite of differentnl and n l values, because of a
common sumnl1(1/2)n l .

Equations~29! and ~30! remain valid whenc0
l (k,r ) is

replaced by a nonphysical solution behaving liker2n l near
the origin @23#. Consequently, Eq.~7! is also valid for this
kind of solution. As seen in Sec. II C, Eq.~7! clearly reveals
the phase equivalence since the physical solutionsc0

l (k,r )
andc2

l (k,r ) (k real! have exactly the same asymptotic be
havior. The same argument applies to the nonphysical J
solutions f 0

l (k,r ) and f 2
l (k,r ). According to Eq.~31!, these

solutions follow exactly the same asymptotic behavior a
normalization~9! up to a sign. The transformed Jost solutio
f 2
l (k,r ) is thus expressed in terms of2 f 0

l (k,r ) with Eq. ~7!.
Equivalently, applying Eqs.~29! and ~30! to f 0

l (k,r ) pro-
vides f 2

l (k,r ).
Near the origin, the Jost solutionf 0

l (k,r ) behaves as

Cr2n0
l
, whereC is related to the Jost functionF0

l (k) through
Eq. ~15!. Using Eq.~29! twice provides the transformed Jos
functionF2

l (k). The solution in the intermediate step, whic
is not normalized as in Eq.~9!, behaves near the origin a

(k22k0
2)21/2(2n0

l 11)Cr2n0
l
21. The final solution, which is

the Jost solution f 2
l (k,r ), behaves as (k22k0

2)21(2n0
l

lu-

n

s

at

uc-
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e
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t
h

11)(2n0
l 13)Cr2n0

l
22. From Eqs.~15! and ~31!, the Jost

function F2
l (k) of the transformed potentialV2

l (r ) is then
deduced as

F2
l ~k!5

k2

k22k0
2F0

l ~k!. ~32!

This equation shows that~i! the zero of the Jost function at
k0 is removed,~ii ! a pole of the Jost function appears a
2k0, and ~iii ! theS matrix defined in Eq.~18! remains un-
changed after the transformation pair,

S2
l ~k!5S0

l ~k!, ~33!

which confirms Eq.~8!. For the singular transformed poten
tial V2

l , the zeros of the Jost function and the poles of th
Smatrix are not identical. Removing a normalizable solutio
without modifying theS matrix implies replacing a zero of
the Jost function by a pole.

IV. APPLICATION TO 16O116O SCATTERING

A. Properties of the potential of Kondō et al.

The potential of Ref.@12#, which fits elastic scattering
data for 16O1 16O in the energy range 10 MeV,Ec.m.,35
MeV, depends on angular momentum and energy. Sup
symmetric transformations can be performed for each par
wave separately but assume that the potential does not
pend on energy. To this end, we first freeze the energy d
pendence of the potential at 25 MeV and focus on the dom
nant l518 partial wave at this energy@4#. The l518
effective potential forEc.m.525 MeV is represented in Fig. 5
~thick line!.

In order to apply supersymmetric transformations, w
need the complex energies of the square-integrable state
this potential. For completeness, we also consider its re
nances and phase-shift properties. Figure 3 shows the fi
poles of thel518Smatrix ~zeros of the Jost function! in the
complexk andE planes~full dots!. The poles are numbered
by increasing real parts of the energy; a letter indicat
whether the pole corresponds to a normalizable sta
(N,Imk0.0) or to a resonance (R,Imk0,0). Empty dots
represent the poles related to the real part of the effect
potential.

Poles above the realk axis, which correspond to square
integrable solutions of Eq.~1!, are calculated with the finite-
difference technique presented in Ref.@26#. An accuracy of
about 1026 is achieved with 2000 points and a step of 0.0
fm. Poles under the realk axis, which correspond to reso-
nances, are calculated with the same technique, combi
with the complex rotation method, as explained in Sec. III D
This method requires an analytic continuation of the pote
tial of Kondō et al. in the complex plane. This continuation
is obvious for the nuclear and centrifugal terms, which bo
have infinitely differentiable analytic expressions, but doe
not rigorously exist for a point-sphere Coulomb potentia
We obtain satisfactory results with a piece-analytic potenti
discontinuous atuzu5RC , whereRC is the radius of the
charged sphere. As an example, resonanceR6 requires a
minimum rotation angle of24.78°. This angle has to be
negative as discussed in Sec. III D~see also Fig. 3!. An ac-
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1316 54J.-M. SPARENBERG AND D. BAYE
curacy of 1023 can be obtained for slightly larger angle
(.24.9°). The locations of polesR5’ andR6’ are not eas-
ily determined. For these poles, the angle has to be posi
Starting from the corresponding poles of the real part of
potential is helpful.

The real part of the potential has two bound states wit
positive-imaginary wave number~negative real energy!. The
S-matrix poles representing resonances of this real part
symmetric with respect to the imaginaryk axis ~realE axis!,
according to Eq.~20!. The first two resonances are very clo
to the realk axis, and therefore very narrow~with widths of
about 10213 MeV and 1023 MeV, respectively!. The addi-
tion of an absorptive~negative! imaginary part to the poten
tial modifies these properties. Normalizable-statek values
(N1 andN2) become complex, with a negative real pa
~energies have a negative imaginary part!. Resonances on th
right-hand side of thek plane move away from the real ax
and become broader (R3’ to R6’!. Some resonances on th
left-hand side cross the real axis and change into norma
able states. The first three resonances become sq
integrable solutionsN3 to N5 with ReE positive. Conse-
quently, the complex potential has five normalizab
solutions. The other resonances remain under the realk axis
and become narrower such asR6. Resonance energies a
not any more symmetric with respect to the imaginary ax
Such a motion of the poles of theS matrix has been quali
tatively predicted in Ref.@36#.

FIG. 3. Poles of thel518Smatrix for the deep potential of Ref
@12# at 25 MeV in the complexk andE planes~full dots!. The poles
of normalizable states (N) or resonances (R) are numbered by in-
creasing real parts of their energy. Empty dots represent the pol
the real partU18 of the effective potential.
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In Sec. III C, we have examined the influence of the po
of theSmatrix on the complex phase shift~see Fig. 2 for a
summary!. Figure 4 compares the phase shifts of the real p
of the potential~thin line! and of the full complex~thick
lines! l518 potential. The Levinson theorem~23! is verified
in both cases. The phase shift of the real potential starts f
2p at E50 since the potential has two bound states. T
complex phase shift starts from 5p at E50 since the com-
plex potential has five normalizable statesN1 to N5. We
verified numerically thatj18(`)50 andA18(`)51. Let us
recall that the Levinson theorem is verified here because
energy dependence of the potential is frozen. Both pha
become almost identical beyond 30 MeV in spite of the fa
thatA18 is still far from unity.

The influence of the poles on the phase shift can be s
in Fig. 4. For the real potential, two narrow resonances an
broader resonance clearly appear. For the full complex
tential, the influence of the first two resonances disappe
This is due to the fact that the polesN3 andN4 in Fig. 3 are,
respectively, nearly symmetric toR3’ andR4’ with respect
to thek-plane origin. The phase shift results from a compe
sation between two opposite behaviors shown in Fig. 2
discussed in Sec. III C. On the other hand, a broad resona
arises from the poleR5’, while the associated poleN5
changes into a square-integrable state. The resulting effec
the phase shift combines a broad-resonance behavior~Fig. 2,
Imk0,0, Rek0.0) and a narrow-normalizable-state beha
ior ~Fig. 2, Imk0.0, Rek0,0). A fast decrease is superim
posed on a slower increase in the phasej18. The influence of

s of

FIG. 4. l518 phase shift of the real part of the potential of Re
@12# at 25 MeV~thin line!, and phase and modulus of theSmatrix
for the full complex potential~thick lines!.
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54 1317SUPERSYMMETRY BETWEEN DEEP AND SHALLOW . . .
the normalizable state appears to be dominant forA18 since
the modulus of theSmatrix cannot exceed unity.

B. Removal of normalizable states

As an illustration of the method exposed in Sec. II C, w
construct a family of potentials which are phase equivalent
the effective potential studied in Sec. IV A~namely the
l518, E525 MeV potential of Kondōet al.!. We remove
the states according to increasing real parts of the ener
~i.e., we successively remove statesN1, N2, . . . ,N5 in Fig.
3!. The evolution of the potential shape can be followed
each step. The real and imaginary parts of the potentia
V0
18, V2

18, . . . ,V10
18 are shown in Fig. 5. For the first four

transformed potentials, the comments are identical: t
imaginary part of the potential is almost not modified, while
the depth of the real part regularly decreases. The last pot
tial V10

18 is very different. The requirements on this potentia
are quite restrictive: it has to share the same phase shift
V0
18, but without the normalizable state atN5 which has a

visible influence on the phase shift in Fig. 4. Consequentl
its shape is quite unusual, with oscillations and a much larg
extension than for other potentials. Moreover, its imagina
part becomes positive for some ranges ofr values. This kind
of behavior has already been met and described in Ref.@26#.

FIG. 5. Real partsU18 and imaginary partsW18 of the l518
potentialV0

18 of Ref. @12# ~thick line!, of the phase-equivalent po-
tentialsV2

18, . . . ,V10
18 ~thin lines, labeled by 2n), and of the shallow

potential of Ref.@3# ~dotted line!, at 25 MeV. The imaginary po-
tentialsW2

18 to W8
18 are almost indistinguishable from the initial

imaginary part.
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It occurs according to Eq.~49! of that reference when a
removed square-integrable solution is located at somek0
which satisfies

uImk0u!uRek0u. ~34!

However, as shown in Sec. III C, an additional condition i
that another pole near2k0 does not cancel its effect. The
closeness ofN5 to the imaginaryk axis and the asymmetry
betweenN5 andR5’ are therefore simultaneously respon
sible for the shape ofV10

18. In the following, we shall not keep
this kind of strange potential.

Figure 5 shows that the potential singularity at the origi
increases at each state removal, in accordance with Eq.~31!.
A positive singular core repels positive-energy wave fun
tions from the origin and simulates in some sense the o
thogonality of scattering states with suppressed normaliza
states, which themselves simulate the Pauli forbidden stat

Finally, Fig. 5 compares the supersymmetric partners
the deep potential of Kondoēt al.with the shallow potential
of Chatwinet al. @3# ~dotted line!. This last potential is close
to potential V8

18 obtained by removing four normalizable
states from the deep potential. A more detailed comparis
between these potentials is done in the next subsection.

In conclusion, a family of regularly shaped potential
which have the same complex phase shifts can be deriv
with supersymmetric transformations. They approximate
share the same absorptive part, but the depths of their r
parts and hence the numbers of bound states but also
narrow resonances of these real parts are different. Simi

FIG. 6. Energy location of theS-matrix pole which mostly in-
fluences thel518 phase shift, for the energy-dependent potentia
of Ref. @3# ~triangles! and of Ref.@12# ~dots!, at energies varying
between 20 MeV and 30 MeV by 1 MeV steps.
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1318 54J.-M. SPARENBERG AND D. BAYE
results are obtained for other partial waves, but with a d
ferent number of transformations. These families of pot
tials explain the well-known discrete ambiguity encounter
in optical-model fits of heavy-ion elastic scattering cross s
tions.

C. Energy dependence of the16O116O potentials

Deep and shallow potentials which correctly reprodu
data in the energy range 10 MeV,Ec.m.,35 MeV @3,12#
have common characteristics:~i! their real part depends nei
ther on energy nor on angular momentum~a slight l depen-
dence exists for the potential of Kondo¯et al., but a similar
potential can be obtained without this dependence@13#!, and
~ii ! the depth of their imaginary part increases with ener
according to a parametrization based on a cutoff angular
mentum. This type of imaginary part can be criticized wi
causality arguments based on dispersion relations@38#. This
criticism does however not concern the narrow energy
main considered here.

Figure 6 shows the location of theS-matrix pole which
mostly influences thel518 phase shift, for both potentials o
Chatwin et al. ~triangles! and of Kondōet al. ~dots!, with
Ec.m. varying between 20 MeV and 30 MeV by 1 MeV step
At the energies where this partial wave dominates, both
tentials display a pole at about the same location. Since
depth of the imaginary part of the potential increases w
energy, the resonance becomes a normalizable state be
25 MeV for the Chatwin potential and beyond 24 MeV fo

FIG. 7. Phase and modulus of theS matrix for the energy-
dependent deep~full lines! and shallow~dotted lines! l518 poten-
tials.
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the Kondōpotential. For the potential of Kondo¯et al. at 25
MeV, we have already encountered this normalizable state
Sec. IV A ~dotN5 in Fig. 3!, but it is worth insisting on the
fact that this state can also be square integrable for the ‘‘sh
low’’ potential. The main difference between the deep an
shallow phenomenological potentials is that this normali
able state is the fifth one for the deep potential, while it is t
first one for the shallow potential.

Figure 7 displays thel518 complex phase shifts of the
energy-dependent potentials. Here Eq.~1! is solved with a
different potential at each energy. Therefore the phase sh
do not verify the Levinson theorem~23!. The influence of the
S-matrix pole followed in Fig. 6 can clearly be seen: whe
the energy increases, the number of normalizable states
creases and the reflection coefficient decreases towards
at high energies. Indeed the imaginary part of the poten
increases with energy and the reflection coefficient becom
very small over some energy range. The relevant poles of
potential move with energy in such a way that the reflectio
coefficient remains small at high energies. This kind of b
havior also occurs for the other partial waves, but at differe
energies. Consequently, each partial wave is predomin
over a limited energy range, as explained in Ref.@4#. More-
over, the transition between a resonant behavior and
normalizable-state behavior can be seen on the real partj18

of the complex phase shift, which increases up to 25 Me
and then decreases in agreement with the schematic beha
of Fig. 2.

Figures 6 and 7 clearly reveal similarities between de
and shallow potentials, which explain why they both fit th
data so well. The difference between the real phasesj18 at
higher energies is not relevant for the cross sections since
reflection coefficient is already very small.

By removing all normalizable states which lead t
nonoscillating potentials, the resulting supersymmetric pa
ner of the deep potential of Ref.@12# is very close to the
shallow potential of Ref.@3# over the whole energy range
considered. The appropriate supersymmetric partners of
fective deep potentialsl512 to l520, at energies
Ec.m.520, 25, and 30 MeV are presented in Figs. 8~a!, ~b!,
and~c!, respectively. The potentials are close to one anoth
particularly for the dominant partial waves at each energ
namely l512 and 14 at 20 MeV,l516 and 18 at 25 MeV,
and l518 and 20 at 30 MeV.

The characteristics of the transformed potentials are ve
similar to those discussed in Sec. IV B. The relative diffe
ence between the imaginary parts of the initial and final p
tentials does not exceed 10%. The depth of the real p
decreases because of the normalizable-state removals.
singularity at the origin increases in order to maintain th
phase shift. Moreover, the effect of supersymmetric transf
mations on the real part of the potential is almost identical
the three energies. Consequently, the real part of the sup
symmetric partner does not depend on energy in this doma
in agreement with a property of the shallow phenomenolo
cal potential. This real part depends on angular moment
but can be simulated over a limited energy range by
l -independent potential.

Deep potentials also exist atEc.m.5175 MeV @14# and
Ec.m.572.5 MeV@15#. Shallow potentials are not available a
these energies. Constructing them with supersymmetry
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FIG. 8. Supersymmetric partners of effective deep potentials~full lines! and effective shallow potentials~dotted lines! for l512 to 20, at
energiesEc.m.520 MeV ~a!, 25 MeV ~b!, and 30 MeV~c!.
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still possible but not very interesting. Indeed, the number
forbidden states predicted by microscopic models
(242 l )/2 for l smaller than the critical number 24 fo
16O1 16O @5# and zero beyond. Therefore only the potentia
of low partial waves for which the reflection coefficient i
of
is

ls
s

almost equal to zero would be modified. The dominant par
tial waves are beyondl524 at 72.5 MeV and at 175 MeV
and do not have any forbidden normalizable state or reso
nance. Consequently, supersymmetry cannot usefully modif
the effective potentials for these partial waves.
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V. CONCLUSION

The 16O1 16O system offers an almost perfect example
the practical use of supersymmetry in heavy-ion scatter
The availability of high-quality potentials for both deep a
shallow types allows a detailed comparison which leads
simple explanation of their coexistence. The shallow pot
tials of Ref.@3# are essentially equivalent to potentials resu
ing from the removal of most square-integrable states fr
the deep potentials of Ref.@12#. These normalizable state
correspond to bound states but also to narrow resonanc
the real part of the potential. The main remaining differen
is that the equivalent potentials have a singularity depend
on the orbital momentum which does not appear in phen
enological shallow potentials. Because of absorption,
singularity does not significantly affect the phase shifts in
considered energy range.

It is interesting to observe that the real parts of so
equivalent complex potentials are very close to the real
tentials obtained by removing bound states from the real
only. However in order to reach the final equivalent pote
tial, one should also remove narrow resonances from the
part. This is not possible for purely real potentials sin
eliminating resonances results in a modification of the ph
shifts incompatible with phase equivalence. The introduct
of a weak imaginary term provides a way of removing n
of
ng.
d
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n-
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row resonances without affecting the rest of the phase sh
Except for its role for narrow resonances, the imaginary pa
has a rather small influence on the transformation of the re
part as already observed for thea1 16O system in Ref.@26#.
On the contrary, the evolution of the imaginary part, al
though rather weak, requires a full complex treatment.

We have also taken advantage of the opportunity
clarify different aspects of scattering theory with comple
potentials and effects of supersymmetry on such potentia
The behavior of a complex phase shift in the vicinity of a
resonance and, more unusually, of a normalizable state h
been explained as summarized in Fig. 2. The apparent co
tradiction between removing a square-integrable solutio
which corresponds to a pole of the scattering matrix whil
keeping thisS matrix unchanged for phase equivalence ha
been explained on the transformation of the Jost function.
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