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Thermal and microcanonical treatments of a pairing Hamiltonian
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The validity of microscopic thermal treatments in comparison with microcanonical results is analyzed for the
case of a pairing interaction. The approximate evaluation of microcanonical averages by means of saddle point
and moment expansion methods is also examined. Results are shown for a 20-level model, where exact
microcanonical averages and level densities are compared with exact thermal results and with those given by
the BCS and static path approximatiohS0556-28136)03408-5

PACS numbsgs): 21.10.Ma, 05.30-d, 21.60—n, 24.60-—k

I. INTRODUCTION particular, expectation values at fixed excitation energy
(rather than temperatureby means of the saddle point ap-
The microscopic description of small correlated quantunmproximation. Simple general corrections to the standard ther-
systems like finite nuclei, at finite excitation energies, con-mal average are in this way obtained, which can be applied
stitutes a challenge both for many-body approximation methto any microscopic calculation of the partition function. We
ods and for finite temperature statistical treatmdnjs On  also derive these corrections by an energy moment expan-
the one hand, the small finite size of the system originate§ion method, formally similar to the Lipkin-Nogami ap-
large fluctuations and concomitant deviations from the beproach for number projection.
havior predicted by the standard mean field approximations We then perform an explicit comparison between exact
[2-5]. On the other hand, differences of pure statistical ori-microcanonical and thermal results for a 20-level monopole
gin may arise between microcanonical and thermal treatpairing model, where the pairing Hamiltonian is diagonal-
ments, i.e., between results obtained at fixed excitation erized exactly. As thermal results, we consider those obtained
ergy and at fixed temperature, particularly before the levein the exact grand canonical, canoni¢tiked particle num-
density becomes sufficiently dense. For instance, in heavherN), and fixed number parity even or oddensembles,
nuclei problems of this type may occur in the quasicon-and then those obtained with the BCS and static path ap-
tinuum region, approximately located below 10 MeV excita-proximations. We also include an effective BCS approach
tion energy from the yrast line. A particular question here is[14] obtained from the SPA.
the quenching of pairing effects with increasing excitation ~The statistical methods employed are discussed in Sec. Il.
energy, in which deviations from the behavior predicted byln Sec. Ill we briefly describe the model and the SPA and
the thermal BCS approximation or even by an exact thermaBCS approximations. Numerical results are given in Sec. IV
calculation may take place. and conclusions are drawn in Sec. V.
The inclusion of fluctuations and correlations beyond the
thermal mean field can be tre_ated in a fully MICrOSCOPIC || oA TISTICAL EVALUATION OF LEVEL DENSITIES
manner by means of the path integral representation of the AND EXPECTATION VALUES
partition function[6—8|. In particular, the static path ap-
proximation (SPA) [9-11] provides a simple microscopic A. Level densities in grand canonical, canonical,
method for including the static fluctuations, which can be and fixed number parity ensembles
quite accurate for evaluating partition functions and thermal
averages in finite systems with simple separable attractiv
interactions like pairing, as will be verified. Full Monte Carlo
evaluations of the path integral have also been implement
[7,8]. The second problem concerning the difference be- . .
tween microcanonical and microscopic thermal treatments in p(E,N)EE ONNO(Ej—E)=TI[Pyo(H-E)]
correlated systems has so far received less attention, in part ] :
due to the difficulty of evaluating microcanonical quantities 1 fﬁon ﬁEfa
e

Let us consider first a one-component system described
By a HamiltonianH and a particle number operatdi. The
cgnergy level density for particle numbkris

otim
dae*NZ(B,a),

ag—im

exactly. Microcanonical level densities in pairing systems =0

have been recently calculated by different methjdds 13, (2m1)") go-ies
but they were compared with macroscopic Fermi-gas results (1)
and not with microscopic thermal treatments.

In.thls \{vo_rk we first review the calculation, In micro- \wherej runs over all many-body eigenstates of the system,
scopic statistical treatments, of energy level densities and, iith energiesE;, Tr is the grand canonicalGC) trace
'~ Jl il

Pn= 6 IS the particle number projector, and
"Permanent address: Departamento dgcBj Universidad Nacio- . .
nal de La Plata, c.c. 67, 1900 La Plata, Argentina. Z(B,a)=Trexp(—BH+aN) (2)
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is the GC partition function. Equatiofil) is exact, withg, Zn(B)efE eSn(B)
?adﬁa]o e(l)rb|trary constants in principle. We have assumed p(E,N)~ (27070 Zy 19872~ [270%In Znl9fA 72"
A= (8

The standard procedure to evaluate ER.in a many-

body system is to apply the saddle point approximation, inyhereE is the canonical average
which the logarithm of the integrand is expanded up to sec-

ond order inB and a around its stationary point. This leads d -
to the well-known resulf15] E=- @'n Z\(B)=(H)pn . €)
E—aN ,a
p(E.N)~ Z(B, )€’ _ eSfe) (3 andSy=InZy+pE is the canonical entropy. Except for the
’ [(27)?Det(A)]Y% " [(27)?Det(A)]Y?’ particular cases mentioned above, the difference between
_ _ Egs.(3) and(8) is normally negligible(see for instancgl6]),
whereE,N are related with3, @ through the equations provided of course that they are compamdthe same E
5 (andN), rather than at the same temperature. Note that for
__ v — /0 the sameT, the energies4) and (9) will differ, due to the
E a,BIn Z(B.e)=(H) g @ number fluctuations present in Eg@).

In some cases, as in the odd system mentioned above, the
d N wrong T=0 limit of the GC ensemble is just caused by the
N=—-—1In Z(B,a)=(N)ga, () simultaneous presence of states witteven and odd in the
partition function. The problems can then be removed by
which determine the maximum of the integrand in E).  keeping just the even or odd components, without actually
and which define the GC average energy and particle numbéeeding to employ the canonical ensemble. The fixed num-
at temperaturd = 1/8 and chemical potentigk=a/8, A is ~ ber parity partition function is

the fluctuation matrix n - -
Z(B,a)=Tr[ Pexp—BH+ aN)]

=(0i0)) a= {0 el O} pur  (6) =3[Z(B,a)+7Z(B,a+im)], (10

_#In Z(B,@)
W aman

where |57= 1+ € ”'A“) is the number parity projector,
which projects states witN even(odd for 7=+1 (—1).
The level density is in this case given by

with »=(B,a), O=(—H,N), andS=InZ+BE—-aN is the
GC entropy. The extension to several componeXisis
straightforward.
] Th(;e valir(]jity of a thermﬁl GCdéilescription is esszg}t)ially 2Z (B, a)ePE~aN 2e5:(B.@)

ased on the accuracy of the saddle point approxima8pn (E,N)~ — = ,
Except for very low temperatures or excitation energigs, g [(2m)*Det A)]* " [(27)°Det(A)] " 11
T smaller than the characteristic single-particle level spac- )
ing) the approximatiori3) leads to a smooth density which is with E=—alnZ./a8, N=dIn Z./da, A;=d2In Zldndn,
normally very accurate for estimating the mag(i,N) over 4\ 0o oo fTacto’r > arisesTfronyw th”e spacmézzl [6‘“’]
an energy bin larger than the average level spacing. NeVef'terval of lengths is now sufficient in thex integral in Eq
theless, in correlated finit_e systems particular situations_ ), with a prefactor 2/(2i)?]. In approximate many-body
lt(i)c\)l; g::%ir?ég;ezc?uargtix's\t/:r’]hi?r;;i?égerr;r?iltiSr?fl?r?cs_cnpfreatments, this projection may be easier to apply than the

' P canonical projection. Nevertheless, except for low tempera-

tlon_ is calculated. This may occur, for instance, when A% res in the cases mentioned above, the difference between
oscillatory or sharp behavior of the average level densnyEqs (11) and (3) is negligible

either as a function oN or E, takes place. Moreover, par-
ticular phases may become unstable in a GC ensemble as

T—0, as will be here seen for the case of an odd system with B. Saddle point approximation
a pairing interaction, where a standard GC treatment leads to for microcanonical expectation values
the wrongT=0 limit (see section )3 Let us examine now the evaluation of expectation values

When the problems are associated with the varidhle at a fixed energyE. The microcanonical average of an op-
they can be solved by considering a canonical ensemble, igratorQ is given by
which the particle number is strictly fixed. This amounts to . . . .
integratea exactly in Eq.(1). The canonical partition func- (Q)en=TI[Py8(H—E)Q]/p(E,N)
tion for a system withN particles is
1 Botie
f dpeft

R " agtim - i)? —i
20(8) =T Pyexa g1 57 [ "dae M2(p.a0. pENIE Jaie
ag—im agtim ~
(7) XJ Oj_ dae™“NZ(B,a)(Q) g4 (12)

and the saddle point approximation to the level density, ap-
plied now only to thes integral in Eq.(1), leads to where



1232 R. ROSSIGNOLI 54
(Qpo=Trexp—H+aN)QUZ(B.a) (13  (Qe~(Q)p

- 33 9B2oN+ (dBIdN) % 9B83]In Zy( B\
is the GC average. Whereé@)EN is the average for fixed —%[ i ((92(/[7732) In) Z (g )]\) n(A )|x:0
energy and particle numbefQ) s, is an average for fixed N
temperature and chemical potg_nﬂal. In the sta}ndard_ thermal A <Q,H,2>B<H,2>B_<Q,H,>B<H,3>B
approach however, both quantities are simply identified, i.e., =(Q)s— 2<|:| 22 , (21

B

(Qen~(Q)ga> (14
whereE,N are the GC averaged) and (5). Nevertheless,
(Q) . contains fluctuations both ik andN. Effects from
the determinant in a saddle point approximation of 8@)
are missing in Eq(14), and will now be derived.

It is possible in principle to evaluate the integrals in Eq.
(12) directly in the saddle point approximati¢ta?7], but we

whereE=(|:|>B is the canonical energp),

(Q)=TrT Prexp(— BH)QVZy(B) (22
is the canonical averagH’—H <H>ﬁ Q'=Q- <Q>B and
dpldn=—(H'Q’ Vs /<H'2>

The second term on the right-hand side of &) or (21)

shall employ here a slightly simpler approach. Equationgrovides a correction to the direct GC or canonical average,

(12) and (13) can be expressed as

~ d
<Q>EN:X|n p(E,N, M)y o, (15
~ J
(Qpa=7In Z(B.a Mo, (16
with
p(E,N,\) =T PyS(H—E)expAQ)]
~p(E,N)(1+MQ)en), (17)
Z(B,a,\)=Tr exp(— BH+ aN+\Q)
~Z(B,a)(1+N(Q)ga), (18)

where Eqs(17) and(18) hold up to ordein. Equations(17)
and(18) are related by an equation similar (D (this would

hold to all orders if[ Q, H] 0,[Q, N] 0), so that in the
saddle point approximation,

Z(B,a,\)ePE-aN
[(27)%Det(A)]"?’

p(E,N,\)~ (19

where E=-—4dInZ(B,a,\)/dB8, N=dIn Z(B,a,\)/da, and
Aij=3?In Z(B,a\)ldman;, with »=(B,«). Thus, Eq.(15)
yields

- - d
<Q>EN”<Q>&F%K|” Det(A)|y—o, (20)

whered/d\ denotes the derivative at consténtindN, i.e.,
d/d\=d/on+Z;(dn; /dN)dl d7;, with dz; /dA
=—3;A;*#InZ(B,a\)/oNdm;, and E,N are again deter-
mined by Eqgs(4) and(5). The extension to several compo-
nents is straightforward.

In a canonical ensemble, EQO0) reduces tdwe omit for
simplicity the subscripN in the following averages

which is normally small but nevertheless observable in finite
systemg(note that it vanishes fop=H or N). The thermal
averages13) or (22), being essentially a Laplace transform,
will always besmootheyas a function oE, than the micro-
canonical average, even after averagi@gy over a suffi-
ciently large energy bin. The expressid@$) and(21) yield
instead the correct mean @®)gy, although we remark that
oscillations or abrupt changes around the value given by Eqg.
(20) or (21) may still occur in the actua{Q)gy. Results
obtained with a direct application of the saddle point method
to Eq. (12 [17] (together with a suitable displacement
Q—Q+ Qg when(Q)gyn exhibits sign changgsare practi-
cally equal to those obtained with E0). This procedure
becomes obviously equivalent to E@O) when applied to
the operatoQ’ = (AQ+1) in the limitA—0.

A different simple approach for evaluatif@®)gy, based
on an energy moment expansidsimilar to the Lipkin-
Nogami method 18] for number projectiof is derived in
the Appendix. The ensuing expression involves, however,
higher moments oH’ and is more difficult to apply in the
GC ensemble, but results are practically coincident with Eq.
(21) in the present statistical situation.

I1Il. APPLICATION TO A PAIRING HAMILTONIAN
A. Hamiltonian and model

We shall consider a monopole pairing interaction re-
stricted to an interval around the Fermi energy. The Hamil-
tonian reads

H=H,—1G(P'P+PP") (23)
Ho— GPTP+1G(N,—Q)), (24)

where
P'():% Sk(Cle“‘ C%CD (25)

is a single-particle Hamiltonian with time reversal symmetry
and
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ﬁ’*=k26| clcr l5=k§ CiCk zspA(ﬁ.a>=GiT J:zw,a,A)AdA, (28)
. ) where
Ni=2, ciect G ek 28 Z(B,a,A)=Tr exi — BH(A) + aN]
are, respectively, the pairing and number operators in the =g BA%G S w]] 4cosﬁﬂ_Ek, (29)
pairing interval, of total dimension(2,. We have used in k 2

Eq. (23) the symmetric form of the pairing interaction, which ) ) )

does not change the chemical potential in the half-filled cas#ith Ex the quasiparticle energies

with equally spacgd single-particlg levels. The effect of the E=[(s,— p)2+A%]"2  Kel,

termG(N,—(,)/2 is nevertheless irrelevant in the following

results. _ o _ Ex=|ex—u| otherwise. (30)
For a complete exact diagonalization, including all levels

as required by a statistical treatment, we have chosen a totihe GC SPA expectation values are

of 1 =20 single-particle levelgeach with degeneracy 2 due -

to time reversal symmetry, so that the total number of levels - JoZ(B,a,A)(Q),AdA

is 2(0=40) with the pairing force acting in the central 10 (Q) spa= I5Z(B,a,A)AdA

levels ©,=10). In this case, for the half-filed case

(N=Q), there are a total of3f)=1.378<10' many-body  with

states in the canonical ensemble. The many-body states in - - NN

the pairing interval can be classified according to the number (Q)a=Tr{exd — BH(A)+aN]QHZ(B,a,A), (32

n, and ng of levels with occupation 2 and 0, with ) L )

0=n,+ny=Q, andN,=Q,+n,—n,. There are a total of the independent quasiparticle averages. In particular,

( " 0) different “multiplets” of this type, each of dimen-

(31)

n2+n

ptpy —/pty /P T i
sion (”2n+2”°) (which is the dimension of the pairing Hamil- (PTP)y=(P >A<P>A+g. {ecalc,Cida, (33

tonian matrix in the multiplétand degeneracy 2 "2~"o
(due to the remaining levels with occupation 1), such that

. E
(P>A=%Ak2| E,thanh[%, (34)

Q Ny+n, Q) —No—nn__ 20
5 _ | 2 0 2 | 2 0— | . _
n;() Ny Q+n, ”o(n2+n0)( n, ) (N| ) <Cle>A=<CLCDA=% 1— ek ,LLtan BEy (35)
k Ey 2 )

The exact eigenvalues can be calculated by diagonalizatio.P
of H in each multiplet. Exact microcanonical and Canonicalexchange contribution

results forN particles can then be obtained by convolution of The energy derived from Eq28) can be expressed as
results withN, particles in the interval andN— N, particles [14]

in the remaining levels.

he second term on the right-hand side of E8Q) is the

=_ — (K _L/A(PTLE
B. Static path approximation E spa= &Bln Z spa=(Ho) spa— 2(A(P"+P)) spa
Let us consider now thermal microscopic many-body ap- _/p ~1/A2 n
proximations. The SPA9-11,19-22 considers just the (Ho) spa=G (A% spat T. (36
static paths in the path integral representation of the partitiofp;g energy becomes exact for highbut asT—0, it ap-

function obtained with the Hubbard-Stratonovich transfor-proaches the BCS energy, without exchange terms. The en-
mation[6]. These static paths represent the statistical flucg;gy expectation value

tuations around the mean field and are very important in the
case of a finite system. In fact, for a pairing Hamiltonian the (H) spa=(Ho) spa— sG(PTP+PP™) gpn (37)
SPA contains, as we shall see, most of the relevant correc-
tions to the mean field approximation except for low tem- —E spa— 2G(P'TP"+P'P'T) gpat T,
peratures, at least for quantities like level densities or collec- (39)
tive expectation values, becoming exact for highin the L
general case, up to ordgrin the partition function whereP’=P— A/G, contains the exchange terms and hence
We define first the quasiparticle Hamiltonian differs from Eq.(36) for low T, although forT—o and u
- - ~ oA finite, both Eqs(36) and(37) become exact and their differ-
H(A)=H,—A(PT+P)+A?/G, (27)  ence vanishes.
A The SPA can in principle also be applied in a canonical
where H, is the Hamiltonian(25). The GC SPA partition ensemble. In this case, singd(A),N]#0, the exact finite
function for the Hamiltoniar{24) is given by[19] temperature number projectig@3—-25 introduces, in addi-
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tion to the statistical corrections, quantum correlations which
improve theT=0 limit of expectation valuessince the pro- %
jected BCS vacuum is approachedlas 0). These quantum .
corrections are, however, less important for larger tempera-g
tures. Number parity projection is straightforward to imple-

ment sincee' =g/ ™q, whereN,, is the quasiparticle num-

ber operator[(Nq(A),ﬁ (A)]=0), butis only relevant at low
temperatures for an odd system. The microcanonical correc-
tions of Eqg.(20) can in principle also be implemented, al-

though in the lowT region they may be in fact of the same & "
order as the correlations omitted in the SPA. Bw
5
C. BCS and effective BCS approximations 0
The standard BCS approximation, without exchange
terms, is based on an independent quasiparticle Hamiltonian % 2
of the form(27). The BCS partition function is & b o1
_ B iy &
Zpes=Z(B.a.Ao), (39 . N Fg
whereA, is obtained from the well-known gap equation 0 [‘T 0 3 5 5 .
E E

Ag—G(P), =0, (40)
0 FIG. 1. Exact microcanonicalM) and canonical ¢) averages

. . . . . of the pairing correlation operath}TP, as a function of energy in
which determines the maximum {4, a,A). This equation the () =20 level model, for different pairing strengtfisin the even

leads to the superfl-wd to normal traplsltlon at the CrItICal(left) and odd(right) systemsC denotes the thermal canonical av-

temperature determined bYG(2)Zy Ey "tanhBEJ2)=1,  grage(22), C+sp the full saddle point expressigdl). The result

such thatA,=0 for T>T.. Hence, using Eq33) and(40),  for G=0 is shown for reference in all cases, and the energy is
measured from the ground state of the ev@r0 system. The

~Ln ~yn t single-particle level spacing of the model, fixing the energy units, is
(PTP) ges=(PP),,=A§/G*+ gl (cic)a{CeCida,y 0.1

The solution of Eq(41) can be employed for an evalua-
on of the SPA integra(28) in the saddle point approxima-
ion [14], which yields

reduces, folT>T,, to the exchange contribution. The tran- .
sition appears, however, washed out in a finite system, bot
in the SPA or in an exact thermal treatment.

The inclusion of the exchange term in the variation of the

BCS free energyH),— TS leads to the replacement ef Z spa~ \ /4_7TA6D—1/ZZ(/3'Q,A6) (42)
by e, for kel in Egs.(29) and(30), with &, determined by GT

e ( <C?Cd‘;'t"’_”i/'2) selfconsistent  SqUANONS Lt with D=(GT/2)|AIN[AZ(B.a,A) )77 & dimensionless fac-
k~k/Aq : n g€ o tor, roughly of order 1. In spite of its simplicity, E@42) is
sharp character of the transition, and affects only slightly theyyite accurate for evaluating the SPA level density and al-
value of T;. It is important nevertheless to consider the ex-jows for a rapid identification of the most prominent SPA
change term, at least after variation, when a comparison witQrrections to the standard BCS, namely, the smooth behav-

exact thermal averages is performed. _____ior and the enhancement factdg\47/GT in comparison
A stra|gh'§forw:_;1rd improved gffecnve BCS approximation i the BCS partition functiori39). Note that owing to the
can be obtained if the measukeis taken into account when .. <ition atT=T,, the saddle point approximation to Eq.

thg s intggrand in, E®8) is'determinec[14]. (28) around the ordinary BCS solution is not accurate in the
This leads to an effective valuk, determined by the equa- \\hole transitional region.

tion
~ IV. RESULTS
Ay—G(P)x—3GT/A§=0, (41)
0 A. Exact thermal and microcanonical results
whose solution for finite5 is smoothas a function ofT and We consider first a uniform single-particle spectrum, with

does not vanish fof >0, so that the sharp superconductingspacing ¢ (e=egx,1—&¢). For N=Q=20, a superfluid

to normal transition is washed out in a finite system. Thisground state occurs in this case {&fs>0.18. In the figures
behavior reflects that obtained in a thermal BCS treatmentve have sek=0.1 (arbitrary unitg and the exact microca-
with rigorous number projectiof24] or symmetry restora- nonical quantities plotted correspond to an energy bin
tion [14,26] before variation, in which the sharp pairing tran- AE=¢.

sition is also smoothed out. Figure 1 depicts the exact microcanonical expectation
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value of PTP for various values o6, together with the exact

canonical thermal resufobtained using the exact eigenval- »
ues and eigenvectors i22)]. We note that P'P)¢ is the 15
total strength of the average two-particle pair transfer func- =

tion at energyE, s

0

(ﬁ*ﬁ)Ezf dE'S(E,E'),

25 2sp 11
o g Si(KIPIDIPS(E —E+E)) S(E-E)) &y oo g o o0l
(E.E)= 3, 8(E-E)) ' 2 AN &g
05 u 05
It is first seen that oscillations in the microcanonical ex- o 5 5 3 o 0 5 5 7 5
pectation value at low excitation energies, both for the even
and odd systems, develop as the strer@gtincreases, which 20 Pl
are not reproduced by the thermal treatments. These oscilla- 5
tions reflect those arising in the degenerate limit, approachedg 0 =01 . R
as G—x, in which the energy eigenvalues, the pairing ex-
pectation value and the corresponding degeneracies, consid- 5
ering only the pairing interval and setting=0, are given 0 5 5 7 o0
by [27] E
Eou=—G[Q(Q+1)— M?], (43 FIG. 2. Top: Logarithm of the energy level density in the even

(left) and odd(right) systems, forG=0 and 0.1.M denotes the

Apn exact microcanonical result,43p the canonical saddle point ex-
<PTP>QM =Q(Q+1)—M M, (44) pression(8). Center: Quotient between the canonical and microca-
nonical level densities fo=0.1 (dashed ling Bottom: Compari-
D(Q)Z(QZ?ZIQ)_(Q —Z?Ql—z)' (45) son between th&=0.1 and the shifte@=0 level densities. The
! ! energy shift is such that both curves practically overlap for high
E.

where M=(N,—Q,)/2 and Q is the quasispin, with
!M|SQSQ'/2 (Q is half Integer for; odd. The seniority that the BCS superfluid to normal transitions take place at
is ,—2Q, and the superfluid ground state corresponds tqi% 1.2,0.2, and 0 foG= 0.1, 0.075, and 0.05, respectively
Q=0,/2. S idial -4 VU1, U9,

(see Fig. b.

This limit leads, for large but finiteG, to a series of The oscillations are less noticeable in the level density

smoothed peaks ifP'P)e, centered at the energiéd3), (Fig. 2). Except for very lowE (i.e., in the gap regionthe

with a characteristic energy spacife=Equ—Eq-1m  saddle point expressiori8) is very accurate, even for
=2GQ, i.e.,Ag=G{), for the first peaks. The peaks become 5 1 and the oscillations of the microcanonical density
washed out as the excitation energy increases.GAsle-  4rq.nd this value decrease very rapidly with excitation en-
creases, only the first peak remains noticeable, which COIMEsrgy. The error between both is less than 15%Horl and

sponds in the even system to the superfluid ground state angss than 59 foE>3. In comparison with the level density
in the odd system to the ground state “band” with a single,, G=0, an enhancement at a fixed eneEgin an absolute

unpaired particl¢Q= ({2, —1)/2]. The peaks in the odd sys- gcaje occurs in the level density f6r0, which reflects the

tem are obviously located at the minima of the even systemypig towards lower energies of the spectrum. However, both

Nevertheless, as the excitation energy increases, the thefasities can be made practically coincident at Higif the
mal canonical treatment becomes very accurate, partlcularléz0 density is shifted by a suitable amount, as seen in the
when the full saddle point expressi@21) is employed. The '

: N . - bottom panel. This entails a very weak dependence of the
direct averageP'P), lies slightly above(P'P)e, but the  appropriately displaced densities on the strength for Eigh
corrected expressio21) accurately follows the mean of the Neyertheless, with this shift an enhancement overGhe0
microcanonical average. Results obtained with the momenjg|,e subsists for low energies.
expansion method up to second order, E&f), are undis- The previous figures depict only exact canonitfated
tinguishable from those given by EE1). Higher order ex-  particle numberthermal results. A comparison between the
pansiongL>2 in Eq.(A1)] do not lead to a correct repro- exact canonical and GC results is made in Fig. 3. For the
duction of the microcanonical oscillations either, and requiregyen system, the differences between canonical and GC di-
a high accuracy in the determination of mome(ks'");  rect averages at a fixed temperature are small, but can nev-
with largen (i.e., n<8 for L=4). ertheless be noticed, especially in the energy. However, for

Another feature to be observed is that above the low enthe quantities obtained in the saddle point approximation,
ergy region, the quenching dfPTP)c as E increases is like the level densitie$3) and(8), and the corrected expres-
smooth, without sharp transitions, with a nonvanishing ensions(20) and(21), canonical and GC results are practically
hancement over the value obtained for zero strength. Noteoincident when plotted as a function of the corresponding
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6 C — 6t ¢ —
GC ---- GC ----
4 4} GO e 20
= 7 E & E
27 4 N=Q2 2T N=Q+ —~ 15
' 2
of v 0 v IS
07 oi 05 08 =57 o4 05 03
T T 5
20 20 ) 0
15 15
[ &
[ A ‘Q../ 10 A
5 B 5 ? FIG. 4. Comparison between exact microcanonical and canoni-
. . cal results for a one-component systef) (and a noninteracting
0 2 4 6 0 2 4 6 two component systenB(). The same parameters of Fig. 1 are used
in both components, witls=0.1, and the ground state energy in
o » B is set equal to that oA. C+sp depicts the saddle point result
15 15 (22).
QU Q
k= g . . . .
: o . ever reduced by half, which indicates a smaller mean devia-
5 P tion between the microcanonical and thermal average. Fig-
v . s . . . . .
0 5 5 - o0 n 5 - - ure 4 deplf:ts(P;FPQ_E_(l:l or 2 in this situation. The
E E above scaling is verified for largé in the microcanonical

average, but the oscillations around the thermal average,
FIG. 3. Exact grand Canonic@c) and canonical (C) thermal though Sma"er, SubSiSt and dO not f0||OW the abOVe Sca”ng.

results forG=0.1 in the even(left) and odd(right) systems. GC  For example, in the present case the first excited state of the
(right) denotes the number parity projected ensemble. Top: Averaggombined system has the same excitation energy as that of
energyE and pairing energy/=G(P'P) as a function of tempera- the single system, but is degenerate, with one of the two
ture. Center and bottom: Canonical and GC resgisctically ~ components in the first excited state and the other in the
overlapping for (PTP) and the level densitjEqgs. (8) and(3)], as  ground state. Hence, at this ener@?/,-TPQE will be the av-
a function of the corresponding energy. At cent@rdepicts the erage of the values in both states, which leads to a smoothing
direct average$22) (C) and(13) (GC), B the saddle point results effect without scaling.
(21) (C) and(20) (GO).

B. Comparison with the static path and BCS approximations

excitation energyrather than temperatureThe same holds Let us examine now the validity of the microscopic many-
for the odd system, except that in this case the exact G®ody approximations. Figure 5 depicts, for the even system,
treatment leads to the wronb=0 limit due to the lack of BCS, SPA, and effective BCS results, plotted in terms of the
blocking effects, approaching @6—0 a mixture of the corresponding energy, together with the exact microcanoni-
ground states of thé&l, =€ and N,=0+2 systems rather cal or GC results. The BCS average (d?*P) compares
than the ground state of the odd systémhose energy lies rather bad with the exact value. FBr>T,, it coincides with
above that of the neighbor even systenThis low T effect  the value forG=0 (i.e., the exchange contributipwhereas
is corrected in the number parity projected treatm@mid  for T<T, its decrease is practically linear, with a slope dis-
obviously also in the canonical treatmemthich for higher  continuity atT=T,. On the other hand, it is remarkable that
values ofE and T, practically coincides with the standard ihe SPA averageéls'rf?) spa practically coincides with the
GC treatment. . exact thermal result when plotted in terms of the SPA exci-
In a noninteracting two-component system, the microcatation energy[which is here calculated according to Eq.

nonical deviations from the thermal treatments becom%m The simple effective BCS estimatio(rPTl5> . ob-
smaller when plotted as a function of the total energy, as . Ao’

fluctuations in the energy of a particular component nowt@ined with the solution of ed41), gives also a straightfor-
occur. In a nucleus, the present situation would approxivard improvement over the standard BCS value. Inclusion of
mately apply when valence protons and neutrons occupy dif€ microcanonical correctiort20) in the SPA would lead to
ferent major shells, as in heavy nuclei, in which case one caffSults practically coincident with those of the exact-&p
neglect the pairing interaction between them. Let us considdf&atment, except for low energies.

for instance a two-component system with exactly the same 1 N€ Pairing energy is quadratic in the gap. In order to
Hamiltonians and strengths, without interaction betweerYiSualize more clearly the deviation from tke=0 value at
them. At a fixed temperatufB, the total excitation energy is g E, we have also plotted in Fig. 5 the effective density
now E=E;+E,=2E;, whereas the thermal average 9P defined as

(PIP,)4 (i=1,2) remains unaltered, both in the canonical — /PPy _ (PTF 172

and Gé ensembles. Hence, when plotted in terms of the total Aet=Cl(PTP)1.6~(PTP)7.-0 ™ (46)
energy, the effect in the thermal average is just the scalingh BCS, the value ofA 4 vanishes forT>T., whereas for
E—2E. The correction term in Eq$20) and (21) is how-  T<T, practically coincides with the normal ga,, as the
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FIG. 5. Comparison with thermal GC many-body approxima-
tions. Top and center: The exact microcanoniddl) (average of
PTP (left) and the exact GC value of the effective gai) (right)
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FIG. 6. Results for a nonuniform single-particle level spacing
and a scaled strengi@s (see text. The exact microcanonical re-
sults for (PTP) and the level densitfin MeV ') are compared
with the exact GC resultgleft) and with SPA and BCS results
(right). Exact results folG=0 are also depictetleft).

The SPA result, obtained with Eq®) and(28), is clearly
exact for highT but slightly underestimates the exact result
for low T, essentially due to the omission of the exchange
term in the energy36). The SPA results in this region im-
prove if plotted just in terms of the full enerd®7) (lower
figure), which contains the exchange term, although a more

and approximate level densities. SPA and BCS results corresporféPnsistent improvement can be done with the SiRPA

to the saddle point equatidi3). At right, SPA and BCS indicate
results with the inclusion of the exchange term in the endsge
text).

exchange term varies only weakly wih In the SPAA  is

practically equal to the direct averagB((lE”)A(IE’)A)%%A
obtained by neglecting the exchange term in B8). Hence,

Eq. (46) can be taken as a measure of the collective conte

in the pairing energy. The agreement between the exact G

thermal result and the SPA value fAg; is clearly seen. In
contrast with BCS, a rather large value &f subsists for

T>T,. ForT—o, the SPA yields in the present finite space[

the limit

1 1
Aeﬁ—>ZQ,G\/G/T= Zg\/g/Q,T, 47

with g=0,G, so thatA . (Q,T) Y2 for high T.

For the level density, the BCS result calculated with Eqs
(3) and(39) exhibits a discontinuity at =T and lies below
the exact level density even beyond the transition. The BC
result improves when the exchange term is inclugemttom
right figure, which amounts practically to a shift in the en-
ergy since it is almost constant wiih In this case the result
is correct beyond the transition, where the BCS density i
essentially that folG=0 with an energy shift given by the

exchange term. This is therefore in agreement with the coin-

cidence with the shifte@s=0 density for highE (Fig. 2).
Nevertheless, a low value subsists Tox T, which, as dis-
cussed i 14,26, is associated with the small value of the

n

treatmen{28,29. Level density results obtained with saddle
point approximation42) to the SPA partition function, cal-
culated around the effective BCS solution, practically over-
lap with the full SPA result$14]. The enhancement factor
present in(42) corrects the low BCS entropy and level den-
sity in the superfluid phase.

Finally, we depict in Fig. 6 results for a nonuniform
§ingle-particle spectrum, which should be closer to a realistic
Eituation. We have chosen the central 20 neutron single-
particle energies around the Fermi level iffEr, obtained
with a deformed quadrupole single particle Hamiltonian
Ho— BQo within the Baranger-Kumar configuration space
30]. We employed a scaled pairing strength=44/164
MeV, which reproduces approximately the same gap as in
the full configuration space. The energy bin of the microca-
nonical calculation is 0.2 MeV. There are now more irregu-
larities present in the exact microcanonical resu#mall
fluctuations around the thermal values appear now even for
G=0, as seen in the level densitiput they are otherwise
similar to the previous ones, particularly to the case

=0.075 (larger oscillations would occur for a higher
strengthG,). Thermal GC results obtained with the expres-
sions(20) and(3) yield again the correct mean of the micro-
canonical averages. Note however that the difference be-

Jween the direct averagé&3) and the saddle point expression

(20) is observable. SPA results are again in good agreement
with the exact GC thermal values, and significant differences

with the BCS results subsist.

V. CONCLUSIONS

BCS entropy in the superfluid phase, due to the breaking of The validity of microscopic thermal descriptions in com-

number conservation and the ensuin@)Ugauge symmetry.

parison with exact microcanonical results has been analyzed.
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The present considerations apply to any microscopic thermal o _ L ~ o
calculation. It is first seen that by proper use of the saddle Mi(,B)E<Q(H—E0)'>B=E N ((H=Eg)' ")z,
point method in thermal treatments, simple general expres- 1=0

sions for level densities and also expectation values at fixed

excitation energy can be obtained, which yield the correct i=0,...L, (A2)
mean of the exact microcanonical average and which are

very accurate for high excitation energies if the partitionwhich can be rewritten in matrix notation as

function is correctly calculated. Nevertheless, at small exci-

tation energies fluctuations and oscillations around the ther- _ A /Nt

mal or saddle point values may occur in microcanonical MIB)=G(AN, Gij(B)=((H=E) s  (A3)
guantities, which can be particularly noticeable in correlate
systems and in certain observables, as we have seen in t
case of pairing. The statistical calculation of these effects 1
would thus require a more refined evaluation of the inverse A=G (BM(B), (A4)

B integrals in Eqs(1) and(12). Simple moment expansion

methods yield results which are qualitatively similar at finite and will in general depend on temperature for fiiteEqua-
temperature to those of the saddle point method. Maximuntion (A1) is then to be employed at the corresponding aver-
entropy reconstruction techniques, like those employed foage energyE=(H);. The expansion(Al) is exact for
recovering the strength function from the response functioergiL=0qi(H —E,)', i.e., a polynomial of degrek in H, in

[8], or pseudoinverse methodi81], might provide, for in-  which case Eq(A4) yields\;=g;, independent of tempera-
stance, an improved numerical evaluation of the inversgyre.

traniforms.' - | < h In the above expression&, is arbitrary. Setting now
The obwo_qs advan_tage_: of thermal treatments |:°,, OWEV‘Q_E():(H)B, Eq. (A1) leads, forE=(H), to

that the partition function in finite correlated many-body sys

tems can in principle be quite accurately calculated, using for

pe parameters; will then be given by

instance Monte Carlo path integral meth¢8% For the pair- (Qe=No(B)

ing Hamiltonian considered, even a simple treatment like the . L A o

SPA yields results which are remarkably accurate in a statis- =(Q)p— Z N(B(H Y, H' =H—(H)4.
tical context, although for more realistic interactions the SPA =2

can be less adequate, particularly at low temperafut&s. (A5)

Nevertheless, the present results indicate that the inclusion of
additional correlations at low temperatures should b . B Loa, Ao
complemented in principle with the inclusion of microca-qn the special case =2, we obtain Q' =Q—(Q))
nonical corrections. On the other hand, standard thermal

methods like the mean field approximatigBCS in the <Q>E=<Q>B—>\z(,3)<*:|'2>g, (A6)

present cageare confirmed to exhibit significant deviations

from the exact results. At least, an improved saddle point O'H'2) (72— (O'AY (K3

evaluation of the SPA, like the effective BCS approach dis- No(B)= «? - >ﬁ§ - )8 SQZ h >ﬁ<A 3)25_ (A7)

cussed here, should be considered. (H'9)p((H") g=(H"%) ) —(H"")3
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APPENDIX: MOMENT EXPANSION METHOD In Z — (A% —3(H"2)2=0
FOR MICROCANONICAL AVERAGES ap* '

Let us consider first a canonical ensemble, and assume an . L .
expansion of the microcanonical average of the form in the denqmmator of .EqA.7)’ which Is in agreement with
the Gaussian approximation of the saddle point method.

L Since these quantities are normally very small in the statis-
<Q>E: 2 N(E—Ey)', (A1) tical regi_me(i.e., f_or _not too _Iow temperaturgsEq. (A6) will
=0 be practically coincident with Eq21). The present method
is essentially an extension of the Lipkin-Nogami method for
which becomes in principle exact for sufficiently largdor ~ approximate particle number projecti¢h8] to the case of
a finite discrete spectrum. For a finite the unknown pa- finite temperature and energy projection. Using an expansion
rameters\; can be obtained from the averages of the form
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- : , microcanonical average for fixed in the grand canonical
<Q>EN:i2j Nij(E—Ep)'(N—=No)’, (A8)  ensemble. The saddle point approximation is, however, sim-

pler to apply in the general case and yields both the level

one can straightforwardly extend this procedure to obtain théensity and the microcanonical average.
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