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Thermal and microcanonical treatments of a pairing Hamiltonian
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The validity of microscopic thermal treatments in comparison with microcanonical results is analyzed for
case of a pairing interaction. The approximate evaluation of microcanonical averages by means of saddle
and moment expansion methods is also examined. Results are shown for a 20-level model, where e
microcanonical averages and level densities are compared with exact thermal results and with those give
the BCS and static path approximations.@S0556-2813~96!03408-5#
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I. INTRODUCTION

The microscopic description of small correlated quantu
systems like finite nuclei, at finite excitation energies, co
stitutes a challenge both for many-body approximation me
ods and for finite temperature statistical treatments@1#. On
the one hand, the small finite size of the system origina
large fluctuations and concomitant deviations from the
havior predicted by the standard mean field approximati
@2–5#. On the other hand, differences of pure statistical o
gin may arise between microcanonical and thermal tre
ments, i.e., between results obtained at fixed excitation
ergy and at fixed temperature, particularly before the le
density becomes sufficiently dense. For instance, in he
nuclei problems of this type may occur in the quasico
tinuum region, approximately located below 10 MeV excit
tion energy from the yrast line. A particular question here
the quenching of pairing effects with increasing excitati
energy, in which deviations from the behavior predicted
the thermal BCS approximation or even by an exact therm
calculation may take place.

The inclusion of fluctuations and correlations beyond t
thermal mean field can be treated in a fully microscop
manner by means of the path integral representation of
partition function @6–8#. In particular, the static path ap
proximation ~SPA! @9–11# provides a simple microscopic
method for including the static fluctuations, which can
quite accurate for evaluating partition functions and therm
averages in finite systems with simple separable attrac
interactions like pairing, as will be verified. Full Monte Car
evaluations of the path integral have also been implemen
@7,8#. The second problem concerning the difference
tween microcanonical and microscopic thermal treatment
correlated systems has so far received less attention, in
due to the difficulty of evaluating microcanonical quantiti
exactly. Microcanonical level densities in pairing system
have been recently calculated by different methods@12,13#,
but they were compared with macroscopic Fermi-gas res
and not with microscopic thermal treatments.

In this work we first review the calculation, in micro
scopic statistical treatments, of energy level densities and
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particular, expectation values at fixed excitation ener
~rather than temperature!, by means of the saddle point ap
proximation. Simple general corrections to the standard th
mal average are in this way obtained, which can be appl
to any microscopic calculation of the partition function. W
also derive these corrections by an energy moment exp
sion method, formally similar to the Lipkin-Nogami ap
proach for number projection.

We then perform an explicit comparison between exa
microcanonical and thermal results for a 20-level monopo
pairing model, where the pairing Hamiltonian is diagona
ized exactly. As thermal results, we consider those obtain
in the exact grand canonical, canonical~fixed particle num-
berN), and fixed number parity (N even or odd! ensembles,
and then those obtained with the BCS and static path
proximations. We also include an effective BCS approa
@14# obtained from the SPA.

The statistical methods employed are discussed in Sec
In Sec. III we briefly describe the model and the SPA an
BCS approximations. Numerical results are given in Sec.
and conclusions are drawn in Sec. V.

II. STATISTICAL EVALUATION OF LEVEL DENSITIES
AND EXPECTATION VALUES

A. Level densities in grand canonical, canonical,
and fixed number parity ensembles

Let us consider first a one-component system describ
by a HamiltonianĤ and a particle number operatorN̂. The
energy level density for particle numberN is

r~E,N![(
j

dNjNd~Ej2E!5Tr@ P̂Nd~Ĥ2E!#

5
1

~2p i !2Eb02 i`

b01 i`

dbebEE
a02 ip

a01 ip

dae2aNZ~b,a!,

~1!

where j runs over all many-body eigenstates of the syste
with energiesEj , Tr is the grand canonical~GC! trace,
P̂N[d N̂N is the particle number projector, and

Z~b,a![Tr exp ~2bĤ1aN̂! ~2!
1230 © 1996 The American Physical Society
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is the GC partition function. Equation~1! is exact, withb0
and a0 arbitrary constants in principle. We have assum
@Ĥ,N̂#50.

The standard procedure to evaluate Eq.~1! in a many-
body system is to apply the saddle point approximation,
which the logarithm of the integrand is expanded up to s
ond order inb anda around its stationary point. This lead
to the well-known result@15#

r~E,N!'
Z~b,a!ebE2aN

@~2p!2Det~A!#1/2
5

eS~b,a!

@~2p!2Det~A!#1/2
, ~3!

whereE,N are related withb,a through the equations

E52
]

]b
ln Z~b,a!5^Ĥ&ba , ~4!

N5
]

]a
ln Z~b,a!5^N̂&ba , ~5!

which determine the maximum of the integrand in Eq.~1!
and which define the GC average energy and particle num
at temperatureT51/b and chemical potentialm5a/b, A is
the fluctuation matrix

Ai j5
]2ln Z~b,a!

]h i]h j
5^ÔiÔj&ba2^Ôi&ba^Ôj&ba , ~6!

with h5(b,a), Ô5(2Ĥ,N̂), andS5 ln Z1bE2aN is the
GC entropy. The extension to several componentsN̂i is
straightforward.

The validity of a thermal GC description is essentia
based on the accuracy of the saddle point approximation~3!.
Except for very low temperatures or excitation energies~i.e.,
T smaller than the characteristic single-particle level sp
ing! the approximation~3! leads to a smooth density which i
normally very accurate for estimating the meanr(E,N) over
an energy bin larger than the average level spacing. Ne
theless, in correlated finite systems particular situations
low temperatures may exist where the thermal GC desc
tion can be less accurate, even if theexactGC partition func-
tion is calculated. This may occur, for instance, when
oscillatory or sharp behavior of the average level dens
either as a function ofN or E, takes place. Moreover, par
ticular phases may become unstable in a GC ensembl
T→0, as will be here seen for the case of an odd system w
a pairing interaction, where a standard GC treatment lead
the wrongT50 limit ~see section 3!.

When the problems are associated with the variableN,
they can be solved by considering a canonical ensemble
which the particle number is strictly fixed. This amounts
integratea exactly in Eq.~1!. The canonical partition func-
tion for a system withN particles is

ZN~b![Tr@ P̂Nexp~2bĤ !#5
1

2p i Ea02 ip

a01 ip

dae2aNZ~b,a!,

~7!

and the saddle point approximation to the level density,
plied now only to theb integral in Eq.~1!, leads to
d
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r~E,N!'
ZN~b!ebE

@2p]2ln ZN /]b2#1/2
5

eSN~b!

@2p]2ln ZN /]b2#1/2
,

~8!

whereE is the canonical average

E52
]

]b
ln ZN~b!5^Ĥ&bN , ~9!

andSN5 ln ZN1bE is the canonical entropy. Except for th
particular cases mentioned above, the difference betw
Eqs.~3! and~8! is normally negligible~see for instance@16#!,
provided of course that they are comparedat the same E
~andN), rather than at the same temperature. Note that
the sameT, the energies~4! and ~9! will differ, due to the
number fluctuations present in Eq.~4!.

In some cases, as in the odd system mentioned above
wrongT50 limit of the GC ensemble is just caused by th
simultaneous presence of states withN even and odd in the
partition function. The problems can then be removed
keeping just the even or odd components, without actua
needing to employ the canonical ensemble. The fixed nu
ber parity partition function is

Zt~b,a![Tr@ P̂texp~2bĤ1aN̂!#

5 1
2 @Z~b,a!1tZ~b,a1 ip!#, ~10!

where P̂t5 1
2(11teipN̂) is the number parity projector

which projects states withN even ~odd! for t511 (21).
The level density is in this case given by

r~E,N!'
2Zt~b,a!ebE2aN

@~2p!2Det~A!#1/2
5

2eSt~b,a!

@~2p!2Det~A!#1/2
,

~11!

with E52] ln Zt /]b, N5] ln Zt /]a, Ai j5]2ln Zt /]hi]hj ,
and where the factor 2 arises from the spacingDN52 @an
interval of lengthp is now sufficient in thea integral in Eq.
~1!, with a prefactor 2/(2p i )2#. In approximate many-body
treatments, this projection may be easier to apply than
canonical projection. Nevertheless, except for low tempe
tures in the cases mentioned above, the difference betw
Eqs.~11! and ~3! is negligible.

B. Saddle point approximation
for microcanonical expectation values

Let us examine now the evaluation of expectation valu
at a fixed energyE. The microcanonical average of an op
eratorQ̂ is given by

^Q̂&EN[Tr@ P̂Nd~Ĥ2E!Q̂#/r~E,N!

5
1

r~E,N!~2p i !2Eb02 i`

b01 i`

dbebE

3E
a02 ip

a01 ip

dae2aNZ~b,a!^Q̂&ba ~12!

where
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^Q̂&ba[Tr@exp~2bĤ1aN̂!Q̂#/Z~b,a! ~13!

is the GC average. Whereas^Q̂&EN is the average for fixed
energy and particle number,^Q̂&ba is an average for fixed
temperature and chemical potential. In the standard ther
approach however, both quantities are simply identified, i.

^Q̂&EN'^Q̂&ba , ~14!

whereE,N are the GC averages~4! and ~5!. Nevertheless,
^Q̂&ba contains fluctuations both inE andN. Effects from
the determinant in a saddle point approximation of Eq.~12!
are missing in Eq.~14!, and will now be derived.

It is possible in principle to evaluate the integrals in E
~12! directly in the saddle point approximation@17#, but we
shall employ here a slightly simpler approach. Equatio
~12! and ~13! can be expressed as

^Q̂&EN5
]

]l
ln r~E,N,l!ul50 , ~15!

^Q̂&ba5
]

]l
ln Z~b,a,l!ul50 , ~16!

with

r~E,N,l!5Tr@ P̂Nd~Ĥ2E!exp~lQ̂!#

'r~E,N!~11l^Q̂&EN!, ~17!

Z~b,a,l!5Tr exp~2bĤ1aN̂1lQ̂!

'Z~b,a!~11l^Q̂&ba!, ~18!

where Eqs.~17! and~18! hold up to orderl. Equations~17!
and~18! are related by an equation similar to~1! ~this would
hold to all orders if@Q̂,Ĥ#50, @Q̂,N̂#50), so that in the
saddle point approximation,

r~E,N,l!'
Z~b,a,l!ebE2aN

@~2p!2Det~A!#1/2
, ~19!

where E52] ln Z(b,a,l)/]b, N5] ln Z(b,a,l)/]a, and
Ai j5]2ln Z(b,a,l)/]hi]hj , with h5(b,a). Thus, Eq.~15!
yields

^Q̂&EN'^Q̂&ba2 1
2

d

dl
ln Det~A!ul50 , ~20!

whered/dl denotes the derivative at constantE andN, i.e.,
d/dl5]/]l1( i(dh i /dl)]/]h i , with dh i /dl
52( jAi j

21]2lnZ(b,a,l)/]l]hj, and E,N are again deter-
mined by Eqs.~4! and ~5!. The extension to several compo
nents is straightforward.

In a canonical ensemble, Eq.~20! reduces to~we omit for
simplicity the subscriptN in the following averages!
mal
e.,

q.

ns

-

^Q̂&E'^Q̂&b

2 1
2

@]3/]b2]l1~db/dl!]3/]b3# ln ZN~b,l!

~]2/]b2! ln ZN~b,l!
ul50

5^Q̂&b2
^Q̂8Ĥ82&b^Ĥ82&b2^Q̂8Ĥ8&b^Ĥ83&b

2^Ĥ82&b
2

, ~21!

whereE5^Ĥ&b is the canonical energy~9!,

^Q̂&b[Tr@ P̂Nexp~2bĤ !Q̂#/ZN~b! ~22!

is the canonical average,Ĥ8[Ĥ2^Ĥ&b , Q̂8[Q̂2^Q̂&b and
db/dl52^Ĥ8Q̂8&b /^Ĥ82&b .

The second term on the right-hand side of Eq.~20! or ~21!
provides a correction to the direct GC or canonical averag
which is normally small but nevertheless observable in fini
systems~note that it vanishes forQ̂5Ĥ or N̂). The thermal
averages~13! or ~22!, being essentially a Laplace transform
will always besmoother, as a function ofE, than the micro-
canonical average, even after averaging^Q̂&EN over a suffi-
ciently large energy bin. The expressions~20! and~21! yield
instead the correct mean of^Q̂&EN , although we remark that
oscillations or abrupt changes around the value given by E
~20! or ~21! may still occur in the actual̂Q̂&EN . Results
obtained with a direct application of the saddle point metho
to Eq. ~12! @17# ~together with a suitable displacemen
Q̂→Q̂1Q0 when ^Q̂&EN exhibits sign changes! are practi-
cally equal to those obtained with Eq.~20!. This procedure
becomes obviously equivalent to Eq.~20! when applied to
the operatorQ̂85(lQ̂11) in the limit l→0.

A different simple approach for evaluating^Q̂&EN , based
on an energy moment expansion~similar to the Lipkin-
Nogami method@18# for number projection!, is derived in
the Appendix. The ensuing expression involves, howeve
higher moments ofĤ8 and is more difficult to apply in the
GC ensemble, but results are practically coincident with E
~21! in the present statistical situation.

III. APPLICATION TO A PAIRING HAMILTONIAN

A. Hamiltonian and model

We shall consider a monopole pairing interaction re
stricted to an intervalI around the Fermi energy. The Hamil-
tonian reads

Ĥ5Ĥ02
1
2G~ P̂†P̂1 P̂P̂†! ~23!

5Ĥ02GP̂†P̂1 1
2G~N̂I2V I !, ~24!

where

Ĥ05(
k

«k~ck
†ck1c

k̄

†
c k̄ ! ~25!

is a single-particle Hamiltonian with time reversal symmetr
and
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P̂†5(
kPI

ck
†c

k̄

†
, P̂5(

kPI
c k̄ck ,

N̂I5(
kPI

ck
†ck1c

k̄

†
c k̄ , ~26!

are, respectively, the pairing and number operators in
pairing interval, of total dimension 2V I . We have used in
Eq. ~23! the symmetric form of the pairing interaction, whic
does not change the chemical potential in the half-filled c
with equally spaced single-particle levels. The effect of t
termG(N̂I2V I)/2 is nevertheless irrelevant in the followin
results.

For a complete exact diagonalization, including all leve
as required by a statistical treatment, we have chosen a
of V520 single-particle levels~each with degeneracy 2 du
to time reversal symmetry, so that the total number of lev
is 2V540) with the pairing force acting in the central 1
levels (V I510). In this case, for the half-filled cas
(N5V), there are a total of (20

40)51.37831011 many-body
states in the canonical ensemble. The many-body state
the pairing interval can be classified according to the num
n2 and n0 of levels with occupation 2 and 0, with
0<n21n0<V I andNI5V I1n22n0. There are a total of
(n21n0

V I ) different ‘‘multiplets’’ of this type, each of dimen-

sion ( n2

n21n0) ~which is the dimension of the pairing Hamil

tonian matrix in the multiplet! and degeneracy 2V I2n22n0

~due to the remaining levels with occupation 1), such tha

(
n2 ,n0

dNI ,V I1n22n0
~n21n0

V I !~ n2

n21n0!2V I2n22n05~NI
2V I !.

The exact eigenvalues can be calculated by diagonaliza
of Ĥ in each multiplet. Exact microcanonical and canonic
results forN particles can then be obtained by convolution
results withNI particles in the intervalI andN2NI particles
in the remaining levels.

B. Static path approximation

Let us consider now thermal microscopic many-body a
proximations. The SPA@9–11,19–22# considers just the
static paths in the path integral representation of the parti
function obtained with the Hubbard-Stratonovich transfo
mation @6#. These static paths represent the statistical fl
tuations around the mean field and are very important in
case of a finite system. In fact, for a pairing Hamiltonian t
SPA contains, as we shall see, most of the relevant cor
tions to the mean field approximation except for low tem
peratures, at least for quantities like level densities or coll
tive expectation values, becoming exact for highT ~in the
general case, up to orderb in the partition function!.

We define first the quasiparticle Hamiltonian

Ĥ~D![Ĥ02D~ P̂†1 P̂!1D2/G, ~27!

where Ĥ0 is the Hamiltonian~25!. The GC SPA partition
function for the Hamiltonian~24! is given by@19#
the
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Z SPA~b,a!5
2

GTE0
`

Z~b,a,D!DdD, ~28!

where

Z~b,a,D!5Tr exp@2bĤ~D!1aN̂#

5e2b~D2/G1(k«k2m!)
k
4cosh2

bEk

2
, ~29!

with Ek the quasiparticle energies

Ek5@~«k2m!21D2#1/2, kPI ,

Ek5u«k2mu otherwise. ~30!

The GC SPA expectation values are

^Q̂& SPA5
*0

`Z~b,a,D!^Q̂&DDdD

*0
`Z~b,a,D!DdD

, ~31!

with

^Q̂&D[Tr$exp@2bĤ~D!1aN̂#Q̂%/Z~b,a,D!, ~32!

the independent quasiparticle averages. In particular,

^P̂†P̂&D5^P̂†&D^P̂&D1(
kPI

^ck
†ck&D^c k̄

†
c k̄&D , ~33!

^P̂&D5 1
2D(

kPI
Ek

21tanh
bEk

2
, ~34!

^ck
†ck&D5^c k̄

†
c k̄&D5 1

2 S 12
«k2m

Ek
tanh

bEk

2 D . ~35!

The second term on the right-hand side of Eq.~33! is the
exchange contribution.

The energy derived from Eq.~28! can be expressed as
@14#

E SPA[2
]

]b
ln Z SPA5^Ĥ0& SPA2

1
2 ^D~ P̂†1 P̂!& SPA

5^Ĥ0& SPA2G21^D2& SPA1T. ~36!

This energy becomes exact for highT but asT→0, it ap-
proaches the BCS energy, without exchange terms. The e
ergy expectation value

^Ĥ& SPA[^Ĥ0& SPA2
1
2G^P̂†P̂1 P̂P̂†& SPA ~37!

5E SPA2
1
2G^P̂8†P̂81 P̂8P̂8†& SPA1T,

~38!

whereP̂85 P̂2D/G, contains the exchange terms and henc
differs from Eq.~36! for low T, although forT→` andm
finite, both Eqs.~36! and~37! become exact and their differ-
ence vanishes.

The SPA can in principle also be applied in a canonica
ensemble. In this case, since@Ĥ(D),N̂#Þ0, the exact finite
temperature number projection@23–25# introduces, in addi-
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tion to the statistical corrections, quantum correlations whi
improve theT50 limit of expectation values~since the pro-
jected BCS vacuum is approached asT→0). These quantum
corrections are, however, less important for larger tempe
tures. Number parity projection is straightforward to imple

ment sinceeipN̂5eipN̂q, whereN̂q is the quasiparticle num-
ber operator (@N̂q(D),Ĥ(D)#50), but is only relevant at low
temperatures for an odd system. The microcanonical corr
tions of Eq.~20! can in principle also be implemented, a
though in the lowT region they may be in fact of the sam
order as the correlations omitted in the SPA.

C. BCS and effective BCS approximations

The standard BCS approximation, without exchan
terms, is based on an independent quasiparticle Hamilton
of the form ~27!. The BCS partition function is

Z BCS5Z~b,a,D0!, ~39!

whereD0 is obtained from the well-known gap equation

D02G^P̂&D0
50, ~40!

which determines the maximum ofZ(b,a,D). This equation
leads to the superfluid to normal transition at the critic
temperature determined by (G/2)(keIEk

21tanh(bcEk/2)51,
such thatD050 for T.Tc . Hence, using Eq.~33! and~40!,

^P̂†P̂& BCS[^P̂†P̂&D0
5D0

2/G21(
kPI

^ck
†ck&D0

^c k̄
†
c k̄&D0

,

reduces, forT.Tc , to the exchange contribution. The tran
sition appears, however, washed out in a finite system, b
in the SPA or in an exact thermal treatment.

The inclusion of the exchange term in the variation of th
BCS free energŷ Ĥ&D2TS leads to the replacement of«k
by «k8 for kPI in Eqs.~29! and~30!, with «k8 determined by
the additional self-consistent equations «k85«k
2G(^ck

†ck&D0
21/2). This does not change, however, th

sharp character of the transition, and affects only slightly t
value ofTc . It is important nevertheless to consider the e
change term, at least after variation, when a comparison w
exact thermal averages is performed.

A straightforward improved effective BCS approximatio
can be obtained if the measureD is taken into account when
the maximum of the integrand in Eq.~28! is determined@14#.
This leads to an effective valueD08 determined by the equa-
tion

D082G^P̂&D
08
2 1

2GT/D0850, ~41!

whose solution for finiteG is smoothas a function ofT and
does not vanish forT.0, so that the sharp superconductin
to normal transition is washed out in a finite system. Th
behavior reflects that obtained in a thermal BCS treatm
with rigorous number projection@24# or symmetry restora-
tion @14,26# before variation, in which the sharp pairing tran
sition is also smoothed out.
ch
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The solution of Eq.~41! can be employed for an evalua-
tion of the SPA integral~28! in the saddle point approxima-
tion @14#, which yields

Z SPA'A4p

GT
D08D

21/2Z~b,a,D08! ~42!

with D5(GT/2)u]2ln@DZ(b,a,D)#/]D2u a dimensionless fac-
tor, roughly of order 1. In spite of its simplicity, Eq.~42! is
quite accurate for evaluating the SPA level density and
lows for a rapid identification of the most prominent SPA
corrections to the standard BCS, namely, the smooth beh
ior and the enhancement factorD08A4p/GT in comparison
with the BCS partition function~39!. Note that owing to the
transition atT5Tc , the saddle point approximation to Eq
~28! around the ordinary BCS solution is not accurate in th
whole transitional region.

IV. RESULTS

A. Exact thermal and microcanonical results

We consider first a uniform single-particle spectrum, wit
spacing « («[«k112«k). For N5V520, a superfluid
ground state occurs in this case forG/«.0.18. In the figures
we have set«50.1 ~arbitrary units! and the exact microca-
nonical quantities plotted correspond to an energy b
DE5«.

Figure 1 depicts the exact microcanonical expectati

FIG. 1. Exact microcanonical (M ) and canonical (C) averages
of the pairing correlation operatorP̂†P̂, as a function of energy in
theV520 level model, for different pairing strengthsG in the even
~left! and odd~right! systems.C denotes the thermal canonical av
erage~22!, C1sp the full saddle point expression~21!. The result
for G50 is shown for reference in all cases, and the energy
measured from the ground state of the evenG50 system. The
single-particle level spacing of the model, fixing the energy units,
0.1.
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value ofP̂†P̂ for various values ofG, together with the exac
canonical thermal result@obtained using the exact eigenva
ues and eigenvectors in~22!#. We note that̂ P̂†P̂&E is the
total strength of the average two-particle pair transfer fu
tion at energyE,

^P̂†P̂&E5E dE8S~E,E8!,

S~E,E8!5
( j ,ku^kuP̂u j &u2d~E82Ek1Ej !d~E2Ej !

( jd~E2Ej !
.

It is first seen that oscillations in the microcanonical e
pectation value at low excitation energies, both for the e
and odd systems, develop as the strengthG increases, which
are not reproduced by the thermal treatments. These osc
tions reflect those arising in the degenerate limit, approac
asG→`, in which the energy eigenvalues, the pairing e
pectation value and the corresponding degeneracies, co
ering only the pairing interval and setting«k50, are given
by @27#

EQM52G@Q~Q11!2M2#, ~43!

^P̂†P̂&QM5Q~Q11!2M21M , ~44!

D~Q!5~V I22Q
2V I !2~V I22Q22

2V I !, ~45!

where M5(NI2V I)/2 and Q is the quasispin, with
uM u<Q<V I /2 (Q is half integer forNI odd!. The seniority
is V I22Q, and the superfluid ground state corresponds
Q5V I /2 .

This limit leads, for large but finiteG, to a series of
smoothed peaks in̂P̂†P̂&E , centered at the energies~43!,
with a characteristic energy spacingDE5EQM2EQ21,M
52GQ, i.e.,DE'GV I for the first peaks. The peaks becom
washed out as the excitation energy increases. AsG de-
creases, only the first peak remains noticeable, which co
sponds in the even system to the superfluid ground state
in the odd system to the ground state ‘‘band’’ with a sing
unpaired particle@Q5(V I21)/2#. The peaks in the odd sys
tem are obviously located at the minima of the even syst

Nevertheless, as the excitation energy increases, the
mal canonical treatment becomes very accurate, particu
when the full saddle point expression~21! is employed. The
direct averagê P̂†P̂&b lies slightly abovê P̂†P̂&E , but the
corrected expression~21! accurately follows the mean of th
microcanonical average. Results obtained with the mom
expansion method up to second order, Eq.~A6!, are undis-
tinguishable from those given by Eq.~21!. Higher order ex-
pansions@L.2 in Eq. ~A1!# do not lead to a correct repro
duction of the microcanonical oscillations either, and requ
a high accuracy in the determination of moments^Ĥ8n&b
with largen ~i.e., n<8 for L54).

Another feature to be observed is that above the low
ergy region, the quenching of̂P̂†P̂&E as E increases is
smooth, without sharp transitions, with a nonvanishing
hancement over the value obtained for zero strength. N
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that the BCS superfluid to normal transitions take place
E' 1.2, 0.2, and 0 forG5 0.1, 0.075, and 0.05, respective
~see Fig. 5!.

The oscillations are less noticeable in the level dens
~Fig. 2!. Except for very lowE ~i.e., in the gap region! the
saddle point expression~8! is very accurate, even fo
G50.1, and the oscillations of the microcanonical dens
around this value decrease very rapidly with excitation
ergy. The error between both is less than 15% forE.1 and
less than 5% forE.3. In comparison with the level densit
for G50, an enhancement at a fixed energyE in an absolute
scale occurs in the level density forG.0, which reflects the
shift towards lower energies of the spectrum. However, b
densities can be made practically coincident at highE if the
G50 density is shifted by a suitable amount, as seen in
bottom panel. This entails a very weak dependence of
appropriately displaced densities on the strength for highE.
Nevertheless, with this shift an enhancement over theG50
value subsists for low energies.

The previous figures depict only exact canonical~fixed
particle number! thermal results. A comparison between t
exact canonical and GC results is made in Fig. 3. For
even system, the differences between canonical and GC
rect averages at a fixed temperature are small, but can
ertheless be noticed, especially in the energy. However,
the quantities obtained in the saddle point approximati
like the level densities~3! and~8!, and the corrected expres
sions~20! and~21!, canonical and GC results are practica
coincident when plotted as a function of the correspond

FIG. 2. Top: Logarithm of the energy level density in the ev
~left! and odd~right! systems, forG50 and 0.1.M denotes the
exact microcanonical result, C1sp the canonical saddle point ex
pression~8!. Center: Quotient between the canonical and micro
nonical level densities forG50.1 ~dashed line!. Bottom: Compari-
son between theG50.1 and the shiftedG50 level densities. The
energy shift is such that both curves practically overlap for h
E.
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excitation energy~rather than temperature!. The same holds
for the odd system, except that in this case the exact
treatment leads to the wrongT50 limit due to the lack of
blocking effects, approaching asT→0 a mixture of the
ground states of theNI5V andNI5V12 systems rather
than the ground state of the odd system~whose energy lies
above that of the neighbor even systems!. This low T effect
is corrected in the number parity projected treatment~and
obviously also in the canonical treatment! which for higher
values ofE and T, practically coincides with the standar
GC treatment.

In a noninteracting two-component system, the micro
nonical deviations from the thermal treatments beco
smaller when plotted as a function of the total energy,
fluctuations in the energy of a particular component n
occur. In a nucleus, the present situation would appro
mately apply when valence protons and neutrons occupy
ferent major shells, as in heavy nuclei, in which case one
neglect the pairing interaction between them. Let us cons
for instance a two-component system with exactly the sa
Hamiltonians and strengths, without interaction betwe
them. At a fixed temperatureT, the total excitation energy is
now E5E11E252E1, whereas the thermal averag
^P̂i

†P̂i&b ( i51,2) remains unaltered, both in the canonic
and GC ensembles. Hence, when plotted in terms of the t
energy, the effect in the thermal average is just the sca
E→2E. The correction term in Eqs.~20! and ~21! is how-

FIG. 3. Exact grand canonical~GC! and canonical (C) thermal
results forG50.1 in the even~left! and odd~right! systems. GC8
~right! denotes the number parity projected ensemble. Top: Aver
energyE and pairing energyV[G^P̂†P̂& as a function of tempera-
ture. Center and bottom: Canonical and GC results~practically
overlapping! for ^P̂†P̂& and the level density@Eqs.~8! and ~3!#, as
a function of the corresponding energy. At center,A depicts the
direct averages~22! (C) and ~13! ~GC!, B the saddle point results
~21! (C) and ~20! ~GC!.
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ever reduced by half, which indicates a smaller mean dev
tion between the microcanonical and thermal average. F
ure 4 depicts^P̂i

†P̂i&E ( i51 or 2! in this situation. The
above scaling is verified for largeE in the microcanonical
average, but the oscillations around the thermal avera
though smaller, subsist and do not follow the above scalin
For example, in the present case the first excited state of
combined system has the same excitation energy as tha
the single system, but is degenerate, with one of the tw
components in the first excited state and the other in t
ground state. Hence, at this energy^P̂i

†P̂i&E will be the av-
erage of the values in both states, which leads to a smooth
effect without scaling.

B. Comparison with the static path and BCS approximations

Let us examine now the validity of the microscopic many
body approximations. Figure 5 depicts, for the even syste
BCS, SPA, and effective BCS results, plotted in terms of th
corresponding energy, together with the exact microcano
cal or GC results. The BCS average of^P̂†P̂& compares
rather bad with the exact value. ForT.Tc , it coincides with
the value forG50 ~i.e., the exchange contribution! whereas
for T,Tc its decrease is practically linear, with a slope dis
continuity atT5Tc . On the other hand, it is remarkable tha
the SPA averagêP̂†P̂& SPA practically coincides with the
exact thermal result when plotted in terms of the SPA exc
tation energy@which is here calculated according to Eq
~37!#. The simple effective BCS estimation̂P̂†P̂&D

08
, ob-

tained with the solution of eq.~41!, gives also a straightfor-
ward improvement over the standard BCS value. Inclusion
the microcanonical corrections~20! in the SPA would lead to
results practically coincident with those of the exact GC1sp
treatment, except for low energies.

The pairing energy is quadratic in the gap. In order
visualize more clearly the deviation from theG50 value at
high E, we have also plotted in Fig. 5 the effective densit
gap, defined as

Deff[G@^P̂†P̂&T,G2^P̂†P̂&T,G50#
1/2. ~46!

In BCS, the value ofDeff vanishes forT.Tc , whereas for
T,Tc practically coincides with the normal gapD0, as the

ge

FIG. 4. Comparison between exact microcanonical and cano
cal results for a one-component system (A) and a noninteracting
two component system (B). The same parameters of Fig. 1 are use
in both components, withG50.1, and the ground state energy in
B is set equal to that ofA. C1sp depicts the saddle point resul
~21!.
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exchange term varies only weakly withG. In the SPA,Deff is

practically equal to the direct averageG^^P̂†&D^P̂&D& SPA
1/2

obtained by neglecting the exchange term in Eq.~33!. Hence,
Eq. ~46! can be taken as a measure of the collective conte
in the pairing energy. The agreement between the exact G
thermal result and the SPA value forDeff is clearly seen. In
contrast with BCS, a rather large value ofDeff subsists for
T.Tc . ForT→`, the SPA yields in the present finite spac
the limit

Deff→
1

4
V IGAG/T5

1

4
gAg/V IT, ~47!

with g5V IG, so thatDeff}(V IT)
21/2 for high T.

For the level density, the BCS result calculated with Eq
~3! and~39! exhibits a discontinuity atT5Tc and lies below
the exact level density even beyond the transition. The BC
result improves when the exchange term is included~bottom
right figure!, which amounts practically to a shift in the en
ergy since it is almost constant withT. In this case the result
is correct beyond the transition, where the BCS density
essentially that forG50 with an energy shift given by the
exchange term. This is therefore in agreement with the co
cidence with the shiftedG50 density for highE ~Fig. 2!.
Nevertheless, a low value subsists forT,Tc , which, as dis-
cussed in@14,26#, is associated with the small value of the
BCS entropy in the superfluid phase, due to the breaking
number conservation and the ensuing U~1! gauge symmetry.

FIG. 5. Comparison with thermal GC many-body approxima
tions. Top and center: The exact microcanonical (M ) average of
P̂†P̂ ~left! and the exact GC value of the effective gap~46! ~right!
are compared with the results obtained in the static path~SPA!,
BCS and effective BCS~EBCS! approximations. Bottom: Exact
and approximate level densities. SPA and BCS results correspo
to the saddle point equation~3!. At right, SPA8 and BCS8 indicate
results with the inclusion of the exchange term in the energy~see
text!.
nt
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The SPA result, obtained with Eqs.~3! and~28!, is clearly
exact for highT but slightly underestimates the exact res
for low T, essentially due to the omission of the exchan
term in the energy~36!. The SPA results in this region im
prove if plotted just in terms of the full energy~37! ~lower
figure!, which contains the exchange term, although a m
consistent improvement can be done with the SPA1RPA
treatment@28,29#. Level density results obtained with sadd
point approximation~42! to the SPA partition function, cal
culated around the effective BCS solution, practically ov
lap with the full SPA results@14#. The enhancement facto
present in~42! corrects the low BCS entropy and level de
sity in the superfluid phase.

Finally, we depict in Fig. 6 results for a nonunifor
single-particle spectrum, which should be closer to a reali
situation. We have chosen the central 20 neutron sin
particle energies around the Fermi level in164Er, obtained
with a deformed quadrupole single particle Hamiltoni
Ĥ02bQ̂0 within the Baranger-Kumar configuration spa
@30#. We employed a scaled pairing strengthGs544/164
MeV, which reproduces approximately the same gap a
the full configuration space. The energy bin of the micro
nonical calculation is 0.2 MeV. There are now more irreg
larities present in the exact microcanonical results~small
fluctuations around the thermal values appear now even
G50, as seen in the level density! but they are otherwise
similar to the previous ones, particularly to the ca
G50.075 ~larger oscillations would occur for a highe
strengthGs). Thermal GC results obtained with the expre
sions~20! and~3! yield again the correct mean of the micr
canonical averages. Note however that the difference
tween the direct average~13! and the saddle point expressio
~20! is observable. SPA results are again in good agreem
with the exact GC thermal values, and significant differen
with the BCS results subsist.

V. CONCLUSIONS

The validity of microscopic thermal descriptions in com
parison with exact microcanonical results has been analy

-

nd

FIG. 6. Results for a nonuniform single-particle level spac
and a scaled strengthGs ~see text!. The exact microcanonical re
sults for ^P̂†P̂& and the level density~in MeV21) are compared
with the exact GC results~left! and with SPA and BCS result
~right!. Exact results forG50 are also depicted~left!.
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The present considerations apply to any microscopic ther
calculation. It is first seen that by proper use of the sad
point method in thermal treatments, simple general exp
sions for level densities and also expectation values at fi
excitation energy can be obtained, which yield the corr
mean of the exact microcanonical average and which
very accurate for high excitation energies if the partiti
function is correctly calculated. Nevertheless, at small ex
tation energies fluctuations and oscillations around the t
mal or saddle point values may occur in microcanoni
quantities, which can be particularly noticeable in correla
systems and in certain observables, as we have seen i
case of pairing. The statistical calculation of these effe
would thus require a more refined evaluation of the inve
b integrals in Eqs.~1! and ~12!. Simple moment expansio
methods yield results which are qualitatively similar at fin
temperature to those of the saddle point method. Maxim
entropy reconstruction techniques, like those employed
recovering the strength function from the response func
@8#, or pseudoinverse methods@31#, might provide, for in-
stance, an improved numerical evaluation of the inve
transforms.

The obvious advantage of thermal treatments is, howe
that the partition function in finite correlated many-body sy
tems can in principle be quite accurately calculated, using
instance Monte Carlo path integral methods@8#. For the pair-
ing Hamiltonian considered, even a simple treatment like
SPA yields results which are remarkably accurate in a sta
tical context, although for more realistic interactions the S
can be less adequate, particularly at low temperatures@7,8#.
Nevertheless, the present results indicate that the inclusio
additional correlations at low temperatures should
complemented in principle with the inclusion of microc
nonical corrections. On the other hand, standard ther
methods like the mean field approximation~BCS in the
present case! are confirmed to exhibit significant deviation
from the exact results. At least, an improved saddle po
evaluation of the SPA, like the effective BCS approach d
cussed here, should be considered.
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APPENDIX: MOMENT EXPANSION METHOD
FOR MICROCANONICAL AVERAGES

Let us consider first a canonical ensemble, and assum
expansion of the microcanonical average of the form

^Q̂&E5(
i50

L

l i~E2E0!
i , ~A1!

which becomes in principle exact for sufficiently largeL for
a finite discrete spectrum. For a finiteL, the unknown pa-
rametersl i can be obtained from the averages
mal
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Mi~b![^Q̂~Ĥ2E0!
i&b5(

j50

L

l j^~Ĥ2E0!
i1 j&b ,

i50, . . . ,L, ~A2!

which can be rewritten in matrix notation as

M~b!5G~b!l, Gi j ~b!5^~Ĥ2E0!
i1 j&b . ~A3!

The parametersl i will then be given by

l5G21~b!M~b!, ~A4!

and will in general depend on temperature for finiteL. Equa-
tion ~A1! is then to be employed at the corresponding aver
age energyE5^Ĥ&b . The expansion~A1! is exact for
Q̂5( i50

L qi(Ĥ2E0)
i , i.e., a polynomial of degreeL in Ĥ, in

which case Eq.~A4! yieldsl i5qi , independent of tempera-
ture.

In the above expressions,E0 is arbitrary. Setting now
E05^Ĥ&b , Eq. ~A1! leads, forE5^Ĥ&b , to

^Q̂&E5l0~b!

5^Q̂&b2(
i52

L

l i~b!^Ĥ8 i&b , Ĥ85Ĥ2^Ĥ&b .

~A5!

In the special caseL52, we obtain (Q̂85Q̂2^Q̂&b)

^Q̂&E5^Q̂&b2l2~b!^Ĥ82&b , ~A6!

l2~b!5
^Q̂8Ĥ82&b^Ĥ82&b2^Q̂8Ĥ8&b^Ĥ83&b

^Ĥ82&b~^Ĥ84&b2^Ĥ82&b
2 !2^Ĥ83&b

2
. ~A7!

The numerator in Eq.~A7! is exactly equal to that of the
saddle point expression~21!, but the denominators are dif-
ferent. Expressions~A6! and ~21! would coincide if one as-
sumes

2
]3ln Z

]b3 5^Ĥ83&50,

]4ln Z

]b4 5^Ĥ84&23^Ĥ82&250,

in the denominator of Eq.~A7!, which is in agreement with
the Gaussian approximation of the saddle point metho
Since these quantities are normally very small in the statis
tical regime~i.e., for not too low temperatures!, Eq.~A6! will
be practically coincident with Eq.~21!. The present method
is essentially an extension of the Lipkin-Nogami method fo
approximate particle number projection@18# to the case of
finite temperature and energy projection. Using an expansio
of the form
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^Q̂&EN5(
i , j

l i j ~E2E0!
i~N2N0!

j , ~A8!

one can straightforwardly extend this procedure to obtain
 the

microcanonical average for fixedN in the grand canonical
ensemble. The saddle point approximation is, however, s
pler to apply in the general case and yields both the le
density and the microcanonical average.
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