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Based on Mackey's theory of induced representat{@sW. Mackey,Induced Representation of Groups
and Quantum Mechanid8enjamin, New York, 1968 a Bakamjian-ThomaB. Bakamijian and L. H. Tho-
mas, Phys. Rev92, 1300 (1953] procedure for introducing interactions intebody relativistic systems is
formulated. The resulting models have manifest symmetries under exchange of identical particles and space
reflection. The two-body interactions in tihhebody equations are separately scattering equivalent to the input
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[. INTRODUCTION tions. In this representation it is easy to formulate systematic
approximations that preserve both exact Poindavariance
The principle of special relativity, when applied to quan- and particle exchange symmetry at each stage. These ap-
tum mechanical systems, requires the existence of a unitaggroximations can be used to formulate variational calcula-
representation of the Poincageoup([1,2] acting on the sys- tions for many-body systems.
tem Hilbert space. This representation necessarily involves The use of Mackey’s method of induced representations
the dynamics. A generalization of the nonrelativistic proce-does not correct the failure of spacelike cluster properties.
dure of constructing the full Hamiltonian by adding interac- Cluster properties can be restored using the method of
tions to the free Hamiltonian can be used to construct interSokolov operator$5,7,9. The Sokolov operators generate
acting representations of the Poincgreup. The difficulty is ~ corrections to the naive Bakamjian-Thomas model that re-
that interactions must be added to the noninteracting represtore cluster properties.
sentation of the Poincargroup in a manner that preserves  The construction presented in this paper is similar to that
the group structure. in [7] with the following differences. Firsth-body models
Bakamijian-Thoma$3—9] methods provide one way for are formulated at the outset rather than built up recursively.
adding interactions to a noninteracting representation of thelowever, a recursive construction is still necessary to build
Poincare group. The distinguishing property of all transformations that systematically restore cluster properties.
Bakamijian-Thomas methods is that the interactions are bloc&econd, the representations have manifest symmetries with
diagonal with respect to the spin of the noninteracting reprerespect to exchange of identical particles. Third, corrections
sentation and only depend on the noninteracting mass ameeded to systematically restore cluster properties are dis-
kinematically invariant degeneracy parameters. Differentussed in all three forms of the dynamics. In this construc-
representations of the noninteracting dynamics lead to digion the instant-form dynamics plays a special role.
tinct realizations of the dynami¢40]. The most useful ones Notation and background material are given in the next
are related to Dirac’s formgl1] of the dynamics. section. In Sec. Il the Clebsch-Gordan coefficients that
There are difficulties with Bakamjian-Thomas methodscouple the tensor product afpositive mass irreducible rep-
when they are applied to many-body systems. The fundaresentations of the Poincageoup to a single simultaneously
mental problem is that Bakamjian-Thomas models fail tocoupled representation are constructed. The model is formu-
satisfy spacelike cluster properties for systems of more thatated in these basis states. The action of the permutation
two particles[7,9]. An additional practical complication is group and parity operator on these basis states is given ex-
that the decomposition into subspaces that are block diagonaglicitly.
in the total kinematic spin is normally done in a stepwise Cluster properties require that the two-body interactions
fashion, beginning with subsystem spins. Stepwise couplingppearing in the two-body problem be the same as the two-
is cumbersome and does not treat identical particles synbody interactions that appear in aAbody model. Unfortu-
metrically. The lack of manifest symmetry under the inter-nately the two-body interactions corresponding to different
change of identical particles is a disadvantage when approxinteracting pairs cannot be added in a manner that preserves
mations are used. the commutation relations. In Sec. IV these two-body inter-
An alternative to the stepwise coupling of irreducible rep-actions are transformed to phase-equivalent Bakamijian-
resentations of the Poincagroup is Mackey’'s[12—15,9  Thomas interactions using different unitary transformations.
method of induced representations, which decomposes thEhe Bakamjian-Thomas interactions can be combined in a
n-fold tensor product of one-particle-irreducible representamanner that preserves the Poinchie algebra.
tions directly into irreducible representation spaces. The In Sec. V the two-body Bakamijian-Thomas interactions
guantum numbers that label degenerate representations care combined to make ambody Bakamjian-Thomas mass
be chosen to have simple transformation properties with reeperator. Dynamical equations for the mass eigenstates are
spect to permutations of identical particles and space reflemritten down. The resulting representation of the Poincare
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group does not satisfy cluster separability. Variational ap- The rotationR.,(p) relating a specific boost to a canoni-
proximations for bound states that are exactly Poindare cal boost
variant and preserve the exchange symmetry are formulated.

In Sec. VI the model of Sec. V is shown to be the first B,(P)=B.(p)Rex(P) (2.10
approximation to a relativistic model that satisfies cluster
properties. Corrections that restore spacelike cluster propeis called a generalized Melosh rotation. Other commonly
ties to the interactions and generate additional many-boduysed boosts are light front boosts and the helicity bo@ts

interactions that are needed to maintain the Poinarari- The Poincaregroup has several important subgroups that
ance are constructed. The nature of various approximatiorare relevant for Dirac’s forms of dynamics. These include the
is discussed in the context of these corrections. Euclidean group which is generated by rotations and space
translations, the Lorentz group, and the symmetry group of
Il. NOTATION AND BACKGROUND the light front which is the subgroup of the Poincag@up
o that leaves the light frong* =x°+x3=0, invariant. We de-
A. Poincare group note the Poincargroup byP and the above subgroups by

The Poincargroup is the group of coordinate transforma- E, L, andF, respectively.
tions that preserve the proper time between space-time points

in the MinkOWSki metriC B. Combinatorics
911=02,=033= —Joo=1. (2.1 Combinatorial methods are used to treat counting prob-
] lems in many-body systems. A partitian of an n-particle
A general Poincaréransformation has the form system is a grouping of the particles inbq disjoint non-
empty subsystems. Each nonempty subsystem is called a
XE—x = AKX +a* (2.2)  cluster. For examplea=(135)(24) is a two-cluster partition

of a five-particle system. It has one three-patrticle cluster con-

or, equivalently, sisting of particles 1, 3, and 5 and a two-particle cluster

X—x''=Ax+a (2.3 consisting of particles 2 and 4. The notating; denotes the
o _ number of particles in théth cluster of the partitiora.
where the matrixA is a Lorentz transformation, The notationaDb is used to indicate that the partitidn
o is a refinement of the partitioa, meaning that particles in
A'gA=g, (2.4 the same cluster dj are in the same cluster af The nota-

anda labels a space-time translation. Elements of the pointion @b indicates thab is a strict refinement of, i.e.,

3 : . aDb anda#b. The relationD is a partial ordering on the
caregroup are ordered pairsi(a) and the group product is set of partitions. The quantitiesUb andanb denote the

(Az,a2)(Ag,a1)=(A2A1,Aza;+ ). (2.5) least upper bound and greatest lower bound of the partitions
a andb with respect to the partial orderirg. The minimal
A Lorentz boost is a special Lorentz transformationand maximal elements of the set of partitionsnoparticles
A=B(p) labeled by the four-momentum with the following with respect to the partial ordering are then-cluster and

properties. one-cluster partitions, respectively. These are denoted by
(1) It maps a rest four-momenturpy:=(m,0,0,0 to 0:=(1)---(n) andl:=(1---n).
D=(wm(l5),l5)i The set of all partitions oh particles is denoted by

while P’ denotes all partitions except the one-cluster parti-

B =p where o-(B)=vVm2+ B2. 2.6 tion. The set ofP with the relationsN and U forms an
(P)Po=P m(P) P @8 abstract latticd 16]. The zeta and Muoius functions for the

(2) It is the identity forp=py: partition lattice are integer-valued functions Bix P defined
by
B(po)=1. (2.7 .
Atab) 1 if aDb,
If B(p) is a Lorentz boost, then so is a,0)= :
B'(p):=B(p)R(p), where R(p) is an arbitrary 0 otherwise,
p-dependent rotation that satisfiB§py) =1. The canonical n,
boostB.(p) is the unique boost with the property AYab) (—)naH (—)™(n, —1)! if adb,
L] = |:1 !
R=B. (RPIRE(P) 28 0 otherwise.

for an arbitrary rotatiorR. The boost-dependent rotation The zeta function satisfies

_pn-1
Rx(A,p):=B, "(Ap)AB«(p) (2.9 Aanb,c)=A(a.c)A(b.c),
appearing in Eq(2.8) is called a Wigner rotation. Equation
(2.9) is the statement that the canonical boost is the unique A(a,bUc)=A(a,b)A(a,c). (2.11
boost with the property that the Wigner rotation of the rota-
tion Ris R. It is useful to define
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It follows as a consequence of this definition that (2.21

The derivation uses known properties of rotation matrices
zp gaA(a'b):(l_éib)' (2.13 and can be found in Ref17]. From this relation it is pos-
sible to deduce the conjugate relation
Partitions provide an economical means for classifying
operators that act on theparticle Hilbert spaces. An opera- S(R— R')IE (2] +1)Dj* (RHD! (R). (2.22
tor in then-particle Hilbert space has connectivityif (1) it fav wy wy
has no interactions involving particles in different clusters of
the partitionc and(2) it vanishes in the limit that any inter- In these formulasiR is the Haar measure on &2).
action involving particles in the same clusterfranishes. The D functions in these expressions are given by the
The notation homogeneous polynomials of degre¢ @ith real coeffi-
cients in the S(R) matrix elements:
A=[A], (2.19 . "
) jF! (=)' (J+)(j—)!
indicates that the operatdr is equal to itsc-connected part D), (R)=2, (-(i li) ()J, ,I(L)_(l T )),(i- - )_] I
or has connectivityc. In generaln-particle operators of in- p=o Urpmp)pp=prv)=r=p):
terest can be expanded as

X RITATPRE R HTVRL VTP (2.23

A=C§P[A]c. (2.15

D. Quantum mechanics: General

The principle of special relativity assumes that all inertial
coordinate systems are related by Poindaa@sformations.
In a quantum theory with a Hilbert spaég the requirement

It follows from the definition that the operator obtained from
A by turning off all interactions involving particles in differ-

ent clusters ob, which is denoted byA)y, is that probabilities have identical values in all inertial coordi-
nate systemgl,2] is equivalent to the existence of a unitary
(A)p= >, A(b,c)[A]. (2.16  representatiotJ(A,a) of the Poincaregroup acting or.
ceP The infinitesimal generators of the space-time translations

) ) . i . ) define the four-momentum operat®f and the infinitesimal
This expansion can be inverted using theis function  generators of Lorentz transformations define an antisymmet-
ric tensorJ#”. These operators are Hermitian operators on

[Aly= > A Y(b,c)(A),. (2.17  H satisfying the commutation relations
ceP
[P*,P"]-=0, (2.29
The notation A)® denotes the residual interactions
[3°,P7]_=i(g*"PP—gP7P), (2.29
(A)P=A=(A)y. (2.18
[JoP J7v0]_=i(JergPo— J@oghY+ JPoger— 3hrged),
With the above notation Eq§2.13), (2.15, and(2.17) imply (2.26
A-[AL= S (A 2.19 The Pauli-Lubanski vector
1— a as .
-~ aeP’

W =3e4*PIP Jg, (2.27

When this formula is applied to Poincagenerators it deter- N N )
mines the relation between tirebody generators and the IS an additional Hermitian operator that commutes with the

subsystem generators. For example, wheis the Hamil-  four-momentum operator and transforms like a four-vector
tonian it gives the relation under Lorentz transformations. The mass and spin are invari-
ant Hermitian operators related to the generators by
H= 2 {a(H)a+[H];. (2.20 MZ=—PHP,,  MZ2=WHW,. (2.28
aeP’ -

where[H], is ann-body interaction andH), is the sum of ~ SPin vectors satisfyingj - j =j? and

the subsystem Hamiltonians for the particles in each cluster

of a. i Jjl-=lejik (2.29
are defined by
C. Group theory
The generalized orthogonality relatidd7] is used in > u:i S DI
what follows. (00" =37 [B () 1#, W, (2.30
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whereB_ 1(p) is the matrix of operators obtained by replac- wherep’=Ap. The transformation properties of the wave
ing all occurrences op by the corresponding component of functions follow from Eq.(2.39:

the four-momentum operator in the expression for the boost

B.1(p). Because of the operator nature Bf (p), the S o [om(PY)

x (). B . perat k() (5w [mlU(A @) g)=e P 2y[=" D]
guantityj, in (2.30 is not the spatial part of a four-vector. It wm(p)
Wigner rotates under Lorentz transformations. The canonical

spin is the spin vector constructed usiBg(p) =B.(p), the X[Rw(A,p)]1¥(p, ).
canonical boost, in Eq2.30. The light front spin and he- (2.36
licity are spin vectors constructed by replacing the canonical

boostB; '(p) by the light front boost or helicity boo$®]. E. Quantum mechanics: Many particle

Different spin vectors are related by generalized Melosh ro-

tations. The operatq? is taken to be the canonical spin op-
erator when there is no subscriqt
The state of a structureless quantum mechanical particle

The Hilbert space for a system ofparticles is the tensor
product ofn one-particle spaces:

of massm and spinj is represented by a vector in a mass H= H® -®H, .
m spinj irreducible representation of the Poincam@up. —
Vectors in an irreducible representation space are simul- n times
taneous eigenstates of a complete set of commuting Hermit- (2.37

ian operators that are functions of the Poincgemerators

(for fixed mass and spinCommon choices of commuting ~ The n-particle dynamics is given by a unitary representa-

Hermitian operators are the three-momentgmand the 1N U(A,a) on’H. The mass and spin operators associated
. = A . with the representatiod (A,a) are functions of infinitesimal

three-component of the canonical sgines, the 4-velocity

-— b/m and the three-component of the canonical Spin. an enerators. For dynamical models some of the generators
v-=p P pin, ecessarily contain interactions.

the light front componentp*:=p°+pp, (p*,p?) of the A bound state of mass and spinj is a simultaneous
four-momentum and the three-component of the light fronteigenstate oM?2 and j2 with 2 in the point spectrum of
spinj-e3 [9]. M2. Any bound state vector can be decomposed into simul-

For example, a basis of states for a single particle of masgineous eigenstates of the mass, spin, momentum, and three-
m and spinj is the generalized eigenstates of the linear mocomponent of a spin vector. These eigenstates span a

mentumﬁ and three-component of the canonical s'f)ié3; Poincareinvariant subspace of{ containing vectors of the
form
I, vIm,j]). (2.31) J.
— 3 ~ H ~
The normalization is arbitrary and taken to be |'/’>_f d p#;j IPalNiDx(Pow).  (2.38

(Poplmjllp’ ' Im,j1)=8(p=p") 8y (232 The generalized eigenstatés,u[\,j]) define a mapping

) ) ) ) ®, ; from the massk spin4 irreducible representation space
Alternative representations of the single particle states tha/I-t - spanned by thQ(f) 11)'s to the Poincarénvariant sub-
are appropriate for point form and front form dynamics arespkétlce of then-particle I-’|ilbert space spanned by the vectors

discussed in the proof of theorem 5 in the Appendix. z : i o i
The one-particle representation spagg=Hp; is the Hil-  |P.#[\.]]) . With this interpretation E¢(2.38 becomes

bert space of square integrable functions

) =Dy 1) (2.39

(P ) =(pou[m.jllw), (233 14, by definition,

with scalar product U(A,2)®, =D, U, (A.a), (2.40

j
<¢1|¢2)3=f d%p E l/ff(ﬁ,ﬂ)llfz(ﬁyﬂ)- (2.34) whereU, ;(A,a) is the massk spin{ irreducible represen-
u=-j tation of the Poincarggroup on’H, ;. The representation
U, j(A,a) has the same form as E@.35 with m replaced
The masgn spin{ irreducible unitary representation of by the mass eigenvalue.
the Poincaregroup onH; is The generalization of the above to treat multiparticle scat-
tering follows the discussion in Reff7]. The first step is to
Ul(Aaa)|5!M[m1j]>: :efip’-a|5f”ur[m,j]> give a general formulation of the asymptotic conditions that
define many-particle scattering states. This is most conve-
wm(ﬁ’) j niently done by constructing an auxiliary Hilbert space of
———=D,, [Rw(A,P)], scattering asymptotes. Scattering asymptotes are labeled by
@m(P) channels. In order to define a channel, fix a partitioiNote
(2.35 that for any partitiorb the n-particle Hilbert spacé{ can be
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expressed as a tensor product of nh@-particle Hilbert are satisfied for each channgl Channels withn,>1 are

spaces associated with the particles initthecluster ofb: called scattering channels. The set of channels also includes
a channel witm=1 for eachn-particle bound state.
H=®in517ib.- (2.42) The asymptotic Hilbert spack; is the direct sum of all
o of the channel spaces, including channels for rikgarticle
DefineU,(A,a) by bound states:
Up(A,a):=8 Uy (A,a), (2.42 Hii=@gHg. (2.50

An injection operator that map¥; to the n-particle Hil-

where Ubi(A,a) the representation of the Poincageoup bert spaceH is defined by

corresponding to the particles in thtéh cluster ofb. Let
Mbi be the mass operator associated with the representation
(A a). There is a channg® associated with the partition o= EB: Dy, (2.51)
b |f eachMb has a bound eigenstate with masg and spin
Any Such e|genstate |S a ||near Comb|nat|0n Of genera|Where the Channel sum runs over bound al’ld Scatte”ng Chan'
Is. The asymptotic representation of the Poingaoeip on
is defined by

g
ized eigenstates of the subsystem three-momentum ar%e
three-component of subsystem canonical spin:

is
- _ - Ut(A,a)=2, Usg(A,a), (252
|¢5i>=f d°p Ej [P 1[N g i g 1) X (P ). 77
r="lp
(243 whereU,g4(A,a) is interpreted to be zero on the orthogonal

. ) ] complement of thes channel subspace.
Following the treatment af--particle bound states, the eigen-  \wjth this notation it is possible to treat all of the bound

stateslp ,u[mﬁI 15 1) define a mapplngbﬁ from the space and scattering channels simultaneously. Scattering states are
Hg of square integrable functlons;(ﬁ_(p,#) to the Solutions of the relativistic Schdinger equation

Ubi(A,r:\)—lnvarlant subspace oﬁ,bi spanned by the eigen- W= (1)) =U(1,)[ T *(0)) (2.53
stateg p, u[Mg,,] 41). With this interpretation Eq2.43 can
be expressed as satisfying an incoming €) or outgoing(+) wave asymp-

totic condition:

=0 . 2.4
Vo)~ Palxs) 249 lim W= (D)) - ®Us(1LD[x)=0. (254
It follows that B
(2.45 States|y) in a subspace of{; corresponding to-particle

' bound states particles automatically satisfy E2.54) for
: Lo . both time limits. For statefy) in channel subspaces involv-
whereUg (A, a) is a massk g, sping g, irreducible represen- ing more than one cluster E@2.54 is equivalent to the
tation of the Poincargroup associated with a bound state of gxistence of the strong limits
the particles in the clustds;. It can be obtained from Eq.
(2.35 by replacing the mass and spin with the eigenvalues lim [[|[¥=(0))—U(I,—t)®U¢(1,t)|x)|=0 (2.55
Ag, andjﬁi. t— oo

Define the channel Hilbert spa¢é; for the channe as

Uy (Aa)®g =D g Uy (A ),

for some staté¥ *(0)). The model is asymptotically com-
Hp= ®inb1Hﬁ (2.46 plete if both limits exist_ an(_j are separately complete. I.n all
' that follows the dynamics is assumed to be asymptotically
and the mappingb ; from #, to H by complete. It follows that
_ ., _ where the wave operatd2.. (H,®,H;) is a mapping from
The channel representation of the Poincgreup on’, is H; to H given by the strong limit
defined by
, Q. (H,®,Hf):= lim U(l,-t)dU(l,t). (2.59
UfB(A,a):=®i§1Ufﬁi(A,a). (2.48 T

It follows from Egs.(2.42, (2.45, and(2.48 that the inter-  The assumed asymptotic completeness of the incoming or
twining relations outgoing wave scattering states plus the bound states implies

that wave operatorg).(H,®,H;) are unitary mappings
Up(A,2)® =D gU4(A Q) (2.49  from H; to H satisfying
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1 =Q . (H,® H)Q (H,d Hy) for all rotation:_s R. . .
Theorem 1 is proved in Reff7] while theorems 2a—2c are
=Q_(H,®,H)Q" (H,® Hy). (2.58  proved in the Appendix. They imply restrictions on the in-
o o _ teractions in the nontrivial dynamical generators specific to
This implies unitarity of the scattering operator each form of the dynamics.
+ Spacelike cluster properties provide the necessary connec-
S=Q.(H,®,H)Q_(H,®,Hy). (259 tion between the relativistic dynamics of few- and many-

body problems. Spacelike cluster properties require that
when the clusters of particles in the partitibnare asymp-
totically separated into subsystems, the dynamical represen-
[S,Uf(A,a)]=0. (2.60 tation of U(A,a) quks like the tensor product of the sub-
system representations.

The following theorems are useful in what follows In order to formulate this condition precisely Igtbe a

Theorem 1. Consider a relativistic quantum mechanicalScattering channel corresponding to the partitior.et c be
model with asymptotically complete wave operators. A suffidny partition satisfying D b. This means that the asymptoti-
cient condition for the scattering operator to be Poincare cally bound clusters in the channglare grouped in clusters

invariant is for the asymptotically complete wave operatorsof the partitionc. o
to satisfy the intertwining relations Define the operator oft{; that translates the individual

clustersc of “particles” in the channel spacg:

The scattering operator, considered as a mapping{pnis
Poincareinvariant if

UAa)Q.(HP H)=Q.(H,® H;)Us(A,a).

(2.61 Tetp(Xey oo Xn )= ®inil[®bjgciufbj(| Xi)], (2.6
Relativistic models formulated in one of Dirac’s forms of wherei labels the clusters af andj labels cluster ob that
the dynamics satisfy are contained in thith cluster ofc. A channelg is compat-
ible with a partitionc if cCb. Spacelike cluster properties
U(A,a)@=0U(A,a) (262 can be formulated as
for (A,a) in one of the kinematic subgrougs, L, or F, lim [[U(A,a)—U.(A,a)]
corresponding to the instant, point, or front form, respec- min{x; — X{| -
tively. Dirac’'s forms of the dynamics are distinguished by
the property that the kinematic subgroup, L, or F) of the XPpTeip(Xe, - Xn)lxp)=0 (2.67)
dynamical representation of the Poincagmup is identical
to that of the noninteracting representation. in the limit that the minimum spacelike separation between
Equation(2.62 implies invariance of the wave operators the clusters ofc becomes infinite. This must hold for all
with respect the appropriate kinematic subgroup. channels compatible with the partitiam The representation

Sufficient conditions for Poincariavariance of the scat- U(A,a) satisfies algebraic cluster properties if it becomes
tering operator in each of Dirac’s forms of the dynamics arethe tensor produdt¢(A,a) when the interactions involving

given by the following theorems. particles in different clusters of the partitienare turned off.
Theorem 2a. A sufficient condition for Poincaresari-  Formally, operators that satisfyAf,=A,, where @), is

ance in an instant form dynamics with asymptotically com-obtained by turning off the interactions between particles in

plete wave operators is different clusters ob andAy, is built up from tensor products

of subsystem generators, are said to satisfy algebraic cluster
lim [[®—UT(B.(p),00®U(Bc(p),0)]U¢(1,t)|x)][=0 properties. Since the operation in E@.67) separates par-
toxee ticles in different clusters af, it follows that spacelike clus-
(263 ter properties follow from algebraic cluster properties pro-

vided the interactions are of sufficiently short range.

The difficulty is that for Bakamjian-Thomas models
U(A,a) does not becomé&) (A,a) when the interactions
Setween particles in different clusters ofare turned off.
Specifically,

lim [[®—UT(1,a)®U(1,a)]U+(1,t)|x)][=0 (U(A,a)).#U(A ). (2.69

t— oo

for all canonical boost8.(p).

Theorem 2b. A sufficient condition for Poincaresari-
ance in a point form dynamics with asymptotically complet
wave operators is

(2.64 Scattering equivalences are used in what follows to trans-
form Bakamijian-Thomas representations to representations
that satisfy spacelike cluster properties. A number of theo-
rems on scattering equivalence are needed in what follows. A
unitary operatoA on H is called a scattering equivalence if

it leaves the scattering operatBr= QXQ, unchanged. In-

lim [[®—UT(R,00®U(R,0]U;(I t)[x)1I=0 variance of the scattering operat®y=S; is equivalent to
t—-*ow
(2.65 0.0} =00 =:A,,. (2.69

for all spatial translations.

Theorem 2c. A sufficient condition for Poincairesari-
ance in a light front dynamics with asymptotically complete
wave operators is
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The intertwining properties of the wave operators give The kinematic representation of the Poincgmup on

ApHo=H A, ‘H is the tensor product afi one-particle representations:
Wave operators related by

Q. (AHAT,®' H)=AQ.(H,®.H)  (2.70 Uo(A.a):= Ur(A.a)®---0U,(Aa) .
are scattering equivalent. n-times
Theorem 3. A necessary and sufficient condition for the (3.1
unitary operator A to satisfy Eq. (2.70) is for
lim [[(AD—®")Uq(t,1)]x)]|=0 (2.70 The representatiod 3(A,a) is reducible. There are many
t— oo ways to reduce this-fold tensor product to a linear super-
) ) o position of mutually orthogonal irreducible subspaces. For
to vanish for both time limits. any collection ofn four-momenta a Lorentz boost can be

Theorem 4. Any instant form representation is scatteringysed to transform to a coordinate system where the total
equivalent to an instant form Bakamjian-Thomas represenmomentum vanishes. The resulting coordinate system can be
tation. rotated so that the momentum of particle 1 points in the

Theorem 5. Any instant form Bakamjian-Thomas repre-7 direction, while an additional rotation about tkeaxis
sentation is scattering equivalent to both a point form and acan pe used to bring the momentum of particle 2 to the

front form Bakamjian-Thomas representation. positivex part of thex-z plane. This coordinate system can
The proof of theorems 3 and 4 are given[ifi and the  pe considered as a “body-fixed” momentum coordinate sys-
proof of theorem 5 is given in the Appendix. tem for then-particle system.
With this motivation the desired irreducible representa-
I1l. BASIS CONSTRUCTION tions are defined below.
In this section the basis vectors used in the formulation of Definition 1. Let 31k =0 with k;=(0,0]Ky|) and
the dynamical models are constructed. Ky=(K»y,0,ky,) with k,,=0 and define the state

> . > > ik - - mQ
|[p1/~L;J]V;kl7Mlv e 1kn1ﬂn>::UO(Bc(p)aO)J’ dRDJMV(R)UO(R,O)|k1,,LL1, e rknvﬂn> > (32)
SU(2) Wmy(P
where
p:=Bc(p)(Mo,0), mo=2 wi(ky), 33
i are canonical spin magnetic quantum numbers, and
||Zl!lu“ll s aEnaMn>:||Zl:/—L1>®! e 1®||Zn!/~Ln>' (34)
The state vectoré{ﬁ,u;j]v;lzl,m, C ,IZn ,in) are the desired basis states. These states have the following properties.
Theorem 6. The state vectkﬁlﬁ,#;j]v;lzl,m, o ,|2n ,Mn) transforms as a massyrspin-j irreducible representation of
the Poincaregroup:
R . R R Cintale = wmo(p,) .
U(Ava)l[pwu;]]y;klvﬂlv e vknvﬂn>:e P |[p M ;J]V;klwu‘li N vknvl*l‘n> (p) [ W(Avp)] (35)

wherep’:=Ap.
The proof, which uses the invariance of the (8]JHaar measure, is by direct calculation.
The relation to the single-particle states is given by the Clebsch-Gordan coefficients

(P11, - Pl [P j1viKe v, - Rn.vn>=5(2i @—5) LwdRé@«ﬁl—[B(ﬁ/mo>R]k1)~-.a\’*

X{(Ry[Bc(p)R],ki)}. (3.6)
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The integral over S(2) can be done by observing that if we define

Kj=Rk,, kj=Rk, (3.7
then
1 " 1 A// A// T T
dR= de dksS(K) - Kh—Kq-ky), (3.9

where the integral around one of the azimuthal angles must be eveather than 2r since SU2) is a double cover of S@).
After performing the integrations the resulting fixed valueRofs the rotation

-

1 0

o [ky— ki (K- ko) 11— (K} - k522 3.9
0 kyxky[i-(kj-kpz®2 | |
0 ki

which transformsk}: =B~ %(p)p; to k; with k;=(0,0/ky|) andkj:=B~(p)p, to ky with ky= (ks ,0ks,) andky,=0.
Evaluation of the integral gives

<51!:u’11 e ,5n,Mn|[5,/.L;j]V;E1,V1, e ,lzn,Vn>
1 VoK =Tk (kp [kl el
=——2 i~ = = S(ky-k,—kq-k
167T_ (zl i ) |kl|2 |k2|2 ( 1 2 1 2)

n-1 -, wmo(ﬁ) *
<L ok k) \ =L —DJ(=R >H ) D, {(RJBP)(=R)1K)}, (3.10

wherek;’ =R 1B~ (p)p; andR is the rotation(3.9). The sum is over the two SB) matrices that correspond to the rotation
(3.9. It arises because the integral over the Haar measure picks up both elemen{@)ofF8Uinteger spins both terms in the
sum are identical and it is sufficient to replaEe by multiplication by 2.

The action of the permutation operator can be computed in this basis. lhethe permutation that takes-i' = o (i). Let
R(o) be the rotation that takds, to thez axis andk,, to the positive hali-z plane:

-

0
[k2 (k/ kz)]/[l (k/ % 5)21M2
k1><k2/[1_(ki'k2)2]l/2
ki

R(o)= (3.1)

o O O Bk

It follows from the definitions that, for a permutatien

U(LP, i 1wiKy, v, - K v =I0Bpss 103KE - e )DY[R(0)IDT ) [R(0)]- DY) [R(0)].
(3.12

The space reflection operation has a similar form

UP)I[P. i 1wiKe w1, - - Knuwn)=|[—Poimo,S]v' iKY vy, ... ,kn,,vn,>D{,’fV[R(P)]Djyliyl[R(P)]~ =D, [R(P)],
(3.13
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where cal spin operator fo,(A,a) differs from the canonical spin
operator for a system af noninteracting particles.
ki'=—R(P)ki In this section we apply theorem 4 to the mass operator
M), associated with the tensor product representddal) to
obtain_a scattering-equivalent Bakamjian-Thomas mass op-
1 0 0 O eratorM,. These Bakamjian-Thomas mass operators can be
combined to make an-body Bakamjian-Thomas mass op-

andR(P) is the rotation about thg axis throughs:

R(P)= 0 -100 _ (3.14 erator including all of the two-body interactions.
0 0 1 o Theorem 4 is special to the instant form of the dynamics.
0 0 0 -1 The other forms can be treated by first transforming them to

an instant form representation, applying theorem 4, and then
transforming back to the initial form of the dynamics. The
IV. TWO-BODY INTERACTION AND SCATTERING necessary transformations are discussed in the next section
EQUIVALENCE and are given in the Appendix.

The saturation of nuclear binding energy with particle Consider a partitiorb of the formb=[(12)(3)---(n)].
number suggests that it should be sufficient to model nucleThe mass operatdvl,, is related to the two-body mass op-
using dynamical operators with only two- and three-bodyeratorM i, by
interactions. In nonrelativistic quantum mechanics two-body TR 5 2y x L= 012
interactions are determined from the two-body problem.Mb:[(\/'V|12+I012+ \/Mo,n—2+pn—2) — (P12t Pn-2)717%
Cluster properties imply that the many-body Hamiltonian in- (4.2
cludes sums of the two-body interactions involving each pai
of interacting particles. Additional three-body interactions
are also possible and can be deduced from three-body mo
els. Cluster properti_es det_ermine their contribution to th ass operator for a system of-2 free particles tensor
many-body Hamiltonian. This can be repeated for more com- , . i -
plicated many-body interactions. Eroduct with the identity orH,,. The quantitiesp,, and

Although generalizations of this procedure to relativistic Pn-2 denote the momentum of the interacting pair and the
systems are possible, the decomposition of the generators Bf-2 spectator particles. The operatd, is not a
the Poincaregroup into linear combinations of subsystem Bakamjian-Thomas type of operator in theparticle Hilbert
interactions that is dictated by cluster properties fails to satspace. This can be seen by evaluating the matrix element in
isfy the Poincarecommutation relations without additional the basis of Sec. lll. These matrix elements have a nontrivial
many-body interactions. dependence on the total momentum and kinematic spin.

Fortunately this construction works in the special case The procedure for constructing the interaction between
that only a single pair of particles interact. In this case theparticles 1 and 2 is to construdfl, and use scattering-

(NhereMlz is the interacting two-body Bakamjian-Thomas
ass operator tensor product with the identity on the specta-
or Hilbert space andMy,,_, is the kinematically invariant

representation of the Poinéageoup is a tensor product equivalence theorems to find a scattering equivalent
Bakamjian-Thomas interactioM,. The scattering equiva-

Up(A,a):=U (A, 2)@ U (A @)@ - - ®Up(A,a), lence is not explicitly needed to construct the interaction; all

(4.2) that is needed is the result of applying this transformation to

M.

hereb is th tition (12(3)(4)- - - (n), with d- . . o
whereb is the partition (12(3)(4)- - (n), with correspon The desired two-body interaction is then

ing formulas when pairs other than particles 1 and 2 interact.
The representatiol) ;15(A,a) is assumed to be an instant D =Me—M 4.3

- ; vp:=Mp—Mg. (4.3
form Bakamjian-Thomas representation. The tensor product
of subsystem Bakamijian-Thomas representations is not kn order to compute this interaction note that explicit calcu-
Bakamjian-Thomas representation. Specifically, the canonilation shows that

(P il v Ke g, - Kool Mol P/ 53 [V KL vy - K vn])=8(p—p')

X{uii[vKeottg, o Kol IMo(P) 53 T e vas o K vn]) (4.4

has nonzero matrix elements fp£: j. Theorem 4 states that this operator is scattering equivalent to a mass op?gamih
matrix elements of the forr#.4) with the kernel in Eq(4.4) that multiplies the delta function replaced by the same expression

with 5:0. This operator is independent 6f and diagonal inj. The kernel ofM, can be computed using the spectral
representation of the two-body solutions. To compMtgfirst note that by definition

P [v K ags - Kootnd Mol o3 [0 Kty - oo KD = 8(p—p')

X(wiilvKeomas o Ko snlIMp(O) '3 [ Ky - K iend)- (4.5
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The kinematical rotational invariance and the orthogonality relatt®l) give

<,lL;j[V,k1,,LLl, v 1|2nnu“n]H Mb(o)”ll’,’J ,[V,7|2,!Iu“i L ,kr/],ﬂr’]]>

= 2]+l 2_ dp(Ou”;i[v. Ky s - - KnssendIMplpe” il Kol - Khsn]). (4.6

117

Inserting the definition of the basis vectors, E8.2), and the spectral expansion of the two-body mass operator4E,
gives

(iilv. ke ptas o Kool IMp(O)|'5 T Ky s - - Kb )
n
\/)\§2+(|21+Ez)2+2 VK, u?
<%

O] 8k k)
XD]lZ (R)<l12,7\12 pidKi u Ky, Mz)H {k—Ylm(km)D (R)Y (km)D (R)} 4.7

6”’5 ’ H - — .
:—;- Mf f dRD*, (R)(Ky,i1.Ko, ol 12, M 12, 112)
J+ SU2)

m

where(j1p, N 12, ihollKio 1] Kb, 1u5) are the reduced two-body wave functions of the interacting 12 pair:

(Pritz N1z iKY g Ky mp) = 8(P— Ky —Ko)(J 12 12, i K] o ia] K5 a5 (4.8
and
. R - . 1012 @2(d12) w12 P12 | M2,
(J12: M2, 12 Ke o en Koy 2) = (j 12, M 14 A2, 1,S) 01(Ky) @5(Kp) Mot (J12 a1l 1 1S, ps)
112

X<Susl%,u1,%,uz>v*'(qlz>D ', [B7H(019B 7 (P12)B (k)]

1/2

XD y [B Y(q)B ™ plz)Bil(kz)L 4.9

with pro=k;+ks, 01,=B X (p1o)ky, andm3,,= — (k;+ky)2. The amplitudesj;.\15q,l,s) are solutions to the two-body
mass eigenvalue equation

(\/ﬁz+mi+ \/§2+m§—>\12)<112,x12|q,|,S>=—J (q’,l’,s’|v'12|q,l,s>q’2dq (J12:M12:10",1",8"), (4.10

corresponding to both bound and scattering states.
The matrix elements in E44.7) have a simple expression in terms of coefficients defined by the following integral over the
rotations,

Pfi1p)lg,-oln, 12 112 J’ * i12 Im 12
[ ) ) ) ) = dRDJ R)D (R D R)D,
Vg g T3l ey oty 2]+ 1 sy v (R) K12k )n];[ [ ( )

(R (41D

given by

</.L;j[1/,|21,,u,1, et anﬂn]”Mb(O)””’,;j,[V,1E, ’/*Lil e ’IZI{HMI{]]>

n

VN2 (K +Kp) 2+ >, VKP+m?

1=3

S ]112,I3,...,In,1/2...,1/2
s ’- ’ ’ ’ ’
VV .V12,V12,r3,r3...,rn,rn,,u,3,,u,3 il ’U‘n

=§j; Ky o1, Ko pallinz Ngs 10

, o(k -
X<112,7\12,,U«12||k1 o ak21M2> H %Ylm(km)Y (km)

m

(4.12

These coeffieicents can be computed exactly using group theoretical techniques or by direct integration uéngiFasd

(2.23.

The above expression corresponds to the case that particles 1 and 2 interact. For any other choice of an interacting pair of
particleij let o be the permutation that interchanges particles 1 wihd 2 withj. SinceU'(a)MU(o)= Mijyay---(ny s It
follows using Eq.(3.12 that
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<[5aMij]Vi|21:V1, cee 1|2niVn|M(ij)(1)...(n)|[5,al-’v,;j /]V';Ei,Vi: cee :'ZG'V;Q
=[P, i 1Ky, w1, oo Kny e UT(0)M 12y .U ([P 35 10 1K vt K v
:Dj:,‘,n[R71(0)]D]v11v'1'[R71(U)]' = DJV:VN[Ril(U)K[F;yM;J']V"?Ei’vVZa - v-),r;VmM(lZ)(S)---(n)l
XIP s 0KY v KD A IR(@)]D ), [R(0)] D, [R(o)], (413
[
wherek;"=R(a)k; andk" =R(o)k;. (v' Ky, vh, L KLY, (5.9
V. MODEL DYNAMICS where (- - -[luy| - - -) indicates that the>*(p—p’)5j;:6,,,

The two-body interactions defined ti¢.3), (4.6), (4.7), have been factored out of the matrix element defined by
and(4.13 are all Bakamjian-Thomas interactions. Each one(4.3), (4.7), and(4.13.
commutes with both the kinematic generators and the kine- The dynamicdJ(A,a) is defined by the requirement that
matic spin. Although they fail to cluster properly, each inter-the complete set of eigenstatés3) of the mass operator
action has the property that when it is added to the kinemati¢5.2) transform like mass- spin{ irreducible representations
mass operator the result is scattering equivalent to a systenaf the Poincaregroup.
of two interacting particles and—2 noninteracting specta- For a system of more than a few particles, this equation is
tors that clusters properly. a complicated many-body problem. However, it has the use-
These Bakamjian-Thomas interactions can be added ttul feature that it can be used to compute variational solu-
construct a Bakamjian-Thomas mass operator that include#ons of the form
interactions involving all pairs of particles. This follows be-

cause each term in this mass operator commutes with all (5#'][7/ |21 fas - K o ]“5, w'j'é)
kinematic generators and the kinematic spin. Simultaneous R A
eigenstates of the mass, spin, and momentum can be chosen = §(p—p')8,,,,/8;j(v,Ky, i1, - - - Kn,vnli; &),
to transform irreducibly with respect to a Bakamjian-Thomas
representation of the Poincageoup. (5.9
The n-particle mass eigenstates are solutions to the eigen-
value problem where
M[W)=\|¥), (5.1 (vKy,va, o K volii )
where :; Cn<V,|21,V1, v iEniVn|j;¢n> (5.9

M=M;y+ Mp—Mg)=My+ .

2 {blnbgn*l}( " 9) 2 {pblnp=n—1} ve and(v,Rl,vl, C ,En,un|j;¢n) are suitably chosen expan-
(5.2 sion functions. This approximation corresponds to projecting

the mass operatdv on a subspace of the Hilbert space. The

equations for the coefficients have the form of a generalized

eigenvalue problem:

In this representation the wave functions have the form

(Pl vKeper, - KoomallP'om'5i" 0)

= 8 (p=P") (v va, - Kn el ). 2 (il 2 win(kD)libnyent 2 2 (i illonlli én)en
(5.9

The reduced wave function®,ky, vy, . .. Kn,vnlj; @) sat- :)‘; (inlinicn. 5.7
isfy
The resulting equations give coefficients that define the
()\_2 wm(ﬁf))@,ﬁl,yl, o _;Zm,,n“;@ variational eigenstates. The eigenvalues are variatianal
pen bounds on the exact mass eigenstatgs
_ _ _ R R The variational approximation has the important property
=f (v,Ky,vq, oo Ko valolllv' Ky, vy, s KLV that it exactly preserves the Poincameariance. Specifically,
the approximate eigenstatgs u,j,¢)=|p,u.j,\,) defined
by (5.9), (5.6), and (5.7) transform irreducibly with respect

. 3 3 .
X dlky|dkaedko,0(kay) d ks- - -d k”‘s(z ki) to the unitary representation of the Poincgreup:
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T wSI —amipl a3 and the three-component of the canonical spin. It is easy to
Uu(A@)Ip, o ) =€ 8p7, 1" M) construct similar irreducible basis vectors that replace all of
/w)\ (p') t.he linear momentum variables by either'f'our-veloci'ties or
% " _pl, light front momentum components. In addition the spins can
“’%n(ﬁ) mow all be Melosh rotated to light front spins or helicities. Be-
cause theorem 4 is special to instant form dynamics, the
X[B~Y(p'/Ny)AB(P/IN)], construction of two-body interactions that are scattering
5.9 equivalent to Bakamjian-Thomas interactions is most natu-

rally performed using instant form dynamics. The results can
where \, is the variational mass eigenvalue and be transformed to fron_t- or point form representation with the
, s o transformations used in the proof of theorem 5 in the Appen-
p'=A(wy (P).p). dix.
The special advantage of the simultaneously coupled ba-
sis is that variational wave functions of a given spin, parity,
and exchange symmetry can be constructed using the opera- VI. SPACELIKE CLUSTER PROPERTIES

torsU(o) andU(P) given in Eq.(3.12 and(3.13. Expan- The purpose of this section is to deduce the relationship

sion functlons_ of a given Qxchangg symmetry can pe genefetween the models defined by solving E54) in the pre-

ated from a given expansion function by symmetrizing:  jous section to models that satisfy spacelike cluster proper-
ties. This relationship can be used to determine the specific

<V,R1yV1, cee 1|2n nlis ) corrections needed to restore spacelike cluster properties.
The spacelike cluster property is the requirement that the
ZCE (_)\rr|<,,,|21,,,1, L ,|Zn,,,n|u(g)|j;¢>, (5.9 dynamical representation of the Poincareup approximate

a tensor product of subsystem representations when the par-

ticles in the different clusters are separated beyond the range
where the sum is over all permutations of identical particlesyf their mutual interactions. The mathematical formulation
and the phase factor is for odd transposition of fermions.  of this property is given in Eq2.67). Spacelike cluster prop-
The coefficientc is a normalization constant. Variational erties provide the connection between the relativistic few-
wave functions of a given parity are constructed using exand many-body problem and are needed to interpret experi-

pansion functions of the form ments that test special relativity on isolated subsystems.
. . _ In what follows the notion of scattering equivalence is
(v.ky, v, oo Knywglis o) used extensively. Scattering equivalences are a subgroup of

the group of unitary operators. The type of scattering equiva-

lence discussed in theorem 4 that transforms any instant form

representation of the Poincagroup to an instant form

Bakamjian-Thomas representation is denotedByy The
i<y,|21,y1, o ,IZn,vn|U(P)|j;X)]. (5.10 type of scattering equivalence discussed in theorem 5 that

transforms an instqnt form Bakamjian-Thomas representa-

The result is a set of approximate eigenstées.,j,\,,) that ~ tion of the Poincaregroup to a front-(or poiny form

are linear combinations of the symmetrized expansion funcBakamjian-Thomas representation is denotedChy These

tions. These states define reduced wave functions for staté40 types of scattering equivalences are used to inductively

that transform as a mass; spinq irreducible representation C€onstruct representations of the Poincgreup satisfying

of the Poincaregroup. Thus exact Poincaievariance, per- cluster properties. A overbar is used to indicate a Bakamjian-

mutation symmetry, and reflection symmetry are preservedhomas representatidi(A,a) of the Poincaregroup.

at each level of approximation. Successive approximations The construction is discussed in detail for the three- and

improve the mass eigenvalue. four-body systems. Explicit inductive algorithms are given in

Equation(5.4), with the interactions defined in Sec. Il then-particle case. The general construction follows closely
and the approximations defined in H§.7), is the main re- the construction given in7]. Theorem 4 of this paper is
sult of this paper. It shows how to embed two-body interactheorem 3.4 of Ref[7]. This theorem does not have a gen-
tions in models with symmetric coupling schemes and howeral extension to the front or point-form of the dynamics.
to formulate systematic Poincairevariant approximations of There is an extension in the case of the front f¢8], but
a given spin, parity, and exchange symmetry. it does not hold with the generality of theorem 4. In this

A shortcoming of this model and the associated approxipaper, the scattering equivalenCg is used to transform to
mations is that they explicitly violate spacelike cluster prop-representations where theorem 4 can be used.
erties. In the next section this model is interpreted as a first The construction of a unitary representation of the Poin-
approximation to a model that clusters properly. The goal ofaregroup satisfying cluster properties is by upward induc-
the next section is to obtain an understanding of the corredion on the number of particles and downward induction on
tions needed to restore cluster properties. the number of clusters for a fixed number of particles.

The irreducible basis states defined in definition 1 use the The starting point is a two-body Bakamjian-Thomas
linear momentum and canonical spin to label vectors in anmodel. Letb be a partition of an-particle system witm-1
irreducible subspace. The degeneracy quantum numbers inlusters. This corresponds B2 free particles and a single
clude “body-fixed” components of the linear momentum interacting pair. The Bakamjian-Thomas metH@&j7,10,9

1 . - .
ZE[<V,k1,V1, P ,kn,Vn|];X>
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can be used to construct a two-body unitary representation @ém clustering into a tensor product of subsystems that in-
the Poincargroup in any of Dirac’s forms of the dynamics. clude three-particle subsystems we need a three-particle rep-
Let resentation that clusters to a tensor product of a two-particle
. representation and a single-particle representation.
Up(A,a):=®" Uy (A,a) (6.2) In general the spin operatofs associated with the tensor
product representatiot,(A,a) for different n—1 cluster
be the tensor product of the subsystem representations cqsartitionsb are distinct and nonkinematic. Because of this, it
responding to the partition. This tensor product includes 1 s difficult to combine the mass operatdvk, corresponding
two-body Bakamijian-Thomas representation an@ one- to different interacting pairs in a manner that preserves the
body representations. group representation properities. The problem can be solved

Since each of the subsystem representations associatgg replacing theMl,’s by the scattering equivalei’s de-
with the clusters of the partitiob is a Bakmjian-Thomas fined by

representatioftrivially in the one-body cagethey are each _
scattering equivalent to an instant form Bakamjian-Thomas Mp=A,M bAg, (6.7
representation by the scattering equivaler@éisof theorem

5. In the case that the starting representation is already
instant form representf:ltioﬁgi =1, it follows that

whereA,, is given by Eq.(6.5. The spin operator for each

6Wl_tJ is the kinematim-particle spin operator. It follows that
the three-body mass operator

Up(A,a): :[®Cgi]ub(/\,a)[® Cp 1= ®[Cgiubi(Aaa)Cbi] M(3):=M 123+ M23(1)T M 312~ 2M (1)(2)(3)
(6.2 (6.8
commutes with the kinematic generators and the kinematic

spin in a given form of the dynamics. Thus it is the mass
operator for a three-body Bakamjian-Thomas representation

is a tensor product of instant form Bakamjian-Thomas rep
resentations that are scattering equivalertgA ,a). Thus
for eachn—1 cluster partitiorb there is a scattering equiva- of the Poincararou
lence that transforms the representatity{ A,a) to a tensor h feg_ tp' " Bakamiian-Th ta-
product of instant form Bakamjian-Thomas representations. Note that for instant form Ba ampan. oma_s rep_resen a
The tensor product of instant form Bakamjian-Thomastions, U(A,a) can be constructed by first finding simulta-
representations does not commute with the kinematic canonpeous eigenstates 8 (3), P, j%, andj.- z. This is done by

cal spin operator and is consequently not a BakamjiandiagonalizingM (3) in a basis of simultaneous eigenstates of
Thomas representation. It is, however, an instant form reprehe kinematic operator®, j2, andj -z and any additionally
sentation and is scattering equivalent to a Bakamjiankinematically invariant degeneracy parameters. The repre-
Thomas representation by the scattering equival@icef  gentationU(A,a) is fixed by the requirement that these
theorem 4: eigenstates transform as a unitary irreducible representation
of the Poincaregroup with the mass and spin labeled by the
eigenvalues ofj> and M(3). The analogous construction
works in the point and front forms except that the momen-
tum is replaced by either the four-velocity or the light front
component of the four-momentum and in the case of the
front form thez component of the canonical spin is replaced

UL(A,a):=B,UL(A,a)B]. (6.3

The representatiorU_'b(A,a) is exactly the representation
constructed in Sec. Il using the mass operaty, the ki-
nematic instant form Poincagenerators, and the kinematic

canoniﬁal spin. h . . . . by thez component of the light front spin.
By theorem 5 the representatith3) is scattering equiva- 1 jnyestigate cluster properties consider the behavior of

lent 10 a Bakamjlan—Thomas rep_resenta_non in the chose{’he scattering equivalencds, in the limit that the interac-
form of the dynamics by a scattering equivalege: tions between particles in the same clustetbodre turned
off. For a two-cluster partitiorb of a three-particle system
Mp— M (1)(2)(3) When the interactions between the interact-
d’pg pair of particles are turned off. The corresponding repre-
sentationU,(A,a) becomes the kinematic representation,
which is a Bakamjian-Thomas representation, in the same
Ap:=CpBy(®C}) (6.5 limit. With the_ deﬁnitions(6.5) scattering equivalencd,
' becomes the identity.
is a scattering equivalence that maps a tensor product of Thus, in the limit that all interactions involving particle
subsystem representations to a Bakamjian-Thomas represdrs) are tumed offM(3) becomes
tation in any form of the dynamics: _
— M(3)=nz_2 AoMbAT=2M (1)2)3— M (1) 2)(3)|
-

Up(A,a):=CpUL(A,a)Cf. (6.4)

Since the scattering equivalences form a group, the pro
uct

Up(A,a)=AUp(A,a)A] . (6.6)
t _
The construction up to this point is limited teparticle sys- M e! tAweMaeAaae —2Muee)
tems where a single pair of particles interact. ZAaMaATZ M—a (6.9
a 1 .

The next step is to consider the case of three interacting
particles. In order to formulate the limit of anpatrticle sys- wherea=(12)(3). Itfollows that
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U(A,a)—AUL(A,2)AT=U4(A,a)#UL(A,a) properties. This distinguishes them from three-body
2 (6.10  Bakamjian-Thomas interactions that can always be added to
M(3) _
in the same Iimit, which shows the manifest violations of  The representatiot)(A,a) in Eq. (6.14 is exactly the
cluster properties due to the presence of Agss. representation of the Poincageoup constructed in the pre-

A new scattering-equivalent representation with the corvious section for the instant form three-body case. Since this
rect limit can be constructed by introducing a new scatteringepresentation is scattering equivalent to a dynamical model
equivalence. The new scattering equivalence is designed t@at clusters, it follows that the model of Sec. Il gives the
cancel off each of thé,’s in each asymptotic region. Define same mass eigenvalues and scattering cross sections as the
the Sokolov product of the operatol§;,)3), A23)1), ahd  model that clusters. This means that in the three-body case
A(31)(2) by adding the Cayley transform of each operator ancho additional corrections are needed. This result was estab-

constructing the inverse Cayley transform of the result: lished in 1965 by Coester i]. Unfortunately the conclu-
sion is not valid for systems of more than three particles.
S[A(123)A23(1)ABy(2)] The four-body system is the simplest system that exhibits

the most general difficulties. Proceeding to the four-body

+i ; iy
1 '(“(12><3>+a<23)<1)+a(31><2)), (6.11)  System, consider both two- and three-cluster partitions of

1-i(auz@) T apeym* aeEne) four particles. For each of these partitions define the repre-
sentations
P UL 6.12 i
0O+ Ay ' Up(A,a):=®,°,Up (Aa), (6.17

The Sokolov product of unitary operators is unitary and sym-where eachJ bi(A,a) is the representation of the Poincare
metric under interchange of operator ordering within thegroyp for the physical one-, two-, and three-body subsystems
product. In what follows the Sokolov product of scatteringthat satisfy algebraic cluster properties. For the two-body
equivalences is assumed to be a scattering equivalence. Thgpsystems these are two-body Bakamjian-Thomas represen-
scattering equivalenc(3) is defined as the Sokolov prod- tations while for the three-body subsystems it is the repre-
uct of the scattering equivalencés for all two cluster par-  sentation(6.14) defined above. o
titions: In the two-body case U, (A,a)=Up(A,a) are
i Bakamijian-Thomas representations while in the three-bod
AR):=SlAw2 e A A - 613 caseUin(A,a) is relate(?to a Bakamjian-Thomas representa—y

The transformed mass operator and unitary representatidion by the scattering equivalenég3) in Eq. (6.13 which

of the Poincaregroup are defined by is denoted byA, . The general result can be expressed in the
_ form
M(3):=AT(3)M(3)A(3), o

_ (6.14 Up,(A,a)=Ap Uy, (A,@)Ap, (6.18
U(A,a)=AT(3)U(A,a)A(3). '
where Ap, is the identity for two-particle clusters and the
scattering equivalencé&(3) for each of the three-particle
clusters.

The next step is to generalize E®.5) to the four-body
case by defining the scattering equivalences

In the limit that the interactions involving particle are
turned off these operators become

A(3)_>S[A(jk)(i)'|'l]:A(jk)(i) (615

and Dp:=CpBp(®C Ay, (6.19

T _
U(A:a)_’A(Jk)m>U(ik)<i>(Aaa)A(jk><i>_U(ik>(i>(A""Eg§’ The scattering equivalence,, By, andCy, have the same

1
9 interpretation as the corresponding quantities appearing in

which shows thatU(A,a) defined by Eq.(6.14) satisfies Eq. (6.5. The scattering'equivalenc@, transform the ten-
algebraic cluster properties. One expects that for interclusteior product of the physical subsystem representations asso-
interactions of sufficiently short range the representatiorfiated with the particles in each cluster of the partitioto
U(A,a) defined above will satisfy Eq2.67). Bakampgn-Thomas representations. The tensor product rep-
The scattering-equivalendg(3) transforms a Bakamjian- ésentations are the requ_lred I_|m|t|_ng representations when
Thomas three-body system to a scattering-equivalent threddteractions between particles in different clustersboare
body system that algebraically clusters. Since cluster propefUrned off while the Bakamjian-Thomas representations are
ties fix the three-body generators of the Poincareup in ~ convenient for adding interactions. The new fact@r§i,
terms of the one- and two-body generators, up to overalwhich do not appear in Ed6.5), are needed to convert the
three-body interactions, the net result of this construction iphysical representations of the three-body subsystems dis-
to generate additional new three-body interactions needed wussed above to Bakamjian-Thomas representations.
maintain Poincarenvariance. The three-body interactions  The four-body problem has an additional complication
generated have a momentum dependence dictated by clustbat does not occur in the three-body case. To understand the
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problem consider the three partition‘:s=(12_3)(4), l_3= Ap— (Ap)c=(A)pnc- (6.26
(12)(34), andc=(12)(3)(4) andturn off all interactions

involving particle 3. In this limitD, andD,, defined by Eq. It follows that in the same limi{6.24 becomes

(6.19 both become scattering equivalenceB,). and + —

(Dy). with the property that@,)., (D)., and D, each ApncUpne(A,a)Apn=Upnc(A,a). (6.27
map U.(A,a) to (possibly different scattering-equivalent ) —
Bakamijian-Thomas representations. This is more complif\S in the three-body case I, denote the mass operators
cated than in the three-body case where all of the limitingassociated with the barred representations and define a four-
forms were the identity, which facilitated the cancellations inbody Bakamjian-Thomas mass operator:

Eqg. (6.9. In order to get similar cancellations in the four-

body system it is desirable to redefifle, and Dy, so they M= LaAaMGAL . (6.28

both becoméD . in the limit that interactions involving par- az1

ticle 3 are turned off. Since interactions involving particle 1
or 2 could also be turned off, the general condition

This is the generalization of the expansi@®8) for the four
(n)-body system. This can be used to construct a Bakamjian-
(Da)¢=Dands» (Dp)g=Dpng (6.20  Thomas representatiod(A,a) exactly as was done in the
three-body case.

is required, wherel is any partition of the four-body system.  As in the three-body case we seek a scattering equiva-

This ensures that all of these operatbrgsare built out of the  lenceA that clusters ad— A, when the interactions involv-

sameb-connected D]y’s. ing particles in different cluster o are turned off. The
This can be done by replacing tii®,’s defined by Eq. desired operator can be constructed using Sokolov products

(6.19 by new scattering equivalencésg with this property

defined as follows: 1+ia
A=A(4):= ——, a:=a§1 latta, (6.29

l-ia
Ad::Dd’ ndBS (62])
for all three- and four-cluster partitions. For two-cluster par- ay =i l_Aa, (6.30
titions, such as andb above, definéd, using theAy's for 1+Aq

ng=3 in the Sokolov products

Aa:=DaSasa50l(Da) iAanal, (6.22

Note that Eqs(6.29 and(6.30 define the Sokolov product

Sat1l A (63D

where the factors in the Sokolov product correspond to the o , ) i )
three-cluster partitiond contained ina (or b, respectively. ~ Because the individua,'s are designed to satisfy algebraic
Specifically for the casa=(123)(4) theSokolov productis ~ ClUStEr propertieR,—Aanp, when the interactions between
the inverse Cayley transform of the sum of the Cayley transParticles in the cluster ob are turned off, it follows that
forms of (D.)iA.nq for the partiions d=(12)(3)(4), @ @anpand

(13)(2)(4), and (23)(1)(4). For theaseb=(12)(34) the

product is over the two partitiongl=(1)(2)(34) and a.= 2 L,

(12)(3)(4). Theremaining two-cluster partitions are treated arl

similarly. The definition of theA, for two-clusterb’s in Eq.

(6.22 only involves three-clustef's. The operatorg\, so > Cadarp=— 2 AY(1,a)A(a,c)A(b,c)[al.=ay,
defined have the property that if the interactions involving a#1 a#l -

particles in different clusters of a partitianare turned off, (6.32
then which means thaB— Ay, in this limit. Thus we define
(Ap)c— (Dp)e(Df)cApnc=Abnc- (6.23 U(A.a) = ATU(A,a)A, 6.33

This follows because all but one term become the identity i

the Sokolov product when one of the two clustershofs which by design has the algebraic cluster properties

broken up. uTh —

This construction extends to all partitions of two or more U(A.2)=AUo(A a)A=Ua(A 2). (6.34
clusters, generating scattering equivalengg¢hat map each This construction can be continued by induction for any
tensor product representation to a Bakamjian-Thomas repregumber of particles. No new complications arise. The steps
sentation in the desired form of the dynamics: in the general construction are outlined below. For the case

S of n particles assume that dttbody representations of the

ApUp(A,a)Ap=Uy(A,a), (6.2 Ppoincaregroup withk<n have been constructed. By induc-
— — tion these all are assumed to satisfy algebraic cluster proper-
Mp:=ApMuA[. (6.29  ties and are each scattering equivalent to a Bakamijian-

_ _ _ Thomas representation. Specifically they satisfy
By construction the operatos, satisfy the following alge-

braic cluster property: [U(A,a)],=Up(A,a), (6.3
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U(A,a)=AT(k)U(A,a)A(K). 6.3 —
(A,2)=AT()U(A,a)A(K) (6.36 M= LAMA,, (6.48
For each partitiorb of n particles with at least two clusters -

define the tensor products of subsystem dynamics, i ) i
P 4 y where M, is the mass operator associated wilh(A,a).

Up(A,a): =@M Uy (A,a), (6.37 This defines a Bakamjian-Thomas representation of the Poin-
' care group U(A,a). Given this representation define the
and the scattering equivalences n-body representation by
. + _
Do+ =CoBo(@ CpAp,)- .39 U(A,a):=AU(A,a)A". (6.49

The Ap,'s are theA(k)’s discussed above and the remaining

operators are as defined in the three- and four-body cas
For eachcCh define Oy,). by formally turning off interac-
tions in the formal expression fdD, between particles in
different clusters of the partition. For eachb define recur-
sively Ay beginning with then-1 cluster partitions and pro-
ceeding downward in number of clusters:

eIt can be verified, following the methods ¢7], that this
construction defines b (A,a) satisfying algebraic cluster-
ing. It is also unitarily equivalent to a pure Bakamjian-
Thomas representation, thus completing the induction.

In order to understand the relation of this general con-
struction to the model of Sec. V we consider the structure of
the operatoA.

A,:=Dy, ny=n—L1. (6.39 The_comple_te restoration of _cluster propt_erties, u_sing the
scattering equivalences as outlined above, is complicated to

Assuming A, have been defined for all partitions with implement in applications. To understand the relation of the

k>n—m clusters define\, for n,=n—k by model discussed in Sec. V to a model that satisfies cluster
properties consider the cluster decomposition of the Cayley
Ap:=DySccpl[ (Dp)iA] 4 b0, (6.40  transform ofA:

Continue untilA, have been defined for all partitions with at
least two clusters. =2 Liag=2, [ala, (6.50
With this definition, in the limit that the interactions be- azl azl

tween particles in different clusters of the partitidnare ) ]
turned off, A, becomes where[ a], is thea-connected part of defined by

Ap)g=(Dp)qSe D ;r A, 7A71(b,c)_
(Ap)d=(Dp)gSccoll (Dp)engAcndl 1 (6.47 [a]a::% Altay. (6.5

Let (ap)cng denote the Cayley transformDg)! Acnq- _ N
The Cayley transform Osccb[[(Db)ZmdAcmd]7A_1(b’c)] is Define the Hermitian operators

> A Y(b,c)(ap)cnd=(@b)bna- (6.42 at= D  [ale (6.52
¢ alngz=n+1-

Inverting the Cayley transform gives .
g yiey g and the unitary operators

(Db)§Abnd; (6.43
S Ak__A_l—I—ia(k) 6.5

which implies (k):=A= Ta(k) (6.53

(Ap)g=(Dp)dl (Db) {Abna]=Abnd (6.44
The operator(k) has terms with at most-particle correla-
and the relations tions.
— Also define the unitary operators

ApUp(A,a)Al=Uy(A,a) (6.45

and A(k:k—1):=A(K)AT(k—1). (6.5%

[AbUb(A,a)Ag]c=Abmcme(A,a)Agmc:U_bmc(A,a). These definitions lead to the following decomposition of the

(6.46  scattering equivalencA:

Next define the scattering equivalence A=A(n:n—1)- - A(3:2)A2). 6.55
A:=S,.[A%] (6.47)

- The mass operatd for the model satisfying spacelike clus-
and the Bakamjian-Thomas mass operator ter properties can be expanded as
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M=AMAT=A(n:n—1)---A(3:2)A(2) M(3)=A(3:2)M(2)A(2)AT(3:2) +A(3)
X 2[M_]a}AT(Z)AT(3:2)-~-AT(n:n—l) X 23 [M].|AT(3) (6.58
a1l a
_ clusters properly when the system is separated into at least
=A(nin—=1)---A(3:2)A(2) 2 [M]a}AT(Z) n-2 clusters. This differs from the previous approximation by
alng=n-1} the addition of many-body interactions involving at least
xAT(3:2)---Af(n:n— 1)+ A(n:n—1)- - -A(4:3) three particles. These many-body interactions modify the

spectrum and cross section of the previous approximation.
_ Similarly, successive approximations of the form
><A<3)[ > }[M]a}AT<3>A*<4:3>~--

{a|lng=n-2

M (K)=A(k:k—1)M (k—1)A(k—1)AT(k:k—1) + A(k)

XAT(n:n=1)+---A(n:n—1)A(n—1) _
x| 2, [Kla|AT(K) (6.59
X [M_]a}AT(n—l)A*(n:n—l) )
{alng=2} modify the previous approximation. The new interactions en-
+An[M_]1AT(n). (6.56 sure that the model clusters properly when the system is

separated into at leastk+1 subsystems.
This procedure can be continued. The last step includes
pt_he additionaln-body interactions needed for the resulting
model to satisfy full algebraic cluster properties.
interactions vanish. The operata(2) includes those terms .. These arguments show t_hat the mode_l of the previous sec-
' IPon is the first step in a series of approximations that satisfy

hecessary to restore cluster properties in the_ limit thgt lluster properties into subsystems of at lea&t clusters by
particles are separated except for a single pair of particles

The operatoA(3:2) adds the additional operators needed tomcludmg additional k+1)-body interactions. These ap-

; . ; roximations should be good when the many-body correla-
ensure algebraic cluster properties when the system is brok(%%nS needed to restore clustering become weaker as the
up inton—2 orn—1 clusters. The corrections generated by

; . . number of correlated particles increases.
A(k’k_l) involve correlations associated wkh:l_uster par- The approximation scheme provides a formal framework
gg(r)r?ii.ar-]rtocg:?e(iﬁﬁgt r;tggfjet\évotbborggt;r%”i:32?;8 p?cr)?)etr?iee?r including systematic corrections that restore cluster prop-
o rties. Successive approximations add new many-body cor-
A—A(2) should be a good approximation. Note tg®R) PP y y

. : o elations involving more and more particles. The leading ap-
still has many-body correlations. The point is that the role O.troximation is the pure Bakamjian-Thomas model discussed

In order to understand this decomposition note that the re
resentatiorJ (A ,a) clusters properly only in the limit that all

these terms is to restore cluster properties only in the limi n Sec. IV. It is scattering equivalent to a model that only

that all but two particles are asymptotically separated. Eac lusters properly when the system is broken up into at least

successive correction restores cluster properties into R_1 clusters. On the other hand. even in the crudest ap-

smallgr number of part|t|on§. ___.___proximations, both Poincatiavariance and relevant discrete
This suggests the following sequence of approximations

X Ssymmetries remain exact.
The first one, y

Vil. SUMMARY
M(2)=A(2)[ 2 [M_]a}AT(Z), (6.57 In this paper induced representations of the Poincare
{alng=n—1} group are used to construct a basisneparticle states that

transform irreducibly with respect to the noninteracting rep-

clusters properly only when all but two particles are Sepa_res_entation of the Po_inc'agaroup. Inter_actions_that are scat-
tering equivalent to input two-body interactions and com-

rated. It includes correlations needed for clustering into t6 with the f il ; t tructed. Th
n—1 clusters. The operatois(2) also generate many-body mute wi € Ire€ particié spin operator are constructed. the

interactions that ensure that M(2) and interactions are combined to make a mass operator that com-

ith th i [ in. Th I f -
M(2):=AT(2)M(2)A(2) have the same spectrum and CrOSSmutes with the noninteracting spin e problem of con

: >Sstructing an interacting representation of the Poingaioeip
section. It does not cluster properly when separated intQ' o ced to one of diagonalizing this mass operator on a

fewer thann—1 clusters. In the instant form cas&(2) is  gypspace of fixed kinematic spin. The choice of basis leads
exactly the mass operator of the previous section. This exp equations that have simple properties under exchange of
hibits precisely the relation of the model of the previousigentical properties and space reflection. Both the Poincare
section and a model satisfying cluster properties. In th§nyariance and discrete symmetries are easily preserved un-
point- and instant form caseéd (2)=C(2)M(2)C", where  der the approximation. This formalism can be used as the
in this expressiorM is the mass operator of the previous basis for fully relativistic variational calculations of nuclear
section andC is the transformation of theorem 5. wave functions. The interactions are most naturally formu-
The next approximation lated in an instant-form representation but the resulting in-
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stant form interactions can be transformed to any of Dirac’'she same two-body phase shifts and binding energies as the
forms of the dynamics. original two-body interactions, with the additional property

The model discussed is known to violate spacelike clustethat they can be combined without violating the commuta-
propertes. The relationship of the model formulated to aion relations. The analysis in Sec. VI shows that a model
model satisfying cluster properties is discussed. Clustesatisfying cluster properties can be obtained from the model
properties require that the two-body interactions in theof this paper by an alternating sequence of unitary transfor-
N-body problem be identical to the two-body interactions inmations and the addition d@B,4, ... ,N)-body interactons.
the two-body problem. Dynamically generate(B,4, This relationship implies that the model will be a good ap-
...,N)-body interactions are needed to restore the Poincargroximation to a model satisfying cluster properties when the
commutation relations. In our model the interactions do noCayley transforms of the operatohg,)...(ij)...(n) defined by
cluster properly, but each of the two-body interactions gives€q. (6.5 are small.

APPENDIX A

Proof of theorem 2For the instant form case lat =B%(p) and 7': =B'y(p). We have

0= lim [[®—UT[B(p)]PU[B(P)]IU+(t)|x)= lim [[U(-t)®—U(-t)U'[B(p)]PU[B(p)IIU(t)|x)

t—*ow t—+oo

= lim [[U(—t)®U(t)—UT[B(p)]JU(—\t,— nt)DU(At, 7t)U[B(p)]] x)

t— =+

= lim [[[U(=t)®U(t)—U"[B(p)]JU(-A)®U;(A)U([B(p)1]|x),

t—+oo

where we have used@U(x)=U(x)®. Since\ is a positive constant, it can be absorbed into the definitiort af
t— * o, Taking the limits gives

Q.(H,®,Hp)|x)=UT[B(p)]Q2(H,®,H)U{B(P)][x)- (A1)

These relations coupled with the kinematic identi{i2$2 imply Poincareinvariance of the wave operators.
For the point form we have

lim [[®—-UT(1,a)@U(1,a)]JU«0[x)]= lim [[U(—H@—-U(—HUT(1,a)@U(1,a)]U«0)]x)|

t—*ow t—*oo

= lim [[[U(—t)®U(t)—UT(1,a)u(- )@ U(t)Us(1,a)]|x)l),

t—*+o
which immediately gives
Q.(H,®,hp)|x)=U"(1,2)Q.U(1,8)|x), (A2)

which can be combined with the kinematic relatiq@s62 for Lorentz invariance to give Poincamevariance of the wave
operators.
The last case is the front form where

lim [[®—-UT(ROPU(ROIU(1,0)]x)]= lim [[U(I,—t)@U(1,H) U1, —HUT(ROPU(R0U(1,0)] )]

t—+oo t—*+o

= lim [[U(1,—~)®U(1,H —UT(ROU(,—t)®U(1,HH Uy RO [ ),

t—o*ow
which gives
Q. (H,®,Hp[x)=U"(RO)Q.(H,® H)U{(RO)|x). (A3)
Proof of theorem 5S5Evaluate the instant-form operators in a basis of the form
[P, ), (A4)

where|5 is the kinematic linear momentung, is the magnetic quantum number associated with the canonicaljsjsirthe
canonical spin, and denotes a collection of kinematically invariant degeneracy parameters.
An instant form Bakamjian-Thomas mass operator in this representation necessarily has the form

(P dIM[p" '}, d")=8%(p—p") 8, 8 (dIIM(j)[d"). (A5)
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The spectrum and cross sections are determined by the reduced matrix eldfhét)|d’). The basigp, u.j,d) is related
to the base$p™,p, ,u,j,d) and|v,u,j,d) by the unitary transformations defined by the kernels

- ; ’ = VAT ’ ~ ’ - g p+ j AT
(Poojndlp’ o] L' d")=8(pt = Vm(d")2+p 2= p'®) % (p, —p!) \| — =0} aarD), . [Rer(p’,d")] (AB)
wm(d)(p)
and
(podidlo’ i, d")=8(p—m(d")v)|m(d)[¥25); Syar Sy (A7)

The rotation[ R.;(p’,d’)] in Eq. (A6) is a Melosh rotation that transforms the front form spin into the canonical spin.
It follows that the interaction® - and M defined by the kernels

(p™,pL g dIMElp’ Fp) i, d Y =8(pT—p' ) 6X(pL — P} ) 8, 85 (dIM(j)]d") (A8)
and
(U, dIM o’ ' j 7,y =8%(0—0") 8,0 8 (dIM(j)]d") (A9)

have the same reduced matrix elements and thus the same spectrum and scattering matrix elements. The desired scatterin
equivalencies have the general form

A:=Q.(Hp, ®p Hy)BeeQl (H,®,Hy), (A10)
Ar=Q.(H,®p,Hp)BQL(H, @ Hy), (A11)

whereBgg andB ¢ are the kinematic unitary transformations that changeﬁtheto either the light front components of the
four-momentum and magnetic quantum number associated with the light front spin or the vector components of the four-
velocity and the magnetic quantum number associated with the canonical spin.

These transformations can be explicitly given in terms of eigenfunction expansions

T

g + i p - ’ +
A=2 fIp*,m,M,d*;F>D’,L,,[Rfc(p,m(d))]d3p ——=(pmu’,d~;E| (A12)
Omd)(P)
or
A= f|p+,5l,M,df;L>d3pm(d>-3/2<5mu,diEl, (A13)

whered™ is a label for all bound state and scattering degeneracy labelsiéohidis the mass eigenvalue when the degeneracy
guantum numbers have the valde The invariance of the scattering operator ensures that this expression has a value
independent of the choice of asymptotic condition. The notafiol, andE indicates the kinematic subgroup of the relevant
mass operator.
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