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Based on Mackey’s theory of induced representations@G. W. Mackey,Induced Representation of Groups
and Quantum Mechanics~Benjamin, New York, 1968!# a Bakamjian-Thomas@B. Bakamjian and L. H. Tho-
mas, Phys. Rev.92, 1300 ~1953!# procedure for introducing interactions inton-body relativistic systems is
formulated. The resulting models have manifest symmetries under exchange of identical particles and
reflection. The two-body interactions in then-body equations are separately scattering equivalent to the in
two-body interactions, butn-body dynamics does not satisfy the necessary cluster separability properties.
nature of the corrections needed to restore cluster properties is discussed.@S0556-2813~96!05709-3#
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I. INTRODUCTION

The principle of special relativity, when applied to qua
tum mechanical systems, requires the existence of a un
representation of the Poincare´ group@1,2# acting on the sys-
tem Hilbert space. This representation necessarily invol
the dynamics. A generalization of the nonrelativistic proc
dure of constructing the full Hamiltonian by adding intera
tions to the free Hamiltonian can be used to construct in
acting representations of the Poincare´ group. The difficulty is
that interactions must be added to the noninteracting re
sentation of the Poincare´ group in a manner that preserve
the group structure.

Bakamjian-Thomas@3–9# methods provide one way fo
adding interactions to a noninteracting representation of
Poincare´ group. The distinguishing property of a
Bakamjian-Thomas methods is that the interactions are bl
diagonal with respect to the spin of the noninteracting rep
sentation and only depend on the noninteracting mass
kinematically invariant degeneracy parameters. Differ
representations of the noninteracting dynamics lead to
tinct realizations of the dynamics@10#. The most useful ones
are related to Dirac’s forms@11# of the dynamics.

There are difficulties with Bakamjian-Thomas metho
when they are applied to many-body systems. The fun
mental problem is that Bakamjian-Thomas models fail
satisfy spacelike cluster properties for systems of more t
two particles@7,9#. An additional practical complication is
that the decomposition into subspaces that are block diag
in the total kinematic spin is normally done in a stepwi
fashion, beginning with subsystem spins. Stepwise coup
is cumbersome and does not treat identical particles s
metrically. The lack of manifest symmetry under the inte
change of identical particles is a disadvantage when appr
mations are used.

An alternative to the stepwise coupling of irreducible re
resentations of the Poincare´ group is Mackey’s@12–15,9#
method of induced representations, which decomposes
n-fold tensor product of one-particle-irreducible represen
tions directly into irreducible representation spaces. T
quantum numbers that label degenerate representations
be chosen to have simple transformation properties with
spect to permutations of identical particles and space refl
54/96/54~3!/1189~19!/$10.00
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tions. In this representation it is easy to formulate systemat
approximations that preserve both exact Poincare´ invariance
and particle exchange symmetry at each stage. These a
proximations can be used to formulate variational calcula
tions for many-body systems.

The use of Mackey’s method of induced representation
does not correct the failure of spacelike cluster properties
Cluster properties can be restored using the method
Sokolov operators@5,7,9#. The Sokolov operators generate
corrections to the naive Bakamjian-Thomas model that re
store cluster properties.

The construction presented in this paper is similar to tha
in @7# with the following differences. First,n-body models
are formulated at the outset rather than built up recursively
However, a recursive construction is still necessary to buil
transformations that systematically restore cluster propertie
Second, the representations have manifest symmetries w
respect to exchange of identical particles. Third, correction
needed to systematically restore cluster properties are d
cussed in all three forms of the dynamics. In this construc
tion the instant-form dynamics plays a special role.

Notation and background material are given in the nex
section. In Sec. III the Clebsch-Gordan coefficients tha
couple the tensor product ofn-positive mass irreducible rep-
resentations of the Poincare´ group to a single simultaneously
coupled representation are constructed. The model is form
lated in these basis states. The action of the permutatio
group and parity operator on these basis states is given e
plicitly.

Cluster properties require that the two-body interaction
appearing in the two-body problem be the same as the tw
body interactions that appear in ann-body model. Unfortu-
nately the two-body interactions corresponding to differen
interacting pairs cannot be added in a manner that preserv
the commutation relations. In Sec. IV these two-body inter
actions are transformed to phase-equivalent Bakamjian
Thomas interactions using different unitary transformations
The Bakamjian-Thomas interactions can be combined in
manner that preserves the Poincare´ Lie algebra.

In Sec. V the two-body Bakamjian-Thomas interactions
are combined to make ann-body Bakamjian-Thomas mass
operator. Dynamical equations for the mass eigenstates a
written down. The resulting representation of the Poincar´
1189 © 1996 The American Physical Society
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1190 54W. H. KLINK AND W. N. POLYZOU
group does not satisfy cluster separability. Variational a
proximations for bound states that are exactly Poincare´ in-
variant and preserve the exchange symmetry are formula

In Sec. VI the model of Sec. V is shown to be the fir
approximation to a relativistic model that satisfies clust
properties. Corrections that restore spacelike cluster prop
ties to the interactions and generate additional many-bo
interactions that are needed to maintain the Poincare´ invari-
ance are constructed. The nature of various approximati
is discussed in the context of these corrections.

II. NOTATION AND BACKGROUND

A. Poincaré group

The Poincare´ group is the group of coordinate transforma
tions that preserve the proper time between space-time po
in the Minkowski metric

g115g225g3352g0051. ~2.1!

A general Poincare´ transformation has the form

xm→x8m:5Lm
nx

n1am ~2.2!

or, equivalently,

x→x8:5Lx1a, ~2.3!

where the matrixL is a Lorentz transformation,

LTgL5g, ~2.4!

anda labels a space-time translation. Elements of the Po
carégroup are ordered pairs (L,a) and the group product is

~L2 ,a2!~L1 ,a1!5~L2L1 ,L2a11a2!. ~2.5!

A Lorentz boost is a special Lorentz transformatio
L5B(p) labeled by the four-momentum with the following
properties.

~1! It maps a rest four-momentump0 :5„m,0,0,0… to
p5„vm(pW ),pW …:

B~p!p05p where vm~pW !5Am21pW 2. ~2.6!

~2! It is the identity forp5p0:

B~p0!5I . ~2.7!

If B(p) is a Lorentz boost, then so is
B8(p):5B(p)R(p), where R(p) is an arbitrary
p-dependent rotation that satisfiesR(p0)5I . The canonical
boostBc(p) is the unique boost with the property

R5Bc
21~Rp!RBc~p! ~2.8!

for an arbitrary rotationR. The boost-dependent rotation

Rx~L,p!:5Bx
21~Lp!LBx~p! ~2.9!

appearing in Eq.~2.8! is called a Wigner rotation. Equation
~2.8! is the statement that the canonical boost is the uniq
boost with the property that the Wigner rotation of the rot
tion R is R.
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The rotationRcx(p) relating a specific boost to a canoni-
cal boost

Bx~p!5Bc~p!Rcx~p! ~2.10!

is called a generalized Melosh rotation. Other commonl
used boosts are light front boosts and the helicity boosts@9#.

The Poincare´ group has several important subgroups tha
are relevant for Dirac’s forms of dynamics. These include th
Euclidean group which is generated by rotations and spa
translations, the Lorentz group, and the symmetry group o
the light front which is the subgroup of the Poincare´ group
that leaves the light front,x15x01x350, invariant. We de-
note the Poincare´ group byP and the above subgroups by
E, L, andF, respectively.

B. Combinatorics

Combinatorial methods are used to treat counting prob
lems in many-body systems. A partitiona of an n-particle
system is a grouping of the particles intona disjoint non-
empty subsystems. Each nonempty subsystem is called
cluster. For example,a5(135)(24) is a two-cluster partition
of a five-particle system. It has one three-particle cluster con
sisting of particles 1, 3, and 5 and a two-particle cluste
consisting of particles 2 and 4. The notationnai denotes the

number of particles in thei th cluster of the partitiona.
The notationa$b is used to indicate that the partitionb

is a refinement of the partitiona, meaning that particles in
the same cluster ofb are in the same cluster ofa. The nota-
tion a.b indicates thatb is a strict refinement ofa, i.e.,
a$b andaÞb. The relation$ is a partial ordering on the
set of partitions. The quantitiesaøb and aùb denote the
least upper bound and greatest lower bound of the partition
a andb with respect to the partial ordering$. The minimal
and maximal elements of the set of partitions ofn particles
with respect to the partial ordering$ are then-cluster and
one-cluster partitions, respectively. These are denoted b
0:5(1)•••(n) and1:5(1•••n).

The set of all partitions ofn particles is denoted byP
while P8 denotes all partitions except the one-cluster parti
tion. The set ofP with the relationsù and ø forms an
abstract lattice@16#. The zeta and Mo¨bius functions for the
partition lattice are integer-valued functions onP3P defined
by

D~a,b!5H 1 if a$b,

0 otherwise,

D21~a,b!5H ~2 !na)
l51

na

~2 !nbi~nbi21!! if a$b,

0 otherwise.

The zeta function satisfies

D~aùb,c!5D~a,c!D~b,c!,

D~a,bøc!5D~a,b!D~a,c!. ~2.11!

It is useful to define
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54 1191RELATIVISTIC N-BODY MODELS
za :52D21~1,a!~12d1a!. ~2.12!

It follows as a consequence of this definition that

(
aPP

zaD~a,b!5~12d1b!. ~2.13!

Partitions provide an economical means for classifyi
operators that act on then-particle Hilbert spaces. An opera
tor in then-particle Hilbert space has connectivityc if ~1! it
has no interactions involving particles in different clusters
the partitionc and~2! it vanishes in the limit that any inter
action involving particles in the same cluster ofc vanishes.
The notation

A5@A#c ~2.14!

indicates that the operatorA is equal to itsc-connected part
or has connectivityc. In generaln-particle operators of in-
terest can be expanded as

A5 (
cPP

@A#c . ~2.15!

It follows from the definition that the operator obtained fro
A by turning off all interactions involving particles in differ
ent clusters ofb, which is denoted by (A)b , is

~A!b5 (
cPP

D~b,c!@A#c . ~2.16!

This expansion can be inverted using the Mo¨bius function

@A#b5 (
cPP

D21~b,c!~A!c . ~2.17!

The notation (A)b denotes the residual interactions

~A!b5A2~A!b . ~2.18!

With the above notation Eqs.~2.13!, ~2.15!, and~2.17! imply

A2@A#15 (
aPP8

za~A!a , ~2.19!

When this formula is applied to Poincare´ generators it deter-
mines the relation between then-body generators and th
subsystem generators. For example, whenA is the Hamil-
tonian it gives the relation

H5 (
aPP8

za~H !a1@H#1 . ~2.20!

where@H#1 is ann-body interaction and (H)a is the sum of
the subsystem Hamiltonians for the particles in each clu
of a.

C. Group theory

The generalized orthogonality relation@17# is used in
what follows:
g
-

of

ter

E
SU~2!

dR~2 j 111!Dm1n1

j 1* ~R!Dm2n2

j 2 ~R!5d j 1 j 2
dm1m2

dn1n2
.

~2.21!

The derivation uses known properties of rotation matric
and can be found in Ref.@17#. From this relation it is pos-
sible to deduce the conjugate relation

d~R2R8!5(
jmn

~2 j11!Dmn
j* ~R8!Dmn

j ~R!. ~2.22!

In these formulasdR is the Haar measure on SU~2!.
The D functions in these expressions are given by th

homogeneous polynomials of degree 2j with real coeffi-
cients in the SU~2! matrix elements:

Dmn
j ~R!5 (

r50

2 j
~ j1m!! ~ j2m!! ~ j1n!! ~ j2n!!] 1/2

~ j1m2r!!r! ~r2m1n!! ~ j2n2r!!

3R11
j1m2rR12

r R21
r2m1nR22

j2n2r . ~2.23!

D. Quantum mechanics: General

The principle of special relativity assumes that all inertia
coordinate systems are related by Poincare´ transformations.
In a quantum theory with a Hilbert spaceH, the requirement
that probabilities have identical values in all inertial coord
nate systems@1,2# is equivalent to the existence of a unitar
representationU(L,a) of the Poincare´ group acting onH.

The infinitesimal generators of the space-time translatio
define the four-momentum operatorPm and the infinitesimal
generators of Lorentz transformations define an antisymm
ric tensorJmn. These operators are Hermitian operators o
H satisfying the commutation relations

@Pm,Pn#250, ~2.24!

@Jab,Pg#25 i ~gagPb2gbgPa!, ~2.25!

@Jab,Jgd#25 i ~Jaggbd2Jadgbg1Jbdgag2Jbggad!.
~2.26!

The Pauli-Lubanski vector

Wm:5 1
2 emabgPaJbg ~2.27!

is an additional Hermitian operator that commutes with th
four-momentum operator and transforms like a four-vect
under Lorentz transformations. The mass and spin are inva
ant Hermitian operators related to the generators by

M2:52PmPm , M2 j 2:5WmWm . ~2.28!

Spin vectorsjW satisfying jW• jW5 j 2 and

@ j i , j j #25 i e i jk j k ~2.29!

are defined by

~0,jWx!
m5

1

M
@B̂x

21~p!#m
nW

n, ~2.30!
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whereB̂x
21(p) is the matrix of operators obtained by repla

ing all occurrences ofp by the corresponding component o
the four-momentum operator in the expression for the bo
Bx

21(p). Because of the operator nature ofB̂x
21(p), the

quantity jWx in ~2.30! is not the spatial part of a four-vector. I
Wigner rotates under Lorentz transformations. The canon
spin is the spin vector constructed usingBx(p)5Bc(p), the
canonical boost, in Eq.~2.30!. The light front spin and he-
licity are spin vectors constructed by replacing the canon
boostB̂c

21(p) by the light front boost or helicity boost@9#.
Different spin vectors are related by generalized Melosh
tations. The operatorjW is taken to be the canonical spin op
erator when there is no subscriptx.

The state of a structureless quantum mechanical par
of massm and spinj is represented by a vector in a ma
m spin j irreducible representation of the Poincare´ group.

Vectors in an irreducible representation space are sim
taneous eigenstates of a complete set of commuting Her
ian operators that are functions of the Poincare´ generators
~for fixed mass and spin!. Common choices of commuting
Hermitian operators are the three-momentumpW and the
three-component of the canonical spinjW•ê3, the 4-velocity
v:5p/m and the three-component of the canonical spin, a
the light front componentsp1:5p01p3,pW'(p

1,p2) of the
four-momentum and the three-component of the light fro
spin jW f•ê3 @9#.

For example, a basis of states for a single particle of m
m and spinj is the generalized eigenstates of the linear m
mentumpW and three-component of the canonical spinjW•ê3:

upW ,n@m, j #&. ~2.31!

The normalization is arbitrary and taken to be

^pW ,m@m, j #upW 8,m8@m, j #&5d3~pW 2pW 8!dmm8. ~2.32!

Alternative representations of the single particle states
are appropriate for point form and front form dynamics a
discussed in the proof of theorem 5 in the Appendix.

The one-particle representation spaceH15Hmj is the Hil-
bert space of square integrable functions

c~pW ,m!:5^pW ,m@m, j #uc&, ~2.33!

with scalar product

^c1uc2&:5E d3p (
m52 j

j

c1* ~pW ,m!c2~pW ,m!. ~2.34!

The mass-m spin-j irreducible unitary representation o
the Poincare´ group onH1 is

U1~L,a!upW ,m@m, j #&:5e2 ip8•aupW 8,m8@m, j #&

3Avm~pW 8!

vm~pW !
Dm8m

j
@Rw~L,p!#,

~2.35!
-
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wherep85Lp. The transformation properties of the wave
functions follow from Eq.~2.35!:

^pW 8,m8@m, j #uU~L,a!uc&5e2 ip8•aAvm~p8!

vm~p!
Dm8m

j

3@Rw~L,p!#c~pW ,m!.

~2.36!

E. Quantum mechanics: Many particle

The Hilbert space for a system ofn particles is the tensor
product ofn one-particle spaces:

~2.37!

Then-particle dynamics is given by a unitary representa
tion U(L,a) onH. The mass and spin operators associate
with the representationU(L,a) are functions of infinitesimal
generators. For dynamical models some of the generat
necessarily contain interactions.

A bound state of massl and spin j is a simultaneous
eigenstate ofM2 and j 2 with l2 in the point spectrum of
M2. Any bound state vector can be decomposed into simu
taneous eigenstates of the mass, spin, momentum, and th
component of a spin vector. These eigenstates span
Poincare´-invariant subspace ofH containing vectors of the
form

uc&5E d3p (
m52 j

j

upW ,m@l, j #&x~pW ,m!. ~2.38!

The generalized eigenstatesupW ,m@l, j #& define a mapping
Fl, j from the mass-l spin-j irreducible representation space
Hl, j spanned by thex(pW ,m)’s to the Poincare´-invariant sub-
space of then-particle Hilbert space spanned by the vector
upW ,m@l, j #& . With this interpretation Eq.~2.38! becomes

uc&5Fl, j ux& ~2.39!

and, by definition,

U~L,a!Fl, j5Fl, jUl, j~L,a!, ~2.40!

whereUl, j (L,a) is the mass-l spin-j irreducible represen-
tation of the Poincare´ group onHl, j . The representation
Ul, j (L,a) has the same form as Eq.~2.35! with m replaced
by the mass eigenvaluel.

The generalization of the above to treat multiparticle sca
tering follows the discussion in Ref.@7#. The first step is to
give a general formulation of the asymptotic conditions th
define many-particle scattering states. This is most conv
niently done by constructing an auxiliary Hilbert space o
scattering asymptotes. Scattering asymptotes are labeled
channels. In order to define a channel, fix a partitionb. Note
that for any partitionb then-particle Hilbert spaceH can be
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expressed as a tensor product of thenbi-particle Hilbert

spaces associated with the particles in thei th cluster ofb:

H5 ^ i51
nb Hbi

. ~2.41!

DefineUb(L,a) by

Ub~L,a!:5 ^ i51
nb Ubi

~L,a!, ~2.42!

whereUbi
(L,a) the representation of the Poincare´ group

corresponding to the particles in thei th cluster ofb. Let
Mbi

be the mass operator associated with the representa

Ubi
(L,a). There is a channelb associated with the partition

b if eachMbi
has a bound eigenstate with masslb i and spin

j b i. Any such eigenstate is a linear combination of gener
ized eigenstates of the subsystem three-momentum
three-component of subsystem canonical spin:

ucb i
&5E d3p (

m52 jb i

jb i

upW ,m@lb i
, j b i#&xb i

~pW ,m!.

~2.43!

Following the treatment ofn-particle bound states, the eigen
statesupW ,m@mb i

, j b i#& define a mappingFb i
from the space

Hb i
of square integrable functionsxb i

(pW ,m) to the

Ubi
(L,a)-invariant subspace ofHbi

spanned by the eigen-

statesupW ,m@mb i
, j b i#&. With this interpretation Eq.~2.43! can

be expressed as

ucb i
&5Fb i

uxb i
&. ~2.44!

It follows that

Ubi
~L,a!Fb i

5Fb i
U fb i

~L,a!, ~2.45!

whereUfb i
(L,a) is a mass-lb i

spin-j b i irreducible represen-
tation of the Poincare´ group associated with a bound state o
the particles in the clusterbi . It can be obtained from Eq.
~2.35! by replacing the mass and spin with the eigenvalu
lb i

and j b i.

Define the channel Hilbert spaceHb for the channelb as

Hb5 ^ i51
nb Hb i

~2.46!

and the mappingFb from Hb to H by

Fb5 ^ i51
nb Fb i

. ~2.47!

The channel representation of the Poincare´ group onHb is
defined by

Ufb~L,a!:5 ^ i51
nb U fb i

~L,a!. ~2.48!

It follows from Eqs.~2.42!, ~2.45!, and~2.48! that the inter-
twining relations

Ub~L,a!Fb5FbUfb~L,a! ~2.49!
tion
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are satisfied for each channelb. Channels withnb.1 are
called scattering channels. The set of channels also inclu
a channel withn51 for eachn-particle bound state.

The asymptotic Hilbert spaceHf is the direct sum of all
of the channel spaces, including channels for then-particle
bound states:

Hf :5 % bHb . ~2.50!

An injection operator that mapsHf to then-particle Hil-
bert spaceH is defined by

F5(
b

Fb , ~2.51!

where the channel sum runs over bound and scattering ch
nels. The asymptotic representation of the Poincare´ group on
Hf is defined by

Uf~L,a!5(
b

Ufb~L,a!, ~2.52!

whereUfb(L,a) is interpreted to be zero on the orthogona
complement of theb channel subspace.

With this notation it is possible to treat all of the boun
and scattering channels simultaneously. Scattering states
solutions of the relativistic Schro¨dinger equation

uC6~ t !&5U~ I ,t !uC6~0!& ~2.53!

satisfying an incoming (2) or outgoing~1! wave asymp-
totic condition:

lim
t→6`

iuC6~ t !&2FUf~ I ,t !ux&i50. ~2.54!

Statesux& in a subspace ofHf corresponding ton-particle
bound states particles automatically satisfy Eq.~2.54! for
both time limits. For statesux& in channel subspaces involv-
ing more than one cluster Eq.~2.54! is equivalent to the
existence of the strong limits

lim
t→6`

iuC6~0!&2U~ I ,2t !FUf~ I ,t !ux&i50 ~2.55!

for some stateuC6(0)&. The model is asymptotically com-
plete if both limits exist and are separately complete. In a
that follows the dynamics is assumed to be asymptotica
complete. It follows that

uC6~0!&5V6~H,F,Hf !ux&, ~2.56!

where the wave operatorV6(H,F,Hf) is a mapping from
Hf to H given by the strong limit

V6~H,F,Hf !:5 lim
t→6`

U~ I ,2t !FUf~ I ,t !. ~2.57!

The assumed asymptotic completeness of the incoming
outgoing wave scattering states plus the bound states imp
that wave operatorsV6(H,F,Hf) are unitary mappings
from Hf to H satisfying
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IH5V1~H,F,Hf !V1
† ~H,F,Hf !

5V2~H,F,Hf !V2
† ~H,F,Hf !. ~2.58!

This implies unitarity of the scattering operator

S5V1
† ~H,F,Hf !V2~H,F,Hf !. ~2.59!

The scattering operator, considered as a mapping onHf , is
Poincare´ invariant if

@S,Uf~L,a!#50. ~2.60!

The following theorems are useful in what follows
Theorem 1. Consider a relativistic quantum mechani

model with asymptotically complete wave operators. A s
cient condition for the scattering operator to be Poinca´
invariant is for the asymptotically complete wave operat
to satisfy the intertwining relations

U~L,a!V6~H,F,Hf !5V6~H,F,Hf !Uf~L,a!.
~2.61!

Relativistic models formulated in one of Dirac’s forms
the dynamics satisfy

U~L,a!F5FUf~L,a! ~2.62!

for (L,a) in one of the kinematic subgroupsE, L, or F,
corresponding to the instant, point, or front form, resp
tively. Dirac’s forms of the dynamics are distinguished
the property that the kinematic subgroup (E, L, or F) of the
dynamical representation of the Poincare´ group is identical
to that of the noninteracting representation.

Equation~2.62! implies invariance of the wave operato
with respect the appropriate kinematic subgroup.

Sufficient conditions for Poincare´ invariance of the scat
tering operator in each of Dirac’s forms of the dynamics
given by the following theorems.

Theorem 2a. A sufficient condition for Poincare´ invari-
ance in an instant form dynamics with asymptotically co
plete wave operators is

lim
t→6`

i@F2U†
„Bc~p!,0…FUf„Bc~p!,0…#Uf~ I ,t !ux&] i50

~2.63!

for all canonical boostsBc(p).
Theorem 2b. A sufficient condition for Poincare´ invari-

ance in a point form dynamics with asymptotically compl
wave operators is

lim
t→6`

i@F2U†~ I ,aW !FUf~ I ,aW !#Uf~ I ,t !ux&] i50

~2.64!

for all spatial translations.
Theorem 2c. A sufficient condition for Poincare´ invari-

ance in a light front dynamics with asymptotically compl
wave operators is

lim
t→6`

i@F2U†~R,0!FUf~R,0!#Uf~ I ,t !ux&] i50

~2.65!
al
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for all rotations R.
Theorem 1 is proved in Ref.@7# while theorems 2a–2c are

proved in the Appendix. They imply restrictions on the in
teractions in the nontrivial dynamical generators specific
each form of the dynamics.

Spacelike cluster properties provide the necessary conn
tion between the relativistic dynamics of few- and man
body problems. Spacelike cluster properties require th
when the clusters of particles in the partitionb are asymp-
totically separated into subsystems, the dynamical repres
tation of U(L,a) looks like the tensor product of the sub
system representations.

In order to formulate this condition precisely letb be a
scattering channel corresponding to the partitionb. Let c be
any partition satisfyingc$b. This means that the asymptoti
cally bound clusters in the channelb are grouped in clusters
of the partitionc.

Define the operator onHb that translates the individual
clustersc of ‘‘particles’’ in the channel spaceb:

Tc; fb~x1 , . . . ,xnc!5 ^ i51
nc @ ^ bjPci

U fbj
~ I ,xi !#, ~2.66!

wherei labels the clusters ofc and j labels cluster ofb that
are contained in thei th cluster ofc. A channelb is compat-
ible with a partitionc if c#b. Spacelike cluster properties
can be formulated as

lim
minuxW i2xW j u→`

i@U~L,a!2Uc~L,a!#

3FbTc; fb~x1 , . . . ,xnc!uxb&i50 ~2.67!

in the limit that the minimum spacelike separation betwe
the clusters ofc becomes infinite. This must hold for al
channels compatible with the partitionc. The representation
U(L,a) satisfies algebraic cluster properties if it becom
the tensor productUc(L,a) when the interactions involving
particles in different clusters of the partitionc are turned off.
Formally, operators that satisfy (A)b5Ab , where (A)b is
obtained by turning off the interactions between particles
different clusters ofb andAb is built up from tensor products
of subsystem generators, are said to satisfy algebraic clu
properties. Since the operation in Eq.~2.67! separates par-
ticles in different clusters ofc, it follows that spacelike clus-
ter properties follow from algebraic cluster properties pr
vided the interactions are of sufficiently short range.

The difficulty is that for Bakamjian-Thomas model
U(L,a) does not becomeUc(L,a) when the interactions
between particles in different clusters ofc are turned off.
Specifically,

„U~L,a!…cÞUc~L,a!. ~2.68!

Scattering equivalences are used in what follows to tran
form Bakamjian-Thomas representations to representati
that satisfy spacelike cluster properties. A number of the
rems on scattering equivalence are needed in what follows
unitary operatorA onH is called a scattering equivalence i
it leaves the scattering operatorS5V1

† V2 unchanged. In-
variance of the scattering operatorS15S2 is equivalent to

V11V21
† 5V12V22

† 5:A12. ~2.69!
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The intertwining properties of the wave operators gi
A12H25H1A12.

Wave operators related by

V6~AHA†,F8,Hf !5AV6~H,F,Hf ! ~2.70!

are scattering equivalent.
Theorem 3. A necessary and sufficient condition for

unitary operator A to satisfy Eq. (2.70) is for

lim
t→6`

i~AF2F8!Uf~ t,I !ux&i50 ~2.71!

to vanish for both time limits.
Theorem 4. Any instant form representation is scatter

equivalent to an instant form Bakamjian-Thomas repres
tation.

Theorem 5. Any instant form Bakamjian-Thomas rep
sentation is scattering equivalent to both a point form and
front form Bakamjian-Thomas representation.

The proof of theorems 3 and 4 are given in@7# and the
proof of theorem 5 is given in the Appendix.

III. BASIS CONSTRUCTION

In this section the basis vectors used in the formulation
the dynamical models are constructed.
ve

the

ing
en-

re-
a

of

The kinematic representation of the Poincare´ group on
H is the tensor product ofn one-particle representations:

~3.1!

The representationU0(L,a) is reducible. There are many
ways to reduce thisn-fold tensor product to a linear super
position of mutually orthogonal irreducible subspaces. F
any collection ofn four-momenta a Lorentz boost can b
used to transform to a coordinate system where the to
momentum vanishes. The resulting coordinate system can
rotated so that the momentum of particle 1 points in th
1 ẑ direction, while an additional rotation about theẑ axis
can be used to bring the momentum of particle 2 to t
positivex part of thex-z plane. This coordinate system ca
be considered as a ‘‘body-fixed’’ momentum coordinate sy
tem for then-particle system.

With this motivation the desired irreducible represent
tions are defined below.

Definition 1. Let ( l51
n kW l50W with kW15(0,0,ukW1u) and

kW25(k2x,0,k2z) with k2x>0 and define the state
rties.
u@pW ,m; j #n;kW1 ,m1 , . . . ,kWn ,mn&:5U0„Bc~p!,0…E
SU~2!

dRDmn
j* ~R!U0~R,0!ukW1 ,m1 , . . . ,kWn ,mn&A m0

vm0
~pW !

, ~3.2!

where

p:5Bc~p!~m0 ,0W !, m05( v i~kW i !, ~3.3!

m i are canonical spin magnetic quantum numbers, and

ukW1 ,m1, . . . ,kWn ,mn&5ukW1 ,m1& ^ , . . . ,^ ukWn ,mn&. ~3.4!

The state vectorsu@pW ,m; j #n;kW1 ,m1 , . . . ,kWn ,mn& are the desired basis states. These states have the following prope
Theorem 6. The state vectoru@pW ,m; j #n;kW1 ,m1 , . . . ,kWn ,mn& transforms as a mass-m0 spin-j irreducible representation of

the Poincare´ group:

U~L,a!u@pW ,m; j #n;kW1 ,m1 , . . . ,kWn ,mn&5e2 ip8•au@pW 8,m8; j #n;k1 ,m1, . . . ,kn ,mn&Avm0
~p8!

vm0
~p!

Dm8m
j

@Rw~L,p!# ~3.5!

wherep8:5Lp.
The proof, which uses the invariance of the SU~2! Haar measure, is by direct calculation.
The relation to the single-particle states is given by the Clebsch-Gordan coefficients

^pW 1 ,m1 , . . . ,pW n ,mnu@pW ,m; j #n;kW1 ,n1 , . . . ,kWn ,nn&5dS (
i
pW i2pW D E

SU~2!
dRd3„pW 12@B~pW /m0!R#k1…•••d

3

3„pW n212@B~pW /m0!R#kn21…A m0

vm0
~pW !

Dmn
j* ~R!)

i51

n Av~pi !

v~ki !
Dm in i

j i

3$„Rw@Bc~p!R#,ki…%. ~3.6!
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The integral over SU~2! can be done by observing that if we define

kW195RkW1 , kW295RkW2 , ~3.7!

then

dR5
1

16p2dk̂19dk̂29d~ k̂19• k̂292 k̂1• k̂2!, ~3.8!

where the integral around one of the azimuthal angles must be over 4p rather than 2p since SU~2! is a double cover of SO~3!.
After performing the integrations the resulting fixed value ofR is the rotation

R5S 1 0W

0 @ k̂282 k̂18~ k̂18• k̂28!#/@12~ k̂18• k̂28!2#1/2

0 k̂183 k̂28/@12~ k̂18• k̂28!2#1/2

0 k̂18

D , ~3.9!

which transformsk18 :5B21(p)p1 to k1 with kW15(0,0,ukW1u) andk28 :5B21(p)p2 to k2 with kW25(k2x ,0,k3y) andk2x>0.
Evaluation of the integral gives

^pW 1 ,m1 , . . . ,pW n ,mnu@pW ,m; j #n;kW1 ,n1 , . . . ,kWn ,nn&

5
1

16p(
6

dS (
i
pW i2pW D d~ ukW18u2ukW1u!

ukW1u2
d~ ukW28u2ukW2u!

ukW2u2
d~ k̂18• k̂282 k̂1• k̂2!

3 )
i53

n21

d~kW i82kW i !Avm0
~pW !

m0
Dmn

j* ~6R!)
i51

n Av~ki !

v~pi !
Dm in i

j i $„Rw@Bc~p!~6R!#,ki…%, ~3.10!

whereki85R21B21(p)pi andR is the rotation~3.9!. The sum is over the two SU~2! matrices that correspond to the rotatio
~3.9!. It arises because the integral over the Haar measure picks up both elements of SU~2!. For integer spins both terms in the
sum are identical and it is sufficient to replace(6 by multiplication by 2.

The action of the permutation operator can be computed in this basis. Lets be the permutation that takesi→ i 85s( i ). Let
R(s) be the rotation that takesk18 to thez axis andk28 to the positive halfx-z plane:

R~s!5S 1 0W

0 @ k̂282 k̂18~ k̂18• k̂28!#/@12~ k̂18• k̂28!2#1/2

0 k̂183 k̂28/@12~ k̂18• k̂28!2#1/2

0 k̂18

D . ~3.11!

It follows from the definitions that, for a permutations,

U~s!u@pW ,m; j #n;kW1 ,n1 , . . . ,kWn ,nn&5u@pW ,m; j #n8;kW18 ,n18 , . . . ,kWn8,nn8&Dn8n
j* @R~s!#D

n
18n1

j 1 @R~s!#•••Dnn8nn

j n @R~s!#.

~3.12!

The space reflection operation has a similar form

U~P!u@pW ,m; j #n;kW1 ,n1 , . . . ,kWn ,nn&5u@2pW ,m;m0 ,s#n8;k18 ,n18 , . . . ,kn8,nn8&Dn8n
j* @R~P!#D

n
18n1

j 1 @R~P!#•••Dnn8nn

j n @R~P!#,

~3.13!
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where

ki852R~P!ki

andR(P) is the rotation about they axis throughp:

R~P!5S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21

D . ~3.14!

IV. TWO-BODY INTERACTION AND SCATTERING
EQUIVALENCE

The saturation of nuclear binding energy with partic
number suggests that it should be sufficient to model nu
using dynamical operators with only two- and three-bo
interactions. In nonrelativistic quantum mechanics two-bo
interactions are determined from the two-body proble
Cluster properties imply that the many-body Hamiltonian
cludes sums of the two-body interactions involving each p
of interacting particles. Additional three-body interactio
are also possible and can be deduced from three-body m
els. Cluster properties determine their contribution to
many-body Hamiltonian. This can be repeated for more co
plicated many-body interactions.

Although generalizations of this procedure to relativis
systems are possible, the decomposition of the generato
the Poincare´ group into linear combinations of subsyste
interactions that is dictated by cluster properties fails to s
isfy the Poincare´ commutation relations without additiona
many-body interactions.

Fortunately this construction works in the special ca
that only a single pair of particles interact. In this case
representation of the Poincare´ group is a tensor product

Ub~L,a!:5U ~12!~L,a! ^U ~3!~L,a! ^ •••^U ~n!~L,a!,
~4.1!

whereb is the partition (12)(3)(4)•••(n), with correspond-
ing formulas when pairs other than particles 1 and 2 inter
The representationU (12)(L,a) is assumed to be an insta
form Bakamjian-Thomas representation. The tensor prod
of subsystem Bakamjian-Thomas representations is n
Bakamjian-Thomas representation. Specifically, the can
le
clei
dy
dy
m.
in-
air
ns
od-

the
m-

tic
rs of
m
at-
l

se
the

act.
nt
uct
ot a
oni-

cal spin operator forUb(L,a) differs from the canonical spin
operator for a system ofn noninteracting particles.

In this section we apply theorem 4 to the mass opera
Mb associated with the tensor product representation~4.1! to
obtain a scattering-equivalent Bakamjian-Thomas mass
eratorM̄b . These Bakamjian-Thomas mass operators ca
combined to make ann-body Bakamjian-Thomas mass o
erator including all of the two-body interactions.

Theorem 4 is special to the instant form of the dynam
The other forms can be treated by first transforming them
an instant form representation, applying theorem 4, and
transforming back to the initial form of the dynamics. T
necessary transformations are discussed in the next se
and are given in the Appendix.

Consider a partitionb of the formb5@(12)(3)•••(n)#.
The mass operatorMb is related to the two-body mass op
eratorM12 by

Mb5@~AM12
2 1pW 12

2 1AM0,n22
2 1pW n22

2 !22~pW 121pW n22!
2#1/2,
~4.2!

whereM12 is the interacting two-body Bakamjian-Thom
mass operator tensor product with the identity on the spe
tor Hilbert space andM0,n22 is the kinematically invariant
mass operator for a system ofn22 free particles tenso
product with the identity onH12. The quantitiespW 12 and
pW n22 denote the momentum of the interacting pair and
n22 spectator particles. The operatorMb is not a
Bakamjian-Thomas type of operator in then-particle Hilbert
space. This can be seen by evaluating the matrix eleme
the basis of Sec. III. These matrix elements have a nontr
dependence on the total momentum and kinematic spin.

The procedure for constructing the interaction betwe
particles 1 and 2 is to constructMb and use scattering
equivalence theorems to find a scattering equiva
Bakamjian-Thomas interactionM̄b . The scattering equiva
lence is not explicitly needed to construct the interaction;
that is needed is the result of applying this transformation
Mb .

The desired two-body interaction is then

v̄b :5M̄b2M0 . ~4.3!

In order to compute this interaction note that explicit calc
lation shows that
ion
l

^pW ,m; j @n,kW1 ,m1 , . . . ,kWn ,mn#uMbupW 8,m8; j 8@n8,kW18 ,n1 , . . . ,kWn8,nn#&5d~pW 2pW 8!

3^m; j @n,kW1 ,m1 , . . . ,kWn ,mn#iMb~pW !im8; j 8@n8,kW18 ,n1 , . . . ,kWn8,nn#& ~4.4!

has nonzero matrix elements forjÞ j 8. Theorem 4 states that this operator is scattering equivalent to a mass operatorM̄b with
matrix elements of the form~4.4! with the kernel in Eq.~4.4! that multiplies the delta function replaced by the same express
with pW 50. This operator is independent ofpW and diagonal inj . The kernel ofM̄b can be computed using the spectra
representation of the two-body solutions. To computeM̄b first note that by definition

^pW ,m; j @n,kW1 ,m1 , . . . ,kWn ,mn#uM̄bupW 8,m8; j 8@n8,kW18 ,m18 , . . . ,kWn8,mn8#&:5d~pW 2pW 8!

3^m; j @n,kW1 ,m1 , . . . ,kWn ,mn#iMb~0!im8; j 8@n8,kW18 ,m18 , . . . ,kWn8,mn8#&. ~4.5!
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The kinematical rotational invariance and the orthogonality relation~2.21! give

^m; j @n,kW1,m1, . . . ,kWn ,mn#i Mb~0!im8; j 8@n8,kW18,m18 . . . ,k
W
n8,mn8#&

5
d j j 8dmm8
2 j11 (

m952 j

j E d3p^0W m9; j @n,kW1 ,m1 , . . . ,kWn ,mn#uMbupW m9; j @n8,kW18 ,m18 , . . . ,kWn8,mn8#&. ~4.6!

Inserting the definition of the basis vectors, Eq.~3.2!, and the spectral expansion of the two-body mass operator, Eq.~4.2!,
gives

^m; j @n,kW1 ,m1 , . . . ,kWn ,mn#iMb~0!im8; j 8@n8,kW18 ,m18 , . . . ,kWn8,mn8#&

5
d j j 8dmm8
2 j11 E

SU~2!
dRDnn8

j* ~R!^kW1 ,m1 ,kW2 ,m2i j 12,l12,m12&FAl12
2 1~kW11kW2!

21(
l53

n

AkW18 ,m2G
3D

m12 ,m128

j 12 ~R!^ j 12,l12,m128 ikW18 ,m18 ,kW28 ,m28& )
m53

n Fd~km2km8 !

km
2 Yrm

lm~ k̂m!D
rmrm8

lm ~R!Y
r
m8

* lm~ k̂m8 !Dmmm
m8

1/2
~R!G , ~4.7!

where^ j 12,l12,m128 ikW128 ,m18 ,kW28 ,m28& are the reduced two-body wave functions of the interacting 12 pair:

^pW , j 12,l12,m128 ukW18 ,m18 ,kW28 ,m28&5d~pW 2kW12kW2!^ j 12,l12,m128 ikW18 ,m18 ,kW28 ,m28& ~4.8!

and

^ j 12,l12,m128 ikW1 ,m1 ,kW2,m2&5^ j 12,l12uq12,l ,s&Fv1~q12!v2~q12!v12~p12!

v1~k1!v2~k2!m012
G1/2^ j 12,m12u l ,m l ,s,ms&

3^smsu
1
2 ,m18 ,

1
2 ,m28&Ym l

* l~ q̂12!Dm
18m1

1/2
@B21~q12!B

21~p12!B
21~k1!#

3Dm
28m2

1/2
@B21~q12!B

21~p12!B
21~k2!#, ~4.9!

with p125k11k2, q125B21(p12)k1, andm012
2 52(k11k2)

2. The amplitudeŝ j 12l12uq,l ,s& are solutions to the two-body
mass eigenvalue equation

~AqW 21m1
21AqW 21m2

22l12!^ j 12,l12uq,l ,s&52E ^q8,l 8,s8uv12
j 12uq,l ,s&q82dq8^ j 12,l12,uq8,l 8,s8&, ~4.10!

corresponding to both bound and scattering states.
The matrix elements in Eq.~4.7! have a simple expression in terms of coefficients defined by the following integral ove

rotations,

I
nn8:n12 ,n128 ,r3 ,r38, . . . ,r n ,r n8,m3 ,m38•••mn ,mn8

j : j 12 ,l3 ,••• l n ,1/2•••1/2 5
1

2 j11ESU~2!
dRDnn8

j* ~R!D
m12m128

j 12 ~R! )
m53

n

@D
rmrm8

lm ~R!Dmmm
m8

1/2
~R!#, ~4.11!

given by

^m; j @n,kW1 ,m1 , . . . ,kWn ,mn#iMb~0!im8; j 8@n8,kW18 ,m18 , . . . ,kWn8,mn8#&

5d j j 8dmm8I nn8:n12 ,n128 ,r3 ,r38 . . . ,r n ,r n8,m3 ,m38 . . . ,mn ,mn8

j : j 12 ,l3 , . . . ,l n ,1/2 . . .,1/2 ^kW1 ,m1 ,kW2 ,m2i j 12,l12,m12&FAl12
2 1~kW11kW2!

21(
l53

n

AkW l21m2G
3^ j 12,l12,m128 ikW18 ,m18 ,kW28 ,m28& )

m53

n Fd~km2km8 !

km
2 Yrm

lm~ k̂m!Y
r
m8

* lm~ k̂m8 !G . ~4.12!

These coeffieicents can be computed exactly using group theoretical techniques or by direct integration using Eqs.~2.21! and
~2.23!.

The above expression corresponds to the case that particles 1 and 2 interact. For any other choice of an interactin
particle i j let s be the permutation that interchanges particles 1 withi and 2 with j . SinceU†(s)M̄bU(s)5M̄ ( i j )(1)•••(n) , it
follows using Eq.~3.12! that
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^@pW ,m; j #n;kW1 ,n1 , . . . ,kWn,nnuM̄ ~ i j !~1! . . . ~n!u@pW 8,m8; j 8#n8;kW18 ,n18 , . . . ,kWn8,nn8&

5^@pW ,m; j #n;kW1 ,n1 , . . . ,kWn,nnuU†~s!M̄ ~12!~1!•••~n!U~s!u@pW 8,m8; j 8#n8;kW18 ,n18 , . . . ,kWn8,nn8&

5Dnn9
j* @R21~s!#D

n1n
19

j 1 @R21~s!#•••D
nnn

n9

j n @R21~s!#^@pW ,m; j #n9;kW19 ,n19 , . . . ,kWn9nn9uM̄ ~12!~3!•••~n!u

3@pW 8,m8; j #n-;kW1- ,n1- ,•••,kWn-&Dn-n8
j* @R~s!#D

n
1-n

18

j 1 @R~s!#•••D
n
n-nn8

j n @R~s!#, ~4.13!
n
n

a
t
-

d

o
o
a

e

by

t

is
e-
lu-

-
ng
e
ed

ty
whereki95R(s)ki andki-5R(s)ki8.

V. MODEL DYNAMICS

The two-body interactions defined by~4.3!, ~4.6!, ~4.7!,
and ~4.13! are all Bakamjian-Thomas interactions. Each o
commutes with both the kinematic generators and the ki
matic spin. Although they fail to cluster properly, each inte
action has the property that when it is added to the kinem
mass operator the result is scattering equivalent to a sys
of two interacting particles andn22 noninteracting specta
tors that clusters properly.

These Bakamjian-Thomas interactions can be added
construct a Bakamjian-Thomas mass operator that inclu
interactions involving all pairs of particles. This follows be
cause each term in this mass operator commutes with
kinematic generators and the kinematic spin. Simultane
eigenstates of the mass, spin, and momentum can be ch
to transform irreducibly with respect to a Bakamjian-Thom
representation of the Poincare´ group.

Then-particle mass eigenstates are solutions to the eig
value problem

M̄ uC&5luC&, ~5.1!

where

M̄5M01 (
$bunb5n21%

~M̄b2M0!5M01 (
$bunb5n21%

v̄b .

~5.2!

In this representation the wave functions have the form

^pW ,m; j @n,kW1 ,m1 , . . . ,kWn ,mn#upW 8,m8; j 8,c&

5d3~pW 2pW 8!dmm8d j j 8^n,k
W
1 ,n1 , . . . ,kWn ,nnu j ;f&.

~5.3!

The reduced wave functions^n,kW1 ,n1 , . . . ,kWn ,nnu j ;f& sat-
isfy

S l2( vm~kW i
2! D ^n,kW1 ,n1 , . . .kWn ,nnu j ;f&

5E ^n,kW1 ,n1 , . . . ,kWn ,nni v̄b
j in8,kW18 ,n18 , . . . ,kWn8,nn8&

3dukW1udk2xdk2zu~k2x!d
3k3•••d

3kndS ( kW i D
e
e-
r-
tic
em

to
es
-
all
us
sen
s

n-

^n8,kW18 ,n18 , . . . ,kWn8,nn8u j ;f&, ~5.4!

where ^•••ivbi•••& indicates that thed3(pW 2pW 8)d j j 8dmm8
have been factored out of the matrix element defined
~4.3!, ~4.7!, and~4.13!.

The dynamicsŪ(L,a) is defined by the requirement tha
the complete set of eigenstates~5.3! of the mass operator
~5.2! transform like mass-l spin-j irreducible representations
of the Poincare´ group.

For a system of more than a few particles, this equation
a complicated many-body problem. However, it has the us
ful feature that it can be used to compute variational so
tions of the form

^pW m; j @n,kW1 ,m1 , . . . ,kWn ,nn#upW 8,m8, j 8f&

5d~pW 2pW 8!dmm8d j j 8^n,k
W
1 ,m1 , . . . ,kWn ,nnu j ;f&,

~5.5!

where

^n,kW1 ,n1 , . . . ,kWn ,nnu j ;f&

5(
n

cn^n,kW1 ,n1 , . . . ,kWn ,nnu j ;fn& ~5.6!

and^n,kW1 ,n1 , . . . ,kWn,nnu j ;fn& are suitably chosen expan
sion functions. This approximation corresponds to projecti
the mass operatorM̄ on a subspace of the Hilbert space. Th
equations for the coefficients have the form of a generaliz
eigenvalue problem:

(
n

^ jf l u( wm~kW i
2!u jfn&cn1(

b
(
n

^ jf l i v̄bi jfn&cn

5l(
n

^ jf l u jfn&cn . ~5.7!

The resulting equations give coefficientscn that define the
variational eigenstates. The eigenvalues are variational~up-
per! bounds on the exact mass eigenstatesln .

The variational approximation has the important proper
that it exactly preserves the Poincare´ invariance. Specifically,
the approximate eigenstatesupW ,m, j ,f&5upW ,m, j ,ln& defined
by ~5.5!, ~5.6!, and ~5.7! transform irreducibly with respect
to the unitary representation of the Poincare´ group:
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Ūv~L,a!upW ,m, j ,ln&5e2 ipln
8 •aupW 8,m8, j ,ln&

3Avln
~pW 8!

vln
~pW !

Dm8m
j

3@B21~pW 8/ln!LB~pW /ln!#,

~5.8!

where ln is the variational mass eigenvalue an
p85L„vln

(pW ),pW ….
The special advantage of the simultaneously coupled

sis is that variational wave functions of a given spin, parit
and exchange symmetry can be constructed using the op
torsU(s) andU(P) given in Eq.~3.12! and~3.13!. Expan-
sion functions of a given exchange symmetry can be gen
ated from a given expansion function by symmetrizing:

^n,kW1 ,n1 , . . . ,kWn ,nnu j ;f&

5c(
s

~2 ! usu^n,kW1 ,n1 , . . . ,kWn ,nnuU~s!u j ;f&, ~5.9!

where the sum is over all permutations of identical particl
and the phase factor is2 for odd transposition of fermions.
The coefficientc is a normalization constant. Variationa
wave functions of a given parity are constructed using e
pansion functions of the form

^n,kW1 ,n1 , . . . ,kWn ,nnu j ;f&

5
1

A2
@^n,kW1 ,n1 , . . . ,kWn ,nnu j ;x&

6^n,kW1 ,n1 , . . . ,kWn ,nnuU~P!u j ;x&#. ~5.10!

The result is a set of approximate eigenstatesupW ,m, j ,ln& that
are linear combinations of the symmetrized expansion fun
tions. These states define reduced wave functions for st
that transform as a mass-ln spin-j irreducible representation
of the Poincare´ group. Thus exact Poincare´ invariance, per-
mutation symmetry, and reflection symmetry are preserv
at each level of approximation. Successive approximatio
improve the mass eigenvalue.

Equation ~5.4!, with the interactions defined in Sec. II
and the approximations defined in Eq.~5.7!, is the main re-
sult of this paper. It shows how to embed two-body intera
tions in models with symmetric coupling schemes and ho
to formulate systematic Poincare´-invariant approximations of
a given spin, parity, and exchange symmetry.

A shortcoming of this model and the associated appro
mations is that they explicitly violate spacelike cluster pro
erties. In the next section this model is interpreted as a fi
approximation to a model that clusters properly. The goal
the next section is to obtain an understanding of the corr
tions needed to restore cluster properties.

The irreducible basis states defined in definition 1 use
linear momentum and canonical spin to label vectors in
irreducible subspace. The degeneracy quantum numbers
clude ‘‘body-fixed’’ components of the linear momentum
d
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and the three-component of the canonical spin. It is easy
construct similar irreducible basis vectors that replace all
the linear momentum variables by either four-velocities
light front momentum components. In addition the spins c
all be Melosh rotated to light front spins or helicities. Be
cause theorem 4 is special to instant form dynamics,
construction of two-body interactions that are scatteri
equivalent to Bakamjian-Thomas interactions is most na
rally performed using instant form dynamics. The results c
be transformed to front- or point form representation with t
transformations used in the proof of theorem 5 in the Appe
dix.

VI. SPACELIKE CLUSTER PROPERTIES

The purpose of this section is to deduce the relations
between the models defined by solving Eq.~5.4! in the pre-
vious section to models that satisfy spacelike cluster prop
ties. This relationship can be used to determine the spe
corrections needed to restore spacelike cluster properties

The spacelike cluster property is the requirement that
dynamical representation of the Poincare´ group approximate
a tensor product of subsystem representations when the
ticles in the different clusters are separated beyond the ra
of their mutual interactions. The mathematical formulatio
of this property is given in Eq.~2.67!. Spacelike cluster prop-
erties provide the connection between the relativistic fe
and many-body problem and are needed to interpret exp
ments that test special relativity on isolated subsystems.

In what follows the notion of scattering equivalence
used extensively. Scattering equivalences are a subgrou
the group of unitary operators. The type of scattering equi
lence discussed in theorem 4 that transforms any instant f
representation of the Poincare´ group to an instant form
Bakamjian-Thomas representation is denoted byBx . The
type of scattering equivalence discussed in theorem 5
transforms an instant form Bakamjian-Thomas represen
tion of the Poincare´ group to a front- ~or point! form
Bakamjian-Thomas representation is denoted byCx . These
two types of scattering equivalences are used to inductiv
construct representations of the Poincare´ group satisfying
cluster properties. A overbar is used to indicate a Bakamji
Thomas representationŪ(L,a) of the Poincare´ group.

The construction is discussed in detail for the three- a
four-body systems. Explicit inductive algorithms are given
then-particle case. The general construction follows close
the construction given in@7#. Theorem 4 of this paper is
theorem 3.4 of Ref.@7#. This theorem does not have a ge
eral extension to the front or point-form of the dynamic
There is an extension in the case of the front form@18#, but
it does not hold with the generality of theorem 4. In th
paper, the scattering equivalenceCx is used to transform to
representations where theorem 4 can be used.

The construction of a unitary representation of the Po
carégroup satisfying cluster properties is by upward indu
tion on the number of particles and downward induction
the number of clusters for a fixed number of particles.

The starting point is a two-body Bakamjian-Thoma
model. Letb be a partition of an-particle system withn-1
clusters. This corresponds ton-2 free particles and a single
interacting pair. The Bakamjian-Thomas method@3,7,10,9#
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can be used to construct a two-body unitary representatio
the Poincare´ group in any of Dirac’s forms of the dynamics
Let

Ub~L,a!:5 ^ i51
nb Ūbi

~L,a! ~6.1!

be the tensor product of the subsystem representations
responding to the partitionb. This tensor product includes 1
two-body Bakamjian-Thomas representation andn-2 one-
body representations.

Since each of the subsystem representations assoc
with the clusters of the partitionb is a Bakmjian-Thomas
representation~trivially in the one-body case!, they are each
scattering equivalent to an instant form Bakamjian-Thom
representation by the scattering equivalencesCbi

† of theorem

5. In the case that the starting representation is already
instant form representationCbi

† 5I , it follows that

Ub
I ~L,a!:5@ ^Cbi

† #Ub~L,a!@ ^Cbi
#5 ^ @Cbi

† Ūbi
~L,a!Cbi

#

~6.2!

is a tensor product of instant form Bakamjian-Thomas re
resentations that are scattering equivalent toUb(L,a). Thus
for eachn21 cluster partitionb there is a scattering equiva
lence that transforms the representationUb(L,a) to a tensor
product of instant form Bakamjian-Thomas representatio

The tensor product of instant form Bakamjian-Thom
representations does not commute with the kinematic can
cal spin operator and is consequently not a Bakamji
Thomas representation. It is, however, an instant form rep
sentation and is scattering equivalent to a Bakamji
Thomas representation by the scattering equivalenceBb of
theorem 4:

Ūb
I ~L,a!:5BbUb

I ~L,a!Bb
† . ~6.3!

The representationŪb
I (L,a) is exactly the representatio

constructed in Sec. III using the mass operatorM̄b , the ki-
nematic instant form Poincare´ generators, and the kinemati
canonical spin.

By theorem 5 the representation~6.3! is scattering equiva-
lent to a Bakamjian-Thomas representation in the cho
form of the dynamics by a scattering equivalenceCb :

Ūb~L,a!:5CbŪb
I ~L,a!Cb

† . ~6.4!

Since the scattering equivalences form a group, the pr
uct

Ab :5CbBb~ ^Cbi
† ! ~6.5!

is a scattering equivalence that maps a tensor produc
subsystem representations to a Bakamjian-Thomas repre
tation in any form of the dynamics:

Ūb~L,a!5AbUb~L,a!Ab
† . ~6.6!

The construction up to this point is limited ton-particle sys-
tems where a single pair of particles interact.

The next step is to consider the case of three interac
particles. In order to formulate the limit of ann-particle sys-
of
.
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tem clustering into a tensor product of subsystems that
clude three-particle subsystems we need a three-particle
resentation that clusters to a tensor product of a two-part
representation and a single-particle representation.

In general the spin operatorsjWb associated with the tenso
product representationUb(L,a) for different n21 cluster
partitionsb are distinct and nonkinematic. Because of this
is difficult to combine the mass operatorsMb corresponding
to different interacting pairs in a manner that preserves
group representation properities. The problem can be so
by replacing theMb’s by the scattering equivalentM̄b’s de-
fined by

M̄b5AbMbAb
† , ~6.7!

whereAb is given by Eq.~6.5!. The spin operator for each
M̄b is the kinematicn-particle spin operator. It follows tha
the three-body mass operator

M̄ ~3!:5M̄ ~12!~3!1M̄ ~23!~1!1M̄ ~31!~2!22M ~1!~2!~3!
~6.8!

commutes with the kinematic generators and the kinem
spin in a given form of the dynamics. Thus it is the ma
operator for a three-body Bakamjian-Thomas representa
of the Poincare´ group.

Note that for instant form Bakamjian-Thomas represen
tions, Ū(L,a) can be constructed by first finding simulta
neous eigenstates ofM̄ (3), PW , j 2, and jWc• ẑ. This is done by
diagonalizingM̄ (3) in a basis of simultaneous eigenstates
the kinematic operatorsPW , j 2, and jW• ẑ and any additionally
kinematically invariant degeneracy parameters. The rep
sentationŪ(L,a) is fixed by the requirement that thes
eigenstates transform as a unitary irreducible representa
of the Poincare´ group with the mass and spin labeled by th
eigenvalues ofj 2 and M̄ (3). The analogous construction
works in the point and front forms except that the mome
tum is replaced by either the four-velocity or the light fro
component of the four-momentum and in the case of
front form theẑ component of the canonical spin is replace
by the ẑ component of the light front spin.

To investigate cluster properties consider the behavior
the scattering equivalencesAb in the limit that the interac-
tions between particles in the same cluster ofb are turned
off. For a two-cluster partitionb of a three-particle system
Mb→M (1)(2)(3) when the interactions between the interac
ing pair of particles are turned off. The corresponding rep
sentationUb(L,a) becomes the kinematic representatio
which is a Bakamjian-Thomas representation, in the sa
limit. With the definitions ~6.5! scattering equivalenceAb
becomes the identity.

Thus, in the limit that all interactions involving particle
(3) are turned off,M̄ (3) becomes

M̄ ~3!5 (
nb52

AbMbAb
†22M ~1!~2!~3!→IM ~1!~2!~3!I

1IM ~1!~2!~3!I1A~12!~3!M ~12!~3!A~12!~3!
† 22M ~1!~2!~3!

5AaMaAa
†5M̄a , ~6.9!

wherea5(12)(3). It follows that
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Ū~L,a!→AaUa~L,a!Aa
†5Ūa~L,a!ÞUa~L,a!

~6.10!

in the same limit, which shows the manifest violations o
cluster properties due to the presence of theAb’s.

A new scattering-equivalent representation with the co
rect limit can be constructed by introducing a new scatteri
equivalence. The new scattering equivalence is designed
cancel off each of theAb’s in each asymptotic region. Define
the Sokolov product of the operatorsA(12)(3) , A(23)(1) , and
A(31)(2) by adding the Cayley transform of each operator a
constructing the inverse Cayley transform of the result:

S@A~12!~3!A~23!~1!A~31!~2!#

:5
11 i ~a~12!~3!1a~23!~1!1a~31!~2!!

12 i ~a~12!~3!1a~23!~1!1a~31!~2!!
, ~6.11!

a~ i j !~k! :5 i
I2A~ i j !~k!

I1A~ i j !~k!
. ~6.12!

The Sokolov product of unitary operators is unitary and sym
metric under interchange of operator ordering within th
product. In what follows the Sokolov product of scatterin
equivalences is assumed to be a scattering equivalence.
scattering equivalenceA(3) is defined as the Sokolov prod-
uct of the scattering equivalencesAb for all two cluster par-
titions:

A~3!:5S@A~12!~3!A~23!~1!A~31!~2!#. ~6.13!

The transformed mass operator and unitary representa
of the Poincare´ group are defined by

M ~3!:5A†~3!M̄ ~3!A~3!,
~6.14!

U~L,a!5A†~3!Ū~L,a!A~3!.

In the limit that the interactions involving particlei are
turned off these operators become

A~3!→S@A~ jk !~ i !•I •I #5A~ jk !~ i ! ~6.15!

and

U~L,a!→A~ jk !~ i !
† Ū ~ jk !~ i !~L,a!A~ jk !~ i !5U ~ jk !~ i !~L,a!,

~6.16!

which shows thatU(L,a) defined by Eq.~6.14! satisfies
algebraic cluster properties. One expects that for interclus
interactions of sufficiently short range the representati
U(L,a) defined above will satisfy Eq.~2.67!.

The scattering-equivalenceA(3) transforms a Bakamjian-
Thomas three-body system to a scattering-equivalent thr
body system that algebraically clusters. Since cluster prop
ties fix the three-body generators of the Poincare´ group in
terms of the one- and two-body generators, up to over
three-body interactions, the net result of this construction
to generate additional new three-body interactions needed
maintain Poincare´ invariance. The three-body interaction
generated have a momentum dependence dictated by clu
f
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properties. This distinguishes them from three-bod
Bakamjian-Thomas interactions that can always be added
M̄ (3)

The representationŪ(L,a) in Eq. ~6.14! is exactly the
representation of the Poincare´ group constructed in the pre-
vious section for the instant form three-body case. Since t
representation is scattering equivalent to a dynamical mo
that clusters, it follows that the model of Sec. III gives th
same mass eigenvalues and scattering cross sections a
model that clusters. This means that in the three-body c
no additional corrections are needed. This result was est
lished in 1965 by Coester in@4#. Unfortunately the conclu-
sion is not valid for systems of more than three particles.

The four-body system is the simplest system that exhib
the most general difficulties. Proceeding to the four-bo
system, consider both two- and three-cluster partitions
four particles. For each of these partitions define the rep
sentations

Ub~L,a!:5 ^ i51
nb Ubi

~L,a!, ~6.17!

where eachUbi
(L,a) is the representation of the Poincar´

group for the physical one-, two-, and three-body subsyste
that satisfy algebraic cluster properties. For the two-bo
subsystems these are two-body Bakamjian-Thomas repre
tations while for the three-body subsystems it is the rep
sentation~6.14! defined above.

In the two-body case Ubi
(L,a)5Ūbi

(L,a) are
Bakamjian-Thomas representations while in the three-bo
caseUbi

(L,a) is related to a Bakamjian-Thomas represent

tion by the scattering equivalenceA(3) in Eq. ~6.13! which
is denoted byAbi

. The general result can be expressed in t
form

Ubi
~L,a!5Abi

† Ūbi
~L,a!Abi

, ~6.18!

whereAbi
is the identity for two-particle clusters and the

scattering equivalenceA(3) for each of the three-particle
clusters.

The next step is to generalize Eq.~6.5! to the four-body
case by defining the scattering equivalences

Db :5CbBb~ ^Cbi
† Abi

!. ~6.19!

The scattering equivalencesCb , Bb , andCbi
have the same

interpretation as the corresponding quantities appearing
Eq. ~6.5!. The scattering equivalencesDb transform the ten-
sor product of the physical subsystem representations as
ciated with the particles in each cluster of the partitionb to
Bakamjian-Thomas representations. The tensor product r
resentations are the required limiting representations wh
interactions between particles in different clusters ofb are
turned off while the Bakamjian-Thomas representations a
convenient for adding interactions. The new factorsAbi

,
which do not appear in Eq.~6.5!, are needed to convert the
physical representations of the three-body subsystems
cussed above to Bakamjian-Thomas representations.

The four-body problem has an additional complicatio
that does not occur in the three-body case. To understand
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problem consider the three partitionsa5(123)(4), b5
(12)(34), andc5(12)(3)(4) andturn off all interactions
involving particle 3. In this limitDa andDb defined by Eq.
~6.19! both become scattering equivalences (Da)c and
(Db)c with the property that (Da)c , (Db)c , andDc each
map Uc(L,a) to ~possibly! different scattering-equivalent
Bakamjian-Thomas representations. This is more comp
cated than in the three-body case where all of the limiti
forms were the identity, which facilitated the cancellations
Eq. ~6.9!. In order to get similar cancellations in the four
body system it is desirable to redefineDa andDb so they
both becomeDc in the limit that interactions involving par-
ticle 3 are turned off. Since interactions involving particle
or 2 could also be turned off, the general condition

~Da!d5Daùd , ~Db!d5Dbùd ~6.20!

is required, whered is any partition of the four-body system
This ensures that all of these operatorsDa are built out of the
sameb-connected@D#b’s.

This can be done by replacing theDb’s defined by Eq.
~6.19! by new scattering equivalencesAb with this property
defined as follows:

Ad :5Dd , nd>3 ~6.21!

for all three- and four-cluster partitions. For two-cluster pa
titions, such asa andb above, defineAa using theAd’s for
nd>3 in the Sokolov products

Aa :5DaSa.d.0@~Da!d
†Aaùd#, ~6.22!

where the factors in the Sokolov product correspond to t
three-cluster partitionsd contained ina ~or b, respectively!.
Specifically for the casea5(123)(4) theSokolov product is
the inverse Cayley transform of the sum of the Cayley tran
forms of (Da)d

†Aaùd for the partitions d5(12)(3)(4),
(13)(2)(4), and (23)(1)(4). For thecaseb5(12)(34) the
product is over the two partitionsd5(1)(2)(34) and
(12)(3)(4). Theremaining two-cluster partitions are treate
similarly. The definition of theAb for two-clusterb’s in Eq.
~6.22! only involves three-clusterAc’s. The operatorsAb so
defined have the property that if the interactions involvin
particles in different clusters of a partitionc are turned off,
then

~Ab!c→~Db!c~Db
†!cAbùc5Abùc . ~6.23!

This follows because all but one term become the identity
the Sokolov product when one of the two clusters ofb is
broken up.

This construction extends to all partitions of two or mor
clusters, generating scattering equivalencesAb that map each
tensor product representation to a Bakamjian-Thomas rep
sentation in the desired form of the dynamics:

AbUb~L,a!Ab
†5Ūb~L,a!, ~6.24!

M̄b :5AbM̄bAb
† . ~6.25!

By construction the operatorsAb satisfy the following alge-
braic cluster property:
li-
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Ab→~Ab!c5~A!bùc . ~6.26!

It follows that in the same limit~6.24! becomes

AbùcUbùc~L,a!Abùc
† 5Ūbùc~L,a!. ~6.27!

As in the three-body case letM̄bi
denote the mass operators

associated with the barred representations and define a fou
body Bakamjian-Thomas mass operator:

M̄5 (
aÞ1

zaAaMaAa
† . ~6.28!

This is the generalization of the expansion~6.8! for the four
(n)-body system. This can be used to construct a Bakamjian
Thomas representationŪ(L,a) exactly as was done in the
three-body case.

As in the three-body case we seek a scattering equiva
lenceA that clusters asA→Aa when the interactions involv-
ing particles in different cluster ofa are turned off. The
desired operator can be constructed using Sokolov product

A5A~4!:5
11 ia

12 ia
, a:5 (

aÞ1
zaaa, ~6.29!

aa :5 i
12Aa

11Aa
. ~6.30!

Note that Eqs.~6.29! and ~6.30! define the Sokolov product

Sa5” 1@Aa
za#. ~6.31!

Because the individualAa’s are designed to satisfy algebraic
cluster propertiesAa→Aaùb when the interactions between
particles in the cluster ofb are turned off, it follows that
aa→aaùb and

a:5 (
aÞ1

zaaa ,

(
aÞ1

zaaaùb52 (
aÞ1

D21~1,a!D~a,c!D~b,c!@a#c5ab ,

~6.32!

which means thatA→Ab in this limit. Thus we define

U~L,a!5A†Ū~L,a!A, ~6.33!

which by design has the algebraic cluster properties

U~L,a!→Aa
†Ūa~L,a!Aa5Ua~L,a!. ~6.34!

This construction can be continued by induction for any
number of particles. No new complications arise. The steps
in the general construction are outlined below. For the case
of n particles assume that allk-body representations of the
Poincare´ group withk,n have been constructed. By induc-
tion these all are assumed to satisfy algebraic cluster proper
ties and are each scattering equivalent to a Bakamjian
Thomas representation. Specifically they satisfy

@U~L,a!#b5Ub~L,a!, ~6.35!
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U~L,a!5A†~k!Ū~L,a!A~k!. ~6.36!

For each partitionb of n particles with at least two clusters
define the tensor products of subsystem dynamics,

Ub~L,a!:5 ^ i51
n Ubi

~L,a!, ~6.37!

and the scattering equivalences

Db :5CbBb~ ^Cbi
† Abi

!. ~6.38!

TheAbi
’s are theA(k)’s discussed above and the remainin

operators are as defined in the three- and four-body cas
For eachc,b define (Db)c by formally turning off interac-
tions in the formal expression forDb between particles in
different clusters of the partitionc. For eachb define recur-
sively Ab beginning with then-1 cluster partitions and pro-
ceeding downward in number of clusters:

Ab :5Db , nb5n21. ~6.39!

Assuming Ac have been defined for all partitions with
k.n2m clusters defineAb for nb5n2k by

Ab :5DbSc,b†@~Db!c
†Ac#

2D21~b,c!
‡. ~6.40!

Continue untilAb have been defined for all partitions with a
least two clusters.

With this definition, in the limit that the interactions be
tween particles in different clusters of the partitiond are
turned off,Ab becomes

~Ab!d5~Db!dSc,b†@~Db!cùd
† Acùd#

2D21~b,c!
‡.

~6.41!

Let (ab)cùd denote the Cayley transform (Db)cùd
† Acùd .

The Cayley transform ofSc,b†@(Db)cùd
† Acùd#

2D21(b,c)
‡ is

(
c

D21~b,c!~ab!cùd5~ab!bùd. ~6.42!

Inverting the Cayley transform gives

~Db!d
†Abùd , ~6.43!

which implies

~Ab!d5~Db!d@~Db!d
†Abùd#5Abùd ~6.44!

and the relations

AbUb~L,a!Ab
†5Ūb~L,a! ~6.45!

and

@AbUb~L,a!Ab
†#c5AbùcUbùc~L,a!Abùc

† 5Ūbùc~L,a!.
~6.46!

Next define the scattering equivalence

A:5SaÞ1@Aa
za# ~6.47!

and the Bakamjian-Thomas mass operator
g
es.

t

-

M̄5 (
aÞ1

zaAa
†MaAa , ~6.48!

whereMa is the mass operator associated withUa(L,a).
This defines a Bakamjian-Thomas representation of the Po
caré group Ū(L,a). Given this representation define the
n-body representation by

U~L,a!:5AŪ~L,a!A†. ~6.49!

It can be verified, following the methods of@7#, that this
construction defines aU(L,a) satisfying algebraic cluster-
ing. It is also unitarily equivalent to a pure Bakamjian
Thomas representation, thus completing the induction.

In order to understand the relation of this general co
struction to the model of Sec. V we consider the structure
the operatorA.

The complete restoration of cluster properties, using t
scattering equivalences as outlined above, is complicated
implement in applications. To understand the relation of th
model discussed in Sec. V to a model that satisfies clus
properties consider the cluster decomposition of the Cay
transform ofA:

a:5 (
aÞ1

zaaa5 (
aÞ1

@a#a , ~6.50!

where@a#a is thea-connected part ofa defined by

@a#a :5(
b

Dab
21ab . ~6.51!

Define the Hermitian operators

a~k!5 (
$auna>n112k%

@a#a ~6.52!

and the unitary operators

A~k!:5A5
11 ia~k!

12 ia~k!
. ~6.53!

The operatora(k) has terms with at mostk-particle correla-
tions.

Also define the unitary operators

A~k:k21!:5A~k!A†~k21!. ~6.54!

These definitions lead to the following decomposition of th
scattering equivalenceA:

A5A~n:n21!•••A~3:2!A~2!. ~6.55!

The mass operatorM for the model satisfying spacelike clus
ter properties can be expanded as
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M5AM̄A†5A~n:n21!•••A~3:2!A~2!

3F (
aÞ 1̄

@M̄ #aGA†~2!A†~3:2!•••A†~n:n21!

5A~n:n21!•••A~3:2!A~2!F (
$auna>n21%

@M̄ #aGA†~2!

3A†~3:2!•••A†~n:n21!1A~n:n21!•••A~4:3!

3A~3!F (
$auna5n22%

@M̄ #aGA†~3!A†~4:3!•••

3A†~n:n21!1•••A~n:n21!A~n21!

3F (
$auna52%

@M̄ #aGA†~n21!A†~n:n21!

1An@M̄ #1A
†~n!. ~6.56!

In order to understand this decomposition note that the
resentationŪ(L,a) clusters properly only in the limit that al
interactions vanish. The operatorA(2) includes those term
necessary to restore cluster properties in the limit that
particles are separated except for a single pair of partic
The operatorA(3:2) adds the additional operators needed
ensure algebraic cluster properties when the system is br
up inton22 or n21 clusters. The corrections generated
A(k,k21) involve correlations associated withk cluster par-
titions. To the extent that two-body correlations are t
dominant corrections needed to restore cluster prope
A→A(2) should be a good approximation. Note thatA(2)
still has many-body correlations. The point is that the role
these terms is to restore cluster properties only in the li
that all but two particles are asymptotically separated. E
successive correction restores cluster properties int
smaller number of partitions.

This suggests the following sequence of approximatio
The first one,

M ~2!5A~2!F (
$auna>n21%

@M̄ #aGA†~2!, ~6.57!

clusters properly only when all but two particles are se
rated. It includes correlations needed for clustering i
n21 clusters. The operatorsA(2) also generate many-bod
interactions that ensure that M (2) and
M̄ (2):5A†(2)M (2)A(2) have the same spectrum and cro
section. It does not cluster properly when separated
fewer thann21 clusters. In the instant form caseM̄ (2) is
exactly the mass operator of the previous section. This
hibits precisely the relation of the model of the previo
section and a model satisfying cluster properties. In
point- and instant form casesM̄ (2)5C(2)M̂ (2)C†, where
in this expressionM̂ is the mass operator of the previou
section andC is the transformation of theorem 5.

The next approximation
rep-
l
s
all
les.
to
oken
by
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rties

of
mit
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M ~3!5A~3:2!M ~2!A~2!A†~3:2!1A~3!

3F (
na53

@M̄ #aGA†~3! ~6.58!

clusters properly when the system is separated into at l
n-2 clusters. This differs from the previous approximation
the addition of many-body interactions involving at lea
three particles. These many-body interactions modify
spectrum and cross section of the previous approximatio

Similarly, successive approximations of the form

M ~k!5A~k:k21!M ~k21!A~k21!A†~k:k21!1A~k!

3F (
na5k

@ k̄#aGA†~k! ~6.59!

modify the previous approximation. The new interactions e
sure that the model clusters properly when the system
separated into at leastn-k11 subsystems.

This procedure can be continued. The last step inclu
the additionaln-body interactions needed for the resultin
model to satisfy full algebraic cluster properties.

These arguments show that the model of the previous s
tion is the first step in a series of approximations that sati
cluster properties into subsystems of at leastn-k clusters by
including additional (k11)-body interactions. These ap
proximations should be good when the many-body corre
tions needed to restore clustering become weaker as
number of correlated particles increases.

The approximation scheme provides a formal framewo
for including systematic corrections that restore cluster pr
erties. Successive approximations add new many-body
relations involving more and more particles. The leading a
proximation is the pure Bakamjian-Thomas model discus
in Sec. IV. It is scattering equivalent to a model that on
clusters properly when the system is broken up into at le
n21 clusters. On the other hand, even in the crudest
proximations, both Poincare´ invariance and relevant discret
symmetries remain exact.

VII. SUMMARY

In this paper induced representations of the Poinc´
group are used to construct a basis ofn-particle states that
transform irreducibly with respect to the noninteracting re
resentation of the Poincare´ group. Interactions that are sca
tering equivalent to input two-body interactions and com
mute with the free particle spin operator are constructed. T
interactions are combined to make a mass operator that c
mutes with the noninteracting spin. The problem of co
structing an interacting representation of the Poincare´ group
is reduced to one of diagonalizing this mass operator o
subspace of fixed kinematic spin. The choice of basis le
to equations that have simple properties under exchang
identical properties and space reflection. Both the Poinc´
invariance and discrete symmetries are easily preserved
der the approximation. This formalism can be used as
basis for fully relativistic variational calculations of nuclea
wave functions. The interactions are most naturally form
lated in an instant-form representation but the resulting
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stant form interactions can be transformed to any of Dirac
forms of the dynamics.

The model discussed is known to violate spacelike clus
propertes. The relationship of the model formulated to
model satisfying cluster properties is discussed. Clus
properties require that the two-body interactions in th
N-body problem be identical to the two-body interactions
the two-body problem. Dynamically generated~3,4,
. . . ,N)-body interactions are needed to restore the Poinc´
commutation relations. In our model the interactions do n
cluster properly, but each of the two-body interactions giv
’s

ter
a
ter
e
n

re
ot
s

the same two-body phase shifts and binding energies as
original two-body interactions, with the additional proper
that they can be combined without violating the commu
tion relations. The analysis in Sec. VI shows that a mo
satisfying cluster properties can be obtained from the mo
of this paper by an alternating sequence of unitary trans
mations and the addition of~3,4, . . . ,N)-body interactons.
This relationship implies that the model will be a good a
proximation to a model satisfying cluster properties when
Cayley transforms of the operatorsA(1)•••( i j )•••(n) defined by
Eq. ~6.5! are small.
APPENDIX A

Proof of theorem 2.For the instant form case letl:5B0
0(p) andh i :5Bi

0(p). We have

05 lim
t→6`

i†F2U†@B~p!#FU@B~p!#‡Uf~ t !ux&5 lim
t→6`

i†U~2t !F2U~2t !U†@B~p!#FU@B~p!#‡Uf~ t !ux&

5 lim
t→6`

i†U~2t !FUf~ t !2U†@B~p!#U~2lt,2hW t !FUf~lt,hW t !Uf@B~p!#‡ux&

5 lim
t→6`

i†U~2t !FUf~ t !2U†@B~p!#U~2lt !FUf~lt !Uf@B~p!#‡ux&,

where we have usedFUf(xW )5U(xW )F. Since l is a positive constant, it can be absorbed into the definition oft as
t→6`. Taking the limits gives

V6~H,F,Hf !ux&5U†@B~p!#V6~H,F,Hf !Uf@B~p!#ux&. ~A1!

These relations coupled with the kinematic identities~2.62! imply Poincare´ invariance of the wave operators.
For the point form we have

lim
t→6`

i@F2U†~ I ,aW !FUf~ I ,aW !#Uf~ t !ux&i5 lim
t→6`

i@U~2t !F2U~2t !U†~ I ,aW !FUf~ I ,aW !#Uf~ t !ux&i

5 lim
t→6`

i@U~2t !FUf~ t !2U†~ I ,aW !U~2t !FUf~ t !Uf~ I ,aW !#ux&i ,

which immediately gives

V6~H,F,hf !ux&5U†~ I ,aW !V6Uf~ I ,aW !ux&, ~A2!

which can be combined with the kinematic relations~2.62! for Lorentz invariance to give Poincare´ invariance of the wave
operators.

The last case is the front form where

lim
t→6`

i@F2U†~R,0!FUf~R,0!#Uf~ I ,t !ux&i5 lim
t→6`

i@U~ I ,2t !FUf~ I ,t !2U~ I ,2t !U†~R,0!FUf~R,0!Uf~ I ,t !#ux&i

5 lim
t→6`

i@U~ I ,2t !FUf~ I ,t !2U†~R,0!U~ I ,2t !FUf~ I ,t !Uf~R,0!#ux&i ,

which gives

V6~H,F,Hf !ux&5U†~R,0!V6~H,F,Hf !Uf~R,0!ux&. ~A3!

Proof of theorem 5.Evaluate the instant-form operators in a basis of the form

upW ,m, j ,d&, ~A4!

wherepW is the kinematic linear momentum,m is the magnetic quantum number associated with the canonical spin,j is the
canonical spin, andd denotes a collection of kinematically invariant degeneracy parameters.

An instant form Bakamjian-Thomas mass operator in this representation necessarily has the form

^pW ,m, j ,duM upW 8,m8, j 8,d8&5d3~pW 2pW 8!dmm8d j j 8^diM ~ j !id8&. ~A5!
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The spectrum and cross sections are determined by the reduced matrix element^diM ( j )id8&. The basisupW ,m, j ,d& is related
to the basesup1,pW' ,m, j ,d& and uvW ,m, j ,d& by the unitary transformations defined by the kernels

^pW ,m, j ,dup81,pW'8 ,m8, j 8,d8&5d~p12Am~d8!21pW 822p83!d2~pW'2pW'8 !A p1

vm~d!~pW !
d j j 8ddd8Dmm8

j
@Rcf~p8,d8!# ~A6!

and

^pW ,m, j ,duvW 8,m8, j 8,d8&5d~pW 2m~d8!vW !um~d!u3/2d j j 8ddd8dmm8. ~A7!

The rotation@Rcf(p8,d8)# in Eq. ~A6! is a Melosh rotation that transforms the front form spin into the canonical spin.
It follows that the interactionsMF andML defined by the kernels

^p1,pW' ,m, j ,duMFup81,pW'8 ,m8, j 8,d8&5d~p12p81!d2~pW'2pW'8 !dmm8d j j 8^diM ~ j !id8& ~A8!

and

^vW ,m, j ,duMLuvW 8,m8, j 8,d8&5d3~vW 2vW 8!dmm8d j j 8^diM ~ j !id8& ~A9!

have the same reduced matrix elements and thus the same spectrum and scattering matrix elements. The desired
equivalencies have the general form

A:5V6~HF ,FF ,Hf !BFEV6
† ~H,F,Hf !, ~A10!

A:5V6~HL ,FP ,Hf !BLEV6
† ~H,F,Hf !, ~A11!

whereBFE andBLE are the kinematic unitary transformations that change thepW ,m to either the light front components of the
four-momentum and magnetic quantum number associated with the light front spin or the vector components of th
velocity and the magnetic quantum number associated with the canonical spin.

These transformations can be explicitly given in terms of eigenfunction expansions

A5( E up1,pW' ,m,d6;F&Dmm8
j

@Rfc„p,m~d!…#d3pA p1

vm~d!~pW !
^pWmu8,d6;Eu ~A12!

or

A5( E up1,pW' ,m,d6;L&d3pm~d!23/2^vWmu,d6Eu, ~A13!

whered6 is a label for all bound state and scattering degeneracy labels andm(d) is the mass eigenvalue when the degenera
quantum numbers have the valued. The invariance of the scattering operator ensures that this expression has a
independent of the choice of asymptotic condition. The notationF, L, andE indicates the kinematic subgroup of the releva
mass operator.
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