Simple model of neutron "halo nuclei"

Rubby Sherr

Princeton University, Physics Department, Joseph Henry Laboratories, Princeton, New Jersey 08544

(Received 10 January 1996)

Analysis of experiments with radioactive beams from ⁶He to 20 C have yielded rms matter radii of neutronrich nuclides. These radii increase more rapidly than $A^{1/3}$, suggesting the existence of neutron halos. We have used a single-particle potential model to compute these radii by adding the radius of a valence neutron in quadrature with that of the core. This radius is then taken to be the core radius of the next isotope, etc. The resulting radii are in reasonable agreement with reported values obtained with various models of reaction mechanism and nuclear structure. [S0556-2813(96)04009-5]

PACS number(s): 21.10.Gv, 21.60.-n, 27.20.+n

INTRODUCTION

In the last ten years there have been many experiments with beams of light radioactive nuclei. Measurements of interaction cross sections by Tanihata *et al.* [1] for neutron-rich nuclei such as ⁸He and ¹¹Li yielded nuclear cross sections that were considerably larger than expected for an $A^{1/3}$ dependence. Since then, experiments have been carried out with many neutron-rich radioactive beams. There have been many papers interpreting these cross sections in terms of the rms radii of the nuclides and different models of the nuclear structure of the projectiles and models for the interaction process ranging from pure mean-field approach [2] to ones with empirically adjustable parameters [3]. There is general agreement that single- or double-neutron binding energies play a dominant role. However, the resulting radii for many nuclides vary appreciably from paper to paper. For comparison, we present a simple boot-strap model in which the rms radius r_v of the valence neutron (obtained with a Woods-Saxon well) and a core radius r_c are combined in quadrature to yield a matter radius r_m . This approach allows configuration admixtures of the valence neutron to be simply examined

Recent fragmentation experiments which determine the momentum distribution of the neutron support our method for r_v . In the experiment of Kelly *et al.* [4] with ${}^{11}\text{Be}(\frac{1}{2}^+)$, the momentum distribution of the valence neutron corresponds to that of a 2*s* neutron bound in a Woods-Saxon well; the valence radius is 6.5 fm, much larger than the 2.3 fm radius of the ${}^{10}\text{Be}$ core.

The description of these light neutron-rich nucleii as having a "halo" or "skin" implies that the charge radius in a isotopic sequence remains essentially constant as neutrons are added. Our model explicitly assumes this. Hartree-Fock calculations indicate that this is a fair approximation. Bertsch *et al.* [2] find, for example, that the charge radii for ⁷Be to ¹⁴Be changes by at most only 0.14 fm, while r_m varies by 1.52 fm. Liatard *et al.* [5] find a change of charge radius between ⁹Be and ¹⁴Be of only 0.07 fm, while Tanihata *et al.* [6] find that the change for ⁴He to ⁸He is 0.13 fm, while r_m changes by 0.83 fm.

BOOT-STRAP MODEL

We start with a T=0 (or $T=\frac{1}{2}$) core such as ⁴He, ⁶Li, ⁷Be, etc., whose rms matter radius (r_m) is "known" (i.e., previ-

ously reported in the literature). Then we proceed to determine the valence rms radius (r_v) using the Woods-Saxon well to correctly bind the valence neutron of ⁷Li. Using the r_m of ⁶Li as the core radius (r_c) in ⁷Li, we compute the matter radius of ⁷Li via the equation [7]

$$r_m^2(A) = \frac{A-1}{A} \left\{ r_c^2 + \frac{1}{A} r_v^2 \right\}.$$
 (1)

We then find r_m for ⁸Li by coupling its valence neutron radius to the just-computed r_m for ⁷Li, etc. In cases where the orbital of valence neutron is uncertain, we present possible choices as for example for ¹²Be (0⁺) where it could be 2s, 1p, or 1d coupling to ¹¹Be $\frac{1}{2}^+$, $\frac{1}{2}^-$, or $\frac{5}{2}^+$ cores.

This procedure fails when the core nuclide (such as ⁵He, ¹⁰Li, etc.) is unbound. Therefore to compute r_m for ¹¹Li, e.g., we use a ⁹Li core and assume that the 2*n* binding is equally shared by the two neutrons [2,8,9]. Then, using B(2n)/2 for each, we find r_v and then use (A-2)/A and 2/A in Eq. (1).

Our results are presented in Table I. After the mass number A and the spin of the nuclide are the core and its spin, followed by B_v , the valence binding. The angular momentum l_v of the valence neutron is then used to determine the radius r_v in a Woods-Saxon well. The well parameters used throughout were $r_0=1.25$ fm, a=0.65 fm, and $V_{ls}=0$. (The predicted radii are insensitive to moderate changes of these parameters.) The eighth column lists the core radius r_c (r_m of the preceding isotope). The next column gives the ratio of r_v to r_c for later reference. Our computed matter radius is in the tenth column. The remaining columns A-F list values of r_m which have been reported in the literature. Our results are also presented in Fig. 1, viz, r_m vs A for each element, displaying our values and the reported values.

COMMENTS ON TABLE I AND FIG. 1

(a) He isotopes. For ⁴He, we assume the average of Columns *A* and *B*. The reported values for ⁶He range from 2.46 to 2.75 fm; our result coincides with their average. For ⁸He, ours is about 0.4 fm above the three reported values. The qualitative agreement is quite satisfactory.

(b) Li isotopes. For ⁶Li we took 2.30 fm, a simple average of the reported values. The comparison for ^{7,8,9}Li is fair except for the calculations of Bertsch *et al.* [2] (column *E*). Our

1177

© 1996 The American Physical Society

RUBBY SHERR

TABLE I. Computations of rms matter radii of neutron-rich nuclides.

Nucleus	J_A^{π}	Core	J_c	l_v	B_v	r _v	r _c	$\left(rac{r_v}{r_c} ight)$	r _m	A [3]	B [1,6]	C [5]	D [16]	E [23]	F [15]
⁴ He	0^+								1.58	1.57	1.59				
⁶ He	0^+	⁴ He	0^+	1	$\frac{0.98}{2}$	4.74	1.58 ^a	2.96	2.58	2.46	2.52		2.75		
⁸ He	0^+	⁶ He	0^+	1	$\frac{2.14}{2}$	4.18	2.58	1.61	2.88	2.46	2.55		2.55		
⁶ Li	1^{+}									2.20	2.35	2.46	2.50	2.03	
⁷ Li	$\frac{3}{2}$	⁶ Li	1^{+}	1	7.25	2.81	2.30 ^a	1.22	2.34	2.25	2.35	2.38	2.51	2.07	
⁸ Li	2^{+}	⁷ Li	$\frac{3}{2}$	1	2.03	3.66	2.34	1.56	2.50	2.47	2.38	2.58	2.60	2.18	
⁹ Li	$\frac{3}{2}$	⁸ Li	$\bar{2}^{+}$	1	4.06	3.22	2.50	1.29	2.57	2.59	2.32	2.53	2.50	2.22	2.45
				0	$\frac{0.30}{2}$	10.3	2.57	4.01	4.61						
¹¹ Li	$\frac{3}{2}$	⁹ Li	$\frac{3}{2}$	1	$\frac{0.30}{2}$	6.38	2.57	2.48	3.38	3.15	3.10	2.78	3.05	2.85	3.26
				2	$\frac{0.30}{2}$	4.17	2.57	1.62	2.83						
⁷ Be	$\frac{3}{2}$									2.34	2.33		2.45	2.09	
⁹ Be	$\frac{3}{2}$	⁷ Be	$\frac{3}{2}$	1	$\frac{20.56}{2}$	2.72	2.30 ^a	1.18	2.32	2.32	2.38	2.53	2.59	2.18	
¹⁰ Be	$\overline{0}^+$	⁹ Be	$\frac{\bar{3}}{2}$	1	6.81	2.96	2.32	1.28	2.37	2.40	2.28	2.48	2.43	2.25	
¹¹ Be	$\frac{1}{2}^{+}$	¹⁰ Be	$\overline{0}^+$	0	0.50	7.06	2.37	2.98	3.02	2.92	2.71	3.04		2.77	2.90
¹¹ Be*	$\frac{\overline{1}}{2}$	¹⁰ Be	0^+	1	0.18	6.18	2.37	2.60	2.85					2.72	
¹² Be	- 0+	¹¹ Be	$\frac{1}{2}^{+}$	0	3.17	4.25	3.02	1.41	3.12	0.54	0.57	0.60		0.57	
	0	¹¹ Be*	$\frac{\overline{1}}{2}$	1	3.49	3.44	2.85	1.21	2.91	2.54	2.57	2.62		2.57	
¹⁴ Be	0^+	¹² Be		0	$\frac{1.12}{2}$	6.94	2.91	2.40	3.67	2.01	3.11	2.26		2 (1	
				2	$\frac{1.12}{2}$	4.05	2.91	1.40	3.05	3.01		3.36		3.61	
^{10}B	3 ⁺				_					2.42		2.56			
${}^{11}B$	$\frac{3}{2}$	$^{10}\mathbf{B}$	3^{+}	1	11.45	2.72	2.49 ^a	1.09	2.50	2.41		2.61			
$^{12}\mathbf{B}$	1^{+}	^{11}B	$\frac{3}{2}$	1	3.37	3.46	2.50	1.38	2.58	2.53	2.35	2.72			
^{13}B	$\frac{3}{2}$	$^{12}\mathbf{B}$	1^{+}	1	4.88	3.27	2.58	1.27	2.64	2.63	2.46	2.75			
14 B	a -	130	3-	0	0.97	5.86	2.64	2.22	2.97	0.72	2 40	2.00			
	2	В	$\overline{2}$	2	0.97	3.89	2.64	1.47	2.74	2.73	2.40	3.00			
¹⁵ B ¹⁷ B	$\frac{3}{2}$	14 D	2^{-}	0	2.77	4.66	2.97	1.57	3.08	2.69	2 40	2 (1			2 70
		D		2	2.77	3.53	2.74	1.29	2.80		2.40	2.01			2.70
				0	$\frac{1.35}{2}$	6.58	2.80	2.35	3.40						
	$\frac{3}{2}$	^{15}B	$\frac{3}{2}$	2	$\frac{1.35}{2}$	4.11	2.80	1.45	2.95	3.00		4.10			
				2	$\frac{1.35}{2}$	4.11	3.08	1.33	3.19						
^{12}C	0^+									2.36	2.32	2.48		2.47	
¹³ C	$\frac{1}{2}$	^{12}C	0^+	1	4.95	3.25	2.42 ^a	1.34	2.48	2.45		2.42			
¹⁴ C	0^+	^{13}C	$\frac{1}{2}^{-}$	1	8.18	3.00	2.48	1.21	2.51	2.46		2.50			
¹⁵ C	$\frac{1}{2}^{+}$	^{14}C	0^+	0	1.22	5.53	2.51	2.21	2.79	2.74		2.78			
$(^{15}C^*)$	$\frac{5}{2}^{+}$	^{14}C	0^+	2	0.48	4.15	2.51	1.65	2.64						
${}^{16}C_1$	0^+	¹⁵ C	$\frac{1}{2}^{+}$	0	4.25	4.05	2.79	1.43	2.87	2.60		276			
$^{16}C_2$	0^+	¹⁵ C*	$\frac{5}{2}^{+}$	2	4.99	3.36	2.64	1.27	2.67	2.00		2.70			
${}^{17}C_1$	$\frac{5}{2}^{+}$	${}^{16}C_1$	0^+	2	0.73	4.11	2.87	1.43	2.95	3.02		2.04			
$^{17}C_2$	$\frac{5}{2}^{+}$	${}^{16}C_2$	0^+	2	0.73	4.11	2.67	1.54	2.77	3.02		5.04			
$^{18}C_1$	0^+	${}^{17}C_1$	$\frac{5}{2}^{+}$	2	4.19	3.51	2.95	1.19	2.98	<u> </u>		2.00			
$^{18}C_2$	0^+	$^{17}C_{2}$	$\frac{5}{2}^{+}$	2	4.19	3.51	2.77	1.29	2.81	2.02		2.90			
¹⁹ C	$\frac{1}{2}^{+}$	$^{18}C_2$	0^+	0	$0.16(11)^{b}$	10^{+3}_{-1}	2.81	3.6	$3.53\substack{+0.45 \\ -0.14}$	3.75					
²⁰ C	0^+	¹⁹ C	$\frac{1}{2}^{+}$	0	$\sim 3.34^{b}$	~4.37	~3.53	$\sim \! 1.24$	~ 3.56	3.05					
²² C	0^+	²⁰ C	0^+	2	<u>1.12(0.92</u> b 2)	$\sim \! 4.40$	~ 3.56	~1.23	~3.62						

^aAverage of reported radii (A-F) of core nuclides.

^bAudi and Wapstra, Nucl. Phys. A565, 1 (1993).

values are about 0.3 fm larger than Ref. [2] for ^{6,7,8,9}Li and about 0.5 fm larger for ¹¹Li. The difference originates mainly from the radius for ⁶Li, which we take from experiment, but which is calculated in Ref. [2].

In Fig. 1 we plot the $\ell = 1$ results for the individual nucleons of the neutron pair in ¹¹Li. However, recent papers by Benenson [10] and by Zinser *et al.* [11] suggest that the two

neutrons could be an equal mixture of $(1p)^2$ and $(2s)^2$. Calculation assuming $(2s)^2$ leads to r_m =4.61 fm, completely off scale in Fig. 1, arguing against an appreciable admixture of $(2s)^2$. However, recent calculations by Brown [12] lead to an admixture of 61% $(1p)^2$, 26% $(1d)^2$, and 13% $(2s)^2$. These yield a weighted r_m of 3.40 fm, the 1*d* and 2*s* components offsetting each other. Recent measurements [13] of

FIG. 1. Plot of r_m vs A for He, Li, Be, B, and C isotopes. (see Table I).

the momentum distributions of ⁹Li arising from the breakup of a ¹¹Li beam (similar to the ¹¹Be breakup of Ref. [4]) lead to the conclusion that there was an extended neutron distribution with an rms halo radius of about 5 fm, which is not inconsistent with an r_v of 6.31 obtained with Brown's configuration.

(c) Be isotopes. Our starting point is the average of reported values, 2.30 fm, for ⁷Be. The tight 2*n* binding in ⁹Be leads to a barely larger r_m of 2.32 fm. The weak binding of the 2*s* neutron of the ¹¹Be ground state yields an r_v of 7.1 fm, consistent with the findings of Ref. [4]. As in the Li isotopes, our results parallel those of Bertsch *et al.* [2] for ^{9,10,11}Be, but are 0.14–0.25 fm larger (as a result of the core radius for Be).

For ¹²Be, if we assume the $1p_{1/2}$ shell is filled, our values of r_m are about 0.35 fm greater than the reported values. Fortune, Liu, and Alburger [9] recently reported on the ¹⁰Be(t,p) ¹²Be reaction and concluded that ¹²Be has comparable $(sd)^2$ and (p^2) components. The r_m values for $(1p)^2$ and $(2s)^2$ are tabulated. ¹¹Be $(\frac{5}{2}^+)$ is unbound, but using ($\frac{5}{2}^+)^2$ bound to ¹⁰Be, we estimate 2.84 fm for r_m . Thus a mixture of all three components would still be too high. Considering ¹²Be as $(1p)^2$ coupled to ¹⁰Be yields a more compatible radius of 2.61 fm. In Ref. [2], an admixture of 71% $(2s)^2$ and 29% $(1d)^2$ was used. This admixture yields $r_m=3.47$ fm, in fair agreement with columns *C* and *E*. Our overall qualitative fit to the reported values for the Be isotopes is good, showing the large changes at ¹¹Be and ¹⁴Be.

(d) Boron isotopes. The agreement for A = 10-13 is good. For ¹⁴B where we expect either a 2s or 1d neutron, values are computed for each ℓ . Unfortunately the reported values cover the range for both. However, for ¹⁵B, the reported values suggest a d^2 configuration. For ¹⁷B three configurations are computed. Of the reported values, one agrees with d^4 , while the second goes off scale in Fig. 1. If we assume 1p and 1d filling, there is no suggestion of overly large neutron radii. If, however, there is appreciable 2s admixture in ¹⁴B or ¹⁷B, these might be halo nuclei. Shell model predictions would be interesting.

(e) Carbon isotopes. Beyond 14 C, the 2s and 1d orbitals are available. The odd-A nuclei can have $J^{\pi} = \frac{1}{2}^{+}$ or $\frac{5}{2}^{+}$, while for even A there can be a mixture of $(2s)^2$ and $(1\tilde{d})^2$. Consequently, we designate the nuclei where $(2s)^2$ components may occur by the subscript 1, e.g., ¹⁸C, and subscript 2 for pure $(1d)^{2n}$. One can see that the change in r_m is small and both are in good agreement with published results. Recent fragmentation measurements [14] for ^{17,18,19}C show momentum distributions for ^{19}C consistent with $\frac{1}{2}^+$ and suggest $\frac{5}{2}^+$ for ${}^{17}C$. We adopt these assignments, but note than for 12 , for ${}^{17}C_2$, $r_m = 3.00$, in excellent agreement with columns A and C, but is disagreement with the measurements Ref. [14]. However, $\frac{5^+}{2}$ for ¹⁹C yields a small $r_m \approx 3.0$ fm. Our valence radius for ¹⁹C($\frac{1}{2}$) is about 10 fm, larger than 6.0±6.9 fm of Ref. [14], probably a difference arising because our B_v is 0.16(11) MeV, while they use 0.242(93) MeV. For ${}^{17}C(\frac{5}{2}^+)$, our r_n is 4.1 fm, while they report 3.0(6) fm. For ²⁰C we find $r_m = 3.56$ fm for an $(2s)^2$ configuration and about 3.1 fm for $(1d)^2$; the reported value is 3.05 fm, suggesting a major $(1d)^2$ amplitude. Detailed shell model calculations would be interesting to compare with our computations.

In view of the appreciable variation of reported values, it is evident that there is no unambiguous way to deduce r_m from the experimental data. Therefore an overall comparison with our model is limited to generally qualitative agreement.

The basic experimental data which lead to calculations of r_m have been the experimental cross sections obtained from transmission measurements (or equivalent techniques). These cross sections, for complex nuclei, are generally assumed to be

$$\sigma_1 = \pi (R_p + R_t)^2,$$

where R_p and R_t are the "interaction radii" of projectile and target [1,2]. The various values of r_m inferred from R_p and

FIG. 2. Plot of (r_v/r_c) vs A for various isotopes. Isotopes for which this ratio is greater than ~ 2 are considered halo nuclei.

listed here were based on models for nuclear densities which were then usually used in Glauber-type interaction models to either deduce or fit the experimental interaction cross sections or R_p .

Tanihata *et al.* [1,6] used Gaussian or harmonic-oscillator densities and free N-N cross sections for point nucleons. Effects due to binding were not included. Bertsch *et al.* [2] used Hartree-Fock (HF) theory modified to account for binding energies. Their matter radii were also calculated with point density operators. As the actual nuclear radii require folding of nucleon sizes larger values would result than those listed in columns B and E. Sagawa [15] also used the Hartree-Fock model including spherical shell model occupation probabilities; the valence neutron was treated separately to account for its binding energy. Bang *et al.* [16] use a Woods-Saxon well for the last neutron, incorporating this with HF theory for the core particles.

Two of the listed papers use models with parameters adjusted to fit observed cross sections. Liatard *et al.* [5] use a simple model in which MS proton and neutron radii are added (weighted by Z and N) to yield the MS matter radius. The former is obtained from HF calculations while the latter is adjusted to reproduce the measured cross sections. Lassaut and Lombard [3] decompose the nucleus into a core and a weakly bound cluster, arriving at a two-parameter expression involving each cluster, and its binding energy. The two constants are adjusted separately for each isotopic series to maximize the fit to experimental cross sections. We note that as some measure of comparison between models, about 70% of our radii agree within 0.10 fm (roughly 3-5%) with each of the above two empirical models [3,5].

COMMENTS

Our model is perforce a "halo" model in the trivial sense that only r_n the rms neutron radii grows with neutron excess. A more unique meaning to "halo" is suggested by Riisager [17], namely, when there is a loose coupling between a core and valence particle or particles. In these cases, one observes large collision cross sections and narrow neutron momentum distributions [4,13,14]. Tanihata *et al.* [6] reported on rmscalculations for ⁴He, ⁶He, and ⁸He and conclude that ⁶He consists of an inert α core plus two neutrons, whereas ⁸He does not have an "inert" ⁶He core; they suggest that not all neutron excesses (skins) are to be classed as "halos." Csoto [18] finds agreement with them for ⁶He.

In our model it is simple to identify Riisager halo nuclides. Figure 2 is a plot of r_v/r_c . For most nuclides this ratio lies between 1.1 and 1.6. Then after a large gap we find ⁶He(2.96), ¹¹Li(2.48), and ¹¹Be(2.98). Figure 2 suggests that ¹⁴Be(2.40), ¹⁴B(2.22), ¹⁷B(2.35), ¹⁵C(2.21), and ¹⁹C(3.36) are Riisager nuclei.

Our model can easily be used to look for Riisager nuclides in other isotopic series. A preliminary look at nitrogen and oxygen (pending shell model predictions of configurations) yielded values of r_m in good agreement with Liatard *et al.* [5].

For ¹⁵N to ²²N, the assumption of either 2*s* or 1*d* yielded about the same r_m . This varied smoothly with *A* and is well fitted with an r_0 (of the uniform model) of 1.38(2) fm. The highest ratio r_v/r_c is 1.65 for a 2*s* component of ¹⁸N, while for the others the ratio is about 1.3.

For ¹⁶O to ²²O, r_m was again insensitive to orbitals 2*s* or 1*d* and an $r_0=1.33(1)$ fm yields a satisfactory *A* dependence. The largest r_v/r_c is 1.53 for ²¹O if its spin is $\frac{1}{2}^+$, the remainder having a ratio below 1.3. For ²³O, however, the low neutron binding leads to $r_v \approx 9$ fm and r_v/r_c of 3.2 for a 2*s* orbital. If ²⁴O also involves the 2*s* orbital, the high binding yields a low $r_v/r_c=1.29$. Thus fragmentation of ²³O (and perhaps ¹⁸N and ²¹O) would be interesting to investigate.

CONCLUSION

Some puzzling problems may result from the weak binding of the Riisager nuclides, such as the structure of ¹¹Li, which is barely stable against two-neutron decay. However, only conventional shell model techniques [17,19] have been used here, but the final answer is not at hand. Furthermore, only conventional reaction theory has been used to interpret nuclear reactions such as stripping or pickup involving these neutron rich nuclei, e.g., ${}^{4}\text{He}(t,p) \, {}^{6}\text{He} \, [20], \, {}^{10}\text{Be}(d,p) {}^{11}\text{Be}(d,p) \, {}^{11}\text{Be}(d,p$

- I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 53, 2676 (1985); I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda, and H. Sato, Phys. Lett. B 206, 592 (1988).
- [2] G. F. Bertsch, B. A. Brown, and H. Sagawa, Phys. Rev. C 39, 1154 (1989).
- [3] M. Lassaut and R. J. Lombard, Z. Phys. A 341, 125 (1992).
- [4] J. H. Kelley, S. M. Austin, R. A. Kryger, D. J. Morrissey, N. A. Orr, B. M. Sherrill, M. Thoennessen, J. S. Winfield, J. A. Winger, and B. M. Young, Phys. Rev. Lett. 74, 30 (1995).
- [5] E. Liatard et al., Europhys. Lett. 13, 401 (1990).
- [6] I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura, K. Sugimoto, and H. Toki, Phys. Lett. B 289, 261 (1992).
- [7] P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
- [8] B. A. Brown, E. K. Warburton, and B. H. Wildenthal, Exotic

[21], or the astrophysically interesting reaction (⁸Li, ⁷Li) [22]. Fragmentation experiments, such as ¹¹Be \rightarrow ¹⁰Be+*n* [4], afford exceptionally convincing support for the singleparticle model. While our extreme model is a far cry from the conventional mean-field approach, it illuminates the basic properties of halo nuclei.

Nuclear Spectroscopy (Plenum, New York, 1990), p. 295.

- [9] H. T. Fortune, G. B. Liu, and D. E. Alburger, Phys. Rev. C 50, 135 (1994).
- [10] W. Benenson, Nucl. Phys. A 588, 11c (1995).
- [11] M. Zinser et al., Phys. Rev. Lett. 75, 1719 (1995).
- [12] B. A. Brown (private communication).
- [13] N. Orr et al., Phys. Rev. C 51, 3116 (1995).
- [14] D. Bazin et al., Phys. Rev. Lett. 74, 3569 (1995).
- [15] H. Sagawa, Phys. Lett. B 86, 7 (1992).
- [16] J. M. Bang et al., Phys. Scr. 41, 202 (1990).
- [17] K. Riisager, Rev. Mod. Phys. 66, 1105 (1994).
- [18] A. Csoto, Phys. Rev. C 48, 165 (1993).
- [19] S. M. Austin and G. F. Bertsch, Sci. Am. 272 (6), 90 (1995).
- [20] R. H. Stokes and P. G. Young, Phys. Rev. C 3, 984 (1971).
- [21] B. Zwieglinski et al., Nucl. Phys. A 315, 124 (1979).
- [22] F. D. Becchetti et al., Phys. Rev. C 48, 308 (1993).