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Two-nucleon spectral function of 16O at high momenta
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A procedure for the calculation of the two-body spectral function of a finite nucleus is presented. This
spectral function is used to calculate the longitudinal part of the16O(e,e8pp) cross section assuming plane
waves for the outgoing nucleons. Short-range correlation effects are included in the pair-removal amplitudes b
adding corresponding defect wave functions that are obtained from the solution of the Bethe-Goldstone equ
tion in the finite nucleus. The associatedG matrix is used as the effective interaction in a large but finite model
space to calculate the pair-removal amplitudes in a random-phase approach. The resulting spectral functio
exhibit clear differences between different realistic interactions in the momentum range 2–5 fm21 for the
initial proton momenta.@S0556-2813~96!01309-X#

PACS number~s!: 21.10.Jx, 21.30.Fe, 21.60.2n
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I. INTRODUCTION

Detectable consequences of the presence of short-r
correlations~SRC’s! in low-energy nuclear phenomena ha
been notoriously hard to come by. Recent experimental w
has probed the presence of high-momentum nucleons in
ground state by studying the removal of protons from sh
near the Fermi energy by means of the (e,e8p) reaction
@1,2#. Earlier theoretical calculations performed in16O actu-
ally suggested that the consequences of SRC’s, as refle
by the presence of high-momentum nucleons, can only
probed at high excitation energy in the hole nucleus15N
@3,4#. Indeed, little evidence for the presence of hig
momentum nucleons in both207Tl @1# and 15N @2# at low
excitation energy has been gathered. It remains to be ver
experimentally whether an unambiguous signal of hig
momentum protons in the nucleus can be isolated using
(e,e8p) reaction.

Suggestions to explore SRC’s in two-nucleon emiss
reactions go back to the work of Gottfried@5#. More recently,
theoretical work has focused on the possibility of utilizin
the (e,e82N) reaction to probe nucleon-nucleon correlatio
@6–8#. Practical descriptions of this reaction have been
veloped by the Pavia group@9–12#. Proceeding in a similar
vein as in the analysis of the (e,e8p) reaction, which yields
information about the one-nucleon~-removal! spectral func-
tion, one may hope to learn about the two-nucle
~-removal! spectral function in two-nucleon-emission pr
cesses. The emission of two protons is particularly promis
for studies of SRC’s since the effect of meson-exchange
rents and isobars is not expected to dominate the cross
tion under suitable kinematic conditions@10#.

Experiments have been carried out for12C @13# and 16O
@14# to explore the feasibility of gaining insight into nucleo
54813/96/54~3!/1144~14!/$10.00
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nucleon correlations in finite nuclei using the (e,e8pp) reac-
tion. Triple-coincidence measurements involving proto
with large initial momenta seem particularly suitable to pr
vide information on SRC’s. The scattered electron is th
expected to transfer a virtual photon to one of these t
protons which have large and opposite momenta and th
fore a relatively small center-of-mass momentum. T
strong correlation results from hard collisions due to t
strong repulsive core of the nucleon-nucleon (NN) interac-
tion. When one of the protons is removed by the absorpt
of the virtual photon, its partner will also leave the nucle
under the assumption that the energy transfer is mainly to
hit pair ~the residual nucleus stays at a low excitation ener!
@9#. It is therefore hoped that, if the coupling of the virtu
photon to one nucleon is the dominant mechanism,
(e,e8pp) process may be exploited as a useful tool to inv
tigate these short-range correlation effects~see also Ref.
@15#!.

It is the purpose of the present paper to calculate the t
nucleon spectral function of16O for transitions to the low-
lying states of the final14C nucleus, including the effects o
short-range correlations. Modifications of the two-body sp
tral function, due to low-energy shell model correlation
will also be taken into account. In Sec. II of this paper t
relevant theoretical ingredients are gathered which
needed to calculate the two-body spectral function. Sec
III contains a description of the two-step procedure wh
includes a folding of short-range correlation effects into
calculation of the two-body propagator in a configurati
space large enough to deal adequately with long-range
relations. Details of the latter calculations are discussed
Sec. IV. Results for the two-nucleon spectral function an
first estimate of the corresponding longitudinal cross secti
are presented in Sec. V, while some conclusions are draw
Sec. VI.
1144 © 1996 The American Physical Society
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II. SPECTRAL FUNCTIONS AND GREEN’S FUNCTIONS

An important ingredient in the description of the two
nucleon knockout reaction is the two-hole spectral funct
defined by

Shh~p1 ,p2 ,p18,p28,v!5(
n

^C0
Auap18

† ap28
† uCn,A22&

3^Cn,A22uap1ap2uC0
A&

3d„v2~E0,A2En,A22!…, ~1!

whereC0
A denotes the (01) ground state of the target syste

(16O! andCn,A22 denotes thenth excited state of the re
sidual nucleus (14C!. In Eq. ~1!, ap

† (ap) represents the addi
tion ~removal! operator of a nucleon with momentump ~spin
and isospin are implicit!.

Since nuclear states have well-defined angular momen
and parity quantum numbers, it is useful to expand th
operators into a basis with shell model quantum numb
according to

ap5(
a

fa~p!aa , ~2!

with a5$na ,l a , j a ,ma%. For the description of bound sys
tems one can employ single-particle wave functions wh
correspond to Woods-Saxon or harmonic oscillator eig
states. If the experimental energy resolution of the coin
dence cross sections is sufficiently good, it is possible
identify contributions from individual low-lying final states
with well-defined angular momenta. It is therefore natural
introduce a pair wave function in angular momentu
coupled form@16–18#

Fcd
JM~p18,p28!5 (

mgmd

~ j gmg j dmduJM!fg~p18!fd~p28!,

~3!

where a Clebsch-Gordan coefficient is employed, and
indices c and d denote basis states without the magne
quantum number:a5$na ,l a , j a%. The spectral function~1!
for final states with angular momentumJ can now be written
as

SJ
hh~p1 ,p2 ,p18,p28,v!

5 (
abcd,M

Fcd*
JM~p18,p28!Scdab;JM

2 ~v!Fab
JM~p1 ,p2!. ~4!

The two-nucleon-removal spectral functionSabcd;JM
2 may be

calculated by constructing shell model wave functions
the initial and final nuclei and, subsequently, determining
matrix element of the angular-momentum-coupled tw
nucleon-removal operator (ap1ap2)JM . A more direct
method, which will be employed here, is to use the relat
between the spectral function and the~imaginary part of the!
two-particle Green’s function:
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Sabcd;JM
2 ~v!5

21

p
ImGabcd;JM

II ~v!,v<E0,A222E0,A. ~5!

The latter describes the propagation of a pair of nucleo
through the nuclear medium and contains information o
both two-particle removal and two-particle addition. Its Leh
mann representation, in angular-momentum-coupled form
given by

Gabcd;J
II ~v!

5(
n

^C0
Auu~ab̃aã !JuuCJ

n,A12&^CJ
n,A12uu~ag

†ad
†!JuuC0

A&

v2~EJ
n,A122E0,A!1 ih

2(
m

^C0
Auu~ag

†ad
†!JuuCJ

m,A22&^CJ
m,A22uu~ab̃aã !JuuC0

A&

v2~E0,A2EJ
m,A22!2 ih

5(
n

YabJ
n* YcdJ

n

v2~EJ
n,A122E0,A!1 ih

2(
m

XcdJ
m*XabJ

m

v2~E0,A2EJ
m,A22!2 ih

. ~6!

The symbols^•••uu•••uu•••& represent the reduced matrix
elements@16–18# of the two-nucleon-removal and -addition
tensor operators that are constructed by the angular mom
tum coupling of two one-nucleon-addition and -removal te
sors@aa

† andaã , whereaã5(2) ja2maa2a and2a denotes
$na ,l a , j a ,2ma%, the time reverse ofa#. The spectral func-
tion ~1! may then be written as

SJ
hh~p1 ,p2 ,p18,p28,v!

5(
n

(
abcd,M

Fcd*
JM~p18,p28!XcdJ

n* XabJ
n Fab

JM~p1 ,p2!

3d„v2~E0,A2EJ
n,A22!…. ~7!

One reason to prefer a calculation of the amplitudesX via the
Green’s function~6! is that one may take advantage of ex
perimental knowledge about the one-nucleon Green’s fun
tions:

gab~v!5(
n

^C0
AuaauCm

A11&^Cn
A11uab

† uC0
A&

v2~En,A112E0,A!1 ih

1(
m

^C0
Auab

† uCm
A21&^Cm

A21uaauC0
A&

v2~E0,A2Em,A21!2 ih
. ~8!

These contain one-nucleon-removal amplitudes, which a
probed in (e,e8p) reactions @19–24#. These one-nucleon
Green’s functions form an important ingredient in the Beth
Salpeter equation@18,25# for GII :
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Gabgd
II ~ t1 ,t2 ,t3 ,t4!5 i @gag~ t12t3!gbd~ t22t4!2gad~ t12t4!gbg~ t22t3!#

2E
2`

`

dt18dt28dt38dt48 (
mnkl

@gam~ t12t18!gbn~ t22t28!#Gmnkl
pp ~ t18 ,t28 ,t38 ,t48!Gklgd

II ~ t38 ,t48 ,t3 ,t4!, ~9!
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whereG denotes the irreducible effective particle-particle in
teraction. From the one-nucleon-removal experiments o
knows that the spectroscopic strength for the lowest state
typically only 50–70 % of the values predicted by th
independent-particle shell model and that another 10–20
is fragmented over the experimentally analyzed energy
gion of about 20 MeV. If one keeps only the first term on th
right-hand side~RHS! of Eq. ~9!, a corresponding fragmen-
tation is also predicted for the two-nucleon-removal streng
and it is only the interaction term which may further influ
enceGII . The strong fragmentation of the one-nucleon r
moval strength is attributed to the strong coupling of singl
particle motion to~low-energy! excitations of the residual
nucleus@26–30#.

In addition to this coupling at low energy, a 10–15%
depletion of filled orbits is expected on the basis of nuclea
matter results for SRC’s@31–37#. Recent calculations for
16O @3,4,30# confirm this estimate. Related to this depletio
is the appearance of high-momentum nucleons in the grou
state. These high-momentum nucleons are expected to
observable at high missing energy in the (e,e8p) reaction
@3,4#. In the present work we focus on the high relative m
menta of two-nucleon wave functions induced by SRC
The preceding discussion suggests that, for a calculation
the high-momentum components of the two-nucleon spec
functions for discrete final states, both long- and short-ran
correlations should be taken into account. A method to d
with both aspects is presented and applied in the next s
tions.

III. INCLUSION OF SHORT- AND LONG-RANGE
CORRELATIONS

A. Short-range correlations
from the Bethe-Goldstone equation

In a pure mean-field approximation for16O, the expan-
sion in Eq.~4! of the two-hole spectral function contains th
contributions from the filled 1s and 1p shells only. The de-
scription of the high-momentum components due to SRC
requires the inclusion of a very large number of basis stat
at least up to 100\v in a harmonic oscillator basis@38#. The
description of long-range correlations by solving a Beth
Salpeter equation~9! within such a large space is not fea
sible, however. For this reason the complete basis is s
into a model spaceM, which is supposed to be large enoug
to accommodate long-range correlations, and a complem
tary spaceM̄, which is responsible for the high-momentum
components due to SRC’s. The justification for this proc
dure is that SRC’s are caused by close encounters of
nucleons, which mainly depend on the nuclear density, a
therefore are not very sensitive to details of the long-ran
structure. The latter, on the other hand, may be calcula
within the spaceM with a suitable effective interaction in
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which the SRC’s are incorporated at least in ladder appro
mation. This effective interaction can then be obtained
following Brueckner’s individual pair approach@39,40# by
solving the Bethe-Goldstone equation~BGE!. Using the
technique of Ref.@38# the equation for the correlated pai
wave function,

uCab&5uFab&1
Q̂

W2Ĥ0

V̂uCab&, ~10!

is solved in the finite nucleus. In this equation the Pau
operatorQ̂ prohibits scattering into orbits of the finite shel
model spaceM, in which long-range correlations will be
treated at a later stage. For instance, in the present calc
tion for 16O, this space includes the 1s up to 2p1 f harmonic
oscillator shells. In Eq.~10!, Fab represents the uncorrelated
shell model wave function, the indicesa and b indicating
quantum numbers of shell model orbits. The symbolW rep-
resents the propagation energy of the pair andĤ0 is the
Hamiltonian without residual interaction. In this work, th
energyW refers to the propagation of two holes which pre
cludes the vanishing of the denominator in Eq.~10!. Details
of the solution of the BGE for a finite nucleus like16O have
been given in Ref.@38#.

From the solution of Eq.~10! one obtains the defect wave
function as the difference between the correlated and unc
related pair wave function,

ux&5uC&2uF&, ~11!

and theG matrix as the effective interaction in the spac
M according to

^Fcd
JMuGuFab

JM&5^Fcd
JMuVuCab

JM&. ~12!

The essential step taken in this work is to approximate t
spectral function~7! by the expression

SJ
hh~p1 ,p2 ,p18,p28,v!

5(
n,M

(
ab,cdPM

Ccd*
JM~p18,p28!XcdJ

n* XabJ
n

3Cab
JM~p1 ,p2!d~v2EJ

n,A22!, ~13!

where the summation over orbits is limited to the finite she
model spaceM and the uncorrelated wave functions ar
replaced by the correlated ones@see Eq.~10!#. This is in line
with the argument just given, that hard binary collision
treated in the BGE and giving rise to high-momentum com
ponents, proceed independently of the long-range corre
tions. The latter are taken into account in the shell mod
amplitudesX within the limited spaceM.
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The defect function~11! is calculated for various partia
waves of relative motion of the two nucleons. One m
therefore expand the two-particle shell model wave functi
in oscillator states of the relative and the center-of-mass
mentum of the pair:

Pc.m.5
p11p2

A2
, prel5

p12p2
A2

. ~14!

One obtains

Fnal aj anbl bj b
JM ~p1 ,p2!

5 (
nlNLSJ8

C
nlNLSJ8

nal aj anbl bj bJF
nlNLSJ8

JfM f ~prel ,pc.m.!, ~15!

where the coefficientsC in Eq. ~15! are obtained by angula
momentum recoupling and a Moshinsky transformat
@17,41,42#,

C
nlNLSJ8

nal aj anbl bj bJ5(
l

~2 !L1l1J81Sl̂Ĵ8Ŝĵ a ĵ bH l a l b l

sa sb S

j a j b JJ
3^nlNLlunal anbl bl&H L l l

S J J8J , ~16!
l
st
ns
o-

r
on

with the notationĵ5A2 j11. In this expression the nine-j
symbol originates from the transformation of the couplin
scheme

la1sa5 ja , lb1sb5 jb , ja1 jb5J ~17!

to the alternative scheme

la1 lb5l, sa1sb5S, l1S5J, ~18!

and the six-j symbol represents the recoupling from

l1L5l, l1S5J ~19!

to

l1S5J8, J81L5J. ~20!

The Talmi-Moshinsky transformation brackets, which pr
suppose that all states involved are of the harmonic oscilla
form, may be found in the tables of Ref.@42#. An explicit
expression for the more complicated case of unequal m
particles may be found in Ref.@43#. The partial-wave terms
can be written in terms of the shell model wave functio
according to
FnN~ lS!J8LJfM f
~prel ,pc.m.!5(

l
~2 !L2l1J81Sl̂Ĵ8H L l l

S Jf J8J (
m,ML ,m,sa,z ,sb,z ,Sz

~ lmLMLulm!~sasa,zsbsb,zuSSz!

3~lmSSzuJfM f !Rnl~ uprelu!Ylm~ p̂rel!RNL~ upc.m.u!YLML
~ p̂c.m.!jsasa,zjsbsb,z , ~21!
a

a-
y

is

ors

c-
where Rnl represents radial wave functions andYlm the
spherical harmonics. The symbolsj denote the spin wave
functions. In the present application wave functions are
ways calculated in complex conjugated pairs; cf. Eq.~7!.
This means that in the spectral function the spin part can
dealt with explicitly, usingjssz

* jss
z8
5dszsz8. So the factor

(sasa,zsbsb,zuSSz) will drop out together with the summation
oversa,z andsb,z due to the condition that the total spinS be
the same in both two-body wave functions for each term
the spectral function~7!.

The SRC’s are now introduced by the addition of th
defect wave functions from the BGE to the uncorrelated p
tial waves~for the relative motion!:

Rnl
SJ8~prel!5fnl

SJ8~prel!1(
l 8

xnl,l 8
SJ8 ~prel!, ~22!

with l 85 l ,l62. The contributionl 85 l62 arises for triplet
(S51) states, due to tensor components in theNN interac-
tion. Defect wave functions obtained for the Bonn-A
Bonn-C@44#, and Reid-soft-core@45# NN potentials are dis-
played in Fig. 1.
al-

be
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e
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B. Alternative: SRC’s represented by correlation functions

An alternative method to introduce short-range correl
tions in the two-particle-removal amplitudes is inspired b
the correlated basis function~CBF! method @46#. At the
variational level the correlated many-body wave function
related to the uncorrelated (A-body! wave function by@47–
49#

CA~r1 , . . . ,rA!5(
k

)
i, j

f k~ ur i2r j u!OkF
A~r1 , . . . ,rA!,

~23!

where the correlation functions and corresponding operat
are denoted byf k andOk , respectively. Only two-body cor-
relations are explicitly considered in Eq.~23!. The Pavia
group has proposed@9# to use these correlation functions to
modify the short-range behavior of the relative wave fun
tion of the removed pair

C~r1 ,r2!5(
k

f k~ ur12r2u!OkF~r1 ,r2!. ~24!
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FIG. 1. Defect functions@see Eq.~11!# calculated for different partial waves by solving the Bethe-Goldstone equation~10! for 16O, by
the method of Ref.@38#. The lowest two panels contain the tensor defect functions3S12

3D1 ~left! which contribute to the3S1 partial wave
and 3P22

3F2 which contribute to the3P2 partial wave. Results are plotted for the Bonn-A, Bonn-C, and Reid-soft-core potential.
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When only central correlations are considered in Eqs.~23!
and ~24! one refers to Jastrow wave functions@47#. Jastrow
correlation functions, calculated by Clark@50# for the Kallio-
Kolltveit ~KK ! @51# and Ohmura-Morita-Yamada~OMY!
@52# interactions, have been used by the Pavia group to
culate (e,e82N) cross sections@9–12#. In general, all the
operators that are important in the nuclear two-body inter
tion should be included in Eq.~24! @49,53#. The eight most
relevant operators are listed in Table I. Recent variatio
Monte Carlo calculations for16O @54# have generated a se
of correlation functions appropriate for these operators. I
important to keep in mind that the use of correlation fun
tions is plausible but does not represent a consistent C
treatment of the two-nucleon-removal amplitudes. Such
consistent CBF treatment has been developed for the o
nucleon spectral function for nuclear matter@32,36#.

A recent application of Green’s function techniques to t
calculation of relative two-nucleon wave functions in nucle
matter also allows the extraction of a correlation functi
@55,56#. Since SRC’s are expected to depend mainly on
local density, it is meaningful to consider the application
this correlation function and compare its result with tho
obtained with the defect functions from a Bethe-Goldsto
equation. The work in Refs.@55,56# also demonstrates tha
the spectral function in coordinate space can be interpre
as the product of the in-medium wave functions of the

TABLE I. List of operators which dominate the nuclear intera
tion. Corresponding correlation functions are determined in R
@54# by a variational Monte Carlo calculation for16O. The tensor
operatorS12 is defined as 3(s1• r̂12)(s2• r̂12)2s1•s2.

1 s1•s2 S12 l•S
t1•t2 s1•s2(t1•t2) S12(t1•t2) l•S(t1•t2)
al-

c-

al

is
-
BF
a
ne-

e
r
n
he
f
e
e

ted
e-

moved pair at a given energy. This suggests that the us
correlation functions might be fruitfully compared to resul
obtained by using defect wave functions.

Such a connection between defect functions and corr
tion functions may be made by the observation that the c
related wave function calculated with the defect functi
~11! can also be expressed in terms of the correlation fu
tions in Eq.~24!:

C~r !5F~r !1x~r !5O~r !F~r !. ~25!

For theT51 case, appropriate for two protons, the corre
tion operator is given by

O~r 12!5 f c~r 12!1 f s~r 12!s1•s21 f lS~r 12!l•S1 f t~r 12!Ŝ12,
~26!

where the tensor operatorŜ12 is given by the expression
3(s1• r̂12) (s2• r̂12) 2 s1•s2. In order to disentangle the
different contributions to the correlated wave function, t
following matrix elements are needed for proton-prot
(T51) wave functions:

^F l 8
S8Ju1uF l

SJ&5d l l 8dSS8,

^F l 8
S8Jus1•s2uF l

SJ&5d l l 8dSS8„2S~S11!23…,

^F l 8
S8Ju l•SuF l

SJ&5d l l 8dSS8
1

2
„J~J11!2 l ~ l11!2S~S11!…,

-
f.
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^F l 8
S8JuŜ12uF l

SJ&5dS1dS812A30~2 !J11A2l11A2l 811

3H J 1 l 8

2 l 1J S l 8 l 2

0 0 0D .
These results can be applied to find the correlated wave fu
tion for different quantum numbersl , S, and J. Using the
partial-wave notation2S11l J for l5S,P,D,F, the correlated
waves can then be written as

C~1S0!5~ f c23 f s!F~1S0!, ~27!

C~3P0!5~ f c1 f s22 f lS24 f t!F~3P0!, ~28!

C~3P1!5~ f c1 f s2 f lS12 f t!F~3P1!, ~29!

C~3P2!5S f c1 f s1 f lS2
2

5
f tDF~3P2!16A6 f tF~3F2!, ~30!

C~1D2!5~ f c23 f s!F~1D2!, ~31!

C~3F2!5S f c1 f s28 f lS2
8

5
f tDF~3F2!16A6 f tF~3P2!.

~32!

The correlation functions can be extracted, if the defect fun
tions are transformed to coordinate space, by means o
Fourier-Bessel transformation. For instance, Eq.~27! then
yields

f̃ c~r !23 f s~r !5
x1S0

~r !

R00~r !
, ~33!

where f̃ c is defined asf c21. Since the sum of Eq.~28!, 3
times Eq.~29! and 5 times Eq.~30!, is independent off lS and
f t , this linear combination together with Eq.~33! is used to
extract the central and spin correlation functionf c and f s .
By elimination of these from the set~28!–~30! also the spin-
orbit and the tensor correlation functionsf lS and f t can be
obtained. These functions are plotted in Fig. 2 for the Re
potential.

Before we discuss these results more in detail we sho
mention that certain approximations have to be made to
rive at this representation of the defect function in terms
local correlation functions. As a result of the Pauli operat
Q̂ occurring in Eq.~10!, the defect function calculated for a
finite nucleus does not simply factorize into a product
wave functions depending on relative and on center-of-m
coordinates. In order to arrive at a defect function just d
pending on a relative coordinate, we had to average over
center-of-mass variable. Furthermore, it should be notic
that for the determination of the various correlation functio
we have to consider also partial waves with orbital angu
momentuml>1. Since the effects of correlations are muc
less significant in these partial waves than for thel50 partial
waves, the resulting correlation function could be affected
inaccuracies in these channels.

Nevertheless, the comparison of these correlation fu
tions deduced from the defect wave functions for finite n
clei with those obtained in nuclear matter@55,56# for the
same Reid potential~dashed line in Fig. 3! is quite reason-
able. Note that the correlation function for the1S0 partial
nc-
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wave, shown in Fig. 3, is related to the components d
played in Fig. 2 by the relation~27!. In Fig. 3 also the cor-
relation functions for the older KK@51# and OMY @52# po-
tentials calculated by Clark@50# are displayed. Especially the
correlation function calculated for the OMY potential gives
more pronounced suppression of the relative wave funct
at short distances than is the case for the Reid potential.

If one assumes, as is done in variational calculations, t
correlation effects can be described in terms of correlati
functions f k , depending on the relative distance, which a
the same in the different partial waves, then the formul
~31! and ~32! can be used to construct the1D2 and 3F2
defect functions. We find that the1D2 and

3F2 defect func-
tions of Fig. 1 are smaller than the ones constructed w
Eqs.~31! and~32!. The latter1D2 defect function is about a
factor of 2 too large, while the3F2 differs orders of magni-
tude, but its construction from Eq.~32! is numerically inac-
curate due to the small size of the defect function. It seem

FIG. 2. Correlation functions in coordinate space that are rela
to the defect functions of Fig. 1 for the Reid-soft-core potentia
This relation results in the same correlated wave function@cf. Eq.
~25!# and involves the solution of Eqs.~27!–~30! together with Eq.
~33!.

FIG. 3. Correlation functions obtained by a variational calcul
tion @50# for the Kallio-Kolltveit ~KK ! @51# ~solid line! and
Ohmura-Morita-Yamada~OMY! @52# ~dotted line! potentials. The
thick dashed line corresponds to the correlation function calcula
in Refs.@55,56# for the 1S0 partial wave in nuclear matter with the
Reid @45# potential.
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therefore, that correlation functions, chosen to reproduce
correlations in theS wave correctly, exaggerate correlatio
effects in higherl components.

The elaborate variational Monte Carlo calculations of R
@54# yield correlation functions for central, spin, spin-orb
and tensor correlations. Results obtained for the Argo
v14 potential @57# are displayed in Fig. 4. The effect o
SRC’s in these functions can be investigated in the pres
approach if the correlation functions are transformed to
form of defect functions. This transformation implies
Fourier-Bessel transform and the algebraic manipulations
scribed by Eqs.~27!–~30!. The results of this transformation
are shown in Fig. 5. There is a reasonable agreement
tween the Reid and Argonnev14 potentials for high relative
momenta, but for low momenta they differ. As discuss
before, defect functions calculated within the finite nucle

FIG. 4. Correlation functions for the Argonnev14 potential@57#
as obtained in Ref.@54#. Note that the definition of our correlation
operator~26! differs from the one used in Ref.@54#.
the
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do not simply factorize into a relative and a center-of-mas
part. Since this problem originates from the Pauli operator,
is particularly severe for low momenta already present in th
uncorrelated wave functions. This might be the explanatio
for the discrepancy at low momenta. In addition, one shoul
keep in mind that the Argonne potential@57# does not go to
infinity at zero relative distance but has a finite core. Thi
results in a central correlation function which does not be
come equal to21 for zero relative distance~see Fig. 4! as is
the case for the Reid potential~see Fig. 3!.

IV. LONG-RANGE CORRELATIONS
IN THE DRESSED RPA

The shell model two-particle-removal amplitudesXab
nJ are

obtained within the adopted model spaceM by solving the
Bethe-Salpeter equation~9! for the two-nucleon propagator
in dressed random phase approximation~DRPA! @28#. This
implies that the dressed one-body propagatorsg that occur in
Eq. ~9! are calculated first by solving the Dyson equation
@30#

gab~v!5gab
0 ~v!1(

gd
gag
0 ~v!Sgd* ~v!gdb~v!. ~34!

As discussed in Ref.@30#, the irreducible self-energyS*
includes a Hartree-Fock term containing theG matrix as an
energy-dependent interaction plus a term of second an
higher order in this interaction, which accounts for the cou
pling of the hole propagator to two-particle–one-hole and
two-hole–one-particle propagation. The Dyson equation an
the corresponding self-energy are given in Fig. 6. The resul
for the calculated propagator may be compared with th
measured spectral function in the (e,e8p) experiment on
16O @24#. We have found@30# that within a model space of
four major shells employing aG-matrix interaction con-
FIG. 5. Defect functions corre-
sponding to the correlation func-
tions of Fig. 4 for the Argonne
v14 potential are compared with
defect functions obtained from the
Bethe-Goldstone equation using
the Bonn-A and Reid-soft-core
potentials~see also Fig. 1!.
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structed from the Bonn-C potential, the distributions
knockout strength from thep shells, as a function of the
energy of the final state in15N, are rather well reproduced
However, the largest spectroscopic factors for the lo
energy states are not yet sufficiently reduced relative to
independent-particle shell model values. We obtain the
duction factors 0.77 for the12

2 and 0.76 for the32
2 states,

while the analysis of the experimental data@24# yields
0.6560.05 and 0.6360.05, respectively. As a result, the firs
term in Eq. ~9! and the corresponding contribution to th
two-body spectral function~4! will be overestimated at low
energy. For example, a 21 configuration built with ap 1

2 and
p 3
2 hole contains just the product of the above spectrosco

factors. This product will be too large when our calculat
one-body Green’s functionsg are inserted into the Bethe
Salpeter equation~9! for GII . This could be improved by
reducing the residues of the dominant pole terms in Eq.~8!
to match the (e,e8p) spectroscopic factors. We have n
done this in the following, since our main aim is to inves
gate the gross features of the two-nucleon-removal stren
and compare the high-momentum components obtained
differentNN interactions.

The BSE~9! for GII is solved in the spaceM with the
G matrix as the effective interactionG. The difference with
the conventional RPA is reflected in the use of dress
single-particle propagatorsg. The method to solve the equa
tions has been discussed in Ref.@58#. The amplitudes for
each discrete final state are extracted from the full tw
proton propagator with the use of a contour integration in
complex energy plane as discussed in Ref.@59#.

V. TWO-HOLE SPECTRAL FUNCTION OF 16O
AND THE LONGITUDINAL „e,e8pp… CROSS SECTION

A. Final states in 14C

Triple-coincidence measurements of the scattered elec
and the two knocked-out protons with sufficient energy re
lution may determine the cross sections for low-lying, d
crete final states in14C separately. It is therefore useful t
consider results for the individual low-lying transitions
14C. Results for the low-energy spectrum of14C, obtained
from the DRPA equation with aG-matrix interaction de-
duced from the Bonn-C potential, are listed in Table II, t
gether with the amplitudesXad

J of the dominant configura-
tions. The squares of these amplitudes do not add up to 1

FIG. 6. Part~a! depicts the Dyson equation for the dressed on
body propagator. Part~b! shows the corresponding irreducible se
energyS* which is approximated by the Hartree-Fock term wi
G-matrix interaction plus higher-order terms, including all intera
tions between two holes and one particle or two particles and
hole in the Tamm-Dancoff approximation@30,65#.
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rather to a number comparable with the product of two spe
troscopic factors as discussed in the previous section.

A comparison with the experimental14C spectrum@60#
reveals in addition to states with energies and angula
momentum–parity quantum numbers (Jp), which can be in-
terpretated as two-proton holes, e.g., in the 1p shells, also
states that must be ascribed to more complicated mec
nisms. For instance, the 12 state at 6.094, 01 at 6.589, and
32 at 6.728 MeV are clearly reminiscent of similar states i
16O at 7.117, 6.049, and 6.130 MeV@61#, respectively. It is
therefore natural to interpret these states as excitations
14C of the 16O core. These states, which do not allow
simple two-hole interpretation, are expected to be hard
populated in two-proton knockout from16O. This expecta-
tion is confirmed by a two-proton pickup experimen
16O(n, 3He! in which only the14C ground state and 21 state
at about 7 MeV were clearly visible@60,61#.

Much clearer, though indirect, information is available
from the isospin mirror reaction16O(p,t)14O @62,63#. In
these experiments the strongly populated states of14O are
the 01 ground state and the 21 states at 6.59 MeV and
7.78 MeV, respectively. No 11 state, composed of ap 1

2 and
a p 3

2 hole, is seen in these reactions because in this config
ration the relative wave function must correspond to3P1,
whereas in the picked-up triton one has predominantly
1S0 configuration. As a result, there is no experimental in
formation about this state, but we consider the 11 state at
11.31 MeV in 14C as a likely candidate for a 11 two-

proton–hole (1p 1
2;1p

3
2 )

21 configuration. Other two-proton–
hole states in14C are expected at higher excitation energie
The strength of the negative parity configurations is spre
over a larger energy region; cf. also Fig. 7.

Since we are interested in the high-momentum comp
nents of the two-proton spectral function, in order to obta
information on the SRC’s, one must address the questio
which final states are most strongly populated by the remov
of a correlated1S0 proton pair from the16O ground state?
For large relative momenta the1S0 partial wave has a much
larger defect function than the3P or higher partial waves; cf.
Fig. 1. Therefore it is to be expected that the strength dist
bution for the knockout of a strongly correlated proton
proton pair, as a function of energy, follows the pattern o
the 1S0-removal spectral function

e-
lf-
th
c-
one

TABLE II. Calculated energies and two-proton-removal ampli
tudes from16O for states of14C that are expected to be strongly
populated in the16O(e,e8pp) reaction. The calculation is per-
formed by solving the Bethe-Salpeter equation for the two-partic
Green’s function~9! in the dressed random phase approximatio
~DRPA! @28# within a model space of the 1s up to the 2p1 f shells.
The G matrix derived from the Bonn-C potential is used as th
effective interaction. The experimental energies are taken from R
@60# .

Jp Ecalc* ~MeV! Main amplitudes (Xab) Eexpt* ~MeV!

01 0 0.77*(p 1
2)

22,0.18*(p 3
2)

22 0
21 5.87 20.77*(p 1

2p
3
2)

21,0.11*(p 3
2)

22 7.01/8.32
11 7.19 0.76*(p 1

2p
3
2)

21 11.31
01 12.00 0.15*(p 1

2)
22,20.76*(p 3

2)
22 9.75

21 13.14 0.10*(p 1
2p

3
2)

21,0.76*(p 3
2)

22
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S1S0~v!5(
m

u^14Cmu~aa!
1S0

u16O&u2d~v2Em!, ~35!

in which the operator (aa)
1S0

annihilates two particles

coupled to1S0. This removed pair is further characterized b
the radial quantum numbersn of the relative motion and the
quantum numbersN andL of its center-of-mass motion. The
spectral function~35! can be expressed in terms of the r
coupling coefficients of Eq.~16! and the two-nucleon-
removal amplitudesX given in Eq.~6! by a straightforward
recoupling@16#:

S1S0~v!5(
m,J

(
ab,cd

Xab
m (

i j
C̃Si
ab;JC̃S j

cd;JXcd
m d~E2EJ

m!, ~36!

where the coupling coefficientsC̃ are defined~for general
partial waves! as

C̃SnlNLl
ab;J 5(

J8
~2 !L2l1J81SH L l l

S J J8J CnNL~ lS!J8
ab;J . ~37!

In Eq. ~36! the spinS is set to zero. The easiest way t
calculate the1S0-hole spectral function~35! is to rewrite the
expression~35! in the form

S1S0~v!5
1

p
Im(

J
~2J11!vab;JGab;cdJ

II ~v!vcd;J , ~38!

where the vectorvab;J is obtained by inverting Eq.~37! with
fixed values ofn, N, andL for a given (lS)J8. In the calcu-

FIG. 7. Calculated spectral function~35! for the removal of a
1S0 pair from the nucleus16O as a function of the energyE of the
final state in14C relative to the ground state energy of16O ~the first
01 corresponds to the two-proton separation energy!. The plot rep-
resents the removal probability for a1S0 pair with radial quantum
numbersn50 for the relative motion and orbital angular mome
tum of the center of massL equal to the total angular momentum o
the final state in14C. The peak labeled with ‘‘21/01,’’ on the slope
of the beginning 12 distribution, has a 01 part slightly smaller than
the ground state and a 21 part almost one third of the first 21.
y

-

o

lations presented here,n, N, andL are chosen to have the
lowest possible values. The advantage of rewriting Eq.~36!
in the form of Eq.~38! lies in its similarity to the expression
for the particle-hole response functions@28#. The spectral
function~38! can now be calculated, using a continuous RP
method~calculateGII with v→v1 iD, whereD is a finite
energy!, which avoids the intermediate step of calculatin
the amplitudesX.

The resulting1S0-pair-removal spectral function~35! is
plotted in Fig. 7. The strongest peak at low excitation ener
comes from the 21

1 state; cf. Table II. It is much stronger
than that for the 01 ground state, partly due to the facto
2J11. The smaller peak around 12 MeV excitation energ
on the slope of the beginning 12 distribution, has a 01 part
slightly smaller than the ground state and a 21 part almost
one-third of the first 21. Experimentally@61,60# the 22

1 state
is at 8.32 MeV and the 02

1 state at 9.75 MeV, and so they
could be separated with sufficiently good energy resolutio
The 12 contribution is spread over a wide energy regio
Analogous to expression~35!, a 3P-pair-removal spectral
function may be defined~putting l51 andS51). This func-
tion is plotted in Fig. 8. In this case the contributions wit
different center-of-mass angular momentaL show up mainly
at different energies.

B. Spectral function for the lowest 01 and 21 states

One of the goals of the present study is to provide a se
sible estimate of the (e,e8pp) cross section. In the next sub
section we will discuss the calculation of the longitudina
part of this cross section. In the analysis of the (e,e8pp) data
on 12C at NIKHEF-K @64,9#, the virtual photon is assumed to
couple to one of the detected protons. This approximati
can be understood by considering the transition matrix e
ment of the nuclear charge operator in momentum space

-
f

FIG. 8. Spectral function for the removal of a3P pair from
16O. Additional quantum numbers of the pair correspond ton50,
N50. Contributions for the center-of-mass orbital angular mome
tum L are indicated separately. TheL50 contribution~solid line!
consists solely of negative parity states, while theL51 contribution
~dashed line! consists exclusively of positive parity states.
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r̂~q!5e(
p8

ap81q
† ap8 ~39!

~with spin implicit in the summation!, between the initial
stateC0

A and an approximate final state of the form

uCfinal&5ap18
† ap28

† uCn,A22&. ~40!

This final state contains two plane-wave protons and an e
stateCn,A22 for the system with two protons removed.
calculating the matrix elements of the transition charge
erator one obtains

^Cfinalur̂~q!uC0
A&

5^Cn,A22uap
28
ap

182quC0
A&1^Cn,A22uap

282qap
18
uC0

A&,

~41!

assuming that one of the detected protons absorbs the
mentumq. To obtain the contribution to the cross secti
one requires the square of this matrix element. This yie
four terms, each representing a particular term of Eq.~1!. It
is therefore clear that the appropriate expression to cons
is the quantity

Ŝ~p18 ,p28 ,E!5S~p182q,p28 ,p182q,p28 ,E!

1S~p182q,p28 ,p18 ,p282q,E!

1S~p18 ,p282q,p182q,p28 ,E!

1S~p18 ,p282q,p18 ,p282q,E!, ~42!

where the vectorq is the momentum of the virtual photon. A
sensible way to plotŜ is to fix the angles of the momenta
some reasonable configuration of detectors, e.g., corresp
ing to the measurements at NIKHEF@14#. As an example,
we have plotted in Fig. 9 the corresponding two-proton sp
tral function @without the delta function in Eq.~1!# at the
energy of the first 01 and 21 states, for the high-momentum
parts of Eq. ~42! obtained with the Reid-soft-core an
Bonn-A potentials. In the plots labeled ‘‘No SRC’’ harmon
oscillator states have been used for the relative wave fu
tions in the spectral function. As expected, one observes
these give no contribution at higher momenta. The hi
momentum part of the spectral function is about a factor o
larger for the Reid-soft-core potential than for the Bonn
potential in the momentum range around 3–5 fm21. The
short-range correlations give rise to a spectral function wh
is clearly distinct from the one without SRC’s. In Fig. 10 th
spectral strength for the same states is shown using Bon
defect functions. No significant difference with the Bonn
calculation is observed. Corresponding results for the
and OMY correlation functions, also shown in Fig. 10, yie
a significantly larger spectral strength for the transition to
ground state, apparent already at lower momenta. The O
results for the transition to the first 21 state also exhibit
stronger SRC effects than the ones obtained with more r
istic potentials.
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C. Longitudinal „e,e8pp… cross section
in a plane-wave approximation

In the spectator model with a plane-wave approximat
for the outgoing protons@9# ~see previous discussion!, the
longitudinal contribution to the eightfold differential cros
section is proportional to the zero-zero part of the hadro
tensor and given by

d8s

dp08dV08dE18dV18dV28

5K2«L@GE
p~qm

2 !#2u^Cn
A22uap

182qap82uC0
A&

1^Cn
A22uap

18
ap822quC0

A&u2

5K2«L@GE
p~qm

2 !#2Ŝ~p18 ,p28 ,E!, ~43!

i.e., it is proportional to the combination of spectral functio
given in Eq.~42!. In Eq. ~43! the symbolsK, «L , andGE

p

represent a kinematical factor, the longitudinal polarizati
and the electric form factor of the proton, respectively@9#.
This longitudinal cross section is plotted in Figs. 11 and
for the 01 ground state and the first excited 21 state of
12C, respectively, and for the same kinematics as adopte
the calculations of Refs.@9,10#. In this coplanar setting the
virtual photon momentumq is by definition along thez axis,
while the two detected protons are in thex-z plane at equal
angles with respect toq. By varying this anglegpq , one is
able to vary the relative and center-of-mass momenta of
pair simultaneously.

Our results agree with those for the OMY and KK pote
tials in Fig. 1 of Ref.@10# for angles larger than 50°. Fo
smaller angles the cross section is largely spurious, du
the use of plane waves for the knocked-out protons in
final states, instead of waves orthogonalized to the bo
states. This spuriosity of the cross section is clearly indica
by the fact that for the small angles the calculated curves
all roughly equal to the one labeled ‘‘no SRC,’’ calculate
without defect functions. If there were neither short- n
long-range correlations, the cross section should be zero.
separate treatment of short- and long-range correlat
makes it difficult to give a reliable prediction for the angl
below 50°, i.e., for initial proton momenta of about 1
fm21. These momenta are too large to be sufficiently cove
by the limited shell model space in which we treat the lon
range correlations, while they are too small to avoid t
aforementioned problems with the Pauli operator in
Bethe-Goldstone equation. To stipulate this problem and
cause a more satisfactory treatment is outside the scop
this work, we present the results as displayed in Figs. 11
12 and shall further focus on the larger angles, correspond
to higher initial momenta, approximately 2 fm21, of the pro-
tons. For these momenta the predictions are more reliab

The main features of Figs. 11 and 12 may be qualitativ
understood from the range of center-of-mass momenta
relative momenta involved. The center-of-mass moment
becomes zero forgpq'56° and increases to 1.4 fm21 at
gpq580°. This explains why all curves have a dip arou
56° in Fig. 12. In the dominant 21 configurations, the only
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FIG. 9. Superposition of spectral functions~42! appropriate for the removal of two protons with final momentap1 andp2 from
16O

leading to the final 01 ground state or first excited 21 state in 14C. The plots are given for a kinematic setting used in experiments
NIKHEF @14#. The momentum vectorq is fixed along thez axis, with length 313 MeV/c. The momentap1 andp2 are in the same plane with
q at249° and 123° angles with respect to this transferred momentum, respectively. The upper plots correspond to harmonic oscilla
functions without the inclusion of short-range correlations. In the lower plots these SRC’s are incorporated by the defect functions
Reid potential and the Bonn-A potential~see Fig. 1!.
,
is

e

of
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ta,
part with Lc.m.50, and which is therefore nonzero fo
pc.m.50, is multiplied with a relative1D2 wave, which has
negligible short-range correlations. The steep rise of t
curves above 60° in Fig. 12 illustrates the importance of t
Lc.m.52 part in the 21 wave function, multiplied by the
relative 1S0 wave function. The difference between th
Bonn, Reid, and Argonne potentials forgpq570°–80° in
Fig. 12 may be traced back to the1S0 defect functions in
Fig. 5. With the adopted value of 1.8 fm21 for the proton
momenta, the relative momentumup1 - p2u/2 ranges from
1.8 fm21 for gpq556° to 2.04 fm21 for gpq580°. Within
this narrow range of momenta the1S0 defect function goes
through zero for the Bonn potential while it is largest for th
Argonne potential.

The trends shown in Fig. 11 for the 01 ground state may
be understood by similar considerations. Those for OMY a
KK potentials are the most obvious. These include on
r

he
he

e

e

nd
ly

1S0 correlation functions. In the 01 configurations these go
together withLc.m.50, which explains their maximum near
gpq556°, for whichpc.m.50, and the rapid falloff with in-
creasingpc.m. at larger angles. For the more realistic Bonn
Reid, and Argonne potentials the trend is different. This

due to the fact that the dominant (1p 1
2 )

22 component in the
ground state is made up for two thirds of a3P1 , Lc.m.51
state. The3P1 defect function, shown in Fig. 5, is rather
large around 2 fm21 for the Bonn and Reid potentials and
gives the main contribution forgpq'60°–70° in Fig. 11.
This explains why the Argonne result is lower here, in spit
of its larger 1S0 defect function.

From these considerations it is clear that the ratios
predicted cross sections for different potentials depend
the probed momentum range. For larger relative momen
up12p2u/2'3 fm21 or higher, one tests mainly the1S0 de-
fect functions~squared!, which give a factor of 2 larger cross
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FIG. 10. Same as Fig. 9 but with short-range correlations from the defect functions of the Bonn-C potential~top! and the variational
correlation functions~Fig. 3! from the KK ~middle! or OMY interaction~bottom!. Note that the vertical scale in the lower figures differs b
a factor of 2 or 4 from the upper ones as well as from Fig. 9.
r
he

es

ith
ct
ec-

n
o-
l
-
re-
K

sections for the Reid than for the Bonn and Argonne pote
tials. This is outside the reach of the facilities at NIKHEF o
Mainz, but might be possible at CEBAF. Before makin
strong recommendations in this direction, one should a
consider contibutions from transverse and two-body curren
A careful study of these processes as well as the inclusion
distortion effects should be the subject of future investig
tions.

VI. CONCLUSIONS

The two-nucleon-removal spectral function of16O is
studied with emphasis on the presence of high-moment
components in the relative wave function of the remove
pair. These high momenta are introduced into shell mod
~relative! wave functions by the addition of defect function
calculated with the Bethe Goldstone equation@38# and by
using correlation functions obtained from variational calc
n-
r
g
lso
ts.
of
a-

um
d
el
s

u-

lations@54#. Within the shell model space, consisting of fou
major shells, long-range correlations are treated with t
dressed RPA~DRPA! method. The DRPA calculation of the
two-nucleon-removal amplitudes, leading to the final stat
in 14C, employs theG-matrix effective interaction from the
Bonn-C potential. These amplitudes are used together w
the defect or correlations functions to investigate the effe
of short-range correlations on the two-nucleon-removal sp
tral function. It is found that at high momenta (2–5 fm21)
the spectral function is roughly a factor of 2 larger whe
calculated with the defect functions of the Reid-soft-core p
tential than with those of the Bonn-A or Bonn-C potentia
~see Figs. 9 and 10!. Distinct shapes and much larger differ
ences for the spectral functions are obtained with the cor
lation functions, deduced from the older semirealistic K
and OMYNN potentials.

Since the ground state of14C is well separated from the
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excited states, a missing-energy resolution of 4 MeV
(e,e8pp) experiments is sufficient to study its spectral fun
tion separately. The largest cross sections must be expe
for the 21 states at about 7–8 MeV, however. This is ind
cated by the1S0 pair removal spectral function of Fig. 7. In
the region of final states with negative parity, above 40 Me
the 3P contribution might be studied by filtering out th
Lc.m. 5 0 part~cf., Fig. 8! of the cross section. Although th
3P defect functions are in general smaller than the1S0 de-
fect function, they may yield the dominant contribution f
the 14C ground state under special kinematical conditions,
illustrated in Fig. 11 for anglesgpq'75°–80°. This may be
traced back to a node in the1S0 defect functions for Bonn
and Reid potentials at relative momentumup12p2u/2 slightly
below 2 fm21, shown in Fig. 5. For higher relative mo
menta, where the1S0 defect function is the dominant factor
the longitudinal cross section predicted with the Reid pot
tial is roughly a factor 2 larger than for the Bonn and A
gonne potentials. To probe this region one needs an elec
beam of several GeV.

Before making strong recommendations for such exp

FIG. 11. Longitudinal16O(e,e8pp) cross section in plane wave
approximation~43! for the transition to the ground state of14C. The
kinematical setup corresponds to a virtual photon momentumq
which is directed along thez axis and has a magnitude of 2 fm21,
and both proton momenta with magnitude 1.8 fm21 detected at an
anglegpq . The beam energyp0 is 700 MeV, the transferred energ
v is 150 MeV, and the scattering angle of the electron is 34.8° w
a corresponding virtual photon polarization of«50.81. As ex-
plained in the text, the cross sections below 50° are largely sp
ous.
in
c-
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ri-

ments, one should also take other mechanisms into acco
than the spectator approximation@9# adopted here, though
under suitable conditions they may turn out to be less impo
tant. Meson-exchange currents are suppressed for two-pro
knockout as the exchanged meson is uncharged@10#. Experi-
ments should be performed at low missing energies for t
A22 system in order to avoid the domination of the cros
section by the excitation of theD resonance. For this reason
it is also important to perform a separation of longitudina
and transverse cross sections. The contribution of charge
change in the final state after the knockout of a proto
neutron pair may be suppressed in suitable kinematic con
tions @12#. Final state interactions, notably absorption of th
outgoing protons, have been neglected in Figs. 11 and
According to Ref.@12# this effect can be roughly represente
by an overall reduction of the cross section by a factor
2–3. Inclusion of these distortions and of other mechanism
will be explored in future work.
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FIG. 12. Same cross section as in Fig. 11, but now for th
transition to the first 21 state in14C.
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