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A procedure for the calculation of the two-body spectral function of a finite nucleus is presented. This
spectral function is used to calculate the longitudinal part of fi@e,e’pp) cross section assuming plane
waves for the outgoing nucleons. Short-range correlation effects are included in the pair-removal amplitudes by
adding corresponding defect wave functions that are obtained from the solution of the Bethe-Goldstone equa-
tion in the finite nucleus. The associat®dmatrix is used as the effective interaction in a large but finite model
space to calculate the pair-removal amplitudes in a random-phase approach. The resulting spectral functions
exhibit clear differences between different realistic interactions in the momentum range 2-15fdmthe
initial proton momental S0556-281®6)01309-X]

PACS numbd(s): 21.10.Jx, 21.30.Fe, 21.60n

I. INTRODUCTION nucleon correlations in finite nuclei using the, ¢’ reac-
_ ) atio gu pp
tion. Triple-coincidence measurements involving protons
Detectable consequences of the presence of short-rangéth large initial momenta seem particularly suitable to pro-
been notoriously hard to come by. Recent experimental worEXPectéd to transfer a virtual photon to one of these two
has probed the presence of high-momentum nucleons in t otons which have large and opposite momenta and there-

round state by studying the removal of protons from shelld0/¢ 2 relatively small center-of-mass momentum. This
grou y ying P , . S’5trong correlation results from hard collisions due to the
near the Fermi energy by means of theg’ p) reaction

) - c ] strong repulsive core of the nucleon-nucledN) interac-
[1,2]. Earlier theoretical calculations performed O actu-  tion. When one of the protons is removed by the absorption
ally suggested that the consequences of SRC's, as reflectgg the virtual photon, its partner will also leave the nucleus
by the presence of high-momentum nucleons, can only bgnder the assumption that the energy transfer is mainly to the
probed at high excitation energy in the hole nucléds it pair (the residual nucleus stays at a low excitation engrgy
[3,4]. Indeed, little evidence for the presence of high-[9]. It is therefore hoped that, if the coupling of the virtual
momentum nucleons in botRTI [1] and N [2] at low  photon to one nucleon is the dominant mechanism, the
excitation energy has been gathered. It remains to be verifiege, e’ pp) process may be exploited as a useful tool to inves-
experimentally whether an unambiguous signal of hightigate these short-range correlation effe(¢ége also Ref.
momentum protons in the nucleus can be isolated using the5]).
(e,e’'p) reaction. It is the purpose of the present paper to calculate the two-
Suggestions to explore SRC’s in two-nucleon emissiomucleon spectral function of°0 for transitions to the low-
reactions go back to the work of Gottfri€d]. More recently, lying states of the finat“C nucleus, including the effects of
theoretical work has focused on the possibility of utilizing short-range correlations. Modifications of the two-body spec-
the (e,e’ 2N) reaction to probe nucleon-nucleon correlationstral function, due to low-energy shell model correlations,
[6—8]. Practical descriptions of this reaction have been dewill also be taken into account. In Sec. Il of this paper the
veloped by the Pavia grou®—12]. Proceeding in a similar relevant theoretical ingredients are gathered which are
vein as in the analysis of the(e’p) reaction, which yields needed to calculate the two-body spectral function. Section
information about the one-nucle@remova) spectral func- 1l contains a description of the two-step procedure which
tion, one may hope to learn about the two-nucleonincludes a folding of short-range correlation effects into a
(-remova) spectral function in two-nucleon-emission pro- calculation of the two-body propagator in a configuration
cesses. The emission of two protons is particularly promisingpace large enough to deal adequately with long-range cor-
for studies of SRC'’s since the effect of meson-exchange curelations. Details of the latter calculations are discussed in
rents and isobars is not expected to dominate the cross seBec. IV. Results for the two-nucleon spectral function and a
tion under suitable kinematic conditioh$0]. first estimate of the corresponding longitudinal cross sections
Experiments have been carried out f6€ [13] and %0  are presented in Sec. V, while some conclusions are drawn in
[14] to explore the feasibility of gaining insight into nucleon- Sec. VI.
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II. SPECTRAL FUNCTIONS AND GREEN’S FUNCTIONS

-1
S, =—1ImG) L w<ECA 2 EO0A 5
An important ingredient in the description of the two- abedam( @) T abedam( @) @ ©

nucleon knockout reaction is the two-hole spectral function

defined by The latter describes the propagation of a pair of nucleons
through the nuclear medium and contains information on

hh B A nA-2 both two-particle removal and two-particle addition. Its Leh-
S (pl’p2’pl"p2”“’)_§n: (Volag, aj, [w"A?) mann representation, in angular-momentum-coupled form, is

given by
X (WA 2]ay, ap, | Vo)

X S(w—(EQA—EMA-2)) (1)  Ghpeas(®)

whereW? denotes the (0) ground state of the target system

(*0) and WA dencgte)sgthmth excited state gf th)e/ e~ _% (Woll(aaz),| | w5 2)(wi" 2 (alal),|| ¥5)

sidual nucleus¥'C). In Eq. (1), a} (a,) represents the addi- w—(E}AT2—E%) +ig

tion (remova) operator of a nucleon with momentumm(spin _

and isospin }arepimplicjt s S <\Pé||(a D[ wTATE (WA 2”(3533)\]”‘1’8)
Since nuclear states have well-defined angular momentum w— (E%A— ET‘A’Z) —in

and parity quantum numbers, it is useful to expand these

operators into a basis with shell model quantum numbers_E apaYcda
according to A w—(E3A+2—E°A)+i77
_2 Xch abJ (6)
8,=2 bu(P)as, 2 Y w0 (EA—ETA D) —ig
with a={n,,l,,j.,m,}. For the description of bound sys- The symbols(---||---||---) represent the reduced matrix

tems one can employ single-particle wave functions whichelementd16—-18 of the two-nucleon-removal and -addition
correspond to Woods-Saxon or harmonic oscillator eigentensor operators that are constructed by the angular momen-
states. If the experimental energy resolution of the coincitum coupling of two one-nucleon-addition and -removal ten-
dence cross sections is sufficiently good, it is possible t%ors[a andag, whereaz=(—)le"Ma__ and— a denotes
identify contributions from individual low-lying final states, Nl ariar— a} the time reverse ak]. The spectral func-
with well-defined angular momenta. It is therefore natural togjon (1) may then be written as

introduce a pair wave function in angular momentum

coupled form[16-1§

S.r]]h(plip21pl’!p2’1w)

D (P p2)= 2 (JyM,isMs|IM) (1) bs(Par),
. m,ms v 7 @ _; abcE cI) (pl’va’)XchXabJ g';,"(pl,pz)

where a Clebsch-Gordan coefficient is employed, and the X 8(w—(EOA—E}A72). )
indicesc and d denote basis states without the magnetic
qguantum numbera={n,,l,,j,}. The spectral functioril)

. i ) One reason to prefer a calculation of the amplitugesa the
for final states with angular momentuircan now be written

Green’s function(6) is that one may take advantage of ex-

as perimental knowledge about the one-nucleon Green’s func-
tions:
Sgh(p]_,pz,p]_',pz/,w)
A A+1 A+1 41 A
— (D*JM ’ , S— (DJM , . 4 _ <’\If |a. |\If ><\I,n |aﬁ|‘l’0>
2, Ded" (P P2 Sdan (@) D25 (P2 (4) Gupl0) = S g

The two-nucleon-removal spectral functi&fy, .4,y may be \IfA|aE|‘IfA Ly(whA- 1|aa|\1,A>
calculated by constructing shell model wave functions for +> EOA_EMA-T)_ ©)]
the initial and final nuclei and, subsequently, determining the m = )=in

matrix element of the angular-momentum-coupled two-

nucleon-removal operator af a, )sv- A more direct These contain one-nucleon-removal amplitudes, which are
method, which will be employed here, is to use the relationprobed in €,e'p) reactions[19-24. These one-nucleon
between the spectral function and ftirmaginary part of the ~ Green’s functions form an important ingredient in the Bethe-
two-particle Green’s function: Salpeter equatiofil8,25 for G'":
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Guﬁys(tlatzyts,u):i[gay(tl_ts)gﬁa(tz_tzt)_gaﬁ(tl_tzt)gﬁy(tz_ta)]

- j_xdtidtédtédtl,l’u%}\ [ga;/,(tl_ ti)gﬂv(tZ_ té)]rﬁgk)\(ti ’té ’té ’tl,l)lel)\y(S(té 'téll ’t3 ,t4), (9)

wherel” denotes the irreducible effective particle-particle in- which the SRC'’s are incorporated at least in ladder approxi-
teraction. From the one-nucleon-removal experiments onenation. This effective interaction can then be obtained by
knows that the spectroscopic strength for the lowest states fsllowing Brueckner’s individual pair approad89,40 by
typically only 50-70 % of the values predicted by the solving the Bethe-Goldstone equatigBGE). Using the
independent-particle shell model and that another 10—20 %echnique of Ref[38] the equation for the correlated pair
is fragmented over the experimentally analyzed energy rewave function,

gion of about 20 MeV. If one keeps only the first term on the
right-hand sidg RHS) of Eq. (9), a corresponding fragmen-
tation is also predicted for the two-nucleon-removal strength
and it is only the interaction term which may further influ-

1 i
enceG . The strong fragmentation of the one-nucleon re-is sq|yeq in the finite nucleus. In this equation the Pauli

moval strength is attributed to the strong coupling of single- . L . -
particle motion to(low-energy excitations of the residual operatorQ prohibits scattering into orbits of the finite shell

model spaceM, in which long-range correlations will be
nucleus|26-34. treated at a later stage. For instance, in the present calcula-
In addition to this coupling at low energy, a 10-15% ge. ' P

. 16 . . .
depletion of filled orbits is expected on the basis of nuclear:[Ion for 0, this space includes thesip to 2p1f harmonic

matter results for SRC'$31—-37. Recent calculations for oscillator shells. In Eg(10), ®,, represents the uncorrelated

180 [3,4,30 confirm this estimate. Related to this depletion shell model wave function, the indices and b indicating

is the appearance of high-momentum nucleons in the groundantum numbers of shell model orbits. The symidbrep-

state. These high-momentum nucleons are expected to B8SeNts the propagation energy of the pair &hglis the
observable at high missing energy in the ' p) reaction Hamiltonian without residual interaction. In this wqu, the
[3,4]. In the present work we focus on the high relative mo-€nergyW refers to the propagation of two holes which pre-
menta of two-nucleon wave functions induced by SRC’scludes the vanishing of the denominator in EI0). Details
The preceding discussion suggests that, for a calculation &' the solution of the BGE for a finite nucleus liK€O have

the high-momentum components of the two-nucleon spectrdt€en given in Reff38]. _

functions for discrete final states, both long- and short-range From the solution of Eq(10) one obtains the defect wave
correlations should be taken into account. A method to dedtnction as the difference between the correlated and uncor-
with both aspects is presented and applied in the next se&€lated pair wave function,

|\Pab>=|q)ab>+ \All\Pab% (10

W—Hy

tions.
X)=1¥)—|D), (11)
Il INCLUSION OF SHORT- AND LONG-RANGE and theG matrix as the effective interaction in the space
CORRELATIONS M according to
A. Short-range correlations IM IM IM IM
from the Bethe-Goldstone equation (Peq |G|q)ab =(P5q |V|q,ab ' (12
In a pure mean-field approximation fdfO, the expan- The essential step taken in this work is to approximate the

sion i'n Eg.(4) of the twq-hole spectral function contains the spectral functior(7) by the expression
contributions from the filled 4 and 1p shells only. The de-

scription of t_he hlgh-momentum components due to SRC %?h(pl,pz,plr.pgr,w)

requires the inclusion of a very large number of basis states,
at least up to 10w in a harmonic oscillator bas|88]. The
description of long-range correlations by solving a Bethe- = E
Salpeter equatiof9) within such a large space is not fea-

sible, however. For this reason the complete basis is split XWIM(py,py) 8(w—ETA2), (13

into a model spacé, which is supposed to be large enough

to accommodate long-range correlations, and a complemeRvhere the summation over orbits is limited to the finite shell
tary spaceM, which is responsible for the high-momentum model spaceM and the uncorrelated wave functions are
components due to SRC's. The justification for this proceteplaced by the correlated onese Eq(10)]. This is in line
dure is that SRC’s are caused by close encounters of twwith the argument just given, that hard binary collisions,
nucleons, which mainly depend on the nuclear density, antreated in the BGE and giving rise to high-momentum com-
therefore are not very sensitive to details of the long-rang@onents, proceed independently of the long-range correla-
structure. The latter, on the other hand, may be calculatetions. The latter are taken into account in the shell model
within the spaceM with a suitable effective interaction in amplitudesX within the limited spaceM.

*JM Nx \/N
Ve (P1ryP21)XcdaXan,
n,M ab,cde M
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The defect function(11) is calculated for various partial with the notationf: J2j+1. In this expression the ninje-

waves of relative motion of the two nucleons. One mustsymbol originates from the transformation of the coupling
therefore expand the two-particle shell model wave functiongcheme

in oscillator states of the relative and the center-of-mass mo-
mentum of the pair:

latSa=jar bt S=Jb, Jatin=J (17)
P1+ P2 P1—P2 .
p. = , == "< 14 to the alternative scheme
c.m. \/E Pre \/E ( )
One obtains latlb=\, S$+%=S A+S=J, (18)
q’ﬂﬁajanblbjb(pl,pz) and the sixj symbol represents the recoupling from
alaiaNblbipd . IfM _ _
- 2 CEINIJ_SIT]I’) bl q)nf”\l[s‘y(prelypc,m). (15) [+L )\, A+S=J (19)

nINLSJY

where the coefficient€ in Eq. (15) are obtained by angular o
momentum recoupling and a Moshinsky transformation

[17,41,43, I+S=J', J+L=J. (20
la 1p A The Talmi-Moshinsky transformation brackets, which pre-
NalaiaMblpipd D Lin+d 4503835 ) Sa Sy S suppose that all states involved are of the harmonic oscillator
Contsy = < (=) N'Slalp) ™ 3 form, may be found in the tables of Ré#2]. An explicit
la b expression for the more complicated case of unequal mass

particles may be found in Ref43]. The partial-wave terms
LI A can be written in terms of the shell model wave functions
X(nINLN[nglanplph)y s 3 3¢, (16)  according to

] > (IMLM_|\ ) (SaSa 55050.2/SS)
S Jf J vaL'M'Sa,Z'sb,Z’SZ

X()\MS$|JfM £)Rni( | prel| )Y im( ﬁrel) Ryw( | pc.m.| )YLML(ﬁc.m) gsasa,zgsbsb,z ) (21)

L—\+J"+Sy 7/ LT
q)nN(IS)J’LJfo(preI’pc.m):; (=) AJ

where R, represents radial wave functions ang, the B. Alternative: SRC’s represented by correlation functions
spherical harmonics. The symbagsdenote the spin wave  ap ajternative method to introduce short-range correla-
functions. In the present apphcat_lon wave fgnchons are alkions in the two-particle-removal amplitudes is inspired by
ways calculated in complex conjugated pairs; cf. EQ-  the correlated basis functiofCBF) method [46]. At the
This means that in the spectral function the spin part can bgajational level the correlated many-body wave function is
dealt with explicitly, using£ssésy=3Jssr. So the factor ygjated to the uncorrelated\fbody) wave function by[47—
(SaSa,zSSh 2| SS) will drop out together with the summation 49]

overs, , ands, , due to the condition that the total sgabe

the same in both two-body wave functions for each term of PA _ £ =1 OL.PA
the spectral functior(7). (o) EK .1;[1 dri=rDO@Ary, - ra),
The SRC'’s are now introduced by the addition of the (23

defect wave functions from the BGE to the uncorrelated par-
tial waves(for the relative motioj
where the correlation functions and corresponding operators
are denoted by, andO,, respectively. Only two-body cor-
RS (Pre) = &7 (Pre) + > Xﬁfl]r(prel)l (22)  relations are explicitly considered in E(3). The Pavia
I’ ’ group has proposel@] to use these correlation functions to
modify the short-range behavior of the relative wave func-
with I’=1,1=2. The contributioni’=1+2 arises for triplet ton of the removed pair
(S=1) states, due to tensor components in I\ interac-
tion. Defect wave functions obtained for the Bonn-A,
Bonn-C'[44]., and Reid-soft-cor@45] NN potentials are dis- ‘I’(rl,rz)=2 f(|F1— o) ORD(ry,ry). (24)
played in Fig. 1. K
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FIG. 1. Defect functiongsee Eq.(11)] calculated for different partial waves by solving the Bethe-Goldstone equéi@®rior °0, by

the method of Ref.38]. The lowest two panels contain the tensor defect functitss- 3D (left) which contribute to thé'S, partial wave
and 2P,—3F, which contribute to theé’P, partial wave. Results are plotted for the Bonn-A, Bonn-C, and Reid-soft-core potential.

When only central correlations are considered in Eg8)
and (24) one refers to Jastrow wave functiop®7]. Jastrow
correlation functions, calculated by Clg0] for the Kallio-  obtained by using defect wave functions.

Kolltveit (KK) [51] and Ohmura-Morita-Yamad&OMY) Such a connection between defect functions and correla-
[52] interactions, have been used by the Pavia group to cation functions may be made by the observation that the cor-
culate g,e'2N) cross section$9—12]. In general, all the related wave function calculated with the defect function
operators that are important in the nuclear two-body interact1ll) can also be expressed in terms of the correlation func-
tion should be included in Eq24) [49,53. The eight most tions in Eq.(24):

relevant operators are listed in Table I. Recent variational
Monte Carlo calculations fot®0 [54] have generated a set
of correlation functions appropriate for these operators. It is
important to keep in mind that the use of correlation func-
tions is plausible but does not represent a consistent CBEor theT=1 case, appropriate for two protons, the correla-
treatment of the two-nucleon-removal amplitudes. Such ajon operator is given by

consistent CBF treatment has been developed for the one-

nucleon spectral function for nuclear matfde,36.

A recent application of Green’s function techniques to the O(r 12) =f(r12) + f (11 o1- o+ fi5(r 1)1 - S+ f(r12)Sio,

calculation of relative two-nucleon wave functions in nuclear (26)
matter also allows the extraction of a correlation function
[55,56. Since SRC's are expected to depend mainly on the
local density, it is meaningful to consider the application Of3(herer tSe(ten?ozr) operatcSlz IISn %\r/degr kt)g é?seerigﬂrﬁzs{ﬁg
this correlation function and compare its result with those d|ffelrenlt CO(thzrlbllJtlonS % t(r:é correlated wave func%on the
obtained with the defect functions from a Bethe-Goldston

equation. The work in Refg55,56 also demonstrates that eToIIowmg matrix elements are needed for proton-proton

the spectral function in coordinate space can be interprete%lT 1) wave functions:

as the product of the in-medium wave functions of the re-

moved pair at a given energy. This suggests that the use of
correlation functions might be fruitfully compared to results

W(r)=a(r)+x(r)=0(r)®(r). (29

. . . . <CD|5,’J|1|¢|53>:5”,583,
TABLE . List of operators which dominate the nuclear interac-

tion. Corresponding correlation functions are determined in Ref.
[54] by a variational Monte Carlo calculation f3fO. The tensor

s'J SA _ _
operatorS,, is defined as 3d;-F1,) (0 F1) — 07 0. (@), "|o1- 05| DP) = 61 855 (2S(S+1) —3),

1 010, 812 IS
T T2 0, 0y(70 ) Sy 71 T) I-S(71- 7)

IS0 = 11555 5 A+ 1)~ 1(1+ 1)~ S(S+ 1)),
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(D578 D Y = 518512330~ ) 121+ 121" +1

421l o o

These results can be applied to find the correlated wave func-

tion for different quantum numbeds S, andJ. Using the
partial-wave notatior>*1l, for |=S,P,D,F, the correlated
waves can then be written as

V(1S0) = (=31, D(Sy), @7)
W(EPo)=(fot 1, 2f1s~ 41) D (*Py), (28)
WEPY = (fet f,~ st 26 B(Py), 29
V(Py)= fc+f(,+f.s—éft)@<3P2)+6J6ftd><3Fz), (30)
V(D)= (fc~31,)('Dy), @

V(R = fc+f(,—8f|s—gft)q><3Fz>+6£ftq><3P2>.

(32

0.5 T T T

(X .

f(r,,)

-1.0 L 1 L

FIG. 2. Correlation functions in coordinate space that are related
to the defect functions of Fig. 1 for the Reid-soft-core potential.
This relation results in the same correlated wave funciefnEq.
(25)] and involves the solution of Eq&27)—(30) together with Eq.
(33).

wave, shown in Fig. 3, is related to the components dis-
played in Fig. 2 by the relatiof27). In Fig. 3 also the cor-

The correlation functions can be extracted, if the defect functelation functions for the older KK51] and OMY [52] po-
tions are transformed to coordinate space, by means of gntials calculated by Clafl60] are displayed. Especially the

Fourier-Bessel transformation. For instance, E2j7) then
yields

X1s,(F)

i(r)—S@(r)zm,

(33

wheref. is defined af.—1. Since the sum of Eq28), 3
times Eq.(29) and 5 times Eq(30), is independent ofs and
f,, this linear combination together with E(3) is used to
extract the central and spin correlation functignand f .
By elimination of these from the sé28)—(30) also the spin-
orbit and the tensor correlation functiofig and f; can be

correlation function calculated for the OMY potential gives a
more pronounced suppression of the relative wave function
at short distances than is the case for the Reid potential.

If one assumes, as is done in variational calculations, that
correlation effects can be described in terms of correlation
functionsf,, depending on the relative distance, which are
the same in the different partial waves, then the formulas
(31) and (32) can be used to construct thD, and °F,
defect functions. We find that th&D, and 3F, defect func-
tions of Fig. 1 are smaller than the ones constructed with
Egs.(31) and(32). The latter'D, defect function is about a
factor of 2 too large, while théF, differs orders of magni-

obtained. These functions are plotted in Fig. 2 for the Reidude, but its construction from E§32) is numerically inac-

potential.

Before we discuss these results more in detail we should
mention that certain approximations have to be made to ar-
rive at this representation of the defect function in terms of
local correlation functions. As a result of the Pauli operator
Q occurring in Eq.(10), the defect function calculated for a
finite nucleus does not simply factorize into a product of
wave functions depending on relative and on center-of-mass
coordinates. In order to arrive at a defect function just de-
pending on a relative coordinate, we had to average over the
center-of-mass variable. Furthermore, it should be noticed
that for the determination of the various correlation functions
we have to consider also partial waves with orbital angular
momentuml=1. Since the effects of correlations are much
less significant in these partial waves than forlthd® partial
waves, the resulting correlation function could be affected by
inaccuracies in these channels.

1.5

1.0

f(r))

0.5

0.0
0

;o (fm)

curate due to the small size of the defect function. It seems,

! ) FIG. 3. Correlation functions obtained by a variational calcula-
Nevertheless, the comparison of these correlation funcion [50] for the Kallio-Kolltveit (KK) [51] (solid line and

tions deduced from the defect wave functions for finite NU-ohmura-Morita-Yamad4OMY) [52] (dotted lin@ potentials. The

clei with those obtained in nuclear mattgs5,56 for the
same Reid potentigldashed line in Fig. Bis quite reason-
able. Note that the correlation function for tH&, partial

thick dashed line corresponds to the correlation function calculated
in Refs.[55,56 for the 1S, partial wave in nuclear matter with the
Reid[45] potential.
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0.5 T T T

-1.0 ' ' '

FIG. 4. Correlation functions for the Argonmg, potential[57]
as obtained in Ref54]. Note that the definition of our correlation
operator(26) differs from the one used in Ref54].

GEURTS, ALLAART, DICKHOFF, AND MUTHER

54

do not simply factorize into a relative and a center-of-mass
part. Since this problem originates from the Pauli operator, it
is particularly severe for low momenta already present in the
uncorrelated wave functions. This might be the explanation
for the discrepancy at low momenta. In addition, one should
keep in mind that the Argonne potent[&l7] does not go to
infinity at zero relative distance but has a finite core. This
results in a central correlation function which does not be-
come equal to-1 for zero relative distancgee Fig. 4as is

the case for the Reid potenti@ee Fig. 3.

IV. LONG-RANGE CORRELATIONS
IN THE DRESSED RPA

The shell model two-particle-removal amplitudé$, are
obtained within the adopted model spat¢ by solving the
Bethe-Salpeter equatia®) for the two-nucleon propagator
in dressed random phase approximat{®RPA) [28]. This
implies that the dressed one-body propagagoitsat occur in
Eqg. (9) are calculated first by solving the Dyson equation

therefore, that correlation functions, chosen to reproduce th[eso]

correlations in theS wave correctly, exaggerate correlation
effects in highedl components.

The elaborate variational Monte Carlo calculations of Ref.

[54] yield correlation functions for central, spin, spin-orbit,

gaﬁ<w>=gﬁiﬁ<w>+% 90 (@33 (0)gsp(w). (34)

and tensor correlations. Results obtained for the Argonnés discussed in Ref{30], the irreducible self-energ®.*

v14 potential [57] are displayed in Fig. 4. The effect of

includes a Hartree-Fock term containing fBematrix as an

SRC's in these functions can be investigated in the presem@nergy-dependent interaction plus a term of second and
approach if the correlation functions are transformed to thénigher order in this interaction, which accounts for the cou-
form of defect functions. This transformation implies a pling of the hole propagator to two-particle—one-hole and
Fourier-Bessel transform and the algebraic manipulations dewo-hole—one-particle propagation. The Dyson equation and

scribed by Eqs(27)—(30). The results of this transformation

the corresponding self-energy are given in Fig. 6. The results

are shown in Fig. 5. There is a reasonable agreement bésr the calculated propagator may be compared with the

tween the Reid and Argonne 4 potentials for high relative

measured spectral function in the,é’p) experiment on

momenta, but for low momenta they differ. As discussed®O [24]. We have found30] that within a model space of
before, defect functions calculated within the finite nucleusfour major shells employing &-matrix interaction con-

— 'Bonn-A

0.05 ---- Reid
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FIG. 5. Defect functions corre-
sponding to the correlation func-
tions of Fig. 4 for the Argonne
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defect functions obtained from the
Bethe-Goldstone equation using
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TABLE Il. Calculated energies and two-proton-removal ampli-

tudes from?®0 for states of'“C that are expected to be strongly
X VA populated in the'®O(e,e’pp) reaction. The calculation is per-
= + WWV\NO formed by solving the Bethe-Salpeter equation for the two-particle
3 NAY, Green'’s function(9) in the dressed random phase approximation
H 5 H (DRPA) [28] within a model space of theslup to the 21f shells.

The G matrix derived from the Bonn-C potential is used as the
P W effective interaction. The experimental energies are taken from Ref.
: [60] .

FIG. 6. Part(a) depicts the Dyson equation for the dressed one- - N - i n
body propagator. Patb) shows the corresponding irreducible self- 3 Ecac (MeV) Main amplitudes Xap) Eexpt (MeV)
energy3>* which is approximated by the Hartree-Fock term with ot 0 0.77*(p%)’2,0.18*(p§’)*2 0

G-matrix interaction plus higher-order terms, including all interac-2+ 5.87 _0.77*(ppd 1.0.11*(p) 2 7.01/8.32
tions between two holes and one particle or two particles and oné. 719 ) ;Gi(olp]ﬁj‘l z 1131
hole in the Tamm-Dancoff approximati¢B80,65. ’ ; 22 :

PP 460,69 ot 12.00 0.15%p)2,—0.76%(p3) 2 9.75

w1 3\ P
structed from the Bonn-C potential, the distributions of2 13.14 0.10*pzp3) 0.76*(p3) °
knockout strength from the shells, as a function of the
energy of the final state if°N, are rather well reproduced. rather to a number comparable with the product of two spec-
However, the largest spectroscopic factors for the low+troscopic factors as discussed in the previous section.
energy states are not yet sufficiently reduced relative to the A comparison with the experimentafC spectrum[60]
independent-particle shell model values. We obtain the rereveals in addition to states with energies and angular-
duction factors 0.77 for th¢ ~ and 0.76 for the}~ states, momentum—parity quantum numbex¥}, which can be in-
while the analysis of the experimental data4] yields terpretated as two-proton holes, e.g., in the shells, also
0.65+0.05 and 0.630.05, respectively. As a result, the first states that must be ascribed to more complicated mecha-
term in Eq.(9) and the corresponding contribution to the nisms. For instance, the 1state at 6.094, 0 at 6.589, and
two-body spectral functioi4) will be overestimated at low 3~ at 6.728 MeV are clearly reminiscent of similar states in
energy. For example, a"2configuration built with gp3 and 160 at 7.117, 6.049, and 6.130 Md81], respectively. It is
p3 hole contains just the product of the above spectroscopitherefore natural to interpret these states as excitations in
factors. This product will be too large when our calculated4C of the 10 core. These states, which do not allow a
one-body Green’s functiong are inserted into the Bethe- simple two-hole interpretation, are expected to be hardly
Salpeter equatior9) for G". This could be improved by populated in two-proton knockout frorfO. This expecta-
reducing the residues of the dominant pole terms in(Bg. tion is confirmed by a two-proton pickup experiment
to match the ¢,e'p) spectroscopic factors. We have not 1%0(n,3He) in which only the“C ground state and2state
done this in the following, since our main aim is to investi- at about 7 MeV were clearly visiblg0,61].
gate the gross features of the two-nucleon-removal strength Much clearer, though indirect, information is available
and compare the high-momentum components obtained witftom the isospin mirror reaction®O(p,t)*0 [62,63. In
different NN interactions. these experiments the strongly populated state$’of are

The BSE(9) for G is solved in the spacé/ with the  the 0" ground state and the 2states at 6.59 MeV and
G matrix as the effective interactioin. The difference with 7,78 MeV, respectively. No 1 state, composed of p3 and
the conventional RPA is reflected in the use of dressed p$ hole, is seen in these reactions because in this configu-
single-particle propagatogs The method to solve the equa- ration the relative wave function must correspond®®;,
tions has been discussed in RE38]. The amplitudes for whereas in the picked-up triton one has predominantly a
each discrete final state are extracted from the full two-'S, configuration. As a result, there is no experimental in-

proton propagator with the use of a contour integration in thgormation about this state, but we consider the dtate at

complex energy plane as discussed in R&8]. 11.31 MeV in 'C as a likely candidate for a1 two-
proton—hole (p3;1p2) ! configuration. Other two-proton—
V. TWO-HOLE SPECTRAL FUNCTION OF €0 hole states in““C are expected at higher excitation energies.

AND THE LONGITUDINAL (e,e’pp) CROSS SECTION The strength of the negative parity configurations is spread
over a larger energy region; cf. also Fig. 7.

Since we are interested in the high-momentum compo-

Triple-coincidence measurements of the scattered electrafients of the two-proton spectral function, in order to obtain
and the two knocked-out protons with sufficient energy resoinformation on the SRC's, one must address the question,
lution may determine the cross sections for low-lying, dis-which final states are most strongly populated by the removal
crete final states in“C separately. It is therefore useful to of a correlated'S, proton pair from the®O ground state?
consider results for the individual low-lying transitions to For large relative momenta ths, partial wave has a much
4C. Results for the low-energy spectrum HiC, obtained larger defect function than th& or higher partial waves; cf.
from the DRPA equation with &-matrix interaction de- Fig. 1. Therefore it is to be expected that the strength distri-
duced from the Bonn-C potential, are listed in Table Il, to-bution for the knockout of a strongly correlated proton-
gether with the amplitudeﬁlijld of the dominant configura- proton pair, as a function of energy, follows the pattern of
tions. The squares of these amplitudes do not add up to 1, bthie *Sy-removal spectral function

A. Final states in “C
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FIG. 7. Calculated spectral functidi35) for the removal of a
13, pair from the nucleus®O as a function of the enerdy of the
final state in'“C relative to the ground state energy*80 (the first
0* corresponds to the two-proton separation energlye plot rep-
resents the removal probability fors, pair with radial quantum
numbersn=0 for the relative motion and orbital angular momen-
tum of the center of mads equal to the total angular momentum of
the final state in““C. The peak labeled with “2/0",” on the slope
of the beginning I distribution, has a 0 part slightly smaller than
the ground state and a 2part almost one third of the first*2

Sig(0)=2 (*“C"(aa),  [FO)*8(w—E), (39

in which the operator a(a)lSO annihilates two particles

FIG. 8. Spectral function for the removal of ¥ pair from
160. Additional quantum numbers of the pair correspona te0,
N=0. Contributions for the center-of-mass orbital angular momen-
tum L are indicated separately. The=0 contribution(solid line)
consists solely of negative parity states, whilelthel contribution
(dashed ling consists exclusively of positive parity states.

lations presented herae, N, andL are chosen to have the
lowest possible values. The advantage of rewriting 6)
in the form of Eq.(38) lies in its similarity to the expression
for the particle-hole response functiofi28]. The spectral
function(38) can now be calculated, using a continuous RPA
method(calculateG" with w— w+iA, whereA is a finite
energy, which avoids the intermediate step of calculating
the amplitudesX.

The resulting*Sy-pair-removal spectral functiof85) is

coupled to'S,. This removed pair is further characterized by piotted in Fig. 7. The strongest peak at low excitation energy

the radial quantum numbersof the relative motion and the
guantum numbersl andL of its center-of-mass motion. The

spectral function(35) can be expressed in terms of the re-

coupling coefficients of Eq.16) and the two-nucleon-
removal amplitude& given in Eq.(6) by a straightforward
recoupling[16]:

>

ab,cd

Sig(0)= mEJ xg’b; CPICYIXTS(E—ET), (36

where the coupling coefficientS are defined(for general
partial waves as

L I A
~ . _ ! b;J
Cas?{ﬂrng ()M s g g CiNL(IS)J" (37

In Eqg. (36) the spinS is set to zero. The easiest way to
calculate the'S,-hole spectral functioi3s) is to rewrite the
expression(35) in the form

1
Sig (@)= (23+ DvansCaniea @)veas, (38)

where the vectoo o, ; iS obtained by inverting E¢37) with
fixed values o, N, andL for a given (S)J’. In the calcu-

comes from the 2 state; cf. Table Il. It is much stronger
than that for the O ground state, partly due to the factor
2J+1. The smaller peak around 12 MeV excitation energy,
on the slope of the beginning 1distribution, has a 0 part
slightly smaller than the ground state and & Rart almost
one-third of the first 2. Experimentally{61,60] the 2, state

is at 8.32 MeV and the D state at 9.75 MeV, and so they
could be separated with sufficiently good energy resolution.
The 1° contribution is spread over a wide energy region.
Analogous to expressiofB5), a 3P-pair-removal spectral
function may be definetputtingl =1 andS=1). This func-
tion is plotted in Fig. 8. In this case the contributions with
different center-of-mass angular momehtahow up mainly

at different energies.

B. Spectral function for the lowest 0" and 2* states

One of the goals of the present study is to provide a sen-
sible estimate of theg,e’pp) cross section. In the next sub-
section we will discuss the calculation of the longitudinal
part of this cross section. In the analysis of tege( pp) data
on *2C at NIKHEF-K [64,9), the virtual photon is assumed to
couple to one of the detected protons. This approximation
can be understood by considering the transition matrix ele-
ment of the nuclear charge operator in momentum space,
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. : C. Longitudinal (e,e’pp) cross section
p(a)=e> &y, 8pr (39 in a plane-wave approximation
p!

In the spectator model with a plane-wave approximation
(with spin implicit in the summation between the initial for the outgoing proton$9] (see previous discussiprthe

section is proportional to the zero-zero part of the hadronic
- tensor and given b
|\Pfinal>:a;gl,agz, wnAT2), (40) g y
déo

This final state contains two plane-wave protons and an exagfp/d0jdE;dQ;dQ)
stateWw"™A~2 for the system with two protons removed. In
calculating the matrix elements of the transition charge op- :KZsL[GE(qi)H(\Ifﬁ’2|api,qap,2|\lf§)
erator one obtains
+<\I,ﬁ72|apiap'2—q|q,é>|2
(¥ final p(A)| ¥5)

= <‘Pn'A_2| apéapi—qug\) + <\Pn’A—2|apé—qap1|\P8>1

41 R, . o .
(1) i.e., it is proportional to the combination of spectral functions

assuming that one of the detected protons absorbs the mgen Eq.(42). In _Eq. (43) the SymbOI.SK’.SL’ and_GE .
mentumgq. To obtain the contribution to the cross section 'ePresent a kmemaucal factor, the longitudinal polgrlzauon,
one requires the square of this matrix element. This yield@nd the electric form factor of the proton, respectivedy.
four terms, each representing a particular term of {&. It This longitudinal cross section is pl_otted in Figs. 11 and 12
is therefore clear that the appropriate expression to considdg’ the 0" ground state and the first excited” tate of
is the quantity 12, respectively, and for the same kinematics as adopted in
the calculations of Refd9,10]. In this coplanar setting the
S o By virtual photon momentury is by definition along the axis,
S(p1.P2,B)=S(P1=0:P2.P1~ P2, E) while the two detected protons are in tke plane at equal
+S(p;—a,p5,P1,P>—0,E) angles with respect tq. By varying this angley,,, one is
able to vary the relative and center-of-mass momenta of the
+S(p1,P2—0,p1—0,P2,E) pair simultaneously.
., . Our results agree with those for the OMY and KK poten-
+S(P1,P2=0.P1. P2~ 4. E), 42 fials in Fig. 1 of Ref.[10] for angles larger than 50°. For
smaller angles the cross section is largely spurious, due to
where the vectoq is the momentum of the virtual photon. A the use of plane waves for the knocked-out protons in the
sensible way to plo§ is to fix the angles of the momenta at final states, instead of waves orthogonalized to the bound
some reasonable configuration of detectors, e.g., corresponsgtates. This spuriosity of the cross section is clearly indicated
ing to the measurements at NIKHEE4]. As an example, by the fact that for the small angles the calculated curves are
we have plotted in Fig. 9 the corresponding two-proton specall roughly equal to the one labeled “no SRC,” calculated
tral function [without the delta function in Eq(1)] at the  without defect functions. If there were neither short- nor
energy of the first O and 2" states, for the high-momentum long-range correlations, the cross section should be zero. Our
parts of Eq. (42 obtained with the Reid-soft-core and separate treatment of short- and long-range correlations
Bonn-A potentials. In the plots labeled “No SRC” harmonic makes it difficult to give a reliable prediction for the angles
oscillator states have been used for the relative wave fundaelow 50°, i.e., for initial proton momenta of about 1.5
tions in the spectral function. As expected, one observes thétn 1. These momenta are too large to be sufficiently covered
these give no contribution at higher momenta. The highby the limited shell model space in which we treat the long-
momentum part of the spectral function is about a factor of 2ange correlations, while they are too small to avoid the
larger for the Reid-soft-core potential than for the Bonn-Aaforementioned problems with the Pauli operator in the
potential in the momentum range around 3-5 fmThe  Bethe-Goldstone equation. To stipulate this problem and be-
short-range correlations give rise to a spectral function whicltause a more satisfactory treatment is outside the scope of
is clearly distinct from the one without SRC’s. In Fig. 10 the this work, we present the results as displayed in Figs. 11 and
spectral strength for the same states is shown using Bonn-L2 and shall further focus on the larger angles, corresponding
defect functions. No significant difference with the Bonn-A to higher initial momenta, approximately 2 fm, of the pro-
calculation is observed. Corresponding results for the KKions. For these momenta the predictions are more reliable.
and OMY correlation functions, also shown in Fig. 10, yield The main features of Figs. 11 and 12 may be qualitatively
a significantly larger spectral strength for the transition to theunderstood from the range of center-of-mass momenta and
ground state, apparent already at lower momenta. The OMYelative momenta involved. The center-of-mass momentum
results for the transition to the first'2state also exhibit becomes zero fory,q=~56° and increases to 1.4 fr at
stronger SRC effects than the ones obtained with more realy,,=80°. This explains why all curves have a dip around
istic potentials. 56° in Fig. 12. In the dominant 2 configurations, the only

=K2s [GR(9%)1°S(p} ,p5 . E), (43)
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FIG. 9. Superposition of spectral functiotd?) appropriate for the removal of two protons with final momeptaand p, from 0
leading to the final 0 ground state or first excited™2state in“C. The plots are given for a kinematic setting used in experiments at
NIKHEF [14]. The momentum vectar is fixed along the axis, with length 313 Me\W. The momentg, andp, are in the same plane with
g at —49° and 123° angles with respect to this transferred momentum, respectively. The upper plots correspond to harmonic oscillator wave
functions without the inclusion of short-range correlations. In the lower plots these SRC'’s are incorporated by the defect functions of the
Reid potential and the Bonn-A potentigee Fig. 1

part with L.,,=0, and which is therefore nonzero for 15, correlation functions. In the 0 configurations these go
Pem=0, is multiplied with a relative'D, wave, which has together withL; =0, which explains their maximum near
negligible short-range correlations. The steep rise of the/pq=56°, for whichp. =0, and the rapid falloff with in-
curves above 60° in Fig. 12 illustrates the importance of th&r€asingpem at larger angles. For the more realistic Bonn,
Lem=2 part in the 2 wave function, multiplied by the Reid, and Argonne potentials the trend is different. This is
relative 'S, wave function. The difference between the due to the fact that the dominantig4) ~2 component in the
Bonn, Reid, and Argonne potentials faf,,=70°-80° in  ground state is made up for two thirds of*®,, Loyn=1
Fig. 12 may be traced back to th&s, defect functions in  state. The®P; defect function, shown in Fig. 5, is rather
Fig. 5. With the adopted value of 1.8 fit for the proton large around 2 fm? for the Bonn and Reid potentials and
momenta, the relative momentufp; - p,|/2 ranges from gives the main contribution foty,q~60°~70° in Fig. 11.
1.8 fm™* for y,,=56° to 2.04 fm * for y,,=80°. Within  This explains why the Argonne result is lower here, in spite
this narrow range of momenta th&, defect function goes of its larger 'S, defect function.
through zero for the Bonn potential while it is largest for the  From these considerations it is clear that the ratios of
Argonne potential. predicted cross sections for different potentials depend on
The trends shown in Fig. 11 for the"OQyround state may the probed momentum range. For larger relative momenta,
be understood by similar considerations. Those for OMY andp; —p,|/2~3 fm ! or higher, one tests mainly thkS, de-
KK potentials are the most obvious. These include onlyfect functions(squareg, which give a factor of 2 larger cross
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FIG. 10. Same as Fig. 9 but with short-range correlations from the defect functions of the Bonn-C pgigpjtiahd the variational
correlation functiongFig. 3) from the KK (middle) or OMY interaction(bottom). Note that the vertical scale in the lower figures differs by
a factor of 2 or 4 from the upper ones as well as from Fig. 9.

sections for the Reid than for the Bonn and Argonne potentations[54]. Within the shell model space, consisting of four
tials. This is outside the reach of the facilities at NIKHEF or major shells, long-range correlations are treated with the
Mainz, but might be possible at CEBAF. Before making dressed RPADRPA) method. The DRPA calculation of the
strong recommendations in this direction, one should alséwo-nucleon-removal amplitudes, leading to the final states
consider contibutions from transverse and two-body currentsy 14C, employs theG-matrix effective interaction from the
A careful study of these processes as well as the inclusion @onn-C potential. These amplitudes are used together with
distortion effects should be the subject of future investigathe defect or correlations functions to investigate the effect
tions. of short-range correlations on the two-nucleon-removal spec-
tral function. It is found that at high momenta (2-5 )
VI. CONCLUSIONS the spectral function is roughly a factor of 2 larger when
The two-nucleon-removal spectral function dfO is calculated with the defect functions of the Reid-soft-core po-

studied with emphasis on the presence of high-momenturigntial than with those of the Bonn-A or Bonn-C potential
components in the relative wave function of the removedsee Figs. 9 and 10Distinct shapes and much larger differ-
pair. These high momenta are introduced into shell modegnces for the spectral functions are obtained with the corre-
(relative wave functions by the addition of defect functions lation functions, deduced from the older semirealistic KK
calculated with the Bethe Goldstone equat|[@8] and by and OMY NN potentials.

using correlation functions obtained from variational calcu- Since the ground state dfC is well separated from the
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FIG. 11. Longitudinal®®O(e,e’pp) cross section in plane wave FIG. 12. Same cross section as in Fig. 11, but now for the

approximation(43) for the transition to the ground state ¥tC. The  transition to the first 2 state in*C.

kinematical setup corresponds to a virtual photon momentum

which is directed along the axis and has a magnitude of 2 T hould al k h hani .

and both proton momenta with magnitude 1.8 fhdetected at an ments, one should also ta. e OF er mechanisms into account

; than the spectator approximati¢f] adopted here, though

angleyyq. The beam energy, is 700 MeV, the transferred energy de itable conditi th ¢ out to be | iMDO

w is 150 MeV, and the scattering angle of the electron is 34.8° with! R/ISUI able Chn itions they may turn ou dqf €SS impor-

a corresponding virtual photon polarization e&=0.81. As ex- tant. Meson-exchange currents are suppresse ortwo—_proton

plained in the text, the cross sections below 50° are largely spuriknOCkOUt as the exchanged meson is !J”Ghaf@@b' Experl—

ous. ments should be performed at low missing energies for the
A—2 system in order to avoid the domination of the cross
section by the excitation of th& resonance. For this reason

excited states, a missing-energy resolution of 4 MeV init iS @lso important to perform a separation of longitudinal

(e,e’'pp) experiments is sufficient to study its spectral func- and transverse cross sections. The contribution of charge ex-

tion separately. The largest cross sections must be expectéfange in the final state after the knockout of a proton-

for the 2" states at about 7—8 MeV. however. This is indi- Ne€utron pair may be suppressed in suitable kinematic condi-

cated by the'S, pair removal spectral function of Fig. 7. In tions ['12]. Final state interactions, notably absorption of the

the region of final states with negative parity, above 40 Mev 2Utgoing protons, have been neglected in Figs. 11 and 12.

the 3P contribution might be studied by filtering out the According to Ref[lZ]_thls effect can be rou_ghly represented

L. = O part(cf., Fig. 8 of the cross section. Although the by an overall reduction of the cross section by a factor of

3I%mdefect functic;ns are in general smaller than #8y de- 2_—3. Inclusion of_ these distortions and of other mechanisms

fect function, they may yield the dominant contribution for Will be explored in future work.

the “C ground state under special kinematical conditions, as

illustrated in Fig. 11 for angleg,q~75°-80°. This may be ACKNOWLEDGMENTS
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