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The thermodynamical properties and Coulomb instability in hot nuclear system with Gogny interactions are
studied by using the finite-temperature real-time Green’s function method. The isotherms, critical temperatur
limiting temperature, saturation density, and isothermal incompressibility for various temperatures and differ
ent asymmetric parameters are calculated. To illustrate the importance of the finite-range part and densit
dependence part of the interaction, we have compared our results with that given by the Skyrme interaction a
Brink-Boeker interaction.@S0556-2813~96!01008-4#
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I. INTRODUCTION

Since intermediate-energy heavy-ion collisions and hig
energy proton-induced reactions indicated the possibility
the occurrence of a liquid-gas phase transition in nucl
matter, the study of the properties of nuclear matter at fin
temperature has attracted increasing interest. Experiment
many intermediate-energy heavy-ion collisions have be
performed @1# to investigate the unknown features of th
highly excited or hot nucleus formed in collision@2,3#. Theo-
retically, much effort has been devoted to studying the eq
tion of state~EOS! for nuclear matter and to discussing th
critical phenomena@4–19#. The calculated critical tempera
ture TC of nuclear matter for various kinds of nucleon
nucleon (NN) interactions is about 8–20 MeV.

In addition to the critical temperature, several other te
peratures have been defined to discuss the propertie
nuclear matter. For example, the temperature usually
tracted from the moving-source fitting to the inclusive pa
ticle kinetic-energy spectrum is called the slope temperat
Employing this idea, Suraudet al. @1# discussed the Ar1U
system at 27 MeV/nucleon and found that the resulting te
perature for the fusion nucleons is about 5 MeV which
consistent with the temperatureT54.5–6.0 MeV obtained
by measuring the relative populations of the excited state
heavy-ion reactions@3#. Another important temperature
Tlim , below which the nucleus can exist in equilibrium wi
the surrounding vapor, and above which the nucleus is
stable and will fragment, is called the limiting temperature
is a maximal temperature at which a hot nucleus can sus
itself before reaching mechanical instability. This is the s
called Coulomb instability. Based on a two-phase coex
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ence model, the limiting temperatureTlim for a hot nucleus
can be obtained by solving the coexistence equations. I
found that the limiting temperatureTlim is lower than the
critical temperature of the liquid-gas phase transition
nuclear matter. Therefore, the limiting temperature is mo
important than the critical temperature for discussing t
phenomena observed in heavy-ion collisions.

The Coulomb instability of hot nuclei has been studied b
us and by many other authors by using different kinds
effectiveNN interactions, for example, Skyrme interaction
@7–9#, the Brink-Boeker~BB! force @12#, a quantum hadro-
dynamics~QHD! model@10#, a relativistic mean-field theory
with derivative scalar coupling@11#, and a Brueckner-
Hartree-Fock approach with relativistic and three-body for
corrections@13#. It is found that the values ofTlim are very
sensitive to theNN interactions employed for calculations. I
one can extract the limiting temperature from experime
the comparison ofTlim with theoretical predictions from dif-
ferent models may be used as a test for the correction
various effective interactions and models.

In this paper we will discuss the same topic but a differe
effective NN interaction, namely, the Gogny interaction
@14,17–19#. The reason for choosing the Gogny interactio
is as follows. It is well known that the Skyrme interaction i
a simple and useful potential for describing the theomod
namical properties of nuclear matter. But it is not a goo
effective interaction for simulating the mediate and lon
range parts of theNN interaction in a nuclear medium be
cause the range of force in the Skyrme interaction is ze
Even though the Skyrme interaction is density depende
because of its zero range, it favors a compact and den
1137 © 1996 The American Physical Society
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1138 54ZHANG, SU, SONG, AND LIN
configuration, which results in a high critical temperatur
@8,11#. To investigate the finite-range effects, Das, Naya
and Satpathy employed the BB interaction to study the eq
tion of state, the Coulomb instability, and the thermodynam
cal properties of hot nuclear systems@12#. They found that
the limiting temperature is about 5 MeV forA560 (A is the
nucleon number in a nucleus!. This value is much lower than
that of the Skyrme interaction@9#. Although the BB interac-
tion is finite ranged, it has an obvious disadvantage, name
density independence. The density-dependence part, as
pointed out by many authors@13,14#, is very important if one
desires to establish a complete self-consistent theory of
pairing and reproduce the mechanism of saturation based
the Brueckner theory. The density dependence is easy to
derstand if one notices that the range of summation of t
G matrix depends on the Fermi energy, which is itself
function of the density, and that the projection operator
model space can be expressed as a nonlocal density@19#. The
Gogny interaction is a good candidate which can overcom
the disadvantages of the Skyrme interaction as well as
BB interaction because it is a density-dependence and fin
range interaction. It is of interest to study the Coulomb in
stability in hot nuclei with Gogny interactions and to com
pare our results with that of the Skyrme interaction and B
interaction for illustrating the effectiveness of density depe
dence as well as finite range. This is the objective of th
paper.

The organization of this paper is as follows. In Sec. II w
will show the formalism of our calculation. In Sec. III we
will give our results including isotherms, saturation densi
at finite temperature, fixed asymmetric parameter, isotherm
incompressibility, critical temperature of liquid-gas phas
transition, Coulomb instability, and limiting temperature o
the nuclear system with Gogny interactions. We will com
pare our results with those given by the Skyrme interacti
and BB interaction to illustrating the effect of the densit
dependence, as well as the effect of the finite range of
interactions.

II. FORMALISM

Following Refs.@7–10#, we consider the hot nucleus as
uniformly charged drop of nuclear liquid at a given temper
tureT and with a sharp edge in both thermal mechanical a
chemical equilibrium with the surrounding vapor. Then w
obtain a set of two-phase coexistence equations by requir
equality of temperatureT, pressurep, neutron chemical po-
tential mn , and proton chemical potentialmp of the liquid
and vapor phases, respectively:
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pL~T,rL ,aL!1pL
Coul~rL!1pL

Surf~T,rL!5pV~T,rV ,aV!,
~1!

mL
n~T,rL ,aL!5mV

n~T,rV ,aV!, ~2!

mL
p~T,rL ,aL!1mL

Coul5mV
p~T,rV ,aV!, ~3!

where L and V as subscripts stand for liquid and vapor
respectively. The Coulomb and surface effects are includ
in the liquid phase.

In our calculation, the finite-temperature real-tim
Green’s function method@9,11,20# is used to derive the EOS
for bulk asymmetry nuclear matter. Since the details of th
method can be found in Refs.@11,9,20#, we present here only
the main steps. In this approach, we calculate the relev
physical quantities in a zero-order approximation first. Th
chemical potentialmn0 for neutrons,mp0 for protons, and the
single-nucleon spectraEi can be obtained by solving the fol-
lowing set of equations self-consistently:

Ei5t i2m i01(
j

^ i j uV~r !u i j2 j i &nj , ~4!

rq52(
k
nq~k! ~q5n,p!, ~5!

ni5
1

11exp~Ei /kBT!
. ~6!

In Eqs. ~4! and ~6!, the subscripti stands for$q,k%, with
q5n, p, and k the nucleon momentum,t i is the kinetic
energy of the single nucleon,V(r ) the nucleon-nucleon in-
teraction, andkB the Boltzmann constant. The neutron den
sity rn and proton densityrp in Eq. ~5! are given by the
following relations:

rn5
11a

2
r, rp5

12a

2
r, ~7!

wherea is an asymmetry parameter andr the total nucleon
density. The first-order thermodynamical potentialV1 is
given by

V15V01V1
HF, ~8!

where

V052kBT(
i
ln@11exp~2Ei /kBT!# ~9!
TABLE I. Parameters of the Gogny D1 effective interaction.

m i Wi Bi Hi M i

i ~fm! ~MeV! ~MeV! ~MeV! ~MeV!

1 0.7 2402.40 2100.00 2496.20 223.56
2 1.2 221.30 211.77 237.27 268.81

t051350 (MeV fm4), a51/3
WLS5115 (MeV fm5), x51
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V1
HF52

1

2(i , j ^ i j uV~r !u i j2 j i &ninj . ~10!

The first-order Helmholtz free energy densityf 1 is then cal-
culated by the thermodynamical relation

f 15V1 /V01(
q

mq0rq , ~11!

whereV0 is the volume of the system, and the first-ord
chemical potentialmq1 is calculated by using the following
relation:

mq15F ] f 1
]rq

G
T

5mq01mqr ~q5n,p!, ~12!

where the rearrangement chemical potentialmqr @19# which
comes from the density dependence of the interaction is

mqr5
1

2V0
(
i , j

K i j U ]V

]rq
U i j , j i L ninj . ~13!

Finally the first-order pressurep1 is given by

p15(
q

rqmq12 f 1 . ~14!

Now we substitute the explicit expression of the effecti
interaction into above equations. The Gogny D1~GD1! ef-
fective interaction is expressed as

TABLE II. Comparison of the contribution for the pressure
the system from the finite-range part~FR! and the density-
dependent part~DD! in the Gogny effective interaction atT510
MeV anda50 with the IE method.

r ~fm23) pDD ~MeV fm23) pFR ~MeV fm23)

0.04 0.37 20.86
0.08 1.86 23.37
0.12 4.79 27.43
0.16 9.38 212.96
0.20 15.79 219.88
er

e

VNN~rW12rW2!5 (
i51,2

~Wi1BiPs2HiPt2MiPsPt!

3exp~2urW12rW2u2/m i
2!1t0~11x0Ps!rd

3d~rW12rW2!1 iWLS~sW 11sW 2!¹W d~rW12rW2!¹W ,

~15!

wherer is the nucleon matter density,Ps and Pt the ex-
change operators for spin and isospin, respectively, and
parametersWi , Bi , Hi , Hi , m i , t0 , x0 , d, andWLS are
listed in Table I. Starting from the GD1 interaction, we ob
tain the single-nucleon spectra straightforwardly:

Eq~k!5
\2k2

2mq
2mq01t0~11x0/2!rd~r2rq!

1 (
i51,2

~Apm i !
3@~Wi1Bi /2!r2~Hi1Mi /2!rq#

1 (
i51,2

~Apm i !
3E d”kW8

~2p!3
exp~2m i

2ukW2kW8u2/4!

3$~Hi12Mi !@np~k8!1nn~k8!#

2~Wi12Bi !nq~k8!%, ~16!

where@6,19#

d”kW5H k2dk for an infinite system,

S k22 3pk

4R
1

3p

8R2Ddk for a finite system,

~17!

with R the radius of the system,mq5m the mass of the
nucleon, and

rq5
1

pE0
`

nq~k!d”k,

nq~k!5
1

11exp@Eq~k!/kBT#
. ~18!

Solving Eqs. ~16!–~18! with given temperatureT, total
nucleon densityr, and asymmetry parametera, we can ob-
tain the zero-order chemical potentialmq0 and single-particle
spectraEq(k). The rearrangement chemical potential give
by Eq. ~13! becomes@19#

mqr5
1

8
t0drd@32~112x0!a

2#, q5n,p, ~19!

mq15mq01mqr . ~20!

The pressure can be obtained from Eqs.~11! and ~14!. We
find

f

p15
kBT

p2 E
0

`

d”klnF 1

nn~k!np~k!
G1

t0r
d

2 Fr22
rn
21rp

2

2
1S r2

2
2rn

22rp
2D Gx01

1

8
t0drd12@32~112x0!a

2#

1 (
i51,2

~Apm i !
3

2 F SWi1
Bi

2 D r22SHi1
Mi

2 D ~rn
21rp

2!G1 (
i51,2

~Apm i !
3E E d”kW

~2p!3
d”kW8

~2p!3
exp~2m i

2ukW2kW8u2/4!

3$~Hi12Mi !@nn,p~k!nn,p~k8!#1~Wi12Bi !@nn~k,k8!1np~k,k8!#%, ~21!
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where

nn,p~k!5nn~k!1np~k!, nn~k,k8!5nn~k!nn~k8!.

The above equations can be solved by two different tre
ments:~1! Expanding the right-hand sides of the above eq
tions into a series of momentum and carrying out the ca
lation up to order O(kn). These are the so-calle
degeneracy-correction expansions by Jaqaman@8# and
adopted by Jaqaman@8# and Daset al. @12# for their calcu-
lations. We refer to this treatment as the momentum exp
sion approximation~MEA!. ~2! Solving the above coupling
integral equations exactly and self-consistently. Hereafter
refer to this treatment as IE. In order to study the appro
mation of the MEA, we calculate thermodynamical prop
ties up toO(k4) and compare the result with that given b
solving the integral equation~IE! exactly.

Before the calculation, we must take into account
Coulomb interaction and surface effect because in the ab
discussion the Coulomb interaction is switched off and
surface effect is not considered. For simplicity, we use
average Coulomb potential per proton in a uniform
charged sphere:

Vp
Coul~r!5

6Ze2

5R
, ~22!

whereZ is the number of protons in the liquid droplet an
R the radius of the liquid droplet@9#. The exchange term o
the Coulomb interaction has been neglected. When the C
lomb interaction is switched on, the single-particle spec
given by Eq.~16! for protons and the chemical potential
protons all have an additional term:Vp

Coul and
mp
Coul5Vp

Coul, respectively. The contribution of the pressu
is expressed as

pL
Coul~r!5

Z2e2

5AR
r, ~23!

whereA5N1Z is the number of nucleon andN the number
of neutrons in the liquid droplet.

Now we take the surface effect into account. For the l
uid droplet with a surface, we consider the surface effect
pressure as the same as Refs.@7,8#. The formula for the
temperature dependence of the surface tensiong(T) reads
@21#

g~T!5~1.14 MeV fm22!F11
3T

2TC
GF12

T

TC
G3/2, ~24!
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whereTC is the critical temperature for infinite symmetric
nuclear matter. The additional pressure brought out from th
surface tension of the liquid droplet is

pL
surf~T,r!522g~T!/R, ~25!

where the nuclear densityr is related to the droplet radius
R by the relationA5 4

2pR
3r for a given nucleon number

A.

III. RESULTS AND DISCUSSIONS

Now we are in a position to calculate the relevant ther
modynamical quantities by means of the Gogny interactio
and the above formalism. Our results are shown in Figs. 1–
and Tables II–IV.

The p-r isotherms fora50 symmetric nuclear system
are shown in Fig. 1. The critical temperatureTC can be
found from the inflection point ofp-r isotherms, which sat-
isfies

]p

]r
5

]2p

]r2
50. ~26!

We found thatTC515.90 MeV for the Gogny interaction;
aboveTC no liquid-gas mixed phase can exist. In order to
illustrate the contributions of the finite-range part and the
density-dependent part of the Gogny interaction indepen
dently, we calculate the contributions of these two parts t
pressure separately and show our results in Table II. A
shown in Table II, the contribution of the finite range of
Gogny interactions to pressurepFR is negative, but the
density-dependence partpDD is positive. This result can eas-
ily be understood if one notices that the finite range of inter
actions will soften the compact and hard configurations o

FIG. 1. Isotherms for the symmetric nuclear system.
TABLE III. Critical temperatureTC from mn-r curves andmp-r curves with different asymmetry param-
eters for the Gogny effective interaction with the IE and the MEA methods.

TC
n ~MeV! TC

p ~MeV! TC
n ~MeV! TC

p ~MeV!

a ~with IE! ~with IE! ~with MEA! ~with MEA!

0.0 15.90 15.90 14.60 14.60
0.1 14.12 17.64 13.00 16.52
0.3 10.30 21.03 8.92 20.10
0.5 5.58 24.41 4.34 23.67



a
i

e

r
i

t

c

i
t
s
o

g

m-

of

nt

f
ite-

-

nt
mb
nd
y
ot
dif-
if-

- lear

x-

cal
c-

xi-

54 1141THERMODYNAMICAL PROPERTIES AND COULOMB . . .
zero-range interactions and then, equally, it plays an ‘‘attr
tivelike’’ role and reduces the pressure. But the dens
dependence part, because it has the same behavior as th
the Skyrme interaction, will give us positive result. Anoth
important result shown by Table II is that the values ofpFR
andpDD have the same order of magnitude. It means that
finite-range part and the density-dependence part of inte
tion have the same importance for the thermodynam
properties of nuclear systems. In this sense, the Gogny in
action has an advantage over that of the Skyrme interac
and BB interaction.

To exhibit the above statement transparently, we comp
T58 MeV, a50 isotherms of SJ1, GD1, and BB intera
tions in Fig. 2, where the SJ1 curve is given by our previo
paper@9# and the BB curve by Ref.@12#. Since the curve of
the BB interaction in Ref.@12# is calculated by the MEA, we
calculate, respectively, the isotherms of the GD1 interact
by the MEA and IE approaches and show the result of
MEA by a dashed line. From Fig. 2, we get two results, fir
pBB.pGD1.pSJ1 for a fixed density. Second, the method
the MEA @up to O(k4)# can only be used to calculate th
pressure in the low density region; in the middle and hi
density regions (r.0.05 fm23), the errors are considerable

Now we discuss the asymmetric effect. TheT58 MeV
isotherms of the GD1 interaction for various asymmetric p

FIG. 2. Isotherms (T58 MeV! for the symmetric nuclear sys
tem with the Brink-Boeker~BB! interaction, Gogny~GD1! interac-
tion, and Skyrme~SJ1! interactions. The dashed line is calculate
by the momentum expansion approximation.

FIG. 3. T58 MeV isotherms for various asymmetric param
eters.
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rameters are shown in Fig. 3. The critical asymmetry para
eter aC is 0.693 ~for T58 MeV!, above which liquid-gas
coexistence is impossible. This result is similar to that
Skyrme interactions@11#. The pressurep vs a curves with
fixed T56 MeV, r50.1 fm23 for BB, GD1, and SKI are
shown in Fig. 4. We see that the pressures given by differe
interactions all increase witha, but rapidly for the BB inter-
action and slowly for the SKI interaction. This result is o
course inconsistent with our density-dependence and fin
range arguments.

For finite nuclear systems, as pointed out by Refs.@6,20#,
it will be more advantageous to work with the chemical po
tentialm rather than to work with pressurep because of the
finite-size effect. The proton and neutron have differe
single energies and chemical potentials due to the Coulo
interaction and asymmetric effect. Because the proton a
neutron are not in chemical equilibrium, although they ma
be in thermal equilibrium, their chemical potentials are n
related to each other. Since the proton and neutron have
ferent chemical potentials, they will also appear to have d
ferent critical temperaturesTC

p andTC
n , respectively. As was

argued by Refs.@6,9,20#, we must choose the smaller ofTC
p

d

-

FIG. 4. Pressure vs asymmetric parameter curves for the nuc
system with the Brink-Boeker interaction~BB!, Gogny interaction
~GD1!, and Skyrme interaction~SKI! where we fixT56 MeV,
r50.1 fm23. The dashed line is calculated by the momentum e
pansion approximation.

FIG. 5. The asymmetric parameter dependence of the criti
temperature for the nuclear system with the Brink-Boeker intera
tion ~BB!, Gogny interaction~GD1!, and Skyrme interaction~SKI!.
The dashed line is calculated by the momentum expansion appro
mation.
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TABLE IV. Relevant equilibrium values atT5Tlim with different nucleon numberA.

Tlim rL rV pV mV
n mV

p

A ~MeV! ~fm23) ~fm23) ~MeV fm23) ~MeV! ~MeV! aV

10 9.32 0.166 0.017 0.070 215.44 215.60 0.004
50 8.19 0.161 0.014 0.052 212.92 213.86 0.027
109 6.77 0.161 0.011 0.034 29.58 211.89 0.078
150 6.11 0.161 0.010 0.027 27.79 211.25 0.128
208 5.42 0.160 0.009 0.022 25.67 210.87 0.214
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andTC
n as the correct critical temperature. The critical tem

peraturesTC
n given bymn vs r isotherms andTC

p given by
mp vs r isotherms with differenta for the GD1 interaction
are shown in Table III and Fig. 5. For comparison, we show
our results calculated by the MEA and IE together in Tabl
III. We found thatTC

n decreases butTC
p increases asa in-

creases.TC
n is always less thanTC

p , andTC
p2TC

n becomes
larger whena increases. In Fig. 5, we drawTC5TC

n vs a
curves for BB, GD1, and SKI interactions simultaneously
We see that for a fixeda, the critical temperature of SKI is
higher, GD1 middle, and BB lower. Besides, the discren
pancy between the MEA and IE in Fig. 5 is remarkble.

Now we turn to discuss the isothermal incompressibility
KT which is an important quantity reflecting the property of
the nuclear system.KT is defined as

KT59S ]p

]r D U
r5r0

, ~27!

wherer0(a,T) is the saturation density at a particular tem-
perature and asymmetric parameter when the free energy
minimum. In order to compare the result given by the GD1
interaction with that given by the BB interaction in Ref.@12#,
we show ther0 vs a curves andKT(a)/KT(a50) vs a
curves in Figs. 6 and 7, where the solid lines refer toT56
MeV and dashed lines forT57 MeV, respectively. We find
from Fig. 6 that, for a fixed temperature, the saturation den
sity r0 for the GD1 interaction is larger than that of the BB
interaction, no matter whether the temperature is large

FIG. 6. The asymmetric parametera and temperature depen-
dence of saturation densityr0 for the nuclear system with the
Brink-Boeker interaction~BB! and Gogny interaction~GD1!. We
choose the temperature asT56 MeV and 7 MeV. The curves of the
BB interaction are chosen from Ref.@12#.
-

e

.

-

is

-

or

small. We also find thatr0 decreases asa increases for both
two cases, but the decrements are different. The satura
densityr0 decreases rapidly for the BB interaction. Simila
behavior forKT(a)/KT(a50) vs a is found in Fig. 7. We
see for a fixed temperature anda, the isothermal incom-
pressibilityKT(a) for the GD1 interaction is larger than tha
of the BB interaction. The softness ofKT for the BB inter-
action is partly due to a missing density dependence a
partly due to the finite-range enhancement. The effect of
finite-range force for the BB interaction is larger than that
the GD1 interaction.

Finally we discuss the Coulomb instability of the Gogn
model. For a given nucleus, starting from a properly lo
temperature, we solve the coexistence equations~1!–~3! for
the nuclear densityrL of the liquid phase, the nuclear densit
rV , and the asymmetry parameteraV of the vapor phase.
Then we increase the value of the temperature and repea
above calculation. We find that when the temperatu
reaches a certain value, the co-existence equations hav
solution. This value of temperature gives the limiting tem
peratureTlim . We present theA dependence ofTlim calcu-
lated from the GD1 interaction for nuclei along the wel
knownb-stability line,

Z50.5A20.331022A5/3, ~28!

in Table IV and Fig. 8. The equilibrium values of the re
evant quantities at the limiting temperature for differentA
are shown in Table IV. We see from this table that whenA
increases from 10 to 208,Tlim decreases from 9.32 MeV to
5.42 MeV monotonously. The rate of decrement is smaller
largeA regions than that in smallA regions. For comparison,
we have drawn in Fig. 8 theTlim vsA curves calculated from
the SKI, GD1, and BB interactions simultaneously. It can

FIG. 7. Same as Fig. 6, but for isothermal incompressibility.
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seen that the three curves have a similar tendency but
decreasing slopes are different. The decrement ofTlim for the
BB interaction is more rapid than the SKI and GD1 intera
tions. The basic reason for this rapid decrease comes f
the missing of density dependence in the BB interaction
was discussed before. Because the decrement is too r
the limiting temperature, for example, 3.1 MeV fo
A5150, seems too small for comparison with experimen

FIG. 8. Mass numberA dependence of limiting temperatur
Tlim calculated with the Skyrme interaction~SKI!, Gogny interac-
tion ~GD1!, and Brink-Boeker interaction~BB!.
the

c-
om
as
pid,
r
.

In summary, we have studied the isotherms of vario
temperature and asymmetric parameters and calculated
critical temperature, limiting temperature, isothermal inco
pressibility, and saturation density for the Gogny interact
in details. We have used two approaches, namely, the
mentum expansion approximation up toO(k4) and solving
integral equations exactly, to calculate thermodynami
quantities. We have found that the momentum expansion
proximation method can only be used in low density regio
beyond this region, the discrepancy is remarkable. To ill
trate the importance of the finite-range part and dens
dependence part of the interaction, we have compared
results with those given by the Skyrme interaction a
Brink-Boeker interaction, and calculated the contributions
these two parts of the GD1 interaction to pressure carefu
We have found that even though the contributions of th
two parts are opposite, their importance for the thermo
namical properties of nuclear systems is almost equal. In
sense, the Gogny interaction may be a better interactio
describe the nuclear system.
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