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The thermodynamical properties and Coulomb instability in hot nuclear system with Gogny interactions are
studied by using the finite-temperature real-time Green'’s function method. The isotherms, critical temperature,
limiting temperature, saturation density, and isothermal incompressibility for various temperatures and differ-
ent asymmetric parameters are calculated. To illustrate the importance of the finite-range part and density-
dependence part of the interaction, we have compared our results with that given by the Skyrme interaction and
Brink-Boeker interaction[S0556-28186)01008-4

PACS numbgs): 21.30.Fe, 21.10.Sf, 21.65f, 25.70~z

. INTRODUCTION ence model, the limiting temperatufig,,, for a hot nucleus
can be obtained by solving the coexistence equations. It is
Since intermediate-energy heavy-ion collisions and highfound that the limiting temperatur®,, is lower than the
energy proton-induced reactions indicated the possibility otyitical temperature of the liquid-gas phase transition in
the occurrence of a liquid-gas phase transition in nucleapciear matter. Therefore, the limiting temperature is more
matter, the study of the properties of nuclear matter at finitgy, o rtant than the critical temperature for discussing the
temperature has attracted increasing interest. Experimentallyy, . mena observed in heavy-ion collisions.

ma?y intgrrlne?iape—en?rgyf[ htehavy-iokn collisfionts havef tt)ﬁe The Coulomb instability of hot nuclei has been studied by
performed[1] to investigate the unknown features of the us and by many other authors by using different kinds of

highly excited or hot nucleus formed in collisigR,3]. Theo- effective NN interactions, for example, Skyrme interactions
retically, much effort has been devoted to studying the equ 79, the Brink-Boeker(BB) force [12]. a quantum hadro-

tion of state(EOS for nuclear matter and to discussing the . e .
critical phenomendd—19). The calculated critical tempera- dYNamics(QHD) model[10], a relativistic mean-field theory
with derivative scalar couplind1l], and a Brueckner-

ture T¢ of nuclear matter for various kinds of nucleon- ; T
nucleon (N) interactions is about 8—20 MeV. Hartree_-Fock appr.oach with relativistic and three-body force
In addition to the critical temperature, several other tem-orrections[13]. It is found that the values df;y, are very
peratures have been defined to discuss the properties gensitive to théNN interactions employed for calculations. If
nuclear matter. For example, the temperature usually exone can extract the limiting temperature from experiment,
tracted from the moving-source fitting to the inclusive par-the comparison oT;,, with theoretical predictions from dif-
ticle kinetic-energy spectrum is called the slope temperaturderent models may be used as a test for the correction of
Employing this idea, Suraudt al. [1] discussed the ArU various effective interactions and models.
system at 27 MeV/nucleon and found that the resulting tem- In this paper we will discuss the same topic but a different
perature for the fusion nucleons is about 5 MeV which iseffective NN interaction, namely, the Gogny interaction
consistent with the temperatuile=4.5-6.0 MeV obtained [14,17-19. The reason for choosing the Gogny interaction
by measuring the relative populations of the excited states iis as follows. It is well known that the Skyrme interaction is
heavy-ion reactiong3]. Another important temperature, a simple and useful potential for describing the theomody-
Tim, below which the nucleus can exist in equilibrium with namical properties of nuclear matter. But it is not a good
the surrounding vapor, and above which the nucleus is ureffective interaction for simulating the mediate and long
stable and will fragment, is called the limiting temperature. ltrange parts of th& N interaction in a nuclear medium be-
is a maximal temperature at which a hot nucleus can sustaicause the range of force in the Skyrme interaction is zero.
itself before reaching mechanical instability. This is the so-Even though the Skyrme interaction is density dependent,
called Coulomb instability. Based on a two-phase coexistbecause of its zero range, it favors a compact and denser
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configuration, which results in a high critical temperature pL(TaPL-aL)+p(L:OU|(PL)+pEUﬁ(T:PL):pV(TuPVvaV)a

[8,11]. To investigate the finite-range effects, Das, Nayak, (1)
and Satpathy employed the BB interaction to study the equa-

tion of state, the Coulomb instability, and the thermodynami- wl(TopL,a)=py(T,py,ay), 2
cal properties of hot nuclear systeffi]. They found that

the limiting temperature is about 5 MeV f&=60 (A is the wP(TopL )+ ull= ub (T, py,ay), (3)

nucleon number in a nucleushis value is much lower than

that of the Skyrme interactiof®]. Although the BB interac- whereL and V as subscripts stand for liquid and vapor,
tion is finite ranged, it has an obvious disadvantage, namelyespectively. The Coulomb and surface effects are included
density independence. The density-dependence part, as wiasthe liquid phase.

pointed out by many authof43,14), is very important if one In our calculation, the finite-temperature real-time
desires to establish a complete self-consistent theory of th&reen’s function methof®,11,2( is used to derive the EOS
pairing and reproduce the mechanism of saturation based dor bulk asymmetry nuclear matter. Since the details of this
the Brueckner theory. The density dependence is easy to umethod can be found in Refsl1,9,20, we present here only
derstand if one notices that the range of summation of thé¢he main steps. In this approach, we calculate the relevant
G matrix depends on the Fermi energy, which is itself aphysical quantities in a zero-order approximation first. The
function of the density, and that the projection operator ofchemical potentiakn, for neutronsu for protons, and the
model space can be expressed as a nonlocal d¢aSityThe  single-nucleon spectig; can be obtained by solving the fol-
Gogny interaction is a good candidate which can overcom¢owing set of equations self-consistently:

the disadvantages of the Skyrme interaction as well as the

BB interaction because it is a density-dependence and finite- . S

range interaction. It is of interest to study the Coulomb in- Ei:ti_“‘“; (Ivnlij=jijn;., )
stability in hot nuclei with Gogny interactions and to com-

pare our results with that of the Skyrme interaction and BB

interaction for illustrating the effectiveness of density depen- pq=2> ng(k) (g=n,p), )
dence as well as finite range. This is the objective of this k
paper.

The organization of this paper is as follows. In Sec. Il we n = ! ) (6)
will show the formalism of our calculation. In Sec. lll we ' 1+expEi/kgT)

will give our results including isotherms, saturation density o ]
at finite temperature, fixed asymmetric parameter, isothermdl Eds. (4) and (6), the subscript stands for{g,k}, with
incompressibility, critical temperature of liquid-gas phased=n. P, andk the nucleon momentunt; is the kinetic
transition, Coulomb instability, and limiting temperature of €nergy of the single nucleo(r) the nucleon-nucleon in-
the nuclear system with Gogny interactions. We will com-teraction, andkg the Boltzmann constant. The neutron den-
pare our results with those given by the Skyrme interactior$ity pn and proton density,, in Eq. (5) are given by the
and BB interaction to illustrating the effect of the density following relations:
dependence, as well as the effect of the finite range of the

interactions. 1+« 1-«

Ph="5 P PpT 5P (7)

wherea is an asymmetry parameter apdhe total nucleon

density. The first-order thermodynamical potentfa} is
Following Refs[7—-10], we consider the hot nucleus as a given by

uniformly charged drop of nuclear liquid at a given tempera-

ture T and with a sharp edge in both thermal mechanical and Q=00+ 01", (8)

chemical equilibrium with the surrounding vapor. Then we

obtain a set of two-phase coexistence equations by requiringhere

equality of temperatur&, pressurep, neutron chemical po-

tential »,,, and proton che.mica.l potential, of the liquid Qo= _kBTE In[1+exp(— E; /kgT)] 9)

and vapor phases, respectively: i

II. FORMALISM

TABLE |. Parameters of the Gogny D1 effective interaction.

Mi W, Bi Hi M;
i (fm) (MeV) (MeV) (MeV) (MeV)
1 0.7 —402.40 —100.00 —496.20 —23.56
2 1.2 —21.30 —-11.77 —37.27 —68.81

t,=1350 (MeV fnf), a=1/3
W, s=115 (MeV fn?), x=1
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TABLE Il. Comparison of the contribution for the pressure of .
the system from the finite-range pa(FR) and the density- VNN(rl—rz)z_z (W,+B;P,—H,P.—M,P_P)
dependent partDD) in the Gogny effective interaction dt=10 i=12

MeV and a=0 with the IE method. > -
X exp(—|ry— 1ol uf) +to(1+ xoP,) p°

-3 -3 -3 > > > > > > > >
p (fm ") Pop (MeVfm ) Per (MeVfm ) X 8(T1—T2) +iW s(01+ )V S(F1—T2)V,
0.04 0.37 —0.86 (15)
0.08 1.86 -3.37 _ _
0.12 4.79 —7.43 wherep is the nucleon matter density, and P the ex-
0.16 0.38 1296 change operators for spin and isospin, respectively, and the
0.20 15.79 1988 parametersV;, B, Hi, Hi, ui, to, xo. .d, and_VV,_S are
) ) ' listed in Table I. Starting from the GDL1 interaction, we ob-
tain the single-nucleon spectra straightforwardly:
h2k?
and Eq(k)= Z—%—Mqo+to<1+xO/2>pd<p—pq>
Q=23 GVl -jnn. (1) ;
17724 - + 2 () LWt Bif2)p = (Hi+ Mi/2)pg)
) . aK’
The first-order Helmholtz free energy densftyis then cal- + > (\/;:U‘i)gj 3exp( w2|k—K'|2/4)
culated by the thermodynamical relation = (2m)
X{(Hi+2M;)[ny(k")+ny(k")]
f1=0,/Vy+ , 11 '
1= 0Nt 2 paopg () ~ (W, +2B)ng(K)}, (16)
where[6,19]
where V, is the volume of the system, and the first-order k2dk for an infinite system,
chemical potentiajy, is calculated by using the following dk= 37k 3
relation: 2 for a finite system,
( aR 8R2)dk nite sy
[ota] ~ 17
Hai= ] apq T_“q0+“qf (@=n.p), (12 with R the radius of the systenm,=m the mass of the
nucleon, and
l o
where the rearrangement chemical potentig! [19] which pqz—f ng(k)dk,
comes from the density dependence of the interaction is o
1
1 A Na(K) = T X B (K ke T] (18)
=c ij{=—/|ij,ji )nin;. 13 q eT]
Har 2Voi,j<J Pq”>IJ 49

Solving Egs. (16)—(18) with given temperatureT, total
nucleon density, and asymmetry paramete; we can ob-
Finally the first-order pressune, is given by tain the zero-order chemical potentjal, and single-particle
spectraEq(k). The rearrangement chemical potential given
by Eq. (13) becomeg19]

plzz Pqul_fl' (14) 1 d 2
g ar=glodp(3—(1+2x0)e?], gq=n,p, (19

. . . . = Lot Mar -
Now we substitute the explicit expression of the effective Fo1™ Fao™ Har (20

interaction into above equations. The Gogny (@®WD1) ef-  The pressure can be obtained from E@sl) and (14). We
fective interaction is expressed as find

; Jr_ﬂ 2_Pﬁ+P|23+ p_z_ 2_ 2
n(ony(k)| 2 |° 2 2 PnPp

i=1,2

KeT [ 1
p1=?f0 dkin Xo™T gtodpd+2[3_(1+2)(o)a2]

Bi

Wit = p>—| Hi+

+ 2 (\/—IL‘LI)?’J J(Z )3 2 )Sexq lu‘||k k |2/4)

X{(Hi+2M)[ny p(K)nn o(K") T+ (Wi +2B))[nn(k, k") +np(k, k") T}, (21)

(pn+pp)
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where

Ny, p(K)=Nn(K) +np(K),  Ny(k k") =np(K)ng(k").

The above equations can be solved by two different treat-
ments:(1) Expanding the right-hand sides of the above equa-
tions into a series of momentum and carrying out the calcu-
lation up to order O(k"). These are the so-called
degeneracy-correction expansions by Jagani@h and
adopted by Jagamdi®8] and Daset al. [12] for their calcu-
lations. We refer to this treatment as the momentum expan-

p (MeV fm -3)

0.0 0.1 0.2

sion approximatiorlMEA). (2) Solving the above coupling

integral equations exactly and self-consistently. Hereafter we p (fm™)

refer to this treatment as IE. In order to study the approxi-

mation of the MEA, we calculate thermodynamical proper- FIG. 1. Isotherms for the symmetric nuclear system.
ties up toO(k* and compare the result with that given by . . o ]
solving the integral equatioiE) exactly. where T is the critical temperature for infinite symmetric

Before the calculation, we must take into account thehuclear matter. The additional pressure brought out from the
Coulomb interaction and surface effect because in the abovgUrface tension of the liquid droplet is
discussion the Coulomb interaction is switched off and the surf B
surface effect is not considered. For simplicity, we use an pr (T,p)=—=2¢(T)IR, (25
average Coulomb potential per proton

In-a unlformlyWhere the nuclear densify is related to the droplet radius
charged sphere:

R by the relationA=37wR3p for a given nucleon number

62¢? A.

Ve™e)= 5 (22
1. RESULTS AND DISCUSSIONS

whereZ is the number of protons in the liquid droplet and Now we are in a position to calculate the relevant ther-
R the radius of the liquid dropld®]. The exchange term of modynamical quantities by means of the Gogny interaction
the Coulomb interaction has been neglected. When the Cownd the above formalism. Our results are shown in Figs. 1-8
lomb interaction is switched on, the single-particle spectraand Tables II-1V.

given by Eq.(16) for protons and the chemical potential of = The p-p isotherms fora=0 symmetric nuclear system
protons all have an additional termzvg"“' and are shown in Fig. 1. The critical temperatufe can be
ps'=V5e! respectively. The contribution of the pressurefound from the inflection point op-p isotherms, which sat-

is expressed as isfies

z%’ w_P_ . (26)
(P)=SARP: (23) ap  dp®

pEoul
We found thatT-=15.90 MeV for the Gogny interaction;
aboveT: no liquid-gas mixed phase can exist. In order to
illustrate the contributions of the finite-range part and the
density-dependent part of the Gogny interaction indepen-
"Yently, we calculate the contributions of these two parts to
pressure separately and show our results in Table Il. As
shown in Table I, the contribution of the finite range of
Gogny interactions to pressurgeg is negative, but the
a2 density-dependence parp is positive. This result can eas-
1— _} ., (24)  lly be understood if one notices that the finite range of inter-
T actions will soften the compact and hard configurations of

whereA=N+Z is the number of nucleon arid the number
of neutrons in the liquid droplet.

Now we take the surface effect into account. For the lig-
uid droplet with a surface, we consider the surface effect o
pressure as the same as Rdfg8]. The formula for the
temperature dependence of the surface tensifn) reads
[21]

y(T)=(1.14 MeVfm ?)

L
2T¢

TABLE lll. Critical temperatureT ¢ from u,-p curves andu,-p curves with different asymmetry param-
eters for the Gogny effective interaction with the IE and the MEA methods.

T2 (MeV) T2 (MeV) T2 (MeV) T2 (MeV)
a (with IE) (with IE) (with MEA) (with MEA)
0.0 15.90 15.90 14.60 14.60
0.1 14.12 17.64 13.00 16.52
0.3 10.30 21.03 8.92 20.10

0.5 5.58 24.41 4.34 23.67
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~ . 10
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& E o5}
> %
s = 00
~ o
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-0.6 . :
0.0 0.1
p fm>) o
FIG. 2. Isotherms T=8 MeV) for the symmetric nuclear sys- FIG. 4. Pressure vs asymmetric parameter curves for the nuclear

tem with the Brink-Boeke(BB) interaction, GognyGD1) interac-  system with the Brink-Boeker interactidBB), Gogny interaction

tion, and SkyrmeSJJ interactions. The dashed line is calculated (GD1), and Skyrme interactiofiSKI) where we fixT=6 MeV,

by the momentum expansion approximation. p=0.1 fm~3. The dashed line is calculated by the momentum ex-
pansion approximation.

zero-range interactions and then, equally, it plays an “attrac- o .
tivelike” role and reduces the pressure. But the density.f@meters are shown in Fig. 3. The critical asymmetry param-
dependence part, because it has the same behavior as thaf##' @c is 0.693(for T=8 MeV), above which liquid-gas
the Skyrme interaction, will give us positive result. Another COexistence is impossible. This result is similar to that of
important result shown by Table Il is that the valuespgfy, ~ SKY'Me interactiong11]. The pressure vs a curves with
andppp have the same order of magnitude. It means that théxed T=6 MeV, p=0.1 fm™* for BB, GD1, and SKI are
finite-range part and the density-dependence part of interaghown in Fig. 4. We see that the pressures given by different
tion have the same importance for the thermodynamicaintéractions all increase with, but rapidly for the BB inter-
properties of nuclear systems. In this sense, the Gogny intefction and slowly for the SKI interaction. This result is of
action has an advantage over that of the Skyrme interactiofourse inconsistent with our density-dependence and finite-
and BB interaction. range arguments. _

To exhibit the above statement transparently, we compare FOr finite nuclear systems, as pointed out by RE3s20],
T=8 MeV, a=0 isotherms of SJ1, GD1, and BB interac- it Will be more advantageous to work with the chemical po-
tions in Fig. 2, where the SJ1 curve is given by our previougential u rather than to work with pressupebecause of the
paper[9] and the BB curve by Ref12]. Since the curve of f|_n|te-3|ze ef_fect. The prqton and neutron have different
the BB interaction in Ref{12] is calculated by the MEA, we _smgle energies and chem!cal potentials due to the Coulomb
calculate, respectively, the isotherms of the GD1 interactiodntéraction and asymmetric effect. Because the proton and
by the MEA and IE approaches and show the result of thd1eutron are not in chemical equilibrium, although they may
MEA by a dashed line. From Fig. 2, we get two results, ﬁrst'be in thermal eqwhbnum, their chemical potentials are no'g
Pes> Pap> Psur for a fixed density. Second, the method of related to ea_lch other. _Slnce the p_roton and neutron have qllf-
the MEA [up to O(k%)] can only be used to calculate the ferent chgmlcal potentials, they will also appear to have dif-
pressure in the low density region; in the middle and highferent critical temperatureg andTe, respectively. As was
density regions >0.05 fm~3), the errors are considerable. argued by Refs6,9,20, we must choose the smaller B

Now we discuss the asymmetric effect. The8 MeV
isotherms of the GD1 interaction for various asymmetric pa-

200
1.0 %‘
s 150
g 05 | o
= = 100
>
(2}
=
f; 0.0 1 5.0
-0.5 ; — Cl

0.0 0.1 0.2
FIG. 5. The asymmetric parameter dependence of the critical

3
p (fm™) temperature for the nuclear system with the Brink-Boeker interac-
tion (BB), Gogny interactiofGD1), and Skyrme interactio(SKI).
FIG. 3. T=8 MeV isotherms for various asymmetric param- The dashed line is calculated by the momentum expansion approxi-
eters. mation.
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TABLE IV. Relevant equilibrium values af =T, with different nucleon numbeA.

Tim pL pv Pv wy uh
A (MeV) (fm~3) (fm~3) (MeV fm~3) (MeV) (MeV) ay
10 9.32 0.166 0.017 0.070 —15.44 —15.60 0.004
50 8.19 0.161 0.014 0.052 -12.92 —13.86 0.027
109 6.77 0.161 0.011 0.034 —-9.58 —11.89 0.078
150 6.11 0.161 0.010 0.027 -7.79 —-11.25 0.128
208 5.42 0.160 0.009 0.022 —-5.67 —-10.87 0.214

andT¢ as the correct critical temperature. The critical tem-small. We also find that, decreases as increases for both
peraturesT¢ given by u, vs p isotherms andr® given by  two cases, but the decrements are different. The saturation
wp VS p isotherms with differentx for the GD1 interaction ~ densitypo decreases rapidly for the BB interaction. Similar
are shown in Table 1l and Fig. 5. For comparison, we showbehavior fork+(a)/Ky(a=0) vs « is found in Fig. 7. We

our results calculated by the MEA and IE together in Tablesee for a fixed temperature ard the isothermal incom-

IIl. We found thatTg decreases buff increases as in-  PressibilityK(«) for the GD1 interaction is larger than that
creasesTY is always less thai®, and TR— T2 becomes of t.he BB interaction. The sqftr]ess B fpr the BB inter-
larger whena increases. In Fig. 5, we dralic=T2 vs action is partly dye_ to a missing density dependence and
curves for BB, GD1, and SKI interactions simultaneously.partly due to the finite-range enhancement. The effect of the

We see that for a fixed, the critical temperature of SKI is fir:ﬂte—range force. for the BB interaction is larger than that of

higher, GD1 middle, and BB lower. Besides, the discrenN€ GD”1 interaction. o | , T of th

pancy between the MEA and IE in Fig. 5 is remarkble. Finally we d|§cuss the Cou omb' instability of the Gogny
model. For a given nucleus, starting from a properly low

Now we turn to discuss the isothermal incompressibility ve th ! ins(3) f
K+t which is an important quantity reflecting the property of temperature, We solve the pogmstence equatiahs(3) for .
the nuclear density, of the liquid phase, the nuclear density

the nuclear systenK is defined as
pv, and the asymmetry parametey, of the vapor phase.

ap Then we increase the value of the temperature and repeat the
KT=9(—) , (270  above calculation. We find that when the temperature
ap p=pg reaches a certain value, the co-existence equations have no

solution. This value of temperature gives the limiting tem-
wherepg(a,T) is the saturation density at a particular tem- peratureT;,, . We present thé\ dependence of,, calcu-
perature and asymmetric parameter when the free energy ligted from the GD1 interaction for nuclei along the well-
minimum. In order to compare the result given by the GD1known g-stability line,
interaction with that given by the BB interaction in REE2],
we show thep, vs « curves andK1(a)/Kt(a=0) vs a Z=0.5A-0.3x10"?A%®, (28)
curves in Figs. 6 and 7, where the solid lines refeffte6 | , _
MeV and dashed lines foF=7 MeV, respectively. We find " Table IV and Fig. 8. The equilibrium values of the rel-
from Fig. 6 that, for a fixed temperature, the saturation den€vant quantities at the limiting temperature for differént
sity p for the GD1 interaction is larger than that of the BB &€ shown in Table IV. We see from this table that witen

interaction, no matter whether the temperature is large oficréases from 10 to 208, decreases from 9.32 MeV to
5.42 MeV monotonously. The rate of decrement is smaller in

largeA regions than that in small regions. For comparison,

' we have drawn in Fig. 8 th§,, vs A curves calculated from
015 . the SKI, GD1, and BB interactions simultaneously. It can be
@
E .
= 040} 5
(=] (=]
= 2
o
0.05 E
N
o g

FIG. 6. The asymmetric parametar and temperature depen-
dence of saturation density, for the nuclear system with the
Brink-Boeker interactionBB) and Gogny interactiotGD1). We Q.
choose the temperature s 6 MeV and 7 MeV. The curves of the
BB interaction are chosen from R¢fL2]. FIG. 7. Same as Fig. 6, but for isothermal incompressibility.
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In summary, we have studied the isotherms of various
temperature and asymmetric parameters and calculated the
critical temperature, limiting temperature, isothermal incom-
pressibility, and saturation density for the Gogny interaction
in details. We have used two approaches, namely, the mo-
mentum expansion approximation up @k*) and solving
6 GD1 ] integral equations exactly, to calculate thermodynamical
gquantities. We have found that the momentum expansion ap-
proximation method can only be used in low density regions;

3 . w ; ; beyond this region, the discrepancy is remarkable. To illus-
0 50 100 150 200 trate the importance of the finite-range part and density-
A dependence part of the interaction, we have compared our

results with those given by the Skyrme interaction and

FIG. 8. Mass numbeA dependence of limiting temperature Brink-Boeker interaction, anq calcul_ated the contributions of
Tm calculated with the Skyrme interactid8KI), Gogny interac- these two parts of the GD1 interaction to pressure carefully.
tion (GD1), and Brink-Boeker interactiofBB). We have found that even though the contributions of these
two parts are opposite, their importance for the thermody-
namical properties of nuclear systems is almost equal. In this

seen that the three curves have a similar tendency but th@snse, the Gogny interaction may be a better interaction to
decreasing slopes are different. The decremeijgffor the  describe the nuclear system.

BB interaction is more rapid than the SKI and GD1 interac-
tions. The basic reason for this rapid decrease comes from
the missing of density dependence in the BB interaction as
was discussed before. Because the decrement is too rapid,
the limiting temperature, for example, 3.1 MeV for  This work was supported in part by NNSF of China and
A=150, seems too small for comparison with experiment. by the Academia Sinica under Contract No. LWTZ-1298.

Thim ( MeV )
?
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