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The critical temperature for the dissipation of the collective degrees of freedom has been determined
quantum field theoretical description of the Elliott model in which the U~3! symmetry is spontaneously broken
in such a manner that rotational invariance is preserved. Results for20Ne, with a reasonable choice of param-
eters, seem to indicate that this critical temperature lies below the liquid-to-gas critical temperature but ab
the temperature of deformed-to-spherical shape transitions which have been observed in finite temper
mean field calculations.@S0556-2813~96!00108-2#
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One of the universal features of finite nuclei is a sign
cant change in the density of states at excitation energie
10 MeV or less@1#. At lower excitation energies the spe
trum of most nuclei is sparse and dominated by a relativ
small number of collective states. With increasing excitat
energy, the independent particle degrees of freedom do
nate and the density of states grows exponentially. As
mass number increases, the low-lying collective portion
the energy spectrum becomes more compressed and
abrupt change in the many-particle density of states occu
lower excitation energies. Since the nuclear force is sh
ranged and saturates rather quickly, one would expect
such a change in the many-body level density might a
occur in nuclear matter@2#. It has, therefore, been suggest
that a collective-to-noncollective phase transition occurs
finite nuclei @3#. Strictly speaking, it is incorrect to speak o
phase transitions in finite systems. No one can deny, h
ever, that transitions between different regimes do take p
in these systems, and that they are more or less abrupt.
issue, particularly in deformed systems, has been cloude
the fact that finite temperature mean field calculations h
suggested that this phase transition is simply due to a dra
change of shape@4#. The deformed-to-spherical shape tra
sition seen in these calculations is not seen in exact cano
calculations@5–8#. It appears to be an artifact of the finit
temperature mean field approximation, and also depend
the volume of the system@9,10#. In spite of the fact that the
canonical partition function above the critical temperature
dominated by the single-particle degrees of freedom, a
collective states still contribute and are extremely import
in calculation of shape dependent parameters. Recent c
lations of the ensemble average of the quadrupole mom
squaredQ@2#

•Q@2# indicate that it is discontinuous in th
finite temperature mean field approximation, while no d
continuity is observed in the canonical calculations@11#. In
both cases this quantity does not appear to vanish at
critical temperature. It should also be noted, however, t
when thermal fluctuations in the shape dependent order
rameters are taken into account, by either macroscopi
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microscopic procedures, a reasonable agreement with the
act canonical calculations@5# is obtained. For this reason
there is some concern about attempts to confirm experime
tally the existence of such shape transitions@12#.

With increasing temperature, however, it is expected th
these collective degrees of freedom will eventually com
pletely dissolve, presumably below the critical temperatu
of the liquid-to-gas phase transition. Above this temperatur
collective effects such as nuclear deformation will no longe
be present. To determine this temperature in a simple mod
a finite temperature extension of a quantum field theoretic
description of the Elliott U~3! model@13#, in which the U~3!
symmetry is spontaneously broken in such a manner th
rotational invariance is still preserved@14#, is required. In
this case six zero-energy Nambu Goldstone bosons are c
ated, which are characterized by spin zero and 2, and
mechanism is closely related to the superconductivity mod
with a similar type of order or gap parameter@14#. The col-
lective modes in such a system are these Goldstone mod
The vanishing of the gap parameters for both thel50 and
l52 bosons at some critical temperature should signal t
disappearance of the collective degrees of freedom.

The nonrelativistic model Lagrangian for the nucleo
fields, which is invariant under the Elliott U~3! transforma-
tion, is given by@14#

L~ t !5E d3xf* ~x!ḟ~x!2H ~1!

with

H5E d3xf* ~x!~x22“x
2!f~x!2

v0
2 (

kq
~2 !q

3E d3xd3yf* ~x!f* ~y!Tq
k~x,“x!T2q

k ~y,Dy!

3f~x!f~y!. ~2!
1133 © 1996 The American Physical Society
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Here

Tq
k~x,¹x!5(

ab
^1a12bukq&~21!12b

1

2
~aa

†ab1abaa
† !

~3!

with

aa
†5

1

A2
~xa1 ipa!5

1

A2
~xa1“a!,

aa5
1

A2
~xa2 ipa!5

1

A2
~xa2¹a!,

from which one easily obtains

T0
05

1

2A3
~x22¹x

2!,

Tq
15

i

A2
~x3“x!q ,

Tq
25

1

6
A4p

5
@x2Yq

2~uxfx!1¹2Yq
2~u¹f¹!#. ~4!

The nine operators in~4! are the complete set of generato
of the U~3! group with the three operatorsTq

1 forming its
rotational subgroup R~3!. The model Hamiltonian in~2! is
often used to study the rotational spectra in nuclei@13#. For
simplicity the nucleon fieldsf(x) andf* (x) in ~1! and ~2!
are assumed to be scalar fields,

@f~x!,f* ~x8!# t5t85d3~x2x8!, ~5!

since we are interested in the effects of spontaneous sym
try breaking and the role it plays in the disappearance of
collective rotational degrees of freedom in a deformed s
tem. These fields may be expanded in terms of a comp
set of three-dimensional harmonic oscillator functions,

f~x!5(
nlm

Rnlm~x!blnm , ~6!

where

@bnlm ,bn8 l 8m8
†

#5dnn8d l l 8dmm8. ~7!

Furthermore, in order to keep the calculations tractable
shall restrict the space of the bosons to that of thesd shell.
Admittedly the model space is small, but for a nucleus li
20Ne with a ground state rotational band which is well d
scribed in the Elliott model and whose highest-lying memb
is well described in this model space, we hope to obtai
qualitative understanding of the disappearance of the col
tive degrees of freedom at finite temperature and to dem
strate that their disappearance does not coincide with
previously mentioned deformed-to-spherical shape tra
tions seen in finite temperature mean field calculations. Ho
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ever, because of the aforementioned approximations t
present results must be regarded in a more qualitative m
ner.

In Ref. @14# it has been noted that the order parameter f
the Elliott model is the same as that in the theory of supe
conductivity and that the corresponding vacuum of th
nuclear system should have a BCS-like structure. Consid
ing the Bogoliubov transformation for bosons@15#,

bnlm5unlbnlm2vnl~2 !mbnl2m
† ,

bnlm
† 5unlbnlm

† 2vnl~2 !mbnl2m ,

unl
2 2vnl

2 51,

one chooses the transformation parameters to elimin
quasiparticle-quasiparticle and quasihole-quasihole terms
the Hamiltonian. This yields

unlvnl5
1

2

Dnl

Enl
, ~8!

unl
2 1vnl

2 5
jnl
Enl

, ~9!

wherejnl are the Hartree self-consistent single-particle ene
gies given by

jnl52enl2
2v0

~2l11!2
vnl
2 (

k
~2 !k~nluuT@k#uunl !2

52enl2
2v0
2l11

vnl
2 F13 enl

2 2
1

2
l ~ l11!

1
~nluuT@2#uunl !2

2l11 G , ~10!

where enl are the unperturbed harmonic oscillator single
particle energies,Dnl denote the BCS gaps, and

Enl5Ajnl
2 2Dnl

2 ~11!

are the quasiparticle energies. The BCS gaps satisfy the g
equations

Dnl5
v0

2l11(k ~2 !k(
n8 l 8

~n8l 8uuT@k#uunl !2
Dn8 l 8
2En8 l 8

. ~12!

Calculating the reduced matrix elements forT0 andT1 yields

Dnl5v0(
n8 l 8

H F13 enl
2 2

1

2
l ~ l11!Gdnn8d l l 81~gll 8

nn8!2J Dn8 l 8
2En8 l 8

.

~13!

Note this form corrects that given in Ref.@14#. In the above
equation,

gll 8
nn85

1

2l11
~n8l 8uuT@2#uunl !, ~14!

where
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~n8l 8uuT@2#uunl !5
2

A6
A4p

5
„n8l 8uux2Y@2#~ux ,fx!uunl…Rl 8 l

n8n

~15!

and

Rl 8 l
n8n5E x2dxRn8 l 8~x!x2Rnl~x!. ~16!

In thesd shell for the Hamiltonian operator given in~2! it is
easy to show that

~g00
11!250, ~g02

10!25
20

3
,

~g20
01!25

4

3
, ~g22

00!25
7

3
. ~17!

It is straightforward to extend these equations to fin
temperature by setting the expectation values of the qu
particle occupation probabilities to the Bose factor@16,17#,
i.e.,

^bnlm
† bnlm&5 f B~Enl!5

1

eEnl /T21
, ~18!

^bnlmbnlm
† &512 f B~Enl!. ~19!

The Hartree single-particle energies at temperatureT are

jnl52enl2
2v0
2l11 F13 enl

2 2
1

2
l ~ l11!1~gll

nn!2G
3F f B~Enl!1vnl

2 cothSEnl

2T D G , ~20!

and the gap equations at finiteT are given by

Dnl5v0(
n8 l 8

H F13 enl
2 2

1

2
l ~ l11!Gdnn8d l l 81~gll 8

nn8!2J
3

Dn8 l 8
2En8 l 8

cothSEn8 l 8
2T D . ~21!

It is easy to see that all the gaps vanish at the same cri
temperatureTc .

In the sd shell there is only one single-particle energy,

e105e025e,

which, since the zero of energy is unknown, is a free para
eter. Its value together with that of the coupling strengthv0
then uniquely specify the model. One of these paramet
v0, has been eliminated by insisting that the solutionD10 of
the uncoupleds-wave gap equation reproduces the empiric
gap at zero temperature@19,20#,

D0512A21/2

~which is approximately 3.5 forA520). The solution to the
uncoupled gap equation is
ite
asi-

tical

m-

ers,

al

D0
25e2H 491

4

27
v0e2

5

324
~v0e!2J 5

144

A
.

This has a real solution forv0e only if

e.3A20

A
.

The quadratic has two solutions, one above and one be
v0e524/554.8. The lower solution has been selected sin
physically one expectsv0e<4.8. Now further requiring
v0e.0 it follows that

e,
18

AA
.

In Table I the zero temperature gaps, the value ofv0, and
the critical temperature are given as a function ofe for
20Ne. Fore in the range 3.2 to 3.8 MeV the critical tempera
ture lies well above that for the low-lying deformed-to
spherical shape transitions seen in finite temperature m

FIG. 1. Thel50 BCS gapD10(T) ~MeV!, and thel52 BCS
gapD02(T) ~MeV! as a function of the temperatureT ~MeV! for
single-particle energye53.5 MeV.

TABLE I. The coupling strengthv0, the l50 andl52 gaps at
zero temperature,D10(0) andD02(0), and thecritical temperature
Tc , all as functions of the single-particle energye.

e ~MeV! v0 ~MeV! D10(0) ~MeV! D02 ~MeV! Tc ~MeV!

3.0 1.600 6.338 2.594 2.127
3.2 0.717 3.582 1.411 3.524
3.4 0.415 3.068 1.091 4.954
3.6 0.228 2.837 0.898 7.684
3.8 0.100 2.728 0.767 15.295
4.0 0.009 2.685 0.672 145.43
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field calculations,Tc'2.1 MeV @3,18,7#, but below that for
the bulk liquid-to-gas transition,TLG'15220 MeV @21,22#.
~Recent experimental measurements seem to indicate tha
critical temperature for the liquid-to-gas phase transition m
be as low as 5 MeV in finite nuclei@23#.! For the coupling
strength valuesv050.1–0.7 MeV@8# one obtains resonabl
values, and for the 01-21 energy level splitting

E212E015D102D02.

~Experimentally this energy level splitting is approximate
1.6 MeV @24# and is fitted in the exact SU3 shell model
calculations withv050.09 MeV @8#.! Moreover, fore53.2
MeV and v050.717 MeV a reasonable value for the 01-
21 energy level splitting~2.1 MeV! as well asD10'D0 is
obtained, andTc53.5 MeV, which is above the critical tem
perature for the deformed-to-spherical shape transition
below that of the liquid-to-gas transition. This then indica
the total dissolution of the collective degrees of freed
prior to nuclear breakup. Ase approaches its upper boun
the gaps and critical temperature diverge, indicating a bre
down of the weak-coupling BCS theory. Unfortunately,
though the results are sensitive to the values ofv0 or equiva-
lently the energy level splitting, there is no reliable way
fix these values precisely in such a simple model. Althou
the critical temperatures obtained are a bit large for
model space considered, what is important is that they
significantly higher than the critical temperatures of the p
viously observed deformed-to-spherical shape transiti
-
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Realistic calculations are therefore essential to verify the
istence and the value of the critical temperature for suc
transition.

In Fig. 1 thel50 andl52 gaps are plotted as a functio
of temperature fore53.5 MeV corresponding tov050.312
andTc56.058 MeV. Note that thes-wave pairs are always
more deeply bound than thed-wave pairs at any temperature
but they both become unbound at the same temperature

In the present paper we have presented a very simple
general mechanism for the dissipation of collective degr
of freedom due to nuclear deformation by means of spon
neously breaking U~3! symmetry in such a manner that rot
tional invariance is preserved. The present calculations
20Ne in the Elliott model, with a realistic choice of param
eters, indicate that the temperature at which these collec
degrees of freedom disappear lies well above the tempera
of the collective-to-noncollective transition observed in c
nonical and finite temperature Hartree-Fock calculations
below the liquid-to-gas critical temperature. More realis
effective interactions which contain SU~3! symmetry break-
ing terms, such as the tensor and spin-orbit interaction,
not expected to alter the present results in any signific
manner.
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