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Spontaneous symmetry breaking and the dissipation of nuclear collective degrees
of freedom at finite temperature
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The critical temperature for the dissipation of the collective degrees of freedom has been determined in a
quantum field theoretical description of the Elliott model in which tH8)4dymmetry is spontaneously broken
in such a manner that rotational invariance is preserved. Result8Ner with a reasonable choice of param-
eters, seem to indicate that this critical temperature lies below the liquid-to-gas critical temperature but above
the temperature of deformed-to-spherical shape transitions which have been observed in finite temperature
mean field calculationgS0556-28136)00108-3

PACS numbds): 21.60.Ev, 21.60.Fw, 21.10.Re, 27.30.

One of the universal features of finite nuclei is a signifi- microscopic procedures, a reasonable agreement with the ex-
cant change in the density of states at excitation energies afct canonical calculationfb] is obtained. For this reason
10 MeV or less[1]. At lower excitation energies the spec- there is some concern about attempts to confirm experimen-
trum of most nuclei is sparse and dominated by a relativelytally the existence of such shape transitiphg|.
small number of collective states. With increasing excitation With increasing temperature, however, it is expected that
energy, the independent particle degrees of freedom domthese collective degrees of freedom will eventually com-
nate and the density of states grows exponentially. As theletely dissolve, presumably below the critical temperature
mass number increases, the low-lying collective portion ofof the liquid-to-gas phase transition. Above this temperature,
the energy spectrum becomes more compressed and thellective effects such as nuclear deformation will no longer
abrupt change in the many-particle density of states occurs & present. To determine this temperature in a simple model,
lower excitation energies. Since the nuclear force is shora finite temperature extension of a quantum field theoretical
ranged and saturates rather quickly, one would expect thatescription of the Elliott (8) model[13], in which the U3)
such a change in the many-body level density might alssymmetry is spontaneously broken in such a manner that
occur in nuclear mattd2]. It has, therefore, been suggestedrotational invariance is still preservdd4], is required. In
that a collective-to-noncollective phase transition occurs irthis case six zero-energy Nambu Goldstone bosons are cre-
finite nuclei[3]. Strictly speaking, it is incorrect to speak of ated, which are characterized by spin zero and 2, and the
phase transitions in finite systems. No one can deny, howmechanism is closely related to the superconductivity model
ever, that transitions between different regimes do take placeith a similar type of order or gap parameté#]. The col-
in these systems, and that they are more or less abrupt. Thisctive modes in such a system are these Goldstone modes.
issue, particularly in deformed systems, has been clouded bjhe vanishing of the gap parameters for both lthed and
the fact that finite temperature mean field calculations havé=2 bosons at some critical temperature should signal the
suggested that this phase transition is simply due to a drast@tisappearance of the collective degrees of freedom.
change of shapp4]. The deformed-to-spherical shape tran- The nonrelativistic model Lagrangian for the nucleon
sition seen in these calculations is not seen in exact canonicfields, which is invariant under the Elliott(8) transforma-
calculations[5-8]. It appears to be an artifact of the finite tion, is given by[14]
temperature mean field approximation, and also depends on
the volume of the systel®,10]. In spite of the fact that the .
canonical partition function above the critical temperature is L(t)=f d3xé* (x) p(x)—H (D)
dominated by the single-particle degrees of freedom, a few
collective states still contribute and are extremely important
in calculation of shape dependent parameters. Recent calcwith
lations of the ensemble average of the quadrupole moment
squaredQl?). Q[?) indicate that it is discontinuous in the Vo
finite temperature mean field approximation, while no dis- HIJ d3x* (X) (X~ V) (x) — 32 (—)9
continuity is observed in the canonical calculatigthg]. In ka

both cases this quantity does not appear to vanish at the

critical temperature. It should also be noted, however, that X f d3xd®y ¢* (x) ¢* () TE(X, Vi) T ((v.4,)
when thermal fluctuations in the shape dependent order pa-

rameters are taken into account, by either macroscopic or X b(X) p(y). (2)
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Here ever, because of the aforementioned approximations the
present results must be regarded in a more qualitative man-
1 ner.
k _ 1- t t
Tq(x, V) = aEE (Lal-plka)(—1) Bz(aaaﬁ+aﬁaa) In Ref.[14] it has been noted that the order parameter for

3) the Elliott model is the same as that in the theory of super-
conductivity and that the corresponding vacuum of the
with nuclear system should have a BCS-like structure. Consider-
ing the Bogoliubov transformation for bosofik5],

1 1
azzﬁ(xaﬁpa):E(XaﬂLVQ), bnlm:unlﬁnlm_vnl(_)mlgllfma
nlm nIIBnIm vni(— )M Bri—m»
_ 1 . _ 1 v
aa_ﬁ(xa_lpa)_ﬁ(xa_ a)1 uﬁl_vrz'n:lv

one chooses the transformation parameters to eliminate
quasiparticle-quasiparticle and quasihole-quasihole terms in
the Hamiltonian. This yields

from which one easily obtains

_v2
2\/_()( v ) 1 AnI
UniOni=5 g 8
n
i
Ta==(XX Vg,
42 A uﬁ|+vﬁ|=é—:, ©)
1 [4x i i i
= y2y2 1L y2y2 _ where¢,, are the Hartree self-consistent single-particle ener-
The nine operators if¥) are the complete set of generators _ 2vy K 0 )
of the U3) group with the three operatof; forming its Eni=2€n1— (2|+1)2Un|2k (=) (nH[[TH[nT)
rotational subgroup ). The model Hamiltonian in2) is
often used to study the rotational spectra in nul&]. For _ 2vg 1, 1I |
simplicity the nucleon fieldgs(x) and ¢* (x) in (1) and (2) =2en— 50|z 51(1+1)
are assumed to be scalar fields,
(il T2 .
[$(x), % (X)]g—er = 53(x—X"), (5) TSt (10

since we are interested in the effects of spontaneous symmemere €, are the unperturbed harmonic oscillator single-

try breaking and the role it plays in the disappearance of th@article energiesA,; denote the BCS gaps, and
collective rotational degrees of freedom in a deformed sys-

tem. These fields may be expanded in terms of a complete E. = ,/gﬁl_Aﬁl (12)
set of three-dimensional harmonic oscillator functions,
are the quasiparticle energies. The BCS gaps satisfy the gap

equations
$00=2 Ruim()binm. 6
k [k] 2
where Api= 2|+1 S 2 (nPITE I g T (12
[Brimsb 1 v 1= Snn Sit 7 Sy - (7)  Calculating the reduced matrix elements T8randT* yields
Furthermore, in order to keep the calculations tractable we, _ E ' 2| Bnrte
shall restrict the space of the bosons to that ofgtishell. UOE, [ 2! (1) Ohne Sir +(9y ) 2En

Admittedly the model space is small, but for a nucleus like (13
20Ne with a ground state rotational band which is well de-

scribed in the Elliott model and whose highest-lying membemNote this form corrects that given in R¢i4]. In the above
is well described in this model space, we hope to obtain @&quation,

gualitative understanding of the disappearance of the collec-

tive degrees of freedom at finite temperature and to demon- nn’ _
strate that their disappearance does not coincide with the i = 21+1
previously mentioned deformed-to-spherical shape transi-

tions seen in finite temperature mean field calculations. Howwhere

(n'1']| T |n1), (14
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TABLE I. The coupling strengtly, thel=0 andl =2 gaps at

(n'l '||T[2]||nl): iw /A'_W(r” ’||X2Y[2](9X1¢x)||n|)R|n',|n zero temperatured ;o(0) andAy,(0), and thecritical temperature
\/5 5 T., all as functions of the single-particle energy

(19
J e (MeV) vy (MeV) Ao(0) (MeV) Ag, (MeV) T, (MeV)
an
3.0 1.600 6.338 2.594 2.127
o [, ) 3.2 0.717 3.582 1.411 3.524
Rir = | X5dXRy 1/ ()X Ry (X). (16) 3.4 0.415 3.068 1.091 4.954
3.6 0.228 2.837 0.898 7.684
In the sd shell for the Hamiltonian operator given (8) it is 3.8 0.100 2.728 0.767 15.295
easy to show that 40 0.009 2.685 0.672 145.43
0
11,2 _ 1002 _
_01 A
(9o (902°=3 N 5 | 144
, 0= €| g 57v0€ ™ 353(Vo€)" = 1
0L2_ " 00\2_ " ) . .
(920 3 (gzg) 3" 17 This has a real solution farge only if
It is straightforward to extend these equations to finite 3 \/27)
temperature by setting the expectation values of the quasi- €= A

particle occupation probabilities to the Bose fadib6,17],
ie., The quadratic has two solutions, one above and one below
voe=24/5=4.8. The lower solution has been selected since

1 hysically one expecte,e<4.8. Now further requirin
t _ _ pnysically pecty g q g
(Bnlmﬁnlm>_fB(Enl)_ eEnI7T—1’ (18) UOG>0 it follows that
(BoimBaim =1~ o(En). (19) 18
JA

The Hartree single-particle energies at temperaiusse

In Table | the zero temperature gaps, the value pfand
the critical temperature are given as a function eofor
20Ne. Fore in the range 3.2 to 3.8 MeV the critical tempera-
ture lies well above that for the low-lying deformed-to-

1
3

200

En=2€n— 571

1
2 _ = nm 2
2l +1 €nl 2|(|+1)+(gll

nl

) E
fe(En) +upcot oT

X , (20) spherical shape transitions seen in finite temperature mean
and the gap equations at finifeare given by 3.0
1, 1 ' 2
AnI:UOE §Enl_§|(|+1) 5nn’5ll’+(g||r) 25 -
V|! -
" AT
Anlll Enlll
X2En,|,con’< > - (21) 2.0

It is easy to see that all the gaps vanish at the same critical
temperaturerl . .
In the sd shell there is only one single-particle energy,

BCS Gap (MeV)
o
|

-
[=]
1

€10~ €02~ €,
Ay
which, since the zero of energy is unknown, is a free param-
eter. Its value together with that of the coupling strenggh
then uniquely specify the model. One of these parameters,
vo, has been eliminated by insisting that the solutlog of

the uncoupled-wave gap equation reproduces the empirical
gap at zero temperatufé9,2Q,

0.5

0.0 T T T T T T
0 1 2 3 4 5 6 7
Temperature (MeV)
Ag=12A"12
o _ _ FIG. 1. Thel=0 BCS gapAy(T) (MeV), and thel=2 BCS
(which is approximately 3.5 foA=20). The solution to the gapAy,(T) (MeV) as a function of the temperatufe (MeV) for
uncoupled gap equation is single-particle energg=3.5 MeV.
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field calculationsT.~2.1 MeV[3,18,7, but below that for Realistic calculations are therefore essential to verify the ex-
the bulk liquid-to-gas transitiol, ;~15—20 MeV [21,22. istence and the value of the critical temperature for such a
(Recent experimental measurements seem to indicate that thi@nsition.

critical temperature for the liquid-to-gas phase transition may In Fig. 1 thel=0 andl =2 gaps are plotted as a function
be as low as 5 MeV in finite nuclgR3].) For the coupling ©f temperature foie=3.5 MeV corresponding to,=0.312
strength values ,=0.1-0.7 MeV[8] one obtains resonable andT.=6.058 MeV. Note that the-wave pairs are always

values, and for the 0-2* energy level splitting more deeply bound than tlitewave pairs at any temperature,
but they both become unbound at the same temperature.
Eo+ —Eg+=A10—Agy. In the present paper we have presented a very simple but

general mechanism for the dissipation of collective degrees
(Experimentally this energy level splitting is approximately of freedom due to nuclear deformation by means of sponta-
1.6 MeV [24] and is fitted in the exact SUshell model neously breaking (B) symmetry in such a manner that rota-
calculations withv,=0.09 MeV [8].) Moreover, fore=3.2  tional invariance is preserved. The present calculations in
MeV andv,=0.717 MeV a reasonable value for thé -0 2ONe in the Elliott model, with a realistic choice of param-
2"+ energy level splitting2.1 MeV) as well asA;j~A, is  €ters, indicate that the temperature at which these collective
obtained, and’,= 3.5 MeV, which is above the critical tem- degrees of freedom disappear lies well above the temperature
perature for the deformed-to-spherical shape transition bf the collective-to-noncollective transition observed in ca-
below that of the liquid-to-gas transition. This then indicatesnonical and finite temperature Hartree-Fock calculations but

the total dissolution of the collective degrees of freedomP€lOW the liquid-to-gas critical temperature. More realistic
prior to nuclear breakup. As approaches its upper bound effective interactions which contain $8 symmetry break-

- . L jng terms, such as the tensor and spin-orbit interaction, are
the gaps and critical temperature diverge, indicating a breallﬁg’t expected to alter the present repsults in any significant
down of the weak-coupling BCS theory. Unfortunately, al'manner
though the results are sensitive to the valuespbr equiva- '
lently the energy level splitting, there is no reliable way to  The support of the Foundation for Research Development
fix these values precisely in such a simple model. Althouglof South Africa is gratefully acknowledged. One of the au-
the critical temperatures obtained are a bit large for thehors(F.K.) wishes to express sincere thanks to Hank Miller
model space considered, what is important is that they arfor the hospitality during his stay in Pretoria. The research of
significantly higher than the critical temperatures of the pre+. Khanna is partially supported by the Natural Sciences and
viously observed deformed-to-spherical shape transition€Engineering Research Council of Canada.
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