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Quasibound states ofh-nucleus systems
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The position and movement of poles of the amplitude for elastich-meson scattering off the light nuclei
2H, 3H, 3He, and4He are studied. It is found that, within the existing uncertainties for the elementaryhN
interaction, all these nuclei can support a quasibound state. The values of theh-nucleus scattering lengths
corresponding to the criticalhN interaction that produces a quasibound state are given.@S0556-
2813~96!50305-5#

PACS number~s!: 25.80.2e, 21.45.1v, 25.10.1s
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Since meson factories cannot produceh-meson beams
these particles are available for experimental investigati
only as products of certain nuclear reactions where they
pear as final-state particles. Therefore, final-state interac
effects are the only source of information about t
h-meson interaction with nucleons. In this connectio
h-nucleus systems can play an important role in investig
ing thehN dynamics, especially if they can form quasibou
states. In this case, the final-stateh mesons can be trappe
for a relatively long time, and thus the properties of t
hN interaction can be studied.

Estimations, obtained in the framework of the optic
model approach@1,2#, put a lower bound on the atomic num
ber A for which an h-nucleus bound state could exis
namelyA>12. In Ref.@3#, the formation ofh-nucleus states
has been investigated, using the standard Green’s func
method of many-body problems. There it was found that
h16O bound state should be possible. Experimentally
cross sections of pion collisions with lithium, carbon, ox
gen, and aluminum, however, gave no evidence for the
istence ofh bound states with these nuclei@4#.

A new theoretical analysis of the problem@5# predicted a
binding of theh meson to12C and heavier nuclei, howeve
with rather large widths. The formation of anh4He bound
state was studied in a more recent work by Wycechet al. @6#,
using a modified multiple scattering theory. These auth
obtained a comparatively large negative value for the r
part of theh-nucleus scattering length, which was inte
preted as an indication that anh-nucleus bound state coul
exist. We note that previous results of ours, concering
h scattering lengths with ligh nulcei@7–9#, showed that the
h- 4He scattering length can have an even larger~negative!
real part than that of Ref.@6#.

In Ref. @10#, a preliminary investigation on the possibilit
of h-meson binding in thed, t, 3He, and4He systems was
made within the framework of the finite-rank approximati
~FRA! of the nuclear Hamiltonian@11,12#. The FRA ap-
proach treats the motion of the projectile (h meson! and of
the nucleons inside the nucleus separately. As a result
internal dynamics of the nucleus enters the theory only
the nuclear wave function. In@10#, these wave functions
were approximated by simple Gaussian forms, which rep
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duce the nuclear sizes only. In the present work, we perfo
calculations with more realistic nuclear wave functions, o
tained via the so-called integro-differential equation a
proach~IDEA! @13–17#. We study, in particular, the position
and movement of poles of the elastic amplitude
h-meson scattering off the light nuclei2H, 3H, 3He, and
4He.
The approximate few-body equations in the FRA a

proach enable us to calculate theh-nucleusT matrix

T~kW8,kW ;z!5^kW8,c0uT~z!ukW ,c0&, ~1!

at any complex energy. That is, we can locate the poles
the T matrix in the complex momentum planep5A2mz.
Here,kW is theh-nucleus momentum,z the total energy of the
system,m the h-nucleus reduced mass, andc0 the nuclear
ground-state wave function.

For the low energies and the light nuclei with only on
bound state, being considered, it appears justified to appr
mate the target HamiltonianHA by its discrete spectrum

HA'E0uc0&^c0u. ~2!

Here uc0& stands for the2H, 3H, 3He, 4He bound states,
respectively, andE0 for the corresponding binding energies

As a result, we obtain@8# for theT matrix the following
equation:

T~z!5(
i51

A

Ti
0~z!

1(
i51

A

Ti
0~z!uc0&

E0
~z2H0!~z2H02E0!

^c0uT~z!,

~3!

whereH0 is theh-nucleus kinetic energy operator andA the
number of nucleons. TheTi

0(z) are Faddeev-type compo
nents of an auxiliaryT operator, which obey the system o
coupled equations

Ti
0~z!5t i~z!1t i~z!

1

~z2H0!
(
jÞ i

Tj
0~z!. ~4!
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Heret i describes the scattering of theh meson off a nucleon

at pointrW i , whererW i is the vector from the nuclear center
mass, which can be expressed in terms of the relative Ja

vectors$rW% of the nucleons. In mixed representation, the o
eratort i is given by

t i~kW8,kW ;rW;z!5thN~kW8,kW ;z!exp@ i ~kW2kW8!•rW i #,

with thN(kW8,kW ;z) being the off-shellhN amplitude.
Thus, to calculate theT matrix ~1! for any fixed value of

the complex parameterz5p2/2m, we have to proceed in
three steps. First, the coupled integral equations

Ti
0~kW8,kW ;rW;z!5t i~kW8,kW ;rW;z!

1E d3k9

~2p!3
t i~kW8,kW9;rW;z!

z2
k92

2m

(
jÞ i

Tj
0~kW9,kW ;rW;z!

~5!

are to be solved for a number of pointsrW in configuration
space, sufficient to perform in a second step the integrat

^kW8,c0u(
i51

A

Ti
0~z!ukW ,c0&

5E d3~A21!r uc0~rW !u2(
i51

A

Ti
0~kW8,kW ;rW;z!. ~6!

Having determined these matrix elements, it remains, a
final step, to solve the integral equation
f
cobi

p-

ion

s a

T~kW8,kW ;z!5^kW8,c0u(
i51

A

Ti
0~z!ukW ,c0&

1E0E d3k9

~2p!3
^kW8,c0u( i51

A Ti
0~z!ukW9,c0&

S z2
k92

2m D S z2E0 2
k92

2m D
3T~kW9,kW ;z!. ~7!

Note that after partial-wave decomposition both Eqs.~5! and
~7! become one-dimensional. As an input information, w
need the ground-state wave functionsc0 of the nuclei in-
volved and the two-bodyT-matrix thN .

Thec0(rW) for A53 andA54 were obtained by means o
the IDEA @13#. In this method theA-body bound state wave
function is expanded in Faddeev-type components,

C~rW !5 (
i, j<A

c i j ~rW !, ~8!

given as solutions of

~T2E!c i j ~rW !52V~r i j ! (
k, l<A

ckl~rW !, ~9!

where rW i j5rW i2rW j . The IDEA is then introduced using the
ansatz

c i j ~rW !5H @Lm#~rW !P~z i j ,r!/r~D21!/2, ~10!

with r5@2/A(r i j
2 #1/2 being the hyper-radius,D53(A21),

and H @Lm#(rW) the harmonic polynomial of minimal degree

@Lm# @18#. For @Lm#50 the IDEA reads

FT1
A~A21!

2
V0~r!2EGP~z i j ,r!

r~D21!/2

52@V~r i j !2V0~r!# (
k, l<A

P~zkl ,r!

r~D21!/2 , ~11!
TABLE I. Positions of polesp05A2mE0 of theh-nucleus amplitudes withg5g851 for the three values
of the range parametera.

p0 ~fm21! E0 ~MeV! a ~fm21!

20.902591 i0.35870 31.4562 i29.691 2.357
hd 20.845941 i0.32195 28.0612 i24.976 3.316

20.824601 i0.30423 26.9352 i23.006 7.617

20.560451 i0.23859 10.9062 i11.341 2.357
ht 20.555111 i0.26826 10.0152 i12.630 3.316

20.517251 i0.27896 8.04562 i12.238 7.617

20.546921 i0.24478 10.1432 i11.354 2.357
h3He 20.508151 i0.30402 7.03052 i13.102 3.316

20.483101 i0.33948 5.00992 i13.909 7.617

20.165041 i0.27876 22.05402 i3.7447 2.357
h4He 20.202151 i0.38726 24.44032 i6.3718 3.316

20.259311 i0.45846 25.81752 i9.6766 7.617
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53 R2045QUASIBOUND STATES OFh-NUCLEUS SYSTEMS
whereV0(r) is the so-called hypercentral potential@18#. Pro-
jecting Eq.~11! onto ther i j space provides us, for spin de
pendent nucleon-nucleon potentials, with two coupl
integro-differential equations for the symmetricS and mixed
symmetric S8 components of the functionPn(z i j ,r),
n5S,S8. More details and explicit equations are found
Refs.@13,15#.

For the nuclear ground states, we use the fully symme
S-wave components obtained with the semirealistic Malflie
Tjon I–III ~MT I–III ! nucleon-nucleon potential@19#. The
corresponding two, three, and four-body binding energies
2.272 MeV, 8.936 MeV, and 30.947 MeV, while the roo
mean square~rms! radii are 1.976 fm, 1.685 fm and 1.431
fm, respectively. The omission of Coulomb effects and of t
mixed-symmetry components makes3H and 3He indistin-
guishable. In order to compensate partly for this omissio
we use in Eq.~7! the experimental values for masses an
binding energies of the nuclei@20#.

At low energies thehN interaction is dominated by the
N* (1535) S11 resonance. For thehN amplitude we, there-
fore, choose the separable form

thN~k8,k;z!5
l

~k821a2!~z2E01 iG/2!~k21a2!
, ~12!

with E051535 MeV2(mN1mh) andG5150 MeV @21#. To
find the range parametera, we use the results of Refs
@22,23#. There the samehN→N* vertex function
(k21a2)21 was employed, anda was determined via a two-
channel fit to thepN→pN and pN→hN experimental
data.

Three different values for the range parametera are avail-
able in the literature, namely,a52.357 fm21 @22#,
a53.316 fm21 @23#, anda57.617 fm21 @22#. Since there
is no criterion for singling out one of them, we use all thre
in our calculations. The remaining parameterl is chosen to
provide the correct zero-energy on-shell limit, i.e., to repr
duce thehN scattering lengthahN ,
-
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thN~0,0,0!52
2p

mhN
ahN . ~13!

Different analyses provided values for the real part ReahN in
the range 0.27–0.98 fm and for the imaginary part ImahN in
the range 0.19–0.37 fm@24#. To examine at which value o
ahN within the above ranges anh-nucleus bound state exist
we parametrize the scattering length as follows:

ahN5~g0.551 ig80.30! fm, ~14!

whereg andg8 are adjustable parameters. The value ofahN
for g5g851 was used by Wilkin@25#.

SinceahN is complex, theh-nucleus Hamiltonian is non
Hermitian and its eigenvalues are generally complex. In
case, eigenvalues attributed to quasibound states are lo
in the second quadrant of the complexp plane @26#. The
energyE05p0

2/2m corresponding to a pole atp5p0 .

E05
1

2m
@~Rep0!

22~ Imp0!
212i ~Rep0!~ Imp0!#, ~15!

FIG. 1. Theh-nucleus elastic scattering amplitude pole po
tions in the complexp plane. The open circles correspond
g51. The solid curve is thehd-amplitude pole trajectory wheng
increases fromg51 tog52. The dashed curve shows the trajecto
of thehd pole withg52 and withg8 varied until thehN interac-
tion becomes real.
TABLE II. The parameterg generating theh-nucleus amplitude polesp05A2mE0 on the diagonal for
the three values of the range parametera andg851.

g p0 (fm21) E0 (MeV) a (fm21)

1.6536 20.325271 i0.32527 2 i9.7026 2.357
hd 1.5605 20.335411 i0.33541 2 i10.317 3.316

1.5260 20.336701 i0.33670 2 i10.397 7.617

1.3624 20.335151 i0.33515 2 i9.5266 2.357
ht 1.3055 20.351901 i0.35190 2 i10.503 3.316

1.2436 20.351861 i0.35186 2 i10.500 7.617

1.3306 20.340341 i0.34034 2 i9.8239 2.357
h3He 1.2171 20.362671 i0.36267 2 i11.155 3.316

1.1421 20.376311 i0.37631 2 i12.010 7.617

0.86222 20.206411 i0.20641 2 i3.4679 2.357
h4He 0.80813 20.265221 i0.26522 2 i5.7255 3.316

0.79578 20.352151 i0.35215 2 i10.094 7.617
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TABLE III. The h-nucleus scattering lengths for the parameterg of Table II, which generate the condi-
tion for binding (R eE50).

a52.357 (fm21) a53.316 (fm21) a57.617 (fm21)

hd 0.1711 i5.99 20.1981 i4.57 20.3181 i3.52
ht 23.651 i3.49 22.911 i3.02 22.1912.70
h3He 23.491 i3.67 22.661 i3.31 21.961 i2.86
h4He 23.431 i2.60 22.811 i2.14 22.301 i1.72
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has a negative real part, ReE0,0, only if p0 is above the
diagonal of this quadrant. Such a pole is related to a qua
bound state, which for Rep0→0 goes over into a real bound
state. Forp0 in the second quadrant but below the diagon
we have ReE0.0. Therefore this diagonal is critical: When
crossing it from below a pole gains the physical meaning
a quasibound state.

Fixing g andg8 of Eq. ~14! to g5g851 and varying the
complex momentump5A2mz, we located the poles close to
the origin p50. The results obtained are given in Table
For one choice of the range parameter, namelya52.357
fm21, the positions of the poles found are shown by th
open circles in Fig. 1. It is seen that for thehd, ht, and
h3He systems, these poles lie below the diagonal, while
theh4He system the pole is in the quasibound region.

Increasingg while keepingg851, the below-diagonal
poles are moving towards, and finally cross, the diagonal.
the deuteron case, the corresponding trajectory is depicte
Fig. 1 by the solid curve that crosses the diagonal wh
g51.6536.

To find the relationship of poles above the diagonal
physical bound states, we gradually removed the imagin
part ofahN by fixing g and decreasingg8 in Eq. ~4! to zero.
The imaginary part of the Breit-Wigner factor in Eq.~12!
was also decreased, using the same parameterg8, so that it
goes over into (z2E01 ig8G/2)21. For g850 the Hamil-
tonian becomes Hermitian and, hence, the bound state p
in this case must be on the positive imaginary axis. T
dashed curve in Fig. 1 is the trajectory of thehd bound-state
pole ~with g52) wheng8 decreases from 1 to 0. It is see
that the final position of the pole lies on the positive imag
nary axis. This supports our interpretation of poles above
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diagonal as quasibound states.
By varying the enhancing factorg for each of the

h-nucleus systems under consideration, we found the val
which generate quasibound states on the diagonal. They
given in Table II. These values correspond to anhN attrac-
tion, which generates anh-nucleus binding with ReE050.
Further increase ofg moves the poles up and to the righ
enhancing the binding and reducing the widths of the stat
The value of ReahN that provides the critical binding lies
within the range@0.27,0.98# fm used in the literature. There-
fore, an h-nucleus quasibound state may exist forA>2.
However, as can be seen in Table I and II, the widths of su
quasibound states could be small only for theh4He system.

In Table III we present theh-nucleus scattering lengths
calculated with parameters generating the criticalh-nucleus
binding. From this table we see that the real part of t
h-nucleus scattering length can be small despite the ex
ence of a quasibound state. This is due to the non-Hermit
nature of thehN interaction. Being complex, this interaction
generates critical poles rather far from the origin and the
influence on the scattering length~the value of the amplitude
at the origin! is not very strong.

In conclusion, we have shown that the uncertainties in t
hN scattering length allow for choices of parameters in th
hN amplitude that may generate poles in theh-nucleus am-
plitudes considered, which can be attributed to quasibou
states.
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