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Low energy strength in low-multipole response function of nuclei near the neutron drip line
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The very low-energy transition strength unique in neutron drip line nuclei is studied, taking an example of

8
28O20 and performing the Hartree-Fock plus RPA calculation with Skyrme interaction. The most dramatic
example is monopole modes, however, an appreciable amount of isovector dipole strength may appear also in
the very low excitation energy. Unperturbed response functions are carefully studied, which contain all basic
information on the exotic behavior of the RPA strength function. The low-energy transition strength is induced
by the excitations of neutrons, which have smaller binding energies and smaller angular momenta. The neu-
trons with a few MeV binding energies are sufficient for obtaining this strength, and the phenomena are
differentiated from the so-called soft multipole excitations in halo nuclei.

PACS number~s!: 21.10.Pc, 21.10.Re, 21.60.Jz, 27.30.1t
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Various new exotic properties are expected for nuclei
from b stability, which can be reached using radioactiv
nuclear beams@1#. Among others, collective properties o
neutron drip line nuclei are especially interesting@2#, be-
cause neutrons with small binding energies show a uniq
response to external fields in contrast to protons with sm
binding energies, which behave differently due to the pre
ence of the Coulomb barrier. However, in medium-hea
nuclei the neutron drip line will not be experimentall
reached in the near future. In very light nuclei along th
neutron drip line, such as3

11Li8 , 4
11Be7, and 4

14Be10, exotic
halo phenomena are found and studied@3–5#, which come
from the presence of neutrons with extremely small bindi
energies~&0.5 MeV! and small orbital angular momenta
~l 50 or 1!. In this Rapid Communication we examine th
response function of light neutron drip line nuclei, which d
not show halo phenomena. Taking the nuclei8

28O20 as a nu-
merical example we analyze the single-particle respon
function for each occupied orbit, which provides the bas
for the understanding of the response function obtained
the random-phase approximation~RPA!.

The model is the same as the one used in@2#. First, we
perform the spherical Hartree-Fock~HF! calculation with
Skyrme interactions. Being interested in monopole respo
functions we choose the SkM* interaction among Skyrme
interactions, since it has a favored value~namely, 216 MeV!
of the incompressibility for the nuclear matter. We estima
collective properties solving the RPA with the Green’s fun
tion method in the coordinate space, which produces
proper strength function in the continuum@6,7#, though the
spreading width of collective modes is not included. Chara
teristic features of the exotic response function obtain
from the RPA@2# can be understood by a careful examinatio
of the unperturbed strength function.

We examine both the unperturbed strength function
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where G0 is the noninteracting particle-hole~p-h! Green
function and the RPA strength function
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In Eqs. ~1! and ~2! Q expresses one-body operators, whic
are written as
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for isoscalar monopole modes,~3!
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for isovector monopole modes, and~4!
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for isovector dipole modes.~5!

The unperturbed strength function defined in Eq.~1! does
not contain the strength of the bound p-h excitations,
which the particle is excited from a bound hole orbital to
bound particle orbital. In the case of8

28O20 there are no such
bound p-h excitations of neutrons for any multipoles, whil
for protons the main monopole as well as dipole streng
comes from the bound p-h excitations and, thus, is not i
cluded in expression~1!. However, since the energies of
those p-h excitations are above the particle threshold~1.79
MeV, which is the neutron threshold in8

28O20!, the strength
of those p-h excitations appears in the calculated RP
strength function in~2!, due to the coupling to the con-
tinuum.
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TABLE I. One-particle properties of8
28O20 in the Hartree-Fock calculation with the SkM* interaction. The HF single-particle energiese

are listed together with the expectation values ofr 2 and r 4 for each orbit. For some single-particle orbitals lying in the continuum t
estimated single-particle resonance energies are given. See the text for details.

1. Protons

Orbitals 1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1d3/2 1 f 7/2 2p3/2 2p1/2 (1 f 5/2)res (1g9/2)res

e ~MeV! 244.1 231.69 227.02 219.35 215.11 212.37 26.63 22.36 20.70 10.64 15.68
^r 2& ~fm2! 5.43 8.79 9.07 11.73 12.26 13.17 15.09 21.73 26.99
^r 4& ~fm4! 47.64 104.4 113.0 174.9 236.8 225.1 288.7 775.0 1305.5

2. Neutrons

Orbitals 1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1d3/2 (1 f 7/2)res (2p3/2)res (2p1/2)res (1 f 5/2)res (1g9/2)res

e ~MeV! 231.94 219.93 214.94 28.64 25.99 21.79 11.59 ~19.9! ~112.0!
^r 2& ~fm2! 5.09 8.70 9.20 12.96 16.69 18.22
^r 4& ~fm4! 43.00 107.9 124.4 229.4 449.8 552.6
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In Table I we show HF single-particle energies and expe
tation values ofr 2 and r 4. Unoccupied single-particle levels
are estimated for the calculated HF potential. For some l
els lying in the continuum, which we are interested in, es
mated single-particle resonance energies are given. The r
nant states are found so that the phase shift passes thro
p/2 with positive slope at the single-particle energies. In t
case of neutrons we could not obtain resonant states
2p3/2 and 2p1/2 orbitals. Furthermore, though the phase sh
of the 1f 5/2 and 1g9/2 orbitals passes throughp/2 at the en-
ergy given in Table I the related width is found to be in th
order of the resonance energies. Thus, the latter two ‘‘sing
particle resonances’’ are practically meaningless, and
1 f 7/2 resonance is the only single-particle resonant st
which plays an important role in the response function.

In Fig. 1~a! we show the unperturbed strength function
Eq. ~1! and the RPA strength function in Eq.~2! for the
isoscalar and the isovector monopole modes. The dotted
in Fig. 1~a! happens to contain the neutron strength only an
indeed, includes the whole neutron strength in the plott
energy region. The proton bound p-h excitations for mon
pole lie at 26.32, 29.00, and 29.33 MeV for 1p1/2→2p1/2,
1s1/2→2s1/2, and 1p3/2→2p3/2, respectively, which do not
appear in the dotted line. However, the presence of th
bound p-h excitations can be clearly seen in the RPA stren
function, which are denoted by the solid and the dashed l
for the isoscalar and the isovector mode, respectively.

In Fig. 1~a! it is seen that neither the isoscalar nor th
isovector RPA strength is concentrated in a narrow ene
region around, say, 65A21/3521.4 MeV or 170A21/3556.0
MeV estimated in a hydrodynamical model@9#. In particular,
a considerable strength appears in a surprisingly low-ene
region. Since the characteristic feature of the monop
modes in neutron drip line nuclei is already discussed in@2#,
here we do not repeat it again. However, it is clear that t
strength appearing in the very low-energy region is induc
by the neutron unperturbed strength in the same energy
gion. Thus, in the following we analyze the unperturbe
monopole strength.

In Fig. 1~b! we resolve the strength expressed by the d
ted line in Fig. 1~a! into the strengths, each of which come
from a definite neutron orbital occupied in the ground sta
The sum of all strengths in Fig. 1~b! at a given energy
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is equal to the unperturbed strength in Fig. 1~a! at the
same energy. Since the binding energies ([eB) of
1d3/2,2s1/2,1d5/2, . . . , orbitals are 1.79, 5.99, 8.64, . . . ,
MeV, the corresponding strength starts to appear at resp
tive energies. Using a general argument, it is known@8# that
just above the threshold the strength for neutrons rises as
l 11/2 power of the available energy, namely, as (E
2eB)

l 11/2. Indeed, in Fig. 1~b! it is seen that the strength
with (1d3/2)

21 and (1s1/2)
21 rises as (E2eB)

5/2 and (E
2eB)

1/2, respectively, since for the monopole mode the o
bital angular momentum of the particle must be the same
that of the hole. The monopole strength with a hole in th
1d3/2 orbital, for example, reaches the maximum around t
excitation energy of 4.65 MeV, which is extremely sma
compared with the harmonic oscillator estimate 2\v0.27
MeV, and has a large tail on the high energy side. We no
that none of the particle orbitals of the p-h configurations
Fig. 1~b!, namely 2d3/2, 3s1/2, 2d5/2, 2p1/2, and 2p3/2, ap-
pear as resonant states.

Not only the fact that the strength starts to appear at a lo
energy but also the fact that the average excitation energy
the strength is so low is the consequence of the small bind
energies of neutrons. Assuming that the matrix elements
r 2 between the orbitals with a givenj andDn>2 are negli-
gibly small, one might estimate the average energy of t
monopole excitation of particles in the (n, j ) orbital using the
formula

Eav~n, j !5S1~ j !/S0~n, j !, ~6!

wheren denotes the radial node, while all orbitals with
given j and n8<n are occupied in the ground state. Th
quantities in Eq.~6!, S1( j ) andS0(n, j ), are written as

S1~ j !5
2\2

m (
n8<n

~2 j11!^n8 j ur 2un8 j &, ~7!

S0~n, j !5~2 j11!u^n j ur 2un11, j &u2, ~8!

where the sum ofS1( j ) over j is equal to the energy
weighted sum rule
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j
S1~ j !5

2\2

m
A^r 2&. ~9!
In the case of8
28O20 we can write, for example,
Eav~1d3/2!5
2\2

m

^1d3/2ur 2u1d3/2&
^1d3/2ur 4u1d3/2&2u^1d3/2ur 2u1d3/2&u2

~10!

and

Eav~2s1/2!5
2\2

m

^2s1/2ur 2u2s1/2&1^1s1/2ur 2u1s1/2&
^2s1/2ur 4u2s1/2&2~ u^2s1/2ur 2u2s1/2&u21u^2s1/2ur 2u1s1/2&u2!

. ~11!
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The formula~6! gives the peak energy if the whole streng
is concentrated into one sharp peak. In the harmonic osc
tor model we obtainEav(n, j )52\v0 irrespective of (n, j )
values. Since the strength functions shown in Fig. 1~b! have
a large tail on the high-energy side of respective peaks,
mula ~6! gives an energy larger than the peak energy;
obtain Eav(1d3/2)56.9 MeV and Eav(2s1/2)511.6 MeV.
Nevertheless,Eav(n, j ) in ~6! gives a semiquantitative esti
mate of the energy region where the major part of t
strength is found.

The small average energies of the monopole excitation
neutrons in neutron drip line nuclei can be understood in
following way. If we take an example ofn51 orbitals such
as 1d3/2 in ~10!, Eav is inversely proportional to
^r 2&@(^r 4&/^r 2&2)21#. The factor (̂ r 4&/^r 2&2)21 is sys-
tematically larger for smallerl values, and increases as pa
ticle binding energies decrease. Furthermore, the fa
^r 2& is larger for orbitals with smaller binding energie
Thus, we find thatEav(n, j ) is smaller for particles in the
(n, j ) orbital with smaller binding energies and smallerl
values. We obtain similar findings also for orbitals withn
.1 such as 2s1/2 in ~11!, using a similar argument.

Expression~6! is meaningful also for the case in whic
the particle orbital (n11, j ) appears as a resonant sta
However, in the case that the (n11, j ) orbital can be a
one-particle resonant state with a reasonably narrow wi
the (n, j ) orbital is necessarily a deeply bound state. The
fore, the value ofEav~n,j) would not be far away from
2\v0 expected from the harmonic oscillator model.

In Fig. 2~a! we show the unperturbed strength function
Eq. ~1! and the RPA strength function in Eq.~2! for the
isovector dipole mode. As in the case of monopole mod
the dotted line contains the neutron strength only and
cludes the whole neutron strength in the plotted energy
gion. The bound p-h excitations of protons lie at 11.9
12.34, 14.65, 16.58, and 19.32 MeV for 1p1/2→2s1/2,
1p3/2→1d5/2, 1p1/2→1d3/2, 1p3/2→2s1/2, and 1p3/2
→1d3/2, respectively, which do not appear in the dotted lin
However, their presence can be seen in the RPA stren
function denoted by the solid line. The RPA isovector dipo
strength is seen to spread over a very wide energy region
particular, an appreciable strength starts to appear alre
just above 2 MeV. It is clear that the RPA strength in the ve
low-energy region comes from the neutron unperturb
strength in the same energy region. Thus, we analyze
unperturbed dipole strength.
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In Fig. 2~b! the unperturbed strength expressed by t
dotted line in Fig. 2~a! is resolved into the components, eac
of which comes from a definite neutron orbital occupied
the ground state. The strength with the (1d3/2)

21 configura-
tion, which is denoted by the solid line in Fig. 2~b!, starts to
appear at 1.79 MeV and contains, roughly speaking, tw
peaks around 2.6 and 8.1 MeV. The lower peak comes fr
the l 51 particles, while the higher one from thel 53 par-
ticles. The strength with the (1d5/2)

21 configuration starts to
appear at 8.64 MeV and contains two peaks at 9.2 and 10
MeV. The lower one is connected withl 51 particles, while
the sharp peak at 10.23 MeV comes from the transition
particles from the 1d5/2 orbital at28.64 MeV to the 1f 7/2
one-particle resonant state at11.59 MeV. The latter is the
only unperturbed dipole excitation, in which a well-define
one-particle resonant state is available. Figure 2~b! illustrates
the situation that if a well-defined one-particle resonant sta
is available the corresponding response strength appears
sharp peak at the expected energy and, if not, the ma
transition strength coming from neutrons with small bindin
energies may shift to the low-energy region. In the latter ca
the average excitation energy of the dipole strength is low
for neutron holes with smaller binding energies as well
smallerl values.

In the case ofb-stable~closed shell as well as open shell!
nuclei the major part of both the monopole strength and t
dipole strength appears as giant resonances at high ene
@9#. In b-stable open-shell nuclei the low-energy quadrupo
strength has been systematically observed, which may h
quite a different structure from the low-energy strength
neutron drip line nuclei@2#. The former appears usually in
discrete states with collective quadrupole nature, which co
sists mainly ofDN50 excitations collecting the strength
also from the coupling toDN52 excitations. In contrast, the
latter low-energy quadrupole strength is due to the sa
mechanism as studied here for lower multipoles and lies
the continuum. And, the transition densities have the rad
dependence unique in the threshold strength, which is qu
different from the surface-peaked form factor of the low
energy collective quadrupole transitions inb-stable nuclei.

In conclusion, taking8
28O20 as a numerical example, we

analyzed the appearance of the very low-energy RPA tran
tion strength unique in neutron drip line nuclei, in terms o
unperturbed response functions. The low-energy transit
strength will appear in the nuclei, in which the neutrons wi



l

u-
atic
t an
ap-
gy
ure

e
-
c

n

e

h

of
ent,
ion

l

all
bed

53 R1495LOW ENERGY STRENGTH IN LOW-MULTIPOLE RESPONSE . . .
smaller binding energies and smaller angular momenta
present in the ground state. The appearance of the
energy strength is differentiated from the so-called soft m

FIG. 1. ~a! The unperturbed strength function defined in Eq.~1!
and the RPA strength function in Eq.~2! for the isoscalar and th
isovector monopole mode of8

28O20 as a function of excitation en
ergy. The unperturbed strength function is the same for the isos
and the isovector operator. At 26.32, 29.00, and 29.33 MeV
bound proton p-h excitations are present, which do not appear i
dotted line. However, the presence of those p-h excitations ca
recognized as peaks seen in the RPA strength function. See th
for details. ~b! Resolving the unperturbed strength in~a! into the
components with a given orbital of neutron holes. The strength w
the 1s1/2 hole orbital is so weak that it is not recognizable in t
figure. The sum of all strength at a given energy in the figure
equal to the unperturbed strength in~a! at the same energy.
are
ow-
ul-

tipole excitations in halo nuclei, to which only the halo ne
trons have an essential contribution. The most dram
example is the monopole modes, however, we expect tha
appreciable amount of isovector dipole strength would
pear also at very low excitation energies. This low-ene
dipole strength may be feasible for being observed in fut
experiments.
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FIG. 2. ~a! The unperturbed strength function defined in Eq.~1!
and the RPA strength function in Eq.~2! for the isovector dipole
mode of 8

28O20 as a function of excitation energy. In the region
11.9–19.3 MeV several bound proton p-h excitations are pres
which do not appear in the dotted line. However, the RPA solut
contains all strength. See the text for details.~b! Resolving the
unperturbed strength in~a! into the components with a given orbita
of neutron holes. The strength with the 1p1/2 and the 1p3/2 hole
orbitals is so weak that it is not visible in the figure. The sum of
strength at a given energy in the figure is equal to the unpertur
strength in~a! at the same energy.
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