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Nonexistence of the Oppenheimer-Phillips process in low-energy deuteron-nucleus collisions
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It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of
deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple
analytical formulas, derived on the basisMfparticle scattering theory by means of the general two-potential
formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments
that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor
that differs from 1 by at most a few percent. As a result enhancement pf (elative to @d,n) reactions is not
possible by the Oppenheimer-Phillips mechanism.

PACS numbds): 25.10+s, 03.65.Nk, 21.10.Ky, 25.45.De

[. INTRODUCTION model, a number of properties of the multipole components
of the polarizability potentia]8] and further confirmed that
The loosely bound deuteron is easily polarized by a stronghe long-range polarizability contribution to the deuteron op-
electric field. As Oppenheimer and Phillips noted long agatical potential produces effects of almost negligible impor-
[1], the effective polarization of the deuteron gives rise to atance in elastic scatterin@].
P-wave component in the deuteron internal wave function. Deuteron polarizability came again into focus because of
They argued that the degree of polarization depends strongly controversy aboyt-d scattering lengths obtained by inde-
on the binding energy via the adiabatic polarizability of thependent three-body calculatioh$0,11]. The difference be-
bound state and enhances the cross sectiod,pf) (reactions  tween the results was attributed to the fact that in the pres-
as compared tod,n) cross sections. The existence of this ence of inverse power potentials, such as the dipole part of
so-called Oppenheimer-Phillig®P) process was not funda- the polarizability potential, the usual Coulomb-modified
mentally questioned until recently when Koonin and effective-range theory breaks down and gives an infinite
Mukherjee[2] and Austerr] 3] advanced arguments based onscattering length, as was pointed out long &42]. This led
three-body models that polarizability forces cause small disto the elaboration of a modified effective-range theory that
tortions in the initial wave function but otherwise have neg-yields finite scattering lengths even in the presence of long-
ligible effects in inelastic reactions. It is the purpose of therange polarization forcgd.3,14. It was also shown that ex-
present paper to strengthen this conclusion by offering morgerimental data can be extrapolated in a stable way to zero
general arguments. energy and yield precisely the new modified scattering length
Early estimates of the effect of deuteron polarizability [15].
predicted, on the basis of adiabatic polarizability and consid- The latest revival of interest in deuteron polarizability was
erations equivalent to a first order Born approximation, ahe result of “cold fusion” experiments and the OP process
deviation of the elastic from the Rutherford cross section ofwas invoked to explain the suppression of neutron produc-
only a few percent for heavy nuclei and for energies near théion reactions in fusion reactions involving deuterons
Coulomb barrief4,5]. Subsequently Clemeti6] improved [16,17. However, Koonin and Mukherjg&], using a three-
on the adiabatic approximation and by an extensive numeribody model and a second order Born approximation, and
cal evaluation of the second order Born approximationAustern[3], using a more sophisticated approximation to the
which in addition to the virtual breakup processes takes intaame three-body model, showed with detailed numerical cal-
account the real breakup, found a large effect on the elasticulations that the OP process cannot provide the suppression
scattering cross section. In order to resolve the contradictiorequired by the experimental clainfd7]. Similar conclu-
Dickens and Perey included the dipole part of the adiabatisions were reached by BendZ8] on the basis of the optical
polarizability potential in an optical model code and numeri-theorem and a general theory of long-range modified scatter-
cally solved the Schidinger equationi7]. Their results con- ing lengths. Finally, it should also be mentioned that more
firmed the early estimatdd,5], and showed that polarizabil- recent measurements at very low energies do not find any
ity effects were indeed very small in elastic scattering. Laterappreciable enhancement of,p) relative to @d,n) cross
on it was found by Clement himself that the large effectssectiong19].
obtained previously were due to numerical errors in his code. The basic problem is that the physical picture on which
Subsequent work established, on the basis of a three-bodiie model of Oppenheimer and Phillips is based is not con-
sistent with the modern understanding of the dynamics of the
collision process. In the adiabatic picture the Coulomb field
“Permanent address: Department of Physics and Astronomy, Unaf the nucleus induces a dipole moment in the deuteron in-
versity of New Mexico, Albuquerque, NM 87131. ternal state and the dipole is oriented in such a way that the
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constituent proton is located at a larger distance from th%zﬁn:am(qﬁ;qa)

nucleus. Accordingly, the capture of the neutron by the

nucleus should have a higher probability and ttepj reac- =NYAW L 7 (ap) I VE+VE= W amy!,(q,))

tion cross sections should be enhanced in comparison with (2.1

(d.n) cross sections. for the transition amplitude from the initial deuteron-nucleus

. A fu_II dynamical treatment .Of the deuteron-ngcleus colli- channel to some final inelastic channel. In E2}1) the final
sion dictates a completely different physical picture. AS acpanne| s represented by a fixed, but arbitrary, representative
result of the polarizability of the deuteron by the Coulomb ¢ 5 set of physically indistinguishable channels that differ
field an attractive secondary interaction — the so-called pogp|y py interchange of neutrons or of protons. The indices
larizability potential — is generated in the elastic channeIB, n, and g, refer, respectively, to the partitioning of the
that has a long-range local tail. The dipole part of this potennycleons into the bound clusters of the channel, the set of
tial decreases as the inverse fourth power of the diStanCQ].uantum numbers of the clusters, and the Jacobi momenta of
thus giving mostly a long-range contribution to the deuterorrelative motion of the clusters. Similar considerations and
optical potential. Since no permanent electric dipole momenhotation apply to the initial deuteron-nucleus channel, where
can be induced, considerations based on the orientation ®f, denotes the number of distinct members of the set of
the internal state are totally misleading. Whatever the effectphysically indistinguishable initial channels. The state
are, they show up only in the breakup channel component qqu-g,gﬂ(qﬁ)) represents the correctly antisymmetrized and
the three-body wave function. At very low energies, i.e., wellnormalized solution to thl-body Schrdinger equation that
below the breakup threshold, this component is asymptotihas the incoming scattering boundary conditions appropriate
cally rapidly vanishing and its contribution to the various to the final chann€l21,22. The symbols/® andV¢ denote,
reaction amplitudes is negligible. respectively, the sums of the strong nuclear and the Coulomb

In the present work a very simple estimate of the effectdnteractions acting between the nucleons of the different

of deuteron polarizability is derived by evaluating the en-fragments. The two-body potential
hancement of the penetrability due to long-range polarizabil-
ity forces. In Sec. Il it is shown on the basis Nfparticle
scattering theory and some rather general physical consider-
ations that for every reaction amplitude all polarizability ef-
fects are contained in a multiplicative factor that dependds the sum of the asymptotic Coulomb potential and the po-
only on the initial channel of the reation. In Sec. Il an ap-larizability potentialU(r) acting between the deuteron and
proximate analytical expression is obtained for that factothe target nucleus with=2MZe’A/(A+2)A?. HereZ and
and found to be accurate to a relative error of a few percenft deénote the charge and mass numbers of the target
over the entire periodic table. The numerical results sho ”UCIe%'f)' and M denotas) the nucleon mass. Finally,
that the polarizability effect is so small, a few percent, that X« (da))=|am)®[x,"~(da)), where |am) denotes
one can in fact claim the Oppenheimer-Phillips process to b€ Product of(if;e bound states of the deuteron and target
nonexistent. A concluding discussion is found in Sec. IV, anducleus, andy,,’(d.)) is a distorted wave statgvith out-

an appendix contains some technical error estimates. going boundary conditionslescribing the relative motion of
the deuteron and the target nucleus under the influence of

wWe,
It is generally assumed that the main effect of the Cou-

In the previous section it was established that in low-lomb interaction between the fragments is adequately repre-
energy deuteron-induced nuclear reactions one can accousgnted by the asymptotic two-body Coulomb potential
for the polarizability of the deuteron by including a polariz- and the polarizability potentidl. The residual interaction
ability potential in the asymptotic analysis of the initial Vi-W®* is negligible in the asymptotic channel region, while
deuteron-nucleus channel. This is efficiently done within arat short distances it can be neglected in comparison with the
N-body two-potential formalismi20] and yields the expres- strong nuclear interactiong®. Thus one can write to a good
sion accuracy

W“(r)=§+U(r) (2.2

II. POLARIZABILITY ENHANCEMENT FACTOR

A pniam(Up i 0a) = f drNEX W4 () Ve amr)(r|x P (a,)). 2.3

At very low energies the wave function in the incoming channel is dominated bystiave component so that the
scattering amplitude can be further simplified:

A pram( g Ga) ~ f ANV (@ Veamesp) | (L), (24
/=0,u=0
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In Eq. (2.4) the radial wave function can be written &) $C(k,r)=kr— (\/2k)In(2Kr)+argl(1+iN/2K). (2.9
X (k,r)=N(k)F(k,r), whereF(k,r) is determined by the

S-wave Volterra-type integral equatig@3,24 Substituting Eq.(2.5) into Eq. (2.8) and using the known

F(k,r)=[1+A(k,r)FS(k,r)—B(k,r)GS(k,r), asymptotic properties of the Coulomb functions yields
(2.5
N(K) ={[1+A(k,2)]*+[B(k*)]} Y2 (2.10
;
A(k,r)=k‘1f dsG°(k,s)U(s)F(k,s), (2.6 o )
0 The polarizability potentiald represents only the long-
range polarizability effect§9]; i.e., it describes only the
long-range tail of the deuteron optical potential. At short dis-
tances its effect cannot be uniquely isolated and should be
combined with the short-range nuclear potential. Hence the
with F€ and G® denoting the regular and irregul&wave local representation dff can be considered to vanish inside
Coulomb functions, respectively. The normalization factorsome radiuR that is large on the nuclear scale,
N(k) is uniquely determined by the asymptotic boundary

condition U(r)=0 for r<R. (2.11)
fOK, 1) — s ¢C(k,r) + 5P, (2.9

B(k,r)=k*lj(jdsFC(k,s)U(s)F(k,s), (2.7

Consequently,f()(k,r)=N(k)F¢(k,r) for r<R. On the
where 5P is the Coulomb-modified phase shift of the po- other hand, the short range of the nuclear forces restricts the
larizability potentialU and ¢(k,r) is the CoulombS-wave integration in Eq.(2.4) to the nuclear interior. As a conse-
phase function, guence one can write

g arm(Ug 1 0a) ~N(K) f drNYA W48 () [V amr/ ) FE(lgal,r). (2.12
/=0,u=0

The isolation of polarizability effects in a multiplicative whereF(r) is determined by the zero-energy Volterra equa-
factor N(k) that depends only on the initial channel is, of tions
course, not surprising on physical grounds. However, it has
noteworthy consequences. It follows trivially that the ratio of F(r)=[1+A(r)]F¢(r)—B(r)G%(r), (3.2
reaction cross sections witld ¢, /d(} 5) and without polar-

izability effects do4,/d€) ;) is independent of the particu- r
lar final asymptoticﬁchannﬁel, A(r)= J’OdSGC(T)U(S)F(S), (3.3
05 8 (k) = N2 (K = {1+ ACK ) r
dg,/dQ, ’ B(r)= JodsFC(r)U(S)F(S)- (3.4
+[B(k,2)]% % (2.13

The zero-energyS-wave Coulomb functions can be ex-
The polarizability enhancement factor(R) is the multipli-  pressed in terms of modified Bessel functions| b¥]
cative modification to the Coulomb penetrability needed to
describe the low-energy effects of the deuteron polarizability. FC(r)= MI 1(2\/5) and G¢(r)= 2\/)\—rK l(2\/)\—r).
(3.9
I1l. EVALUATION OF THE POLARIZABILITY . o .
ENHANCEMENT The zgro-energy polarizability enhancement factor is thus
iven
In order to determine the polarizability factB(k) a spe- ? d
cific form has to be chosen for the potentialand the inte- p(o):|1+A(0,oo)|*2_ (3.6)
gralsA(k,») andB(k,») need to be evaluated numerically.
A relatively simple estimate can be obtained at low ener- A good analytical estimate of the integra(0,%) can be
gies, however, for which the value (k) at zero energy obtained by the Born approximation in whidh(r) is re-
provides a reliable measure of the importance of polarizabilplaced in the integrand biyS(r). This approximation, usu-

ity effects. It is known[14] thatB(0,~)=0 and that ally reserved for high energies or high angular momenta, is
. justified in the Appendix.
A(0) = J dsGS(s)U(s)F(r), (3.1) For the exp_li(_:it form of the polarization potential only the
0 long-range tail is important, since effects due to the short-
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FIG. 1. The dependence &f(Z,~) on the nuclear chargg. FIG. 2. The dependence of the polarizability enhancement
P=1-2F(Z,») on the nuclear chargg for infinitely heavy nu-
range part can be included into those produced by thelei.
nuclear interactions. This allows a lower cutoff form to be
used[14], Since the numerical calculations show tR4Z,A) is small,
Eq. (3.11) can be expanded into a power series around unity
0 for r<R, and one can write to a very good approximation

VD=1 _azn2r* for r=R. @9

P(0)~1+2F(Z,A). (3.12

Evaluating A(0,°) for this potential in the first Born ap-

proximation yields The integral inF(Z,A) can be approximated by an ana-

Iytical expression if the asymptotic form of the modified
- Bessel function$25] is used in the integrand of E¢3.10.
A0=) F(2.A), 3.8 The leading terms in the integral can then be expressed in
terms of inverse power functions to yield the approximate

where .
analytical form
= 11(s)Ky(s) 12
F(Z,A)=8a)\32f ds——=—, - —5-3/2
X S P(0)~1+3.730<10 ~Z Ao
=2.1632x 10 %aZ* (3.9 -1
—1.793x 10 629 ——
A Td 11(S)K4(S) i1 A2
| AaT2 X s° : (3.10 -312

—2.346x10 772712

A+2 @13

whereX=2(\R)2
The case of an infinitely heavy nucleus provides an uppeThe approximate expression turns out to be accurate to three
limit to the functionF(Z,A). Taking the numerical values digits throughout the periodic table.
R=20 fm anda=0.632 fn? allows the numerical evalua- The polarization enhancement is shown in Fig. 2 for the
tion of that function with the aid of the standard integrationcase of an infinitely heavy nucleus. As can be seen, a 3%
and Bessel function routines of Mathematica. As a functiorpercent increase of the cross section is reached only in the
of the upper limit of integration the integral converges verytransuranium region, where the exponentially decreasing
rapidly and by 500 an accuracy of five digits is obtained. Thepenetration factor reduces the cross section to practically
value of the integral is insensitive to the choice of the lowerzero.
cutoff radiusR as long aR is larger than the nuclear radius.
The results of the calculations are shown in Fig. 1. IV. DISCUSSION
By combining Eq(3.6) with Eq. (3.8) one can express the
polarizability enhancement factor of any deuteron induced The considerations of the present work are based on exact
reaction as multiparticle scattering theory and the use of the powerful
two-potential formalism20]. As a result exchange effects
P(0)~|1—-F(Z,A)| "2 (3.1))  can be fully taken into account without limiting the validity
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of the conclusions reachd@1,22. The exact two-potential fect of deuteron polarizability at astrophysical energies, the

formalism leads to the following physical picture of the deu-basic dynamical picture of the deuteron-nucleus collision

teron induced reactions at very low energies. process[2,9] strongly suggests that in a proper dynamical
At very low energies and at large distances the motion otreatment the Oppenheimer-Phillips process does not exist at

the deuteron in the Coulomb field of the nucleus is describedll, @ conclusion also supported by recent experimental data

by an effective three-body wave function for the neutron, thd 19]-

proton, and the nucleus considered as a point charge. The
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the initial channel. The considerations up to this point are
exact and lead to the amplitude in Eg.1). In actual calcu- APPENDIX

lations certain approximations have to be invoked, as de- |, this appendix we justify the approximation of the zero-
scribed in Sec. Il. However, it is important to emphasize thatenergy&wave integral

due to the methods used, polarizability effects can now be

estimated without performing the lengthy and detailed nu- J—

oodsGC(s)U(s)F(s) (A1)
0

merical calculations previously requiréd,3]. A=
The effect of deuteron polarizability on the various
deuteron-induced reaction cross sections has been seen totpe.t B imati
negligible at very low energies. Since the polarizability en- y IS Born approximation
hancement is accounted for by a multiplicative factor, polar- "
izability effects cannot change the ratios of certain cross sec- Ag= f dsGE(s)U(s)FC(s). (A2)
tions and in particular cannot cause enhancement or 0
suppression of certain special processes as has been pre- . )
dicted by Oppenheimer and Philligd]. This result is in ~ This will be done by adapting the methods of the appendixes
conflict with the data of Ref{17] which reported a consid- ©Of Ref. [14], which require that the potentia) satisfy the
erable enhancement of (p) reactions as compared td,o)  condition
reactions on a lithium target at the astrophysical energy of 60 .
keV.
Recently deuteron polarizability was also thought to have fo dsqu(s)|<e. (A3)
an important effect on the astrophysical factor of certain
fusion-type reactions extracted from experimental data The functionF is defined by the integral equation
[26,27]. However, subsequent study showed that at astro-
physical energies atomic or molecular screening effects are F(r)=[1+A(r)]FS(r)=B(r)G*(r), (A4)
far more important and indeed must be taken into account in
order to explain the experimental d428,29. Thus at low in which
energies deuteron polarizability effects are negligible, or in
other words the Oppenheimer-Phillips process seems to be
ineffective and not able to explain the suppression of
neutron-producing reactions in “cold-fusion”-type experi-
ments[16,17). It is important to realize, however, that even if ;
polarization effects were several orders of magnitude larger, B(r)zf dsFC(s)U(s)F(s). (AB)
the drastic decrease of the cross sections due to the Coulomb 0
penetration factor would still prevent any appreciable en- ,
hancement to be noticed. The functionsF€ andG€ are the zero-energy Coulomb wave
Another region of interest where polarizability effects functions,
were thought to have important effects on the reaction dy-

A(r)zﬂdsGC(s)U(s)F(s), (A5)

namics was the case of the collision of deuterons with heavy FO(r)= /N1 (2\r), (A7)
nuclei at energies below the Coulomb barrjéi. Optical

model calculations with an exact account for the polarizabil- Gc(r)=2\/FK 1(2 \/ﬁ), (A8)
ity potential by Dickens and Pergy] on the other hand put

an end to such suggestions. where\ is defined immediately following Eq2.2) and |,

While our present considerations show the negligible efandK; are standard modified Bessel functions. It will turn
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out to be important thaF € is a positive monotonically in- All these are differentiable, positive, and monotonically in-

creasing function and thas® is a positive monotonically creasing functions of.
decreasing function. It is straightforward to use EqA4) to show that

To derive the necessary error estimates it is convenient to , c / /
deﬁne the fUnCtionS b (r)$|F (r)U(r)IB(r)|+a(r)bB(r)+b(r)aB(r)(A13)

(A9) where the prime denotes differentiation with respeat émd

a(n)= | 465 U(sIF(s) - (o))
r 1o(1) = || 4SF(9)U(SIIGE(S)FE(1) - Fo(5)6%(r)).
b(r)EdeSIFC(S)U(S)[F(S)—FC(S)]I, (A10) (A14)
Equation(A13) is readily integrated to yield

— ["dsFe(s)(|G%(s)||U , All r
ag(r) fo SFE(s)|[G™(s)|[U(s)] (A11) b(r)$ea5(r)j dse BEC(8)U(S) o(S)] + A(SDY(S)].
0
b =frd |FC(s)|?|U(9)] A12) (A19
8(1)= oo ©FIVE]. ( Similar manipulations lead to
|
a’(n=<[G(r)u(r)lg(r)|+a(r)ag(r)+b(r)|GE(r)[?|U(u)]. (A16)
It follows from Eq. (A14) and the triangle inequality that
|GC(r)U(r)|B(r)|$a3(r)aé(r)+fordSIFC(S)U(S)GC(r)I|FC(S)U(r)GC(r)|- (A17)

Because of the monotonicity propertiesif andGC, the right-hand side of EqA17) is increased iiGC(r) is replaced by
GC(s) in the first factor of the integrand and F(s) is replaced byF©(r) in the second factor. This yields

|GE(r)U(r)lg(r)|<2ag(r)ag(r). (A18)

Similar exploitation of the monotonicity properties leads to

|GE(r)|?| U(u)|b(r)<aé(r)eaB“)Jrdse‘aB(S)[lGC(s)U(s)I s(s)|+a(s)ag(s)], (A19)
0

saé(r)easmfrdse*awaé(s)[zaB(s)+a(s)]. (A20)
0

Sinceag anda are both monotonically increasing functions, this last inequality leads immediately to
IGE(N)?[U(u)|b(r)<ag(r)(e®"—1)[2ag(r) +a(r)]. (A21)
Substituting Eqs(A18) and (A21) into Eq. (A16) yields
a’(r)<ap(r)e®("[2ag(r)+a(r)]. (A22)

The integrating factoWW(r) =exd —1+expag(r)] allows one to integrate EqA22), with the result

a(r)sZW(r)frdsV\fl(s)eaB<5)aB(s)ag(s), (A23)
0
saB(r)W(r)frdsV\fl(s)eaB(S)aé(s), (A24)
0
<2ag(r)[W(r)—1]. (A25)

Combining the definitions oA and Ag with Eq. (A25) yields the final inequality
|A—Ag|<=a(x)<ag(*)[W(=)—1]. (A26)
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It is evident from Eq(A26) that the Born approximation is accurateaif(«) is sufficiently small. This is indeed the case

for the potentialU(r) of Eq. (3.7), for which one has

—Ag=ag(*)=F(Z,A),

(A27)

whereF(Z,A) is defined in Eq(3.10. Numerical evaluation oF (Z,») shows that the Born approximation is accurate to

better than 4% for alE<100.
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