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Nonexistence of the Oppenheimer-Phillips process in low-energy deuteron-nucleus collision

Gy. Bencze and Colston Chandler*

CRIP Research Institute for Particle and Nuclear Physics,
H-1525 Budapest, P.O.B. 49, Hungary

~Received 28 July 1995!

It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of
deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple
analytical formulas, derived on the basis ofN-particle scattering theory by means of the general two-potential
formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments
that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor
that differs from 1 by at most a few percent. As a result enhancement of (d,p) relative to (d,n) reactions is not
possible by the Oppenheimer-Phillips mechanism.

PACS number~s!: 25.10.1s, 03.65.Nk, 21.10.Ky, 25.45.De
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I. INTRODUCTION

The loosely bound deuteron is easily polarized by a str
electric field. As Oppenheimer and Phillips noted long a
@1#, the effective polarization of the deuteron gives rise to
P-wave component in the deuteron internal wave functi
They argued that the degree of polarization depends stro
on the binding energy via the adiabatic polarizability of t
bound state and enhances the cross section of (d,p) reactions
as compared to (d,n) cross sections. The existence of th
so-called Oppenheimer-Phillips~OP! process was not funda
mentally questioned until recently when Koonin a
Mukherjee@2# and Austern@3# advanced arguments based
three-body models that polarizability forces cause small
tortions in the initial wave function but otherwise have ne
ligible effects in inelastic reactions. It is the purpose of t
present paper to strengthen this conclusion by offering m
general arguments.

Early estimates of the effect of deuteron polarizabil
predicted, on the basis of adiabatic polarizability and cons
erations equivalent to a first order Born approximation
deviation of the elastic from the Rutherford cross section
only a few percent for heavy nuclei and for energies near
Coulomb barrier@4,5#. Subsequently Clement@6# improved
on the adiabatic approximation and by an extensive num
cal evaluation of the second order Born approximati
which in addition to the virtual breakup processes takes
account the real breakup, found a large effect on the ela
scattering cross section. In order to resolve the contradic
Dickens and Perey included the dipole part of the adiab
polarizability potential in an optical model code and nume
cally solved the Schro¨dinger equation@7#. Their results con-
firmed the early estimates@4,5#, and showed that polarizabil
ity effects were indeed very small in elastic scattering. La
on it was found by Clement himself that the large effe
obtained previously were due to numerical errors in his co

Subsequent work established, on the basis of a three-b
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model, a number of properties of the multipole compone
of the polarizability potential@8# and further confirmed that
the long-range polarizability contribution to the deuteron o
tical potential produces effects of almost negligible impo
tance in elastic scattering@9#.

Deuteron polarizability came again into focus because
a controversy aboutp-d scattering lengths obtained by inde
pendent three-body calculations@10,11#. The difference be-
tween the results was attributed to the fact that in the pr
ence of inverse power potentials, such as the dipole par
the polarizability potential, the usual Coulomb-modifie
effective-range theory breaks down and gives an infin
scattering length, as was pointed out long ago@12#. This led
to the elaboration of a modified effective-range theory th
yields finite scattering lengths even in the presence of lo
range polarization forces@13,14#. It was also shown that ex-
perimental data can be extrapolated in a stable way to z
energy and yield precisely the new modified scattering len
@15#.

The latest revival of interest in deuteron polarizability w
the result of ‘‘cold fusion’’ experiments and the OP proce
was invoked to explain the suppression of neutron prod
tion reactions in fusion reactions involving deutero
@16,17#. However, Koonin and Mukherjee@2#, using a three-
body model and a second order Born approximation, a
Austern@3#, using a more sophisticated approximation to t
same three-body model, showed with detailed numerical c
culations that the OP process cannot provide the suppres
required by the experimental claims@17#. Similar conclu-
sions were reached by Bencze@18# on the basis of the optica
theorem and a general theory of long-range modified scat
ing lengths. Finally, it should also be mentioned that mo
recent measurements at very low energies do not find
appreciable enhancement of (d,p) relative to (d,n) cross
sections@19#.

The basic problem is that the physical picture on whi
the model of Oppenheimer and Phillips is based is not c
sistent with the modern understanding of the dynamics of
collision process. In the adiabatic picture the Coulomb fie
of the nucleus induces a dipole moment in the deuteron
ternal state and the dipole is oriented in such a way that
ni-
880 © 1996 The American Physical Society
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53 881NONEXISTENCE OF THE OPPENHEIMER-PHILLIPS PROCESS . . .
constituent proton is located at a larger distance from
nucleus. Accordingly, the capture of the neutron by
nucleus should have a higher probability and the (d,p) reac-
tion cross sections should be enhanced in comparison
(d,n) cross sections.

A full dynamical treatment of the deuteron-nucleus co
sion dictates a completely different physical picture. As
result of the polarizability of the deuteron by the Coulom
field an attractive secondary interaction — the so-called
larizability potential — is generated in the elastic chan
that has a long-range local tail. The dipole part of this pot
tial decreases as the inverse fourth power of the dista
thus giving mostly a long-range contribution to the deute
optical potential. Since no permanent electric dipole mom
can be induced, considerations based on the orientatio
the internal state are totally misleading. Whatever the effe
are, they show up only in the breakup channel componen
the three-body wave function. At very low energies, i.e., w
below the breakup threshold, this component is asympt
cally rapidly vanishing and its contribution to the vario
reaction amplitudes is negligible.

In the present work a very simple estimate of the effe
of deuteron polarizability is derived by evaluating the e
hancement of the penetrability due to long-range polariza
ity forces. In Sec. II it is shown on the basis ofN-particle
scattering theory and some rather general physical cons
ations that for every reaction amplitude all polarizability e
fects are contained in a multiplicative factor that depen
only on the initial channel of the reation. In Sec. III an a
proximate analytical expression is obtained for that fac
and found to be accurate to a relative error of a few perc
over the entire periodic table. The numerical results sh
that the polarizability effect is so small, a few percent, th
one can in fact claim the Oppenheimer-Phillips process to
nonexistent. A concluding discussion is found in Sec. IV, a
an appendix contains some technical error estimates.

II. POLARIZABILITY ENHANCEMENT FACTOR

In the previous section it was established that in lo
energy deuteron-induced nuclear reactions one can acc
for the polarizability of the deuteron by including a polari
ability potential in the asymptotic analysis of the initi
deuteron-nucleus channel. This is efficiently done within
N-body two-potential formalism@20# and yields the expres
sion
he
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Abn:am~qb ;qa!

5Na
1/2^Cbn

S ~2 !~qb!uVa1Vc
a2Wauamxa

~1 !~qa!&
~2.1!

for the transition amplitude from the initial deuteron-nucle
channel to some final inelastic channel. In Eq.~2.1! the final
channel is represented by a fixed, but arbitrary, representa
of a set of physically indistinguishable channels that diff
only by interchange of neutrons or of protons. The indic
b, n, and qb refer, respectively, to the partitioning of th
nucleons into the bound clusters of the channel, the se
quantum numbers of the clusters, and the Jacobi moment
relative motion of the clusters. Similar considerations a
notation apply to the initial deuteron-nucleus channel, wh
Na denotes the number of distinct members of the set
physically indistinguishable initial channels. The sta
uCbn

S (2)(qb)& represents the correctly antisymmetrized a
normalized solution to theN-body Schro¨dinger equation that
has the incoming scattering boundary conditions appropr
to the final channel@21,22#. The symbolsVa andVc

a denote,
respectively, the sums of the strong nuclear and the Coulo
interactions acting between the nucleons of the differ
fragments. The two-body potential

Wa~r !5
l

r
1U~r ! ~2.2!

is the sum of the asymptotic Coulomb potential and the p
larizability potentialU(r ) acting between the deuteron an
the target nucleus withl52MZe2A/(A12)\2. HereZ and
A denote the charge and mass numbers of the ta
nucleus, and M denotes the nucleon mass. Finall
uamxa

(1)(qa)&5uam& ^ uxa
(1)(qa)&, where uam& denotes

the product of the bound states of the deuteron and ta
nucleus, anduxa

(1)(qa)& is a distorted wave state~with out-
going boundary conditions! describing the relative motion o
the deuteron and the target nucleus under the influence
Wa.

It is generally assumed that the main effect of the Co
lomb interaction between the fragments is adequately rep
sented by the asymptotic two-body Coulomb potent
and the polarizability potentialU. The residual interaction
Vc

a-Wa is negligible in the asymptotic channel region, whi
at short distances it can be neglected in comparison with
strong nuclear interactionsVa. Thus one can write to a good
accuracy
Abn:am~qb ;qa!'E drNa
1/2^Cbn

S ~2 !~qb!uVauamr &^r uxa
~1 !~qa!&. ~2.3!

At very low energies the wave function in the incoming channel is dominated by theS-wave component so that the
scattering amplitude can be further simplified:

Abn:am~qb ;qa!'E drNa
1/2^Cbn

S ~2 !~qb!uVauamrl m& U
l 50,m50

f ~1 !~ uqau,r !. ~2.4!
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882 53GY. BENCZE AND COLSTON CHANDLER
In Eq. ~2.4! the radial wave function can be written asf (1)

3(k,r )5N(k)F(k,r ), whereF(k,r ) is determined by the
S-wave Volterra-type integral equation@23,24#

F~k,r !5@11A~k,r !#FC~k,r !2B~k,r !GC~k,r !,
~2.5!

A~k,r !5k21E
0

r

dsGC~k,s!U~s!F~k,s!, ~2.6!

B~k,r !5k21E
0

r

dsFC~k,s!U~s!F~k,s!, ~2.7!

with FC andGC denoting the regular and irregularS-wave
Coulomb functions, respectively. The normalization fac
N(k) is uniquely determined by the asymptotic bounda
condition

f ~1 !~k,r !→ r→`sin@fC~k,r !1dC,p#, ~2.8!

wheredC,p is the Coulomb-modified phase shift of the p
larizability potentialU andfC(k,r ) is the CoulombS-wave
phase function,
or
ry

-

fC~k,r !5kr2~l/2k!ln~2kr !1argG~11 il/2k!. ~2.9!

Substituting Eq.~2.5! into Eq. ~2.8! and using the known
asymptotic properties of the Coulomb functions yields

N~k!5$@11A~k,`!#21@B~k,`!#2%21/2. ~2.10!

The polarizability potentialU represents only the long
range polarizability effects@9#; i.e., it describes only the
long-range tail of the deuteron optical potential. At short d
tances its effect cannot be uniquely isolated and should
combined with the short-range nuclear potential. Hence
local representation ofU can be considered to vanish insid
some radiusR that is large on the nuclear scale,

U~r !50 for r<R. ~2.11!

Consequently,f (1)(k,r )5N(k)FC(k,r ) for r<R. On the
other hand, the short range of the nuclear forces restricts
integration in Eq.~2.4! to the nuclear interior. As a conse
quence one can write
Abn:am~qb ;qa!'N~k!E drNa
1/2^Cbn

S ~2 !~qb!uVauamrl m& U
l 50 ,m50

FC~ uqau,r !. ~2.12!
o

i

a-

-

us

is

rt-
The isolation of polarizability effects in a multiplicative
factor N(k) that depends only on the initial channel is, o
course, not surprising on physical grounds. However, it h
noteworthy consequences. It follows trivially that the ratio
reaction cross sections with (dsba /dVb) and without polar-
izability effects (ds̃ba /dVb) is independent of the particu-
lar final asymptotic channel,

dsba /dVb

ds̃ba /dVb

[P~k!5N2~k!5$@11A~k,`!#2

1@B~k,`!#2%21. ~2.13!

The polarizability enhancement factor P(k) is the multipli-
cative modification to the Coulomb penetrability needed
describe the low-energy effects of the deuteron polarizabil

III. EVALUATION OF THE POLARIZABILITY
ENHANCEMENT

In order to determine the polarizability factorP(k) a spe-
cific form has to be chosen for the potentialU and the inte-
gralsA(k,`) andB(k,`) need to be evaluated numerically

A relatively simple estimate can be obtained at low ene
gies, however, for which the value ofP(k) at zero energy
provides a reliable measure of the importance of polarizab
ity effects. It is known@14# thatB(0,̀ )50 and that

A~0,̀ !5E
0

`

dsGC~s!U~s!F~r !, ~3.1!
f
as
f

to
ty.

.
r-

il-

whereF(r ) is determined by the zero-energy Volterra equ
tions

F~r !5@11A~r !#FC~r !2B~r !GC~r !, ~3.2!

A~r !5E
0

r

dsGC~r !U~s!F~s!, ~3.3!

B~r !5E
0

r

dsFC~r !U~s!F~s!. ~3.4!

The zero-energyS-wave Coulomb functions can be ex
pressed in terms of modified Bessel functions by@14#

FC~r !5Ar /lI 1~2Alr ! and GC~r !52AlrK 1~2Alr !.
~3.5!

The zero-energy polarizability enhancement factor is th
given by

P~0!5u11A~0,̀ !u22. ~3.6!

A good analytical estimate of the integralA(0,̀ ) can be
obtained by the Born approximation in whichF(r ) is re-
placed in the integrand byFC(r ). This approximation, usu-
ally reserved for high energies or high angular momenta,
justified in the Appendix.

For the explicit form of the polarization potential only the
long-range tail is important, since effects due to the sho
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53 883NONEXISTENCE OF THE OPPENHEIMER-PHILLIPS PROCESS . . .
range part can be included into those produced by
nuclear interactions. This allows a lower cutoff form to
used@14#,

U~r !5H 0 for r,R,

2~aZl/2!r24 for r>R.
~3.7!

EvaluatingA(0,̀ ) for this potential in the first Born ap
proximation yields

A~0,̀ !'2F~Z,A!, ~3.8!

where

F~Z,A!58al3ZE
X

`

ds
I 1~s!K1~s!

s5
,

52.163231022aZ4 ~3.9!

3S A

A12D
3E

X

`

ds
I 1~s!K1~s!

s5
, ~3.10!

whereX52(lR)1/2.
The case of an infinitely heavy nucleus provides an up

limit to the functionF(Z,A). Taking the numerical value
R520 fm anda50.632 fm3 allows the numerical evalua
tion of that function with the aid of the standard integrati
and Bessel function routines of Mathematica. As a funct
of the upper limit of integration the integral converges ve
rapidly and by 500 an accuracy of five digits is obtained. T
value of the integral is insensitive to the choice of the low
cutoff radiusR as long asR is larger than the nuclear radiu
The results of the calculations are shown in Fig. 1.

By combining Eq.~3.6! with Eq. ~3.8! one can express th
polarizability enhancement factor of any deuteron induc
reaction as

P~0!'u12F~Z,A!u22. ~3.11!

FIG. 1. The dependence ofF(Z,`) on the nuclear chargeZ.
the
e

per

-
n
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ry
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.

ed

Since the numerical calculations show thatF(Z,A) is small,
Eq. ~3.11! can be expanded into a power series around un
and one can write to a very good approximation

P~0!'112F~Z,A!. ~3.12!

The integral inF(Z,A) can be approximated by an ana
lytical expression if the asymptotic form of the modified
Bessel functions@25# is used in the integrand of Eq.~3.10!.
The leading terms in the integral can then be expressed
terms of inverse power functions to yield the approxima
analytical form

P~0!'113.73031025Z3/2S A

A12D
1/2

21.79331026Z1/2S A

A12D
21

22.34631027Z21/2S A

A12D
23/2

. ~3.13!

The approximate expression turns out to be accurate to th
digits throughout the periodic table.

The polarization enhancement is shown in Fig. 2 for th
case of an infinitely heavy nucleus. As can be seen, a 3
percent increase of the cross section is reached only in
transuranium region, where the exponentially decreasi
penetration factor reduces the cross section to practica
zero.

IV. DISCUSSION

The considerations of the present work are based on ex
multiparticle scattering theory and the use of the powerf
two-potential formalism@20#. As a result exchange effects
can be fully taken into account without limiting the validity

FIG. 2. The dependence of the polarizability enhanceme
P5122F(Z,`) on the nuclear chargeZ for infinitely heavy nu-
clei.
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884 53GY. BENCZE AND COLSTON CHANDLER
of the conclusions reached@21,22#. The exact two-potential
formalism leads to the following physical picture of the de
teron induced reactions at very low energies.

At very low energies and at large distances the motion
the deuteron in the Coulomb field of the nucleus is describ
by an effective three-body wave function for the neutron,
proton, and the nucleus considered as a point charge.
projection of this wave function onto the deuteron-nucle
two-cluster channel gives a distorted wave that can be g
erated by the two-body channel Coulomb interaction act
between the center of mass of the deuteron and the p
nucleus and by the long-range tail of the polarizability p
tential. This is the first stage of the two-potential picture. B
including the polarizability potential into the dynamics of th
asymptotic channel in fact the boundary conditions are re
fined. The next stage of the formalism introduces the nuc
interactions as well as the residual electromagnetic inte
tions in the reaction amplitude with the distorted wave f
the initial channel. The considerations up to this point a
exact and lead to the amplitude in Eq.~2.1!. In actual calcu-
lations certain approximations have to be invoked, as
scribed in Sec. II. However, it is important to emphasize th
due to the methods used, polarizability effects can now
estimated without performing the lengthy and detailed n
merical calculations previously required@2,3#.

The effect of deuteron polarizability on the variou
deuteron-induced reaction cross sections has been seen
negligible at very low energies. Since the polarizability e
hancement is accounted for by a multiplicative factor, pol
izability effects cannot change the ratios of certain cross s
tions and in particular cannot cause enhancement
suppression of certain special processes as has been
dicted by Oppenheimer and Phillips@1#. This result is in
conflict with the data of Ref.@17# which reported a consid-
erable enhancement of (d,p) reactions as compared to (d,n)
reactions on a lithium target at the astrophysical energy of
keV.

Recently deuteron polarizability was also thought to ha
an important effect on the astrophysical factor of certa
fusion-type reactions extracted from experimental d
@26,27#. However, subsequent study showed that at as
physical energies atomic or molecular screening effects
far more important and indeed must be taken into accoun
order to explain the experimental data@28,29#. Thus at low
energies deuteron polarizability effects are negligible, or
other words the Oppenheimer-Phillips process seems to
ineffective and not able to explain the suppression
neutron-producing reactions in ‘‘cold-fusion’’-type exper
ments@16,17#. It is important to realize, however, that even
polarization effects were several orders of magnitude larg
the drastic decrease of the cross sections due to the Cou
penetration factor would still prevent any appreciable e
hancement to be noticed.

Another region of interest where polarizability effec
were thought to have important effects on the reaction
namics was the case of the collision of deuterons with he
nuclei at energies below the Coulomb barrier@6#. Optical
model calculations with an exact account for the polarizab
ity potential by Dickens and Perey@7# on the other hand pu
an end to such suggestions.

While our present considerations show the negligible
-
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fect of deuteron polarizability at astrophysical energies, t
basic dynamical picture of the deuteron-nucleus collisio
process@2,9# strongly suggests that in a proper dynamic
treatment the Oppenheimer-Phillips process does not exis
all, a conclusion also supported by recent experimental d
@19#.
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APPENDIX

In this appendix we justify the approximation of the zero
energyS-wave integral

A[E
0

`

dsGC~s!U~s!F~s! ~A1!

by its Born approximation

AB[E
0

`

dsGC~s!U~s!FC~s!. ~A2!

This will be done by adapting the methods of the appendix
of Ref. @14#, which require that the potentialU satisfy the
condition

E
0

`

dssuU~s!u,`. ~A3!

The functionF is defined by the integral equation

F~r !5@11A~r !#FC~r !2B~r !GC~r !, ~A4!

in which

A~r ![E
0

r

dsGC~s!U~s!F~s!, ~A5!

B~r ![E
0

r

dsFC~s!U~s!F~s!. ~A6!

The functionsFC andGC are the zero-energy Coulomb wav
functions,

FC~r !5Ar /lI 1~2Alr !, ~A7!

GC~r !52AlrK 1~2Alr !, ~A8!

wherel is defined immediately following Eq.~2.2! and I 1
andK1 are standard modified Bessel functions. It will tur



-
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out to be important thatFC is a positive monotonically in-
creasing function and thatGC is a positive monotonically
decreasing function.

To derive the necessary error estimates it is convenien
define the functions

a~r ![E
0

r

dsuGC~s!U~s!@F~s!2FC~s!#u, ~A9!

b~r ![E
0

r

dsuFC~s!U~s!@F~s!2FC~s!#u, ~A10!

aB~r ![E
0

r

dsuFC~s!uuGC~s!uuU~s!u, ~A11!

bB~r ![E
0

r

dsuFC~s!u2uU~s!u. ~A12!
t to

All these are differentiable, positive, and monotonically in
creasing functions ofr .

It is straightforward to use Eq.~A4! to show that

b8~r !<uFC~r !U~r !I B~r !u1a~r !bB8 ~r !1b~r !aB8 ~r !,
~A13!

where the prime denotes differentiation with respect tor and

I B~r !5E
0

r

dsFC~s!U~s!@GC~s!FC~r !2FC~s!GC~r !#.

~A14!

Equation~A13! is readily integrated to yield

b~r !<eaB~r !E
0

r

dse2aB~s!@ uFC~s!U~s!I B~s!u1a~s!bB8 ~s!#.

~A15!

Similar manipulations lead to
a8~r !<uGC~r !U~r !I B~r !u1a~r !aB8 ~r !1b~r !uGC~r !u2uU~u!u. ~A16!

It follows from Eq. ~A14! and the triangle inequality that

uGC~r !U~r !I B~r !u<aB~r !aB8 ~r !1E
0

r

dsuFC~s!U~s!GC~r !uuFC~s!U~r !GC~r !u. ~A17!

Because of the monotonicity properties ofFC andGC, the right-hand side of Eq.~A17! is increased ifGC(r ) is replaced by
GC(s) in the first factor of the integrand and ifFC(s) is replaced byFC(r ) in the second factor. This yields

uGC~r !U~r !I B~r !u<2aB~r !aB8 ~r !. ~A18!

Similar exploitation of the monotonicity properties leads to

uGC~r !u2uU~u!ub~r !<aB8 ~r !eaB~r !E
0

r

dse2aB~s!@ uGC~s!U~s!I B~s!u1a~s!aB8 ~s!#, ~A19!

<aB8 ~r !eaB~r !E
0

r

dse2aB~s!aB8 ~s!@2aB~s!1a~s!#. ~A20!

SinceaB anda are both monotonically increasing functions, this last inequality leads immediately to

uGC~r !u2uU~u!ub~r !<aB8 ~r !~eaB~r !21!@2aB~r !1a~r !#. ~A21!

Substituting Eqs.~A18! and ~A21! into Eq. ~A16! yields

a8~r !<aB8 ~r !eaB~r !@2aB~r !1a~r !#. ~A22!

The integrating factorW(r )5exp@211expaB(r)# allows one to integrate Eq.~A22!, with the result

a~r !<2W~r !E
0

r

dsW21~s!eaB~s!aB~s!aB8 ~s!, ~A23!

<aB~r !W~r !E
0

r

dsW21~s!eaB~s!aB8 ~s!, ~A24!

<2aB~r !@W~r !21#. ~A25!

Combining the definitions ofA andAB with Eq. ~A25! yields the final inequality

uA2ABu<a~`!<aB~`!@W~`!21#. ~A26!
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It is evident from Eq.~A26! that the Born approximation is accurate ifaB(`) is sufficiently small. This is indeed the cas
for the potentialU(r ) of Eq. ~3.7!, for which one has

2AB5aB~`!5F~Z,A!, ~A27!

whereF(Z,A) is defined in Eq.~3.10!. Numerical evaluation ofF(Z,`) shows that the Born approximation is accurate
better than 4% for allZ<100.
.

n

K.

g

m

R

.

@1# J. R. Oppenheimer and M. Phillips, Phys. Rev.48, 500~1935!.
@2# S. E. Koonin and M. Mukherjee, Phys. Rev. C42, 1639

~1990!.
@3# N. Austern, Phys. Rev. C43, 771 ~1991!.
@4# B. I. Malenka, U. E. Kruse, and N. F. Ramsey, Phys. Rev.91,

1165 ~1953!.
@5# I. Sawicki, Acta Phys. Pol.13, 225 ~1954!.
@6# C. F. Clement, Phys. Rev.128, 2728~1962!.
@7# J. K. Dickens and F. G. Perey, Phys. Rev.138, B1083~1965!.
@8# Gy. Bencze, Ann. Acad. Sci. Fenn. No. 194, 1966.
@9# Gy. Bencze and I. Szentpe´tery, Phys. Lett.30B, 446 ~1969!.

@10# J. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C28, 983
~1983!.

@11# A. A. Kvitsinki, JETP Lett.36, 455 ~1982!.
@12# R. O. Berger and L. Spruch, Phys. Rev.138, B1106~1965!.
@13# Gy. Bencze and C. Chandler, Phys. Lett.163B, 21 ~1985!.
@14# Gy. Bencze, C. Chandler, J. L. Friar, A. G. Gibson, and G

Payne, Phys. Rev. C35, 1188~1987!.
@15# Gy. Bencze and C. Chandler, Phys. Lett. B182, 121 ~1986!.
@16# M. Fleischmann, S. Pons, and M. Hawkins, J. Electroa

Chem.261, 301 ~1989!.
L.

al.

@17# F. E. Cecil, R. J. Peterson, and P. D. Kunz, Nucl. Phys.A441,
477 ~1985!.

@18# Gy. Bencze, Phys. Lett. B202, 289 ~1988!.
@19# A. Krauss, H. W. Becker, H. P. Trautvetter, C. Rolfs, and

Brand, Nucl. Phys.A465, 150 ~1987!.
@20# Gy. Bencze and C. Chandler, Phys. Rev. C45, 532 ~1992!;

Phys. Rev. Lett.72, 3925~1994!.
@21# Gy. Bencze and E. F. Redish, J. Math. Phys.,19, 1909~1978!.
@22# Gy. Bencze and C. Chandler, Phys. Rev. C25, 136 ~1982!.
@23# F. Calogero,Variable Phase Approach to Potential Scatterin

~Academic Press, New York, 1967!.
@24# V. V. Babikov, The Method of Phase Functions in Quantu

Mechanics~Nauka, Moscow, 1976!.
@25# Handbook of Mathematical Functions, 5th ed., edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1968!.
@26# V. B. Belyaev, O. I. Kartavtsev, and V. E. Kuzmichev, JIN

Report No. E4-86-66, Dubna, USSR, 1986.
@27# V. B. Belyaev, V. E. Kuzmichev, V. V. Peresypkin, and M. L

Zepalova, Few-Body Syst.2, N22 ~1987!.
@28# Gy. Bencze, Nucl. Phys.A452, 459 ~1989!.
@29# Gy. Bencze and C. Chandler, Phys. Rev. C45, 532 ~1992!.


