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Nucleon–a-particle interactions from inversion of scattering phase shifts
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Scattering amplitudes have been extracted from~elastic scattering! neutron-alpha (n-a) differential cross
sections below threshold using the constraint that the scattering function is unitary. Real phase shifts ha
obtained therefrom. A modification to the Newton iteration method has been used to solve the non
equation that specifies the phase of the scattering amplitude in terms of the complete~0 to 180°) cross section
since the condition for a unique and convergent solution by an exact iterated fixed point method, the ‘‘M
condition, is not satisfied. The results compare well with those found using standard optical model
procedures. Those optical model phase shifts, from bothn-a and p-a ~proton-alpha! calculations in which
spin-orbit effects were included, were used in the second phase of this study, namely to determine the
ing potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the i
scattering problem has been used to obtain inversion potentials~both central and spin orbit! for nucleon
energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon
used to give the input phase shifts. Not only do those inversion potentials when used in Schro¨dinger equations
reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasibl
optical model potentials of others to be the local form for interactions deduced by folding realistic two-nu
g matrices with the density matrix elements of thea particle.

PACS number~s!: 25.10.1s, 21.45.1v, 24.10.Ht, 21.30.Fe
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I. INTRODUCTION

The nucleon-alpha (N-a) scattering system below thresh
old is of interest given the simplicity one assumes with th
target structure. The closeds-shell configuration one favors
to describe the alpha particle encourages belief that the
herent five-body problem can be assessed in diverse w
ranging from its representation by effective real local an
phenomenological optical model potentials, through tre
ment as a microscopic optical model interaction defined
folding appropriate effective two-nucleon (NN) g matrices
with the density matrix elements of the alpha particle, to
analysis with Yakubovskii-Faddeev equations. One seeks
best representation of theN-a interaction also because ther
is evidence that theA56 nuclei are well described by the
three-body (a12n) system@1#.

Simple functional forms for theN-a interaction have
been chosen in most cases and Gaussian form factors h
been used commonly to facilitate application. While on
might expect attractive interactions to be chosen as Dub
ichenkoet al. @2# have done, Danilinet al. @1# used a repul-
sive potential parametrized to fit the low energy~to 25 MeV!
N-a scattering phase shifts. But a better effective loc
N-a interaction is needed given the results found to da
with mass-6 calculations. A candidate is the convention
optical model potential form and a comprehensive study w
that of fits to then-a andp-a cross sections and analyzing
powers at low energies~1–20 MeV! and below threshold
was made by Satchleret al. @3#. They noted that the domi-
nant s- and p-wave phase shifts need be supplemented
small d-wave values to get good fits to measured data, b
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that the exact values were not well determined with th
calculations. Unlike a previous attempt at a global analy
@4#, that study presumed an interaction essentially indep
dent of the energy. One concern with these approaches, h
ever, is that true nonlocality has been ignored. It is w
known that folding a two-nucleon interaction, even one ch
sen to be local in form, with the density matrix elements
the alpha particle leads to a nonlocalN-a interaction@5#, and
one for which the range of the nonlocality is close to bei
the same as the effective radius of the complete interact
As a consequence, derivation of equivalent local potent
was found to be delicate@5# but the result was always an
energy-dependent interaction. Lassaut and Vinh Mau a
noted that medium effects upon theNN g matrices~which
are actually required in the folding model! were influential
upon the result, as was the choice ofNN interaction. Best
results were found withNN interactions that gave good satu
ration properties. It has been noted@6# also that the the ef-
fects of nonlocality upon the wave functions may be lik
those of a repulsive local potential. Thus we anticipate t
the most appropriate form of an equivalent localN-a inter-
action is one that is energy dependent and perhaps with s
repulsive character.

All ‘‘direct’’ studies of scattering, however, begin with
assumptions about the form of the phenomenological opt
potentials or of theNN interactions that are to be folded t
define theN-a ~nonlocal! interaction. Often those chose
model forms involve many variable parameters, and in
case of the phenomenological optical model potentials, a
biguities exist with regards to the parameter sets of b
discrete ~different parameter sets giving equivalent fits
measured data! and continuous type. The well-knownVr2

link is an example of the latter. Inverse scattering theory@7#
offers an alternative approach. Therewith one begins w
scattering functions that fit the data of interest and, if nec

sity
88 © 1996 The American Physical Society
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53 89NUCLEON–a-PARTICLE INTERACTIONS FROM INVERSION . . .
sary, map them to a utilitarian functional form. Then th
equations that define the~local! potential via inversion are to
be solved. The potentials that result are linked to the inve
scattering method used and questions of uniqueness a
but there is no essentiala priori assumption made as to the
shape of the interaction that results. Inverse scattering stu
made so far belong in one of two groupings, identified a
cording that the energy or angular momentum is conside
as the spectral parameter. The Marchenko inversion met
@7# ~fixed angular momentum! has been used recently@8# in
an analysis of thes-wave scattering with then-a system to
define an energy-independent local interaction. But th
study dealt with all energies and particularly concerned t
phase shift values above the first threshold. Those auth
did note though that Pauli-forbidden bound states may ex
and certainly do with the phenomenological potentials@3#,
but that those forbidden states could be removed unde
supersymmetric transformation giving a phase-shi
equivalent potential. That ultimate potential was repulsi
and similar in shape to that chosen by Danilinet al. @1#. The
other class of inversion methods has fixed energy. Such
appropriate when one wishes to extract a local interact
from fixed energy data such as the differential cross sectio
polarizations, etc. Of the methods constituting this class,
Lipperheide-Fiedeldey@9# ones have been used very succes
fully to analyze nuclear heavy ion collision data, proton ela
tic scattering from nuclei, the scattering of electrons fro
atoms and molecules, and atom-atom scattering data@10#.
But those methods are best suited to high energy conditi
and for scattering in which many partial waves contribute.
low energies and with cases of relatively few significant pa
tial wave components, the Newton-Sabatier method@11#, or
a modified version of it@12,13#, may be more appropriate
Cross-section data from nuclear and atomic scattering h
been analyzed in that way@14#.

In part, our interest with the low energyn-a andp-a data
stems from the fact that much data lie below the first no
elastic scattering threshold and for which, therefore, t
physicalS function is unitary. Then it becomes possible t
use the generalized unitarity theorem to extract the act
scattering amplitudes from the measured data and therefr
by Legendre integration, to specify the scattering pha
shifts. Forn-a scattering we have determined a method
carry out such a global phase shift analysis@15# and herein
we make use of the resultant phase shifts as input to a fi
energy inverse scattering theory. In particular, we have u
the modified Newton-Sabatier method@12# to specify the
local ~real! potentials for each set of those phase shifts
each energy. In this analysis, the spin attributes of the sc
tering process have been ignored. They have not in the s
ond set of inversion analyses that we report.

With those second set of analyses, we seek to apply
modified Newton-Sabatier fixed energy inverse scatteri
theory to define thereby local potentials that are pha
equivalent to the~local! phenomenological interactions tha
others@3,4# have specified by fits to the available low energ
data from both neutron and proton scattering off of alp
particles. Those phenomenological optical model potenti
include spin-orbit components which we may also seek
inversion since, in a recent paper@16#, a distorted wave ap-
proximation procedure has been given to extract the cen
e
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and spin-orbit interactions by inversion of the sets of phas
shifts d l

(6) . The superscripts denotej5l 6 1
2, respectively.

The results are energy-dependent smooth interactions and
spin-orbit potentials are much weaker than the central on
except at incident energies about 1 MeV at which there is
shape resonance. The most noticeable thing about these
version potentials though is that they are quite different from
the Woods-Saxon forms that were used to define the scatt
ing phase shifts input to the inversion process.

The inversion potentials have been checked for accura
and stability. The accuracy has been measured by solvi
directly the Schro¨dinger equations including those inversion
potentials and comparing the phase shifts so given with t
original input sets. At worst, differences of 2–5 % were
found. The stability of the results was assessed by repea
calculations with slight variations to the technical paramete
values involved in the chosen inversion method. Essentia
the same potentials result in all cases.

II. THEORETICAL BACKGROUND

In this section we review, briefly, the three theoretica
aspects involved in the inversion studies we have made. Fi
we review the use of the generalized unitarity theorem
extract the scattering amplitude, and thus phase shifts, from
known ~complete! differential cross section when the scatter
ing is below the first nonelastic threshold. A fuller account i
given in Ref. @15#. Then the method of inversion that we
have used, the modified Newton-Sabatier method, is pr
sented. That scheme is appropriate for use with small sets
known phase shifts as input. A detailed account is to b
found in Ref. @12#. Finally, the work of Leeb, Huber, and
Fiedeldey~LHF! @16# is recounted as that enables us to de
fine central and spin-orbit potentials from those determine
by the inversion procedure with two quasi-independent se
of phase shifts built from the setsd l

(6) .

A. Unitarity and the scattering phase shifts

If, for convenience, we ignore the spin of the neutron
then the differential cross sections forn-a scattering can be
expressed in terms of scattering amplitudes,

f ~x!5
1

k
A~x!eiw~x!, ~1!

wherex5cos(u), by

ds

dV
5u f ~x!u25

1

k2
A2~x!. ~2!

The magnitude and phase of those scattering amplitudes m
be extracted from the measured differential cross section
under the constraint that the scattering function is unita
@17,18#, as the generalized unitarity theorem leads to a
equation that specifies the phase in terms of the comple
~0–180°) cross section, viz.,

sinw~x!5E E A~y!A~z!cos@w~y!2w~z!#dydz

2pA~x!~12x22y22z212xyz!1/2
. ~3!
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Therein the region of integration is the interior of an ellips
From the scattering amplitude, it is straightforward then
find the the scattering function, and concomitantly the pha
shifts, by Legendre integration, viz.,

Sl 215e2id l 215 ikE
0

p

f ~u!Pl ~u!sin~u!du. ~4!

Usually, solutions of Eq.~3!, or its equivalent, have been
sought with iteration schemes based on the contraction m
ping principle@17–19#. That approach also defines an exis
ence condition for a solution and for its global uniqueness
well. In application though we have found difficulties with it
The physical circumstances considered@15# did not meet the
domain criteria and the solutions found were not stable. Th
we considered a modification of the Newton iteratio
method, and by which a stable convergent result of iterat
could be found. The price of finding stable convergent so
tions by this means, however, is the loss of global uniqu
ness. In particular, then-a scattering of interest did not mee
the domain criteria to guarantee unique stable solutions
the phase functions, and so the modified Newton method
to be used.

B. Modified Newton-Sabatier inverse scattering theory

The fixed energy inverse scattering method of Newt
and Sabatier@11# leads to a fundamental equation for solu
tion functions of the form

c l
U~r!5c

l

U0~r!2 (
l 850

`

cl 8L l l 8~r!c l 8
U

~r!, ~5!

which is a set of simultaneous equations with coefficients
defined in terms of the partial wave eigenfunctionsc

l

U0(r)
of a known reference potentialU0 , asL l l 8 is the calculable
matrix,

L l l 8~r!5E
0

r

c
l

U0~r8!c
l 8

U0~r8!dr8/r82. ~6!

Both the reference functionsc
l

U0(r) and the solution func-
tions c l

U(r) satisfy radial Schro¨dinger equations with the
given reference potentialU0 and the wanted inversion poten
tial U, respectively. The inversion potential may then be co
structed, according to the Newton-Sabatier inverse scatte
theory, from

U~r!5U0~r!2
2

r

d

dr (
l50

`

cl c l
U0~r!c l

U~r!/r, ~7!

wherein the standard notationsr5kc.m.r , U05V0(r )/Ec.m.,
U5V(r )/Ec.m., andEc.m.5\2kc.m.

2 /2m have been used. But
in practical applications, this scheme needs to be modified
most useful modification@12# is predicated upon knowledge
of the scattering potentialU beyond a given finite distance
r 0 . For nuclear heavy ion collisions this long range form
well established as the Coulomb potential. For electron-at
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scattering, it is the induced dipole polarization (r24) poten-
tial. For the elastic scattering problems we consider, it
appropriate to assume thatU0(r) is either zero~neutrons! or
the Coulomb potential~protons! for r>r0 .

According to the modified Newton-Sabatier theor
@12,13#, the solution of Eq.~5! involves a two-step procedure
after one truncates the summations ofl to the first
l max11 terms (l max is the largest angular momentum of the
input phase shiftsd l effectively contributing to the scatter-
ing!. In the first step, one uses Eq.~5! at N>2 points
r5r1 ,r2 , . . . ,rN r i>r0 ~at which the wave functions have
their asymptotic forms involving the scattering phase shift!
to determine the 2(l max11) unknownscl . A least squares
method has been used for that. Then, with the repeated us
Eq. ~5! for r,r0 , the potentialU(r) can be specified by use
of Eq. ~7!.

The inversion calculations reported in this article wer
made using the computer programBIC @20# in which equi-
distant least squares pointsr1 ,r25r11Dr, . . . ,rN
5r11(N21)Dr are taken, and with the codePHATRA @21#
to effect a convenient transformation on the phase shifts.

C. Spin-orbit interaction by LHF inversion

In their recent paper@16#, Leeb, Huber, and Fiedeldey
~LHF! have set out an approximate global inversion proc
dure by which both the central and spin-orbit potentials f
the scattering of spin-1/2 particles~nucleons in our case!
from spin-0 targets can be obtained from fixed energy da
e.g., differential cross sections and polarizations. Specifica
their procedure begins with values for the phase shiftsd l

(6)

for all angular momental and j5l 6 1
2.

The LHF method is based upon an expansion of the pha
shifts where the effect of the spin-orbit potential is taken in
account via a distorted wave approximation. Using

d l
~6 !5d l

~0!1al
~6 !Cl

~1!1~al
~6 !!2Cl

~2!1•••, ~8!

where

al
~6 !5

2

\2 ^s–l&5H l

2~ l 11!
for j5H l 1

1

2

l 2
1

2

, ~9!

the quasi-independent phase shifts

d̃ l 5
1

~2l 11!
$~ l 11!d l

~1 !1l d l
~2 !%

5d l
~0!1l ~ l 11!Cl

~2!1•••,

d̂ l 5
1

~2l 11!
$l d l

~1 !1~ l 11!d l
~2 !%

5d l
~0!2Cl

~1!1~ l 21l 11!Cl
~2!1•••, ~10!

when restricted to first order, map by separate inversions
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d̃ l ;d l
~0!⇔Ṽ;V0 ,

d̂ l ;d l
~0!2Cl

~1!⇔V̂;V02
1

2
Vs.o.. ~11!

ThereinV0 andVs.o. are the approximations for the centra
and spin-orbit potentials. Leeb, Huber, and Fiedeldey@16#
note that this expansion remains exact through second or
Thus by forming the quasi-independent phase shifts, o
may then apply any appropriate fixed energy inversi
scheme@7# that defines inversion potentials from a single s
of phase shifts, to determineṼ and V̂ separately, and then
from Eq. ~11! obtain the central and spin-orbit interactions

III. DISCUSSION OF RESULTS

TheN-a potentials that we have determined by inversio
are shown in two subsections. The first presents results fo
by using the phase shifts we have determined from the sc
tering amplitudes specified by the unitarity condition and t
generalized flux theorem. In the second, we discuss the
version potentials that were obtained using the phase sh
specified by the best phenomenological optical model pot
tials @3# and the LHF prescription to specify the spin-orb
field.

A. N-a potentials using the unitary condition phase shifts

We have solved the nonlinear phase equations for
scattering of 14.9, 16.4, 20.0, and 23.7 MeV neutrons sc
tering off of alpha particles. The specifics have been pu
lished@15# but are given again in brief for completeness. Th
data@22# are incomplete and we have had to interpolate a
extrapolate to specify full~0–180°) cross sections for use in
solution of the nonlinear equations for the phases of the sc
tering amplitudes. It was also necessary to minimize effe
of nonstatistical errors and that was achieved by applyi
generalized cross validation@23# to each data set. As noted
previously @15#, the ‘‘Martin’’ condition @19# is not met by
these data sets and so we used a modified Newton itera
method to solve the nonlinear equations for the phase of
scattering amplitudes. Legendre integration of the result
scattering amplitudes then gave reliably the~purely real!
scattering phase shifts tol 54 ~see Table I in Ref.@15#!.

Using those phase shifts in the modified Newton-Sabat
inversion scheme gave potentials that are real, smooth,
energy dependent. We classify them as theG1 set of poten-
tials and they are given in the top segment of Fig. 1. Th
vary with energy most markedly at small radii and below 0
fm in particular, but the actual data are not sensitive to d
tails of these potentials near to the origin.

The unitarity condition approach has been used to spec
only the lowest set of phase shifts. The incomplete nature
the actual data, the approximations needed to find stable
lutions for the phases of the scattering amplitudes, and
numerics involved preclude specification of reliable pha
shifts for l .4 or 5. The values of the phase shifts at lo
values of l also should be taken as reliable to perhaps
degree at best too. Thus, in the first studies we made, we
the higher l phase shifts exactly to zero. To assess ho
those small higherl phase shifts might influence results, w
l
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next made a set of calculations using higher partial wav
~than those tabled in Ref.@15#! matched to each tabled uni-
tarity set and varying according tol 22. The inversion po-
tentials that result, and which we designate as theG2 poten-
tials, are also real and smooth, but now less ener
dependent than theG1 set. They are displayed in the bottom
segment of Fig. 1.

Both potential sets were used in Schro¨dinger equations
whose solutions lead to predicted phase shifts and cross s
tions. In comparison with the data, theG1 results are better
than those obtained using theG2 potentials. That was ex-
pected given that high partial wave phase shifts were add
arbitrarily to the unitarity based set to define the input for th
inversions that gave theG2 interactions. But neither give fits,
and to the 14.9 MeV data in particular, which are of the sam
quality as the original ones from which the input phase shi

TABLE I. The original s- and p-wave phase shifts that were
obtained from the unitarity condition analyses ofn-a cross sections
compared with those found by using the two sets of inversion p
tentials,G1 andG2.

E ~MeV! d0
( orig) d0

( inv)(G1) d0
(inv)(G2)

14.9 1.824 1.823 1.827
16.4 1.846 1.845 1.844
20.0 1.742 1.739 1.741
23.7 1.733 1.727 1.729

d1
(orig) d1

(inv)(G1) d1
(inv)(G2)

14.9 1.180 1.164 1.158
16.4 1.423 1.404 1.405
20.0 1.360 1.345 1.343
23.7 1.287 1.286 1.274

FIG. 1. The potentials obtained by inversion starting with sole
the phase shifts given by Legendre integration of the unitar
formed scattering amplitudes~top! and those found when higher
partial wave phase shifts vary asl 22 ~bottom!. The solid, small
dashed, large dashed, and dot-dashed curves give the results
14.9, 16.4, 20.0, and 23.7 MeV incident energies.
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were defined. The dominant elements are thes- andp-wave
phase shifts and their values are given in Table I. There
little variation between the input and various calculation r
sults. Thus we presume that the specific values of the hig
l partial wave phase shifts, small though they may be, ha
an important effect. To test that presumption we have ma
calculations of cross sections based upon both theG1 and
G2 potentials but with only the first few partial wave phas
shifts ~for l ,4 specifically! taken into account. The results
are shown in Fig. 2. Those found using the restricted set
phase shifts are displayed therein by the small dashed cur
The cross sections found by using all sensibleG1 phase
shifts are displayed by the large dashed curves. They
compared with then-a elastic scattering data and with th
cross sections given by using the input~unitarity! phase
shifts that are tabled in Ref.@15#. The latter are displayed by
the solid curves. Clearly the set of higherl phase shifts
given from the potentials has a noticeable effect upon
calculations but the results are not always worse~in compari-
son with the actual data and unitarity phase shifts fits! than
what results by using only the first few potential define
partial wave phase shifts alone. The small differences in
low l phase shifts values also effect the cross sections. T
approximations in the inversion process we have set do
and the numerics used seem to give results accurate to a
2–5 %.

B. Inversion of the optical model phase shifts

The optical model potentials of Satchleret al. @3# have
been used to define the sets of phase shiftsd l

(6) that we have
used as base data in our fixed energy inversion studies
extract central and spin-orbit potentials via the LHF@16#
prescription. We have used a set of energies from 1 to
MeV for neutrons and protons and for which the phase sh
also have been tabulated@3#.

FIG. 2. The cross sections from 14.9, 16.4, 20.0, and 23.7 M
neutrons elastically scattered off of an alpha particle compared w
those evaluated using the unitarity phase shifts and shown by
solid curves. The large and small dashed curves depict the c
sections calculated using all of the phase shifts found with theG1
potentials and those found using the set tol 54.
is
e-
her
ve
de

e

of
ves.

are
e

the

d
the
he
wn
bout

to

18
ifts

The first step in these studies was to form the quas
independent sets of phase shiftsd̂ l and d̃ l at each energy.
Those phase shifts for thes, p, andd waves that were input
to the inversion programs are listed in Table II for then-a
cases considered. They are shown without parenthese
When the separate inversion potentialsV̂ andṼ were used in
Schrödinger equations, the sets shown in parentheses in th
table resulted. Clearly the inversion interactions reproduc
the starting set of quasi-independent phase shifts quite we
We have shown two values for thes-wave recalculations.
The first of each pair of values is the result for thes-wave
scattering fromV̂ while the second is that from the use of
Ṽ. The two sets of recalculateds-wave phases are very simi-
lar, as they should be, and are very good reproductions of th
input values. Likewise thep- andd-wave phase shifts match
as well with at worst a 5% variation in a few of the~small!
d-wave results. With the dominants- and p-wave phase
shifts the error is less than 2%. Similar results were obtaine
with our inversions of the proton phase shifts.

Then-a potentials found by inversion are shown in Fig. 3
for energies ranging from 1 to 18 MeV. TheṼ andV̂ poten-
tials are shown in the top and middle segments of that figur
and theVs.o. extracted from them are given in the bottom
segment. In the LHF scheme,Ṽ maps to the central interac-
tion. These interactions are energy dependent, with most e
fects being noted with the low energy cases. The 10, 15, an
18 MeV interactions are quite similar. There is a marked
structural change in the shapes of these inversion potentia
at low energies too and a result of that is the quite strong low
energy spin-orbit interaction. Cross sections and polariza
tions extracted using these LHF-scheme-specified centr
and spin-orbit interactions are shown in Fig. 4. Therein we
display the original ‘‘data,’’ i.e., the cross sections and polar
izations evaluated using the input sets of phase shiftsd l

(6) by
the circles. The solid curves represent the results we hav
found using the inversion potentials with no cutoff (Rcut 5
0! in the Schro¨dinger equations, while those given by the
small and large dashed curves are the results obtained w
cutoff radii 0.85 and 1.25 fm, respectively. Clearly the
‘‘data’’ are sensitive to the potentials above 0.5 fm or so and

eV
ith
the
ross

TABLE II. The n-a phase shiftsd̃ l andd̂ l ~in radians! given by
the optical model calculation used in the inversion process an
those that result~in parentheses! upon using the inversion poten-
tials.

En d̂05 d̃0 d̃1 d̂1 d̃2 d̂2

1 2.707 0.702 0.386 0.0001 0.001
~2.696 / 2.663! ~0.69! ~0.395! ~0.002! ~0.002!

2 2.534 1.475 0.876 0.0011 0.001
~2.497 / 2.497! ~1.451! ~0.871! ~0.0043! ~0.007!

5 2.20 1.699 1.28 0.0089 0.0082
~2.230 / 2.234! ~1.638! ~1.265! ~0.0067! ~0.018!

10 1.87 1.62 1.34 0.038 0.034
~1.870 / 1.874! ~1.6! ~1.33! ~0.034! ~0.032!

15 1.655 1.47 1.22 0.077 0.068
~1.650 / 1.653! ~1.45! ~1.2! ~0.082! ~0.065!

18 1.55 1.38 1.14 0.102 0.087
~1.550 / 1.549! ~1.36! ~1.13! ~0.103! ~0.086!
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FIG. 4. The cross sections and polarizations forn-a scattering
at diverse energies. The circles are the results from using
Woods-Saxon optical model potentials~from which the input phase
shifts for inversion were derived!. The solid curves are the results
obtained by using the central and spin-orbit potentials derived
the inversion process. The small and large dashed curves dis
similar calculations but made withRcut values of 0.85 and 1.25 fm,
respectively.

FIG. 3. The inversion potentialsṼ ~top! andV̂ ~middle! and the
spin-orbit potentials deduced from them~bottom! for n-a scattering
at various energies as indicated.
the results are very good for the two higher energies but a
quite poor at the energies coinciding with the known larg
resonance in the scattering.

The results for thep-a scattering are shown in Figs. 5 and
6. The potentials are given in Fig. 5 and the reproduction a
sensitivity of cross sections and polarizations are shown
Fig. 6. Again there is a marked energy variation in the p
tentials, especially at the lowest energies with the resulta
spin-orbit interactions to 5 MeV being very strong. The 9–1
MeV potentials show little energy dependence though. Aga
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FIG. 5. As for Fig. 3 but for proton scattering.

FIG. 6. As for Fig. 4 but for proton scattering.
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the reproduction of cross section and polarization ‘‘data’’
very good at the higher energies and the potentials are s
sitive from 0.5 fm again. The fit for ‘‘data’’ in the resonanc
region is again very poor.

We complete our analysis by presenting, in Table III, th
d l
(6) phase shifts for thes, p, andd channels and fromn-

a scattering. The input set from Satchleret al. @3# is shown
in the first row of each set of 3~for each energy!. Those that
we obtained by using the extractedV̂ and Ṽ in Schrödinger
equation calculations and then by inverting Eq.~10! are
given next in the single parentheses while those we ha
obtained by using the LHF prescription for the central an
spin-orbit potentials are given in the third~double parenthe-
ses! rows. The agreement with all three forms is quite goo
for energies 10 MeV and higher. Only a few of the sma
d-wave results are in error by 5–8 %. At the lower energi
though, and especially in the 1–2 MeV resonance region,
LHF method results are noticeably different from the oth
two. The spin-orbit interactions are too strong in those cas
it seems, for the LHF first order approximation to be usefu

IV. CONCLUSIONS

As theN-a scattering up to 24 MeV incident energy lie
below the first inelastic threshold, the inherentS functions
are unitary and the generalized unitarity theorem leads t
specification of the phase of the scattering amplitude in ter
of its magnitude~the square root of the differential cros
section!. To extract that scattering amplitude phase, a
hence specify the complete scattering amplitude with b
trivial ambiguities at most, requires that we know the diffe
ential cross section at any selected energy at all phys

TABLE III. The n-a phase shiftsd l
(6) ~in radians! given by the

optical model calculations used in the inversion process compa
with those that result upon using the inversion potentials,V̂ and
Ṽ ~in single parentheses! and with those that were obtained usin
the derived central and spin-orbit interactions~in double parenthe-
ses!.

En d0
(1) d1

(2) d1
(1) d2

(2) d2
(1)

1 2.707 0.091 1.007 0.0001 0.001
~2.696! ~0.099! ~0.986! ~0.0016! ~0.0026!

~~2.676!! ~~0.349!! ~~2.245!! ~~0.003!! ~~0.001!!
2 2.534 0.275 2.075 0.0009 0.0012

~2.497! ~0.290! ~2.032! ~0.0125! ~-0.0012!
~~2.578!! ~~0.865!! ~~2.686!! ~~0.013!! ~~0.001!!

5 2.20 0.862 2.12 0.007 0.0101
~2.23! ~0.894! ~2.01! ~0.0404! ~-0.016!

~~2.211!! ~~1.031!! ~~2.140!! ~~0.025!! ~~0.008!!
10 1.87 1.06 1.9 0.0026 0.045

~1.87! ~1.06! ~1.87! ~0.029! ~0.037!
~~1.871!! ~~1.072!! ~~1.850!! ~~0.029!! ~~0.039!!

15 1.655 0.976 1.71 0.049 0.096
~1.65! ~0.957! ~1.69! ~0.031! ~0.116!

~~1.666!! ~~0.970!! ~~1.681!! ~~0.042!! ~~0.115!!
18 1.55 0.90 1.61 0.058 0.13

~1.55! ~0.89! ~1.60! ~0.051! ~0.14!
~~1.557!! ~~0.899!! ~~1.589!! ~~0.057!! ~~0.145!!
is
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scattering angles. Then if that data satisfies the ‘‘Martin
condition, the scattering amplitude can be specified by
iterative~Newton! process and is unique. So also then are t
scattering phase shifts~found by simple Legendre integra-
tion!. But the measured cross sections are incomplete, nec
sitating extrapolation and interpolation, and the ‘‘Martin
condition is not satisfied by theN-a data sets considered.
The latter forces use of an approximation scheme to so
the nonlinear phase equations while the former makes
input kernel ambiguous. Nevertheless, we were able to fi
stable and credible solutions for the scattering of 14.9–23
MeV neutrons from the alpha particle and so specify pha
shifts~to l of 3 or 4! that were consistent with ones assesse
by others from their~different! analyses of the data. Those
phase shifts were used as the input to an inversion calcu
tion based upon a modified Newton-Sabatier scheme a
smooth energy-dependent potentials were obtained. Th
were markedly different in form to the conventionally chose
Woods-Saxon potentials. The results were insensitive to d
tails of the interactions below 0.5 fm but did vary accordin
to what choice one makes for the small valued phase shi

Given the very reasonable fits to bothn-a andp-a data,
differential cross sections, and polarizations, for energies
the range 1–20 MeV that were obtained with a global ph
nomenological optical model potential study@3#, we have
also applied our inversion method to select sets of tho
phase shifts. We adapted the approximation scheme of Le
Huber, and Fiedeldey@16# so that we could estimate the cen
tral and spin-orbit potentials from the inversion potentials
two sets of quasi-independent phase shifts. Smooth for
resulted with the 10–20 MeV potentials being quite simila
and of the form of a finite range well with a short rang
repulsion. At lower energies the potentials found were mar
edly varied and quite long ranged. None were at all like th
phenomenological optical model potentials from which th
input phase shifts were specified. But at the low energies
strong resonance is known to exist in the input scatteri
phase shift structure. With inversion, its presence will b
reflected by a strong variation in the form of the calculate
potentials. Also the spin-orbit strength appears to be qu
strong at low energies and so the LHF prescription may n
be appropriate then. However, it is of note that our potentia
for 1–2 MeV neutrons scattering from thea-particle are very
similar to those found from a recent fixed angular mome
tum inversion study@24#.

We surmise that our present calculations, which we ha
found to be accurate to a few percent and for energies ab
the low-lying resonance in particular, are a class of potentia
phase equivalent to the usually chosen~phenomenological!
ones. The inference of a repulsive short range character w
some of these results and the energy variations found
characteristics others anticipate for local interactions equiv
lent to nonlocal ones. As this class of potentials is based
part upon the use of the generalized unitarity theorem
ascertain phase shift data and also upon an inversion proc
with which there is essentially noa priori bias as to the form
of the local interaction derived, we believe that the set
particularly appropriate for use in other~few body! studies
predicated upon a local~effective! n-a interaction in the low
energy continuum which fits the observed scattering data.
course there are ambiguities as we have shown herein
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tween the phenomenological forms usually taken and the
version set we have found. Furthermore, it is well know
that there are supersymmetric partners to any phase shift
cific potential according to the number of allowed~spurious!
bound states taken. Other information needs to be taken
account to improve upon that situation and such might be
regularization of the inversion studies based upon the int
actions determined by folding the underlyingNN gmatrices
with the density matrix elements of thea particle. Prior to
that, however, we will need to understand how our resu
might be interpreted as a nonlocal equivalent and how th
in-
n
spe-

into
a

er-

lts
ey

can compare with ones obtained by such a fully microscop
and antisymmetric calculation.
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