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Nucleon-ea-particle interactions from inversion of scattering phase shifts
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Scattering amplitudes have been extracted fefastic scatteringneutron-alpharf-a) differential cross
sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been
obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear
equation that specifies the phase of the scattering amplitude in terms of the cof@p&et80°) cross section
since the condition for a unique and convergent solution by an exact iterated fixed point method, the “Martin”
condition, is not satisfied. The results compare well with those found using standard optical model search
procedures. Those optical model phase shifts, from Ibeth and p-a (proton-alpha calculations in which
spin-orbit effects were included, were used in the second phase of this study, namely to determine the scatter-
ing potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse
scattering problem has been used to obtain inversion poteribiath central and spin orbifor nucleon
energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms
used to give the input phase shifts. Not only do those inversion potentials when used idigprequations
reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the
optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon
g matrices with the density matrix elements of theparticle.

PACS numbds): 25.10+s, 21.45+v, 24.10.Ht, 21.30.Fe

[. INTRODUCTION that the exact values were not well determined with their
calculations. Unlike a previous attempt at a global analysis
The nucleon-alphaN-«) scattering system below thresh- [4], that study presumed an interaction essentially indepen-
old is of interest given the simplicity one assumes with thedent of the energy. One concern with these approaches, how-
target structure. The closedshell configuration one favors ever, is that true nonlocality has been ignored. It is well
to describe the alpha particle encourages belief that the irknown that folding a two-nucleon interaction, even one cho-
herent five-body problem can be assessed in diverse waysen to be local in form, with the density matrix elements of
ranging from its representation by effective real local andthe alpha particle leads to a nonlod&le interaction[5], and
phenomenological optical model potentials, through treatone for which the range of the nonlocality is close to being
ment as a microscopic optical model interaction defined bythe same as the effective radius of the complete interaction.
folding appropriate effective two-nucleomM{N) g matrices As a consequence, derivation of equivalent local potentials
with the density matrix elements of the alpha particle, to itswas found to be delicatEs] but the result was always an
analysis with Yakubovskii-Faddeev equations. One seeks thenergy-dependent interaction. Lassaut and Vinh Mau also
best representation of thé-« interaction also because there noted that medium effects upon tth\dN g matrices(which
is evidence that thé\=6 nuclei are well described by the are actually required in the folding moglelere influential
three-body @ +2n) system[1]. upon the result, as was the choice MN interaction. Best
Simple functional forms for theN-« interaction have results were found wittNN interactions that gave good satu-
been chosen in most cases and Gaussian form factors haxagion properties. It has been notggl also that the the ef-
been used commonly to facilitate application. While onefects of nonlocality upon the wave functions may be like
might expect attractive interactions to be chosen as Dubowhose of a repulsive local potential. Thus we anticipate that
ichenkoet al. [2] have done, Daniliret al. [1] used a repul- the most appropriate form of an equivalent lobakr inter-
sive potential parametrized to fit the low enelty 25 MeV) action is one that is energy dependent and perhaps with some
N-a scattering phase shifts. But a better effective localrepulsive character.
N-a interaction is needed given the results found to date All “direct” studies of scattering, however, begin with
with mass-6 calculations. A candidate is the conventionahssumptions about the form of the phenomenological optical
optical model potential form and a comprehensive study withpotentials or of theNN interactions that are to be folded to
that of fits to then-a and p-« cross sections and analyzing define theN-a (nonloca) interaction. Often those chosen
powers at low energie§€l-20 Me\) and below threshold model forms involve many variable parameters, and in the
was made by Satchlest al. [3]. They noted that the domi- case of the phenomenological optical model potentials, am-
nants- and p-wave phase shifts need be supplemented byiguities exist with regards to the parameter sets of both
small d-wave values to get good fits to measured data, butliscrete (different parameter sets giving equivalent fits to
measured dajaand continuous type. The well-knowvir?
link is an example of the latter. Inverse scattering thdaily
" Permanent address: Department of Physics, Technical Universitgffers an alternative approach. Therewith one begins with
of Budapest, Budafoki 8, Budapest, Hungary. scattering functions that fit the data of interest and, if neces-
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sary, map them to a utilitarian functional form. Then theand spin-orbit interactions by inversion of the sets of phase

equations that define ti{@ocal) potential via inversion are to  shifts 5(f). The superscripts denofe=/"+ 3, respectively.

be solved. The potentials that result are linked to the invers&he results are energy-dependent smooth interactions and the

scattering method used and questions of uniqueness arisspin-orbit potentials are much weaker than the central ones

but there is no essential priori assumption made as to the except at incident energies about 1 MeV at which there is a

shape of the interaction that results. Inverse scattering studiéiape resonance. The most noticeable thing about these in-

made so far belong in one of two groupings, identified acversion potentials though is that they are quite different from

cording that the energy or angular momentum is considerethe Woods-Saxon forms that were used to define the scatter-

as the spectral parameter. The Marchenko inversion methd@d Phase shifts input to the inversion process.

[7] (fixed angular momentujrhas been used recenfl§] in The inversion potentials have been checked for accuracy

an analysis of the-wave scattering with the-a system to  and stability. The accuracy has been measured by solving

define an energy-independent local interaction. But thaglrectly the Schrdmger. equations |ncIud.|ng thosg inversion

study dealt with all energies and particularly concerned thdotentials and comparing the phase shifts so given with the

phase shift values above the first threshold. Those authof¥iginal input sets. At worst, differences of 2-5% were

did note though that Pauli-forbidden bound states may exisfound. The stability of the results was assessed by repeated

and certainly do with the phenomenological potentja calculatllons Wlth. slight vanauons to the technical param(_ater

but that those forbidden states could be removed under ¥2/ues involved in the chosen inversion method. Essentially

supersymmetric transformation giving a phase-shift-th® same potentials result in all cases.

equivalent potential. That ultimate potential was repulsive

and similar in shape to that chosen by Danéinal.[1]. The Il. THEORETICAL BACKGROUND

other class of inversion methods has fixed energy. Such are ] ) . . ]

appropriate when one wishes to extract a local interaction In this section we review, briefly, the three theoretical

from fixed energy data such as the differential cross section@SPects involved in the inversion studies we have made. First

polarizations, etc. Of the methods constituting this class, th&/e review the use of the generalized unitarity theorem to

Lipperheide-Fiedelde}9] ones have been used very successeXtract the scattering amp_lltude, and th_us phase shifts, from a

fully to analyze nuclear heavy ion collision data, proton elasknown (complete differential cross section when the scatter-

tic scattering from nuclei, the scattering of electrons froming is pelow the first nonelastic threshold:Afullgr account is

atoms and molecules, and atom-atom scattering figh ~ given in Ref.[15]. Th'e.n the method of inversion tha_t we

But those methods are best suited to high energy condition@ave used, the modified Newton-Sabatier method, is pre-

and for scattering in which many partial waves contribute. AtS€nted. That scheme is appropriate for use with small sets of

low energies and with cases of relatively few significant parknown phase shifts as input. A detailed account is to be

tial wave components, the Newton-Sabatier metfidd, or ~ found in Ref. [12]. Finally, the work of Leeb, Huber, and

a modified version of i{12,13, may be more appropriate. E|edeldey(LHF) [16J is re_counted. as that enables us to .de—

Cross-section data from nuclear and atomic scattering havéhe central and spin-orbit potentials from those determined

been analyzed in that weit4]. by the inversion procedure with tvyo quasi-independent sets
In part, our interest with the low energya andp-« data  Of phase shifts built from the se).

stems from the fact that much data lie below the first non-

elastic scattering threshold and for which, therefore, the A. Unitarity and the scattering phase shifts

physical S function is unitary. Then it becomes possible to . . .

use the generalized unitarity theorem to extract the actua| ! for convenience, we ignore the spin of the neutron,

scattering amplitudes from the measured data and therefrorfhen the differential cross sections fora scattering can be

by Legendre integration, to specify the scattering phas&XPressed in terms of scattering amplitudes,

shifts. Forn-a scattering we have determined a method to 1

carry out such a global phase shift analysi§] and herein f(x)=—A(x)e'*™, (1)

we make use of the resultant phase shifts as input to a fixed K

energy inverse scattering theory. In particular, we have used

the modified Newton-Sabatier meth¢fi2] to specify the Wherex=cos(), by

local (rea) potentials for each set of those phase shifts at

each energy. In this analysis, the spin attributes of the scat- o 5 )

tering process have been ignored. They have not in the sec- d—Q:|f(X)| =12 ATX). )

ond set of inversion analyses that we report.

With those second set of analyses, we seek to apply th?he magnitude and phase of those scattering amplitudes may

modified New_ton-SabaUer fixed energy inverse scatterm%e extracted from the measured differential cross sections,
theory to define thereby local potentials that are phase

equivalent to thglocal) phenomenological interactions that Under the constraint th‘?‘t the s.cat.tering function is unitary
others[3,4] have specified by fits to the available low energy[ﬂ’la’ ash the ge(}erallzr]ed ‘r‘]”'ta“F-‘/ theoremf Iﬁads to Ian
data from both neutron and proton scattering off of alph equatlo? that speci €S t € phase in terms of the complete
particles. Those phenomenological optical model potential 0-1807) cross section, viz.,

include spin-orbit components which we may also seek by

inversion since, in a recent papdi6], a distorted wave ap- sincp(x)zf f A(y)A(z)cod ¢(y)— ¢(z)]dydz @
proximation procedure has been given to extract the central 27A(X)(1—x?—y?— 72+ 2xy2)Y?’
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Therein the region of integration is the interior of an ellipse.scattering, it is the induced dipole polarizatian ¢) poten-
From the scattering amplitude, it is straightforward then totial. For the elastic scattering problems we consider, it is
find the the scattering function, and concomitantly the phasappropriate to assume thdy(p) is either zerqneutron$ or
shifts, by Legendre integration, viz., the Coulomb potentialprotons for p=p,.
According to the modified Newton-Sabatier theory
_ 7 [12,13, the solution of Eq(5) involves a two-step procedure
5/—1=92'5/—1=ikf f(O)P,(6)sin(6)dd. (4  after one truncates the summations of to the first
0 / maxt 1 terms ¢ max is the largest angular momentum of the

Usually, solutions of Eq(3), or its equivalent, have been input phase shifts, effectively contributing to the scatter-

sought with iteration schemes based on the contraction ma?9): In the first step, one uses E) at N=2 points
ping principle[17—19. That approach also defines an exist-?=P1:P2, - - - Pn pi=po (at which the wave functions have

ence condition for a solution and for its global uniqueness af'€lr asymptotic forms involving the scattering phase shifts
well. In application though we have found difficulties with it. 0 determine the 2(na,+1) unknownsc, . A least squares

The physical circumstances considef&8] did not meet the method has been used for that. Then, with the rgpeated use of
domain criteria and the solutions found were not stable. Thu§9: (9 for p<po, the potentiall(p) can be specified by use

we considered a modification of the Newton iteration©f EQ- (7). _ o _

method, and by which a stable convergent result of iteration 1n€ inversion calculations reported in this article were
could be found. The price of finding stable convergent soluMade using the computer progragic [20] in which equi-
tions by this means, however, is the loss of global uniquedistant least squares pointspy,po=p1tAp, ... py

ness. In particular, the-a scattering of interest did not meet =P (N—1)Ap are taken, and with the codeHATRA [21]

the domain criteria to guarantee unique stable solutions foi© €ffect a convenient transformation on the phase shifts.

the phase functions, and so the modified Newton method had

to be used. C. Spin-orbit interaction by LHF inversion

B o _ In their recent papef16], Leeb, Huber, and Fiedeldey
B. Modified Newton-Sabatier inverse scattering theory (LHF) have set out an approximate global inversion proce-

The fixed energy inverse scattering method of Newtorfjure by which both the central and Spin-orbit potentials for

and Sabatief11] leads to a fundamental equation for solu- the scattering of spin-1/2 particlgsucleons in our cage
tion functions of the form from spin-0 targets can be obtained from fixed energy data,

e.g., differential cross sections and polarizations. Specifically
x their procedure begins with values for the phase shﬂﬁ?@
U oy = 40 ) — > U for all angular momenta” andj=/"* 3.
vAP)=4p) //Z:o Sobeo D) p), ® The LSF method is based l]Jpon ari expansion of the phase
shifts where the effect of the spin-orbit potential is taken into
which is a set of simultaneous equations with coefficients alhccount via a distorted wave approximation. Using
defined in terms of the partial wave eigenfunctiopnfs“(p)

of a known reference potentibly, asL,, is the calculable 8 =69+arcP+@)2c?+. .., (8
matrix,
where
P ! U ’ ! ’
L,/ (p)= fo (") (p")dp' 2. ©) .
u () 2 . o E
Both the reference functions,(p) and the solution func- a; ' =1a(s)= (/41 for j= X 9)
tions Y(p) satisfy radial Schidinger equations with the ’ /= >

given reference potentiél, and the wanted inversion poten-

tial U, respectively. The inversion potential may then be con- . )
structed, according to the Newton-Sabatier inverse scatterin§€ quasi-independent phase shifts
theory, from

P — l Z +) Z (7)
. 5/——(2/+1){(/+1)a*/ +/807}

U(p)=Uq >—312 c 0 %(p) i (p)l 7
P olp PdPI:O 7Y Py (p)p, 25(/0)+/(/+1)C(/2)+,

wherein the standard notatiops=k; ./, Ug=V(r)/E¢m.,
U=V(r)/E¢m, andE¢n=%2k2 /2 have been used. But

in practical applications, this scheme needs to be modified. A
most useful modificatiofil2] is predicated upon knowledge 0 (1) 0 )
of the scattering potentidl beyond a given finite distance =80~ CH+(/2+/+1)CP+ -, (10)

ro. For nuclear heavy ion collisions this long range form is

well established as the Coulomb potential. For electron-atorwhen restricted to first order, map by separate inversions to

R 1
b= DE)
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“5/~ 5(/0)4:>\~/~V0 TABLE I. The original s- and p-wave phase shifts that were
' ' ’ obtained from the unitarity condition analysesmeé cross sections
compared with those found by using the two sets of inversion po-

3 0 ey 1 tentials,G1 andG2.
,~ 06, —C//eoV~V,y— Evs.o.- (11
E (MeV) Sl 8{™(G1) 8i™(G2)
ThereinVy and V¢, are the approximations for the central 14.9 1824 1823 1827
and spin-orbit potentials. Leeb, Huber, and Fiedelf&§] ' ' ' '
. . . 16.4 1.846 1.845 1.844
note that this expansion remains exact through second order. 20.0 1742 1739 1741
Thus by forming the quasi-independent phase shifts, one : ) ' )
may then apply any appropriate fixed energy inversion 23.7 1“';3)3 (mvl)'727 (inv)l'729
schemd 7] that defines inversion potentials from a single set o o1 (G1) o1 (G2)
of phase shifts, to determin¢ andV separately, and then 14.9 1.180 1.164 1.158
from Eq.(11) obtain the central and spin-orbit interactions. 16.4 1.423 1.404 1.405
20.0 1.360 1.345 1.343
Il. DISCUSSION OF RESULTS 23.7 1.287 1.286 1.274

The N-a potentials that we have determined by inversion
are shown in two subsections. The first presents results found . . . .
by using the phase shifts we have determined from the sca?—ext made a set OT calculations using higher partial waves
tering amplitudes specified by the unitarity condition and the th?‘” those tabled.m Ref15]) .matcrlezd to ea}ch tapled uni-
generalized flux theorem. In the second, we discuss the ifarty set and varying accqrdlng 0 ; The inversion po-
version potentials that were obtained using the phase shifltgm'aIS that result, and which we designate asGiepoten-

specified by the best phenomenological optical model potent-'als’ are also real and_ smooth, .bUt now less energy
tials [3] and the LHF prescription to specify the spin-orbit dependent th{:m the1 set. They are displayed in the bottom
field. segment of Fig. 1. )

Both potential sets were used in Sdllirger equations
whose solutions lead to predicted phase shifts and cross sec-
tions. In comparison with the data, ti&l results are better

We have solved the nonlinear phase equations for théhan those obtained using tl&2 potentials. That was ex-
scattering of 14.9, 16.4, 20.0, and 23.7 MeV neutrons scapected given that high partial wave phase shifts were added
tering off of alpha particles. The specifics have been pubarbitrarily to the unitarity based set to define the input for the
lished[15] but are given again in brief for completeness. Theinversions that gave th82 interactions. But neither give fits,
data[22] are incomplete and we have had to interpolate andnd to the 14.9 MeV data in particular, which are of the same
extrapolate to specify ful0—180°) cross sections for use in quality as the original ones from which the input phase shifts
solution of the nonlinear equations for the phases of the scat-
tering amplitudes. It was also necessary to minimize effects
of nonstatistical errors and that was achieved by applying
generalized cross validatidi23] to each data set. As noted
previously[15], the “Martin” condition [19] is not met by \
these data sets and so we used a modified Newton iteration ,\x/ — iaoMeV
method to solve the nonlinear equations for the phase of the e 16.4MeV
scattering amplitudes. Legendre integration of the resultant -80 ‘,' ——— 20.0MeV

]
]

A. N-a potentials using the unitary condition phase shifts

scattering amplitudes then gave reliably thmurely rea) T EMeY
scattering phase shifts ©6=4 (see Table | in Ref[15]).

Using those phase shifts in the modified Newton-Sabatier
inversion scheme gave potentials that are real, smooth, and
energy dependent. We classify them as @te set of poten-
tials and they are given in the top segment of Fig. 1. They
vary with energy most markedly at small radii and below 0.5
fm in particular, but the actual data are not sensitive to de-
tails of these potentials near to the origin.

The unitarity condition approach has been used to specify
only the lowest set of phase shifts. The incomplete nature of 2 4 6
the actual data, the approximations needed to find stable so- Radius (fm)
lutions for the phases of the scattering amplitudes, and all

nu.merics i/,nVOIVed preclude specification of relif_ible phase FIG. 1. The potentials obtained by inversion starting with solely
shifts for />4 or 5. The values of the phase shifts at oW the phase shifts given by Legendre integration of the unitarity

values of/" also should be taken as reliable to perhaps gormed scattering amplitude@op) and those found when higher
degree at best too. Thus, in the first studies we made, we Sgirtial wave phase shifts vary a& 2 (bottom. The solid, small

the higher/” phase shifts exactly to zero. To assess howdashed, large dashed, and dot-dashed curves give the results for
those small higher” phase shifts might influence results, we 14.9, 16.4, 20.0, and 23.7 MeV incident energies.

V (MeV)




92 N. ALEXANDER, K. AMOS, B. APAGYI, AND D. R. LUN 53

TABLE II. The n-a phase shift§3/ and ES/ (in radiang given by
, 14.9MeV 16.4MeV the optical model calculation used in the inversion process and
10" 3 those that resultin parenthesgsupon using the inversion poten-
tials.
1
7 Y ] Ex 80="o 5 5 52 P
£ . . I . - 1 2.707 0.702  0.386  0.0001  0.001
g : (2.696 /2.663 (0.69 (0.395 (0.002  (0.002
510° L 20.0MeV 2 2.534 1475 0876 00011  0.001
(2.497 /2497 (1.45) (0.87) (0.0043 (0.009
1 5 2.20 1.699 1.28 0.0089 0.0082
10" (2230/2.23% (1.638 (1265 (0.0067 (0.018
L 10 1.87 1.62 1.34 0.038 0.034
' : ' . (1.870/1.874 (1.6) (1.33 (0.034 (0.032
60 12% (deg) 60 120 15 1.655 1.47 1.22 0.077 0.068
c.m. (1.650 /1.653 (1.45 (1.2  (0.082  (0.065
18 1.55 1.38 1.14 0.102 0.087

FIG. 2. The cross sections from 14.9, 16.4, 20.0, and 23.7 MeV (1550 / 1.549  (1.36) (1.13 (0.103  (0.089
neutrons elastically scattered off of an alpha particle compared with

those evaluated using the unitarity phase shifts and shown by the . . ) .
solid curves. The large and small dashed curves depict the cross T1he first step in these studies was to form the quasi-

sections calculated using all of the phase shifts found withGtie ~independent sets of phase shifts and 6, at each energy.
potentials and those found using the set'te 4. Those phase shifts for thee p, andd waves that were input

to the inversion programs are listed in Table Il for timey
cases considered. They are shown without parentheses.

phase shits and her values ae ghven n Tale | There 07 12 24 Tveion pocLiner e voed i
little variation between the input and various calculation re- 9 q ! P

sults. Thus we presume that the specific values of the high table resulted. Clearly the inversion interactions reproduce

) . . e starting set of quasi-independent phase shifts quite well.
7 partial wave phase shifts, small though they may be, haVEye have shown two values for thewave recalculations.

an important effect. To test that presumption we have madgye first of each pair of values is the result for thevave
calculanon_s of cross sections b".ised upon pothGEleand scattering fromV while the second is that from the use of
GZ. potentials but W'Fh only the f|r§ t few partial wave phase\~/. The two sets of recalculatedwave phases are very simi-
shifts (for /.<4 _specmcally taken 'nto. account. The results lar, as they should be, and are very good reproductions of the
are shown in Fig. 2. Those found using the restricted set o put values. Likewise the- andd-wave phase shifts match

phase shifts are_displayed therein_by the small_dashed CUIVeSs \ell with at worst a 5% variation in a few of titgmal)

Th_e cross sections found by using all sensi@& phase 4. ave results. With the dominars- and p-wave phase
shifts are displayed by the large dashed curves. They aigiis the error is less than 2%. Similar results were obtained
compared with then-« elastic scattering data and with the \ith our inversions of the proton phase shifts.

cross sections given by using the mp@umltarl_ty) phase Then-a potentials found by inversion are shown in Fig. 3
shifts that are tabled in Refl15]. The Iattgr are dlsplayeq by for energies ranging from 1 to 18 MeV. TheandV poten-

the solid curves. Clea_lrly the set of.h|ghér phase shifts tials are shown in the top and middle segments of that figure
given frp m the potentials has a noticeable gffect upon th"?‘;md theVs, extracted from them are given in the bottom
calculf_mons but the results are not a_lways Wc(nse?omparl- segment.slﬁ. the LHF schem¥ maps to the central interac-
son with the actual_data and unitarity phase Shlﬁs fhar_1 tion. These interactions are energy dependent, with most ef-
what results by using only the first few potential defmedéiacts being noted with the low energy cases. The 10, 15, and

were defined. The dominant elements areghand p-wave

artial wave phase shifts alone. The small differences in th . . . -9 .
b P 8 MeV interactions are quite similar. There is a marked

low / phase shifts values also effect the cross sections. Th ructural chanae in the sh f th inversion potential
approximations in the inversion process we have set dowii. uctural change € shapes of Inese inversion potentials
zﬂtlow energies too and a result of that is the quite strong low

and the numerics used seem to give results accurate to abo . o . . .
o505, energy spin-orbit mteractlon. Cross sections arj(_j polariza-
tions extracted using these LHF-scheme-specified central
and spin-orbit interactions are shown in Fig. 4. Therein we
display the original “data,” i.e., the cross sections and polar-
The optical model potentials of Satchlet al. [3] have izations evaluated using the input sets of phase s&&ﬁl‘.by
been used to define the sets of phase sﬁLﬁé that we have the circles. The solid curves represent the results we have
used as base data in our fixed energy inversion studies found using the inversion potentials with no cutoR; =
extract central and spin-orbit potentials via the LIHEG]  0) in the Schrdinger equations, while those given by the
prescription. We have used a set of energies from 1 to 18mall and large dashed curves are the results obtained with
MeV for neutrons and protons and for which the phase shiftgutoff radii 0.85 and 1.25 fm, respectively. Clearly the
also have been tabulatéd]. “data” are sensitive to the potentials above 0.5 fm or so and

B. Inversion of the optical model phase shifts



FIG. 3. The inversion potentiaﬁ; (top) andV (middle) and the
spin-orbit potentials deduced from th&€bottom) for n-« scattering

V (MeV)
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(=}
= e

/’__, 0 \ /gg:“’
-20 |° -20
-40 7%/ -40 +
-60 60 +

V (MeV)

o——o 5.00MeV

40 + ---- 9.95MeV

——- 14.32MeV

1 2 3 a4 60 L . . 17.4I5MeV
Radius (fm) 1 2 3 4

at various energies as indicated.

Radius (fm)
FIG. 5. As for Fig. 3 but for proton scattering.

the results are very good for the two higher energies but are
quite poor at the energies coinciding with the known large

N resonance in the scattering.
10° | %5 The results for th@-« scattering are shown in Figs. 5 and
10' b . 6. The potentials are given in Fig. 5 and the reproduction and
1 -05 sensitivity of cross sections and polarizations are shown in
—! 10Mlv — . Fig. 6. Again there is a marked energy variation in the po-
F e 1 X 0.5 tentials, especially at the lowest energies with the resultant
10° | 7 spin-orbit interactions to 5 MeV being very strong. The 9-17
i NN 4 -05 MeV potentials show little energy dependence though. Again
/;\ L 1 1 I | a )
171 -~
3 f 105 &
£ i / X = §
G107 F - 2 2 “ 405
=] 3 4-05 = 0t b %, 70
-t\é F 1 1 L S S
103 1 F N
10 F NS4 [
17.45MeV~ v 108
2 S 1 1 1 ]
10 /g ?\ II \\ 05 g
10° 210" F RN -y
~ E R\ -~ 1 o
S [ ~ SN £
2 E 9.95MeV 4 -05o
1 1 ] ] _8 X =)
60 120 60 12 I — D
E 1.97MeV o 7
Oc.m. (deg) o A e A A/ AR NE VX
E\ = *
E \0_\ P _ 2
FIG. 4. The cross sections and polarizationsrfes scattering 102 L "°wos
at diverse energies. The circles are the results from using the -1 -05
Woods-Saxon optical model potentidfsom which the input phase 1 1 1 1
shifts for inversion were derivedThe solid curves are the results 60 120 60 120
obtained by using the central and spin-orbit potentials derived by 0 d
c.m. (deg)

the inversion process. The small and large dashed curves display
similar calculations but made witR,; values of 0.85 and 1.25 fm,
respectively.

FIG. 6. As for Fig. 4 but for proton scattering.
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TABLE IIl. The n-a phase shifts®") (in radiang given by the scattering angles. Then if that data satisfies the “Martin”
optical model calculations used in the inversion process comparegondition, the scattering amplitude can be specified by an
with those that result upon using the inversion potentisisand  iterative(Newton process and is unique. So also then are the
V (in single parenthesgsnd with those that were obtained using Scattering phase shift§ound by simple Legendre integra-
the derived central and spin-orbit interactigits double parenthe- tion). But the measured cross sections are incomplete, neces-

ses. sitating extrapolation and interpolation, and the “Martin”
= = = = o condition is not satisfied by thil-« data sets considered.

En 2 61 51 53 )} The latter forces use of an approximation scheme to solve

1 2707 0.091 1.007 0.0001 0.001 the nonlinear phase equations while the former makes the

input kernel ambiguous. Nevertheless, we were able to find
stable and credible solutions for the scattering of 14.9-23.7
MeV neutrons from the alpha particle and so specify phase
shifts(to / of 3 or 4) that were consistent with ones assessed
by others from their(differeny analyses of the data. Those
phase shifts were used as the input to an inversion calcula-
5 2.20 0.862 2.12 0.007 00101 o based upon a modified Newton-Sabatier scheme and
(2.23 (0.899 (2.0 (0.0409  (-0.018 smooth energy-dependent potentials were obtained. They
(2.210) ((1.03D) ((2.140) ((0.029) ((0.008) were markedly different in form to the conventionally chosen

(26969  (0.099  (0.989  (0.0016  (0.0026
((2.676) ((0.349) ((2.245) ((0.003)  ((0.00D)

2 2.534 0.275 2.075 0.0009  0.0012
(2497 (0290 (2032  (0.0125 (-0.0013
(2578) ((0.865) ((2.686) ((0.013)  ((0.00)

10 1.87 1.06 1.9 0.0026 0.045  Wwoods-Saxon potentials. The results were insensitive to de-
(187 (1.08 (189  (0.029  (0.037 tails of the interactions below 0.5 fm but did vary according
((1.871) ((1.072) ((1.850) ((0.029) ((0.039) to what choice one makes for the small valued phase shifts.
15 1.655 0.976 171 0.049 0.096 Given the very reasonable fits to batha and p-a data,
(1.69 (0.957 (1.69 (0.031 (0.118 differential cross sections, and polarizations, for energies in
((1.666) ((0.970) ((1.68)) ((0.042) ((0.115) the range 1-20 MeV that were obtained with a global phe-
18 1.55 0.90 1.61 0.058 0.13 nomenological optical model potential stu@g], we have
(1.59 (0.89 (1.60 (0.05)) (0.149 also applied our inversion method to select sets of those

((1.557) ((0.899) ((1.589) ((0.057) ((0.149) phase shifts. We adapted the approximation scheme of Leeb,
Huber, and Fiedeldejl6] so that we could estimate the cen-
tral and spin-orbit potentials from the inversion potentials of
the reproduction of cross section and polarization “data” istwo sets of quasi-independent phase shifts. Smooth forms
very good at the higher energies and the potentials are senesulted with the 10—20 MeV potentials being quite similar
sitive from 0.5 fm again. The fit for “data” in the resonance and of the form of a finite range well with a short range
region is again very poor. repulsion. At lower energies the potentials found were mark-
We complete our analysis by presenting, in Table Ill, theedly varied and quite long ranged. None were at all like the
5() phase shifts for the, p, andd channels and fronn- ~ phenomenological optical model potentials from which the
« scattering. The input set from Satchitral. [3] is shown  input phase shifts were specified. But at the low energies, a
in the first row of each set of @or each energy Those that Strong resonance is known to exist in the input scattering
we obtained by using the extractédandV in Schralinger ~ Phase shift structure. With inversion, its presence will be
equation calculations and then by inverting B40) are 'eflected by a strong variation in the form of the calculated
given next in the single parentheses while those we havBOtentials. Also the spin-orbit strength appears to be quite
obtained by using the LHF prescription for the central angStrong at low energies and so the LHF prescription may not
spin-orbit potentials are given in the thifdouble parenthe- P€ appropriate then. However, it is of note that our potentials
se9 rows. The agreement with all three forms is quite goodf©r 1—2 MeV neutrons scattering from theparticle are very
for energies 10 MeV and higher. Only a few of the smallSimilar to those found from a recent fixed angular momen-
d-wave results are in error by 5-8 %. At the lower energiedUMm inversion study24]. _ _
though, and especially in the 1-2 MeV resonance region, the We surmise that our present calculations, which we have
LHF method results are noticeably different from the otherfound to be accurate to a few percent and for energies above
two. The spin-orbit interactions are too strong in those casedh® 10w-lying resonance in particular, are a class of potentials

it seems, for the LHF first order approximation to be useful.,Phase equivalent to the usually chosphenomenological
ones. The inference of a repulsive short range character with

some of these results and the energy variations found are
characteristics others anticipate for local interactions equiva-
As theN-a scattering up to 24 MeV incident energy lies lent to nonlocal ones. As this class of potentials is based in
below the first inelastic threshold, the inheréhfunctions  part upon the use of the generalized unitarity theorem to
are unitary and the generalized unitarity theorem leads to ascertain phase shift data and also upon an inversion process
specification of the phase of the scattering amplitude in termwith which there is essentially re priori bias as to the form
of its magnitude(the square root of the differential cross of the local interaction derived, we believe that the set is
sectior). To extract that scattering amplitude phase, andparticularly appropriate for use in othéiew body) studies
hence specify the complete scattering amplitude with bupredicated upon a loc&kffective n-« interaction in the low
trivial ambiguities at most, requires that we know the differ-energy continuum which fits the observed scattering data. Of
ential cross section at any selected energy at all physicalourse there are ambiguities as we have shown herein be-

IV. CONCLUSIONS
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tween the phenomenological forms usually taken and the inean compare with ones obtained by such a fully microscopic
version set we have found. Furthermore, it is well knownand antisymmetric calculation.

that there are supersymmetric partners to any phase shift spe-
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