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Preequilibrium decay in the exciton model for nuclear potential with a finite depth
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The spectra of preequilibrium particles, taking into account the energy dependence of the single-part
level density, are calculated using the particle-hole~exciton! level density. We demonstrate the significant effect
of the finite depth of the potential well~continuum effect! on partial emission spectra for configurations with
a small exciton number.

PACS number~s!: 21.60.2n, 21.10.Ma, 23.90.1w, 27.40.1z
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I. INTRODUCTION

The main element of the exciton model of preequilibriu
decay@1# is the level densityvn(E) of a nucleus in the state
with excitation energyE andn excited quasiparticles~exci-
tons!. This quantity enters directly into the partial decay ra
for particle emission which are obtained through the deta
balance principle. The value ofvn(E) depends crucially on
the single-particle level densityg(«). Usually the assump
tion of a constant single-particle level density is made
obtain the densityvn(E) in a convenient analytical form
@2–6#. Some generalizations can be made by taking into
count a slow dependence ofg(«) on the single-particle en
ergy « in the vicinity of the Fermi energy@7#. These ap-
proaches provide a good approximation in the low-ene
region, where the influence of the finite depth of the poten
well can be neglected. However, increasing the excita
energyE leads to an increase of the partial contribution
high excited single-particle states intovn(E). In this case
some excitons can be located in the continuum region w
high probability. Discretizing the continuum, by putting th
nucleus in an infinite single-particle potential well or by l
cating the position of the resonances, leads to a monot
cally increasing single-particle level density with« . How-
ever, for a realistic finite depth potential well, such as
Woods-Saxon potential, the value of the single-particle le
density decreases with« in the continuum region~continuum
effect! @8#. Thus, a proper accounting of the continuu
states, i.e., the decrease ofg(«) with «, should be taken into
account in determiningvn(E) and other quantities, espe
cially for the case of configurations characterized by a l
number of quasiparticles. The aim of this work is to inves
gate the influence of the finite depth of the single-parti
potential on the preequilibrium decay from states with
small exciton number.

II. DECAY AND TRANSITION RATES

To estimate the influence of the finite depth of the sing
particle potential on the preequilibrium decay of the nucle
we will consider the spectra for particle emission from lo
exciton configurations. Within the exciton model the numb
of particles ofn type emitted from ann-exciton state into the
energy intervalde is given by
533/96/53~2!/855~5!/$06.00
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Nn~n,e!de5Wn~n,e!tn~E!de. ~1!

Heree is the energy of the emitted particle,Wn(n,e) stands
for the particle emission rate, andtn(E) denotes the mean
lifetime of the states having excitation energyE and
n5p1h excitons, wherep andh are the numbers of excited
particles and holes, respectively. The mean lifetimetn(E) is
evaluated from a standard master equation@9–11# integrated
over time. The early stage of the equilibration process is th
most important one for the description of the preequilibrium
particle emission. This stage is characterized by small ex
ton numbers and a predominant role of the transitions to t
more complex configurations, namely,ln

1(E)@ln
2(E),

where ln
1 and ln

2 are the rates for the intermediate-stat
transitionsn→n12 andn→n22, respectively. Neglecting
the terms withln

2 one can obtain@12,13# a simple expres-
sion for tn(E), namely,

tn~E!5tn22~E!ln22
1 ~E!/@ln

1~E!1Gn~E!#,

tn0~E!51/@ln0
1 ~E!1Gn0

~E!#, ~2!

wheren0 is the initial exciton number andGn(E) is the total
emission rate for then-exciton configuration:

Gn~E!5(
n
E
0

E2Bn
Wn~n,e!de. ~3!

HereBn is the separation energy for the emitted particle o
type n.

The main ingredient needed to obtain the quantities in
volved in Eqs.~1!–~3! is the level densityvn[vph of the
excited nucleus withn5p1h excitons. In particular, by ap-
plying the detailed balance principle@9#, the emission rates
Wn(n,e) in Eq. ~1! can be presented as

Wn~n,e!5
1

2p\

vp21 h~U !

vph~E! (
l

~2l 11!Tl
~n!~e!. ~4!

Herevph(E) andvp21 h(U) are the particle-hole level den-
sities for the initial and residual nuclei, respectively, an
Tl
(n) are the transmission coefficients. The excitation energ

U of the residual nucleus is related to the initial excitatio
855 © 1996 The American Physical Society
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energy E through the energy conservation la
E5U1Bn1e. The transition ratesln

1 are determined by
@14,15#

ln
1~E!5

1

vph~E!
S E l1p~u!vp21 h~u!v10~u!du

1E l1h~u!vph21~u!v01~u!duD , ~5!

wherel1p(u) andl1h(u) are the probabilities per unit time
of particle-particle and hole-hole scattering with the con
quent creation of a particle-hole pair. The values ofl1p and
l1h are given by Fermi’s golden rule as

l1p~u!5
2p

\
uM u2v21~u!,

l1h~u!5
2p

\
uM u2v12~u!. ~6!

Hereu is the energy of an incident particle~hole! anduM u2 is
the mean square of the matrix element of the residual in
action.

To determine the particle-hole level densityvph(E), let
us consider an excited nucleus whose excitation energyE is
shared byn5p1h excitons. Under the conditions of hig
excitation energy and low-number quasiparticle configu
tions the effect of the Pauli principle can be neglected a
vph is proportional to the number of possible accommod
tions of p particles andh holes on the single-particle level
by the condition of energy conservation. Thus, the dens
vph(E) is related to the single-particle level densityg(«) as
@14#

vph~E!5
1

p!h! E du1 g~«1!•••E dun g~«n!

3dS E2(
i51

n

ui D , n5p1h, ~7!

whereui5« i2«F (ui5«F2« i) is the energy of thei th par-
ticle ~hole! at the corresponding single-particle level an
«F is the Fermi energy.

To show the influence of the finite depth of the potent
well on preequilibrium decay, we adopt for this purpose
finite potential well of a trapezoidal form. It has been show
@8# that for this potential well one has~i! an excellent agree-
ment of the single-particle level densityg(«) with that ob-
tained from a corresponding Woods-Saxon well,~ii ! the
Thomas-Fermi approximationgTF(«) provides an excellent
approximation to the smooth level density obtained from
exact quantum mechanical level density, and~iii ! a simple
analytic form forgTF(«) can be derived. The form of the
trapezoidal potential is given by

V~r !5H V0 , r,R2D,

1
2 @12~r2R!/D#V0, R2D<r<R1D, ~8!

whereV0 , R, andD are the depth, size, and the surfa
thickness parameters of the potential well, respectively. T
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ing V50 for r.R1D in ~8! we obtain a finite trapezoidal
well with R being its half-radius. The semiclassical Thoma
Fermi single-particle level densitygTF(«) for the potential
~8! is given by@8#

gTF~«!5
1

2p2 S 2m\2 D 3/24p~R2D !3

3

3~«2V0!
1/2F112x1

8

5
x21

16

35
x3G , ~9!

where x52@2D(«2V0)#/@(R2D)V0#. For the case of
«.0, the corresponding semiclassical expressiongTF(«) for
the finite trapezoidal potential well should be corrected b
subtracting the contribution due to the free-gas level dens
gfree(«) @8#:

gfree~«!5
1

2p2 S 2m\2 D 3/24p~R1D !3

3

3«1/2F112y1
8

5
y21

16

35
y3G , ~10!

with y522D«/@(R1D)V0#. The Fermi energy«F in both
cases of the finite and infinite trapezoidal potential well ca
be determined from the conservation of the number of p
ticles,

E
V0

«F
d« g~«!5A,

whereA is the number of nucleons. In the numerical calc
lations of ~7! we have used the following parameters of th
single-particle potential well@8#:

HV05254133 t3~N2Z!/A ~MeV!, D5pd,

R5RV /@11~D/R!2#1/3, RV51.12A1/311.0 ~fm!,
~11!

FIG. 1. The single-particle level density~protons1 neutrons! as
a function of energy« for the nucleus40Ca. The dashed line is
obtained using Eq.~9! for the infinite trapezoidal potential and the
solid line is for the finite depth trapezoidal potential.
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53 857PREEQUILIBRIUM DECAY IN THE EXCITON MODEL FOR . . .
whereN and Z are the numbers of neutrons and proton
t351 for a neutron and21 for a proton, andd50.7 fm. The
valueR in ~11! is determined by iteration.

III. RESULTS AND DISCUSSION

We carried out numerical calculations for the cases
finite and infinite trapezoidal potential under the followin
assumptions.

~A! We consider only the emission of nucleons. The cha
nels of complex particle emission are neglected.

~B! No distinction between proton and neutron is a
sumed. Thus, only the emission of one type of particles
considered. In contrast to the usual one-component exc
model, the contributions of protons and neutrons to the em
sion spectrum are taken as identical.

~C! We assume the squared matrix element of the resid
interaction to be energy independent,uM u25const. There-
fore, the energy dependence of the probabilities of t
exciton-exciton scattering,l1p and l1h , and the transition
ratesln

1 are determined by the accessible phase space.
~D! Since we are basically interested in the high-ener

part of the emission spectra, the transmission coefficie
Tl
(n) are approximated by the step functionQ(l 2l max),

@16# wherel max'A2me/\, and consequently, the sum ove
orbital angular momentum in Eq.~4! can be estimated as
( l (2l 11)Tl

(n)(e)'2mR2e/\2, where m is the nucleon
mass. Then, for simplicity, the level densitiesvp21 h(U) and
vph(E) in ~4! are calculated using the same single-partic
level densityg(«) of the initial nucleus.

Although the above listed assumptions are rather cru
they enable us to estimate the effect of the finite depth of
potential well on preequilibrium emission spectra. The n
merical calculations have been performed for the nucle
40Ca at excitation energiesE520 MeV andE550 MeV.
Results for the case of the finite trapezoidal potential a
presented in Figs. 1–4 by solid lines. In order to outline t
continuum effect, the corresponding results for the infin

FIG. 2. The probabilities per unit time of the particle-particl
(l1p) and the hole-hole (l1h) scattering accompanied with the cre
ation of a particle-hole pair. The calculations are performed for t
nucleus40Ca using Eq.~6! in the cases of a finite depth trapezoida
potential ~solid line! and an infinite trapezoidal potential~dashed
line!.
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trapezoidal potential are displayed in the same figures
dashed lines. Figure 1 shows that the single-particle lev
densityg(«) for the finite depth potential is a strong non
monotonic function in the« region close to the edge of the
potential well. It decreases with« for «.0. Such behavior of
g(«) underlies the effect of the finite depth of the potentia
well on the particle-hole level density@17# and, conse-
quently, on the transition and decay rates. The continuu
effect on the probabilities of particle-particle and hole-ho
scattering is displayed in Fig. 2. Under assumption~C! the
energy dependence ofl1p andl1h is determined by that of
the level densitiesv21 andv12. The magnitude of the mean

square of the matrix elementuM u2 in Eq. ~6! was taken from
@18#. For 40Ca we use the value ofuM u253.831024

MeV2 which is in agreement with known parametrizatio
@12#. As can be seen from Fig. 2, the effect of the finite dep
of the potential well is to reduce the phase space access
for the involved exciton-exciton scattering. This fact leads
the decrease of the transition ratesln

1(E) with excitation
energy, when compared with the results for the infinite p
tential well. The energy dependence ofln

1(E) for the exci-
ton configurations 2p1h, 3p2h, and 4p3h is illustrated in
Fig. 3~a!. In contrast to the transition ratesln

1(E), the total

e
-
he
l

FIG. 3. The transition ratesln
1 ~a! and the total decay rates

Gn ~b! vs excitation energyE for the nucleus40Ca. Solid lines are
for a finite depth trapezoidal potential and dashed lines are for
infinite trapezoidal potential. The exciton numbersn5p1h
(p2h51) are indicated by numerals near the curves.
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FIG. 4. Partial spectra for preequilibrium nucleon emission from low-exciton states of the nucleus40Ca at excitation energies 50 MeV~a!,
~b!, ~c! and 20 MeV~d!. Dashed lines represent the calculations for the infinite trapezoidal potential; solid lines correspond to the
trapezoidal potential. The particle-hole configurations are inserted.
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decay ratesGn(E), for the finite depth potential, show a
increase with energy when compared with the results for
infinite potential well@see Fig. 3~b!#.

To make this behavior more transparent let us analyze
~4! for Wn(n,e). When compared with the case of infinit
potential well, the level densityvph(E) of the finite depth
potential well is reduced significantly due to the subtracti
of the free gas spectrum@17#. On the other hand, the reduc
tion in the level densityvp21 h(U) in Eq. ~4! is much
smaller due to the relatively small excitation energyU.
Therefore, the effect of the finiteness of the potential de
leads to a rise in the emission rateWn(n,e) and, according to
Eq. ~3!, in the total decay rateGn(E). As can be seen from
Figs. 3~a! and 3~b!, the inequalityln

1(E)@Gn(E) is valid for
both infinite and finite depth potential wells. Thus, the me
lifetimes ~2! are mainly determined by the values ofln

1 .
The results of the calculations for particle emission sp

tra are presented in Figs. 4~a!–4~d!. These figures show tha
the effect of the finite depth of the potential well is mo
transparent when considering preequilibrium emission
nucleons at high excitation energy of the nucleus. For
case of the 2p1h configuration atE550 MeV, taking into
account the finiteness of the potential well enhances the
the
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ticle yield by an order of magnitude. The difference betwe
the spectra calculated for the finite depth potential and th
for an infinite potential well becomes smaller as the excito
number increases. The same conclusion is true also for
transition and decay rates. We note that if the exciton num
increases the mean value of the energy per exciton decrea
Therefore the probability for the exciton to be in the con
tinuum « region also decreases. As a consequence, the c
tinuum effect tends to diminution with an increase of th
exciton number. Obviously, a similar trend can be obtain
by a reduction in the excitation energy of the nucleus. As c
be seen from Fig. 4~d!, the continuum effect atE520 MeV
is very small.
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