PHYSICAL REVIEW C VOLUME 53, NUMBER 2 FEBRUARY 1996

Preequilibrium decay in the exciton model for nuclear potential with a finite depth
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The spectra of preequilibrium particles, taking into account the energy dependence of the single-particle
level density, are calculated using the particle-Hebeiton level density. We demonstrate the significant effect
of the finite depth of the potential weltontinuum effegton partial emission spectra for configurations with
a small exciton number.
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. INTRODUCTION N,(n,e)de=W,(n,e)7,(E)de. 1)

The main element of the exciton model of preequilibriumHeree is the energy of the emitted partic/,(n,e) stands
decay[1] is the level densityn,(E) of a nucleus in the state for the particle emission rate, anci(E) denotes the mean
with excitation energye andn excited quasiparticle@xci-  lifetime of the states having excitation enerdy and
tons. This quantity enters directly into the partial decay ratesn=p+ h excitons, wherg andh are the numbers of excited
for particle emission which are obtained through the detailegarticles and holes, respectively. The mean lifetirE) is
balance principle. The value @f,(E) depends crucially on evaluated from a standard master equaf®n11] integrated
the single-particle level density(e). Usually the assump- over time. The early stage of the equilibration process is the
tion of a constant single-particle level density is made tomost important one for the description of the preequilibrium
obtain the densityw,(E) in a convenient analytical form particle emission. This stage is characterized by small exci-
[2—6]. Some generalizations can be made by taking into acton numbers and a predominant role of the transitions to the
count a slow dependence g{e) on the single-particle en- more complex configurations, namely. (E)>\, (E),
ergy ¢ in the vicinity of the Fermi energy7]. These ap- where)! and )\, are the rates for the intermediate-state
proaches provide a good approximation in the low-energyransitionsn—n+2 andn—n— 2, respectively. Neglecting

region, where the influence of the finite depth of the potentialne terms withA = one can obtaif12,13 a simple expres-
well can be neglected. However, increasing the excitation;y, for 7, (E) nnamely

energyE leads to an increase of the partial contribution of

high excited single-particle states init@,(E). In this case 7 (E) =7 o(EINT_(E)[N(E)+T(E)]
some excitons can be located in the continuum region with " n-2 ”_i " me
high probability. Discretizing the continuum, by putting the Tno(E)= U\ (E)+ T (E)], 2

nucleus in an infinite single-particle potential well or by lo-

cating the position of the resonances, leads to a monotonivhereny is the initial exciton number and,(E) is the total
cally increasing single-particle level density wigh. How-  emission rate for th@-exciton configuration:

ever, for a realistic finite depth potential well, such as a

Woods-Saxon potential, the value of the single-particle level E-B,

density decreases within the continuum regiofcontinuum Fn(E):zV jo W,(n,e)de. ©)
effect) [8]. Thus, a proper accounting of the continuum

states, i.e., the decreasegtk) with £, should be takeninto ..ap
account in determiningy,(E) and other quantities, espe- type V_”
cially for the case of configurations characterized by a low™ 1o main ingredient needed to obtain the quantities in-

number of quasiparticles. The aim of this work is to inveSti'volved in Eas.(1)—(3) is the level densitw.= of the
gate the influence of the finite depth of the single-particle gs.(1)~(3) ¥on™> ph

ial h ibri q ¢ ith excited nucleus witln=p+h excitons. In particular, by ap-
potential on the preequiliorium decay from states With a,)ving the detailed balance principl8], the emission rates
small exciton number.

W,(n,e) in Eqg. (1) can be presented as

is the separation energy for the emitted particle of

Il. DECAY AND TRANSITION RATES 1 wp-1p(U) ,
W,(n,e)=5— ———-> (2/+1)TV(e). (4)
To estimate the influence of the finite depth of the single- 27t wpn(E) 7
particle potential on the preequilibrium decay of the nucleus
we will consider the spectra for particle emission from low- Here w,,(E) andw;_1,(U) are the particle-hole level den-
exciton configurations. Within the exciton model the numbersities for the initial and residual nuclei, respectively, and
of particles ofv type emitted from am-exciton state into the T(/) are the transmission coefficients. The excitation energy
energy intervalde is given by U of the residual nucleus is related to the initial excitation
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energy E through the energy conservation Ilaw ing V=0 forr>R+D in (8) we obtain a finite trapezoidal
E=U+B,+e. The transition rates, are determined by well with R being its half-radius. The semiclassical Thomas-
[14,159 Fermi single-particle level density-(e) for the potential
(8) is given by[8]
1
+ —
A (B)= wph(E)UMp(U)wp1h(U)wlo(U)du

1 (2m\%?47(R-D)3
gTF(S)Zﬁ 22 T 3

+f N 1p(U) @pp-1(U) wgy(u)dul, )

8 16
1+2x+ =x>+ —=x3|, (9

X (2= Vo) X+

where\;,(u) and\,p(u) are the probabilities per unit time
of particle-particle and hole-hole scattering with the conse-
quent creation of a particle-hole pair. The values\gf and ~ Where x=—[2D(e—Vo)/[(R—D)V,]. For the case of

A1, are given by Fermi’s golden rule as £>0, the corresponding semiclassical expressgjgite) for
the finite trapezoidal potential well should be corrected by
Ayp(U) = 2—W_|M|2w21(u) subtracting the contribution due to the free-gas level density
P h Orrede) [8]:
2T 312 3
A p(U)= = M|?w5(u). (6) 1 (2m\*“47(R+D)
h Orede)=52|72z] — 3
Hereu is the energy of an incident partiolkole) and|M|? is 8 16
the mean square of the matrix element of the residual inter- X e 1+2y+ §y2+ ﬁyﬂ, (10)
action.

To determine the particle-hole level density,(E), let ) ] .
us consider an excited nucleus whose excitation engrgy ~ With y=—2De/[(R+D)V,]. The Fermi energy in both
shared byn: p+h excitons. Under the conditions of h|gh cases of the finite and infinite trapeZOidaI pOtential well can
excitation energy and low-number quasiparticle configurabe determined from the conservation of the number of par-
tions the effect of the Pauli principle can be neglected andicles,
wpp IS proportional to the number of possible accommoda-
tions of p particles anch holes on the single-patrticle levels eF
by the condition of energy conservation. Thus, the density fvo de g(e)=A,
wpn(E) is related to the single-particle level densiffe) as

[14] whereA is the number of nucleons. In the numerical calcu-

1 lations of (7) we have used the following parameters of the
@pn(B)= iy | dus g(ey)- -+ | dun glen) single-particle potential we[l8]:
n
<o E-3 ui), h—pih @ Vo= — 54+ 33t5(N—2Z)/A (MeV), D=,
i=1 R=Ry/[1+(D/R)?]¥3, Ry=1.12aY3+1.0(fm),

11
whereu;=¢;—eg (Uj=¢eg—¢;) is the energy of théth par- @

ticle (hole) at the corresponding single-particle level and

eg is the Fermi energy. 10
To show the influence of the finite depth of the potential

well on preequilibrium decay, we adopt for this purpose a 8

finite potential well of a trapezoidal form. It has been shown =

[8] that for this potential well one hd$) an excellent agree- §>

ment of the single-particle level density(e) with that ob- § 6r

tained from a corresponding Woods-Saxon weil) the -

Thomas-Fermi approximatiog;(e) provides an excellent =4r

approximation to the smooth level density obtained from the =0

exact quantum mechanical level density, diid a simple ol

analytic form forgtg(¢) can be derived. The form of the

trapezoidal potential is given by
0 i L | " | | N i
-60 —40 -20 0 0

Vo, r<R-D, = (MeV) R0 40

V()= {[1-(r—-R)/D]V,, R-D=r=<R+D, 8
FIG. 1. The single-particle level densifgrotons+ neutrons as
a function of energye for the nucleus*®Ca. The dashed line is
whereVy, R, andD are the depth, size, and the surfaceobtained using Eq(9) for the infinite trapezoidal potential and the
thickness parameters of the potential well, respectively. Taksolid line is for the finite depth trapezoidal potential.
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FIG. 2. The probabilities per unit time of the particle-particle S T
(\1p) and the hole-holeX;,) scattering accompanied with the cre- (D)
ation of a particle-hole pair. The calculations are performed for the —
nucleus*’Ca using Eq(6) in the cases of a finite depth trapezoidal Y
potential (solid ling) and an infinite trapezoidal potentiédashed pY _r
line). O
o=l
whereN and Z are the numbers of neutrons and protons, =
t;=1 for a neutron and-1 for a proton, andi=0.7 fm. The :,:, 1r
valueR in (11) is determined by iteration.
Ill. RESULTS AND DISCUSSION 0 '
We carried out numerical calculations for the cases of 0 10 F?O(Meeg 40 50
finite and infinite trapezoidal potential under the following
assumptions. - n
(A) We consider only the emission of nucleons. The chan- FIG. 3. The transition rates, (@ and Satge total .de(.:ay rates
nels of complex particle emission are neglected I',, (b) vs excitation energ¥ for the nucleus™Ca. Solid lines are
) for a finite depth trapezoidal potential and dashed lines are for an

(B)dN_Ic_)hd'SthPOHh bet"".eef‘ profton and nel;tron 'ISI as.'infinite trapezoidal potential. The exciton numbers=p+h

Sume_ ) us, only the emission of one type of partic es_ I?p—hzl) are indicated by numerals near the curves.

considered. In contrast to the usual one-component exciton

model, the contributions of protons and neutrons to the emis- . _ . _ _

sion spectrum are taken as identical. trapezoidal potential are displayed in the same figures by
(C) We assume the squared matrix element of the residu&lashed lines. Figure 1 shows that the single-particle level

interaction to be energy independe_ht/,l|2=const. There- densityg(e) for the finite depth potential is a strong non-

fore, the energy dependence of the probabilities of thémonot_onic function in thes re_gion close to the edge_of the
exciton-exciton scatteringy;, and Ay, and the transition potential well. It decreases withfor £>0. Such behavior of

rates\;” are determined by the accessible phase space. g(e) underlies the effect of the finite depth of the potential

(D) Since we are basically interested in the high-energy€!l on the particle-hole level densitjl7] and, conse-

part of the emission spectra, the transmission coefficientgu€ntly, on the transition and decay rates. The continuum

(v) : : oy effect on the probabilities of particle-particle and hole-hole
T,” are approximated by the step functié(/ —/ ma), scattering is displayed in Fig. 2. Under assumpti@ the

[1g]tV\1here/|r,1ax% ‘Zﬂeltﬁ’ a’.‘d I(E:orsequerg)tly, tht(_a sutmdover energy dependence af,, and\,;, is determined by that of
orbita angu(ay)r momen lim ”; d4) can D€ estimated as 0 |eyel densitiew,; andw1,. The magnitude of the mean
S A(2/+1)T)(e)~2uR°e/f?, where u is the nucleon i —

mass. Then, for simplicity, the level densitieg_,,(U) and ~ Sduare of the matrix eleme¥| in Eq. (6) was taken from

woh(E) in (4) are calculated using the same single-particld 18]. For “Ca we use the value ofM|?=3.8x10"*
level densityg(e) of the initial nucleus. MeV?2 which is in agreement with known parametrization

Although the above listed assumptions are rather crudd12]- As can be seen from Fig. 2, the effect of the finite depth
they enable us to estimate the effect of the finite depth of th@f the potential well is to reduce the phase space accessible
potential well on preequilibrium emission spectra. The nu-for the involved exciton-exciton scattering. This fact leads to
merical calculations have been performed for the nucleuthe decrease of the transition rateg(E) with excitation
40Ca at excitation energieE=20 MeV andE=50 MeV. energy, when compared with the results for the infinite po-
Results for the case of the finite trapezoidal potential ardential well. The energy dependencelgf (E) for the exci-
presented in Figs. 1-4 by solid lines. In order to outline theton configurations @1h, 3p2h, and 43h is illustrated in
continuum effect, the corresponding results for the infiniteFig. 3(@). In contrast to the transition rates; (E), the total
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FIG. 4. Partial spectra for preequilibrium nucleon emission from low-exciton states of the nffleuat excitation energies 50 M&¥),
(b), (c) and 20 MeV(d). Dashed lines represent the calculations for the infinite trapezoidal potential; solid lines correspond to the finite
trapezoidal potential. The particle-hole configurations are inserted.

decay rated",(E), for the finite depth potential, show an ticle yield by an order of magnitude. The difference between
increase with energy when compared with the results for théhe spectra calculated for the finite depth potential and that
infinite potential well[see Fig. 8)]. for an infinite potential well becomes smaller as the exciton
To make this behavior more transparent let us analyze Equmber increases. The same conclusion is true also for the
(4) for W,(n,e). When compared with the case of infinite transition and decay rates. We note that if the exciton number
potential well, the level densitw,n(E) of the finite depth increases the mean value of the energy per exciton decreases.
potential well is reduced significantly due to the subtractionTherefore the probability for the exciton to be in the con-
of the free gas spectrufil7]. On the other hand, the reduc- tjnyum ¢ region also decreases. As a consequence, the con-
tion in the level densityw,_p(U) in EQ. (4) is much  in,um effect tends to diminution with an increase of the
smaller due to the relatively small excitation enerdy oy citon number. Obviously, a similar trend can be obtained
Therefore, the effect of the finiteness of the potential deptfby a reduction in the excitation energy of the nucleus. As can

leads to a rise in the emission r&k¢ (n,e) and, according to be seen from Fia. @) the continuum effect g€ =20 MeV
Eq. (3), in the total decay rat€,(E). As can be seen from g very small. 9. @, .

Figs. 3a) and 3b), the inequalityx (E)>T",(E) is valid for
both infinite and finite depth potential wells. Thus, the mean
lifetimes (2) are mainly determmed by th(—;- vaIues_)qT . ACKNOWLEDGMENTS
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