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Refined Thomas-Fermi description of hot nuclei
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Self-consistent density profiles of two-component hot nuclei in equilibrium with an external gas are calcu-
lated in the semi-classical Thomas-Fermi model with a new prescription. The energy functional is calculated
with a momentum and density dependent finite range two-body effective interaction. The evolution of equi-
librium nuclear masses as a function of temperature and densities of the external neutron and proton gas is
investigated in this description. Limiting temperatures of nuclei, their lifetimes against neutron evaporation,
temperature dependence of incompressibilites of finite nuclei and a few other observables are also studied in
the present model.

PACS numbgs): 21.60—n, 21.10-k, 21.30.Fe, 21.65:f

[. INTRODUCTION able feature that asymptotically the nuclear plus gas density
falls off smoothly to the gas density and the result is inde-
The properties of hot nuclear systems created in the labgendent of the size of the box. The solution does not exactly
ratory in intermediate energy heavy ion collisions can nowcorrespond to that of an isolated nucleus; the subtracted
be investigated experimentall§]. They give us information grand potential contains a residual contribution due to the
about the temperature dependence of the surface tension odupling of the liquid and gas parts. This contribution is,
finite nuclei, their incompressibility, level density parameter,however, expected to be small.
etc., which are extremely useful in answering some impor- To compensate for the tendency of the nucleons to leave
tant questions of astrophysical interest. The hot nuclei sthe hot nucleus, a suitable external pressure has to be im-
created are not thermodynamically stable; they deexcite bposed 7,10] on the system to maintain thermodynamic equi-
emission of nucleons and light particles. The theoreticalibrium. This constraint appears somewhat artificial for the
modeling of such an evaporating nucleus poses some proldescription of an isolated hot nucleus in the laboratory, but is
lems. The continuum states of a nucleus at nonzero temperaiore relevant in the astrophysical context where a nucleus
ture are occupied with probability given by a Fermi factorembedded in a hot nucleon gas is a possible scenario. In this
[2] as a result of which the particle density does not vanish apaper, we look for a solution of the density profile of this hot
large distances. The extracted observables then depend ancleus immersed in a nucleon gas at the same temperature,
the size of the box in which the calculation is performed. Forwhich supplies the necessary external pressure. Mechanical
not too high temperatures, the evaporation times are quitequilibrium is maintained from the equality of the pressure in
long; the nucleus can then be considered to be in a metdhe condensed phasgie nucleuswith the external pressure
stable state, very much like a superheated liquid d8pA  exerted by the gas phase, and chemical equilibrium is main-
free variation of the density profiles in the Thomas-Fermitained from the equality of the average number of particles
(TF) description can then lead to a solution of the density inleaving the hot nucleus with the average number of particles
a sphere of radiuR (which is also given variationaljywith entering it; i.e., the pressure and the chemical potential in the
zero pressure outside, but with externally given boundarywo phases are equal. Since each phase is a two-component
conditions; i.e., the derivatives of the density at the centephase of neutrons and protons, the chemical potentials of
and at the surface should be zdr]. In earlier thermal neutrons and protons in both the liquid and gas phase are
Hartree-Fock(HF) [5] or semiclassical calculations$,7], equal separately.
this problem was circumvented either by imposing artificial With the above-mentioned thermodynamic equilibrium
conditions on the size of the basis states or by demanding azonditions, the density profiles of nuclei at different tempera-
exponentially decreasing density at large distances. In latdures are calculated in a refined TF approximation scheme in
calculations, this problem was addressed in the[BlFand this paper. Beyond a certain temperature, the equilibrium
TF [9] approaches in a so-called subtraction proceduregonditions, however, cannot be maintained. The nucleus is
where the nucleus was studied by means of a thermodynamimstable, and can no longer exist as a bound system. This
potential calculated as the difference between the thermodyemperature is called the limiting temperatdrg, . We ex-
namic potentials for the nucleus in equilibrium with a sur-plore this limit for different nuclear systems. For a particular
rounding gas and that for the gas alone. This has the desitemperature, density, and compositi@g®utron-proton ratip
of the nucleon gas, we find that only one nuclear isotope can
coexist in equilibrium. The evolution of this equilibrium
“Permanent address: Department of Physics, University of Kalynuclear mass as a function of temperature, density, and com-
ani, West Bengal 741235, India. position of the nucleon gas is then calculated. From the cal-
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culated nuclear densities at different temperatures, we further TABLE |. The parameters of the effective interactiin MeV

calculate the lifetime of nuclei against neutron evaporatiorfm units).

and the nuclear level density parameter. Assuming that the

scaling model holds, we also calculate nuclear incompress-i Cy a b d n K.

ibilities as a function of temperature. . 2917 9106 0.6199 9282 0.879 1/6 238
In Sec. I, we review the variational Thomas-Fermi equa-

tions with the new prescription. The expressions for the in-

compressibility of finite nuclei, the neutron evaporation time, < ntum of the two interacting nucleons. The subsctiatsd

the level density parameter, etc., are also given. Results froqu] in the strengtfC refer to like pair f-n or p-p) or unlike

the calculations are presented in Sec. Il and the concIudinBair (n-p) interaction,d andn are measures of the strength
remarks are given in Sec. IV. of density dependence, apg andp, are the densities at the
sites of the two nucleons. The five potential parametgrs
. THEORETICAL FRAMEWORK C,, a, b, andd for a fixed value of the density exponamt
In the following, we give a brief outline of the procedure are determined by reproducirtg the volume energy coeffi-
for determining the density profiles of hot nuclei in the TF cient for symmetric nuclear mattea(=—16.1 MeV), (ii)

approximation with a chosen realistic two-body effective in-Saturation density of normal nuclear mattesy{0.1533
teraction. fm~3), (i) the volume asymmetry energy coefficient

(J=34 MeV), (iv) the surface energy coefficient of symmet-

ric nuclear matter ds=18.01 Me\j, and(v) the energy de-

_ ) o ) pendence of the real part of the nucleon-nucleus optical po-
The TF mteractlon_ energy denS|t_y_|s calculated with atantig] (AW, /dE=0.30; V,, is the potential mentiongd

momentum- and density-dependent finite-range two-body ef- The details of the procedure for determining these param-

fective interaction[11]. This interaction is of the Seyler- gters are given in Ref13]. The parameten is obtained by

A. Effective interaction

Blanchard typg12,13. It is given by reproducing the giant monopole resonatGMR) energies
_ of a large number of nuclei employing the scaling model
ver(r,P,p) = Cy y[v1(r,p) +v2(r,p)], @ [14]. The parameter set of the interaction is given in Table I.
vy=—(1—p?b2)f(ry,ry) We have tested that this interaction reproduces the ground
! Liak state binding energies, charge rms radii, charge distributions,
H 6
T P+ 0o(1) T E(F T, 2 etc., very well for a host of nuclei from®0 to very heavy
02 Loa(ra)* pa(ra) P (ra.r) @ systems. Moreover, it has been found that the properties of
with pure neutron matter calculated with this type of interaction
are in good agreemefil5] with those obtained from other
—lri=ralla Lt : ;
€ sophisticated interactions.
fryry)=r—7p—. ()
[ri—ry/a

Herea is the spatial range artithe strength of repulsion in B. Self-consistent density profile

the momentum dependence of the interactionjr,—r,| is The interaction energy density for a finite system with the
the relative coordinate, ang=|p,—p,| is the relative mo- interaction chosen is given by

, 2 1
5Kr)=;325[Hsf{ﬁldr—rWJp—pW)+vzdr—rW,pH{CquprrfCJLWUGpU}nAnp)drﬁpdpﬂ (4)

Herev,; andv, are the potential functions given by E@), 7 is the isospin index, and(r,p) is the position-dependent
occupation probability. The Coulomb interaction energy density is given by the sum of the direct and exchange terms. They are
given by

5&U=¥mmmfdﬂﬂ%dﬂm0m% (5
3e?
2 _ 4/3
Lo 1) == 75— (37 pir). ©)
Here p,(r) is the density profile of the protons and

(r+r)y—|r—r’|

o= —— @

For one-component nuclear matter of constant depsgjtyn equilibrium at temperatur@ under a constant pressupe the
self-consistent occupation probablityp) is obtained by minimizing the thermodynamic potential
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G=E-TS- uA+PQ, (8)

whereE andS are the total energy and entropy of the systeithe chemical potential, an@ the volume. Following Ref.
[13], the minimization leads to the expression for occupation probability as
|

1+exp[

wherem is the nucleon mas¥? a rearrangement potential term appearing because of the density dependence in the interaction
given by Eq.(1), and V°+p?V! is the single-particle potential, the momentum-dependent part of which determines the
effective nucleon mass defined as

2

Zp—m+v°+ p?Vi+V2—u+Plpg

-1

n(p)= , (€)

-1

1
m*=|—+2Vv?! (10)
m

For the two-component finite nuclear system, the occupation probability is position dependent, and in the local density
approximation can be written as
2

p
1+exp{ ij(r)

Here an extra termV<(r) enters because of the inclusion of Coulomb force. To arrive at(EL), the zeroth order TF
approximation has been used. The corrections to the kinetic energy density in the form of density gradient terms have not been
included because of the following reasons. First, the potential parameters are determined using the zeroth order TF approxi-
mation. Second, the corrections which are mostly important in the density tail region are not yet physically well fdéhded
and therefore have not been included in our calculations.

In Eq. (12),

nAr,p)=

-1
+VAN) + VA1) + 8, Ve(r) — u,+ P/p(r))/T” . (11

0 _ ’ ' f ’ ’ ’ Am 5 ’
Vo= [ @ Lot =1 o) = (.0 LCip r)+ Cup 1)1+ o | 0/ T(1,1")

X[Ci(2m3 (1)) gilm,(r))+Cu@m* (1) T)* g (r"))], 12
Vl(f)— . dr'f(r,r")[Cip(r')+Cup—(r")], (13
vz r)—fdr e )2 [Cip(r)+Cup—o(N)]p(r), (14)

and the Coulomb single-particle potential is the sum of direct and exchange terms,

3e 2
c(r)=e wf dr'r'2p,(r')g(r,r )— (3772)1’3 l’3(r). (15

The density is obtained from
2
pT(r)=pf n,(r,p)dp

41
ZF[Zm’;(r)T]3’2J1,2(7]T(r)). (16)

In Egs.(12) and(16), J,(7)’s are the Fermi integrals,

o Xk
Jk(ﬂ)zfo mdx (17)

and
7A0) =1, = VUT) = VA(r) = 8, V(1) = Plp(r) T, (19

The total entropy of the nucleus, in the Landau-quasiparticle approximation, is given by
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2
SIZ - ﬁf {nT(r1p)|nnT(r1p)+[1_nT(r7p)]|n[l—nT(rlp)]}drdp7 (19)

T

which after momentum integration leads to of multifragmentation of nuclei under compression in a
quantum statistical model, which would be presented in a

N 5 Jznr)) different context.

S=| drX pn|3 5y~ 7N | (20

3 Jyam(r))

To arrive at the self-consistent density profile at a given
temperatureT in equilibrium with the external gas at the
sameT the following sequence of steps is followed.

(i) To start with, we fix an external pressUPeand choose
guess densities for neutrons and protons given by Fermi Ko (T)=
functions normalized to the neutron and proton numbers of
the nucleus.

(i) The interactionv(r) is calculated from Eq(13) and ~ Wheref is the free energy per particle of the matter and
thenm* (r) is obtained from Eq(10). p-(T) is its saturation density at the temperature concerned.

(iii) The fugacity.(r) is calculated from Eq(16). For a finite nucleus, the compression modulus is calculated

(iv) The different components of the single-particle poten-N the scaling modef17] as
. 0 2 .
tials V(r), Vi(r), andV¢(r) are obtained from Eq€12), ZaZ[F()\)/A]}
)\*?l,

C. Incompressibility of a finite nucleus

The incompressibility of infinite symmetric nuclear matter
at a finite temperatur@ is given by
2

9PZW , (22

P prm

(14), and(15). KA(T)Z[)\ 7 (23)
(v) The chemical potentialg,'s are obtained from the IN

constraint of number conservation [@ge Eq(18)]

1
Msxfmﬁmm+Wm+%m+@wdm - -

+PIp(r)]p.(r), (21) i

whereA, is the number of neutrons or protons. X

(vi) The fugacityn(r) is recalculated from Eq.18) us-
ing w, obtained in the previous step.

(vii) The densityp(r) is recalculated with this fugacity
from Eqg. (16) with the m’ (r) obtained in steii).

Steps(i)—(vii) are then repeated until the chemical poten- = =
tials and the densities obtained in the{1)th andnth itera- i
tion match the desired accuracy.

(viii) The above calculations for the densities are repeated 7.0
for different values o and thus one obtains the liquid lines P (1072 MeV fm
[see Fig. 1a)] for the neutrons and the protons in the nucleus
in the P-u plane.

(ix) To obtain the gas lines in the— x plane for a fixed
neutron-proton asymmetd, in the infinite nucleon gajsle-
fined asXy=(pg—pf)/py, wherep, is the density of the
gas, assumed to be neuirahe gas pressure and the chemi-
cal potentialsﬂg and ,ug are obtained for different values of
the gas density13].

(x) The points of intersection of the liquid lines with the
gas lines givaug(Xg) = uf(Xg) andug(Xg) = ui'(Xg) where
the subscript refers to the liquid phasghe nucleuy but the
pressureP(Xgy) andP,(X,) at the points of intersection are
in general different as can be seen from Figa)1 FIG. 1. (@) The P-u curve for 2°Pb forX,=0.17. The dashed

(xi) The above steps are repeated for different values ofnes correspond to the gas phase and the solid lines correspond to
X4 and the thermodynamically stable solution is obtained byhe liquid (nucleus phase. The intersections of the liquid and gas
finding out the intersection d?,(X,) andP,(Xg), as shown !mes de_f!ne_ equilibriumu,, and x, and thus also_glye correspond-
in Fig. 1(h). ing egumbrl_um pressureE’_n gnd P,. gb) The variation c_JfPr? and

In passing, we may remark that the pressure term as inPp With X, is shown. Their intersection gives the equilibrium val-
troduced in Eq(9) is extremely important in the description U€S Of Pressure and neutron-proton asymmuyyn the gas phase.

7.5
3

3

P (1073 Mev fm
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The step functior® is introduced to take into account only
those neutrons that are moving towards the surface. We then

- get
8o~ n
p
{{ No=—2(v). (25)
- 4
: f o
= 70 Assuming Fermi-Dirac distribution for the gas,
2 i
=or 2T Ji(7mn)
60— { m Jya 7n)
B where 7, is given by Eq.(18) for the gas phase. In the limit
{ ( { { of very low density, agd,(7) ~T'(k+1)e”, the velocity dis-
50 100 150 200 tribution reduces to the Boltzmann distribution and then
A
pg [8T
~ 9 2
FIG. 2. The GMR energies plotted as a function of mass num- Mo~ 2N 7m (27)

ber. The points with error bars are the experimental enefgigls

-1
(28)

For an isolated hot nucleus, the evaporation rate can also
be calculated from the assumption that the nucleons move
independently inside the nucleus in a single-particle potential
of strengthU, obeying Fermi-Dirac distribution, and when
the energy associated with their radial motion is greater than
Uy, they escape out of the surface. There the flux of neu-

The rate of neutrons hitting the nuclear surface are®%is
whereF =E—TSis the total free energy of the nucleus and ;= 47R2n, and then the evaporation time is given by
\ is the scaling parameter. Whenever the distanisescaled
asr—\r, the densityp(r)—\3p(Ar). The single-particle \/ﬁ
. . . B _ np2, 2%
occupations are not modified by scaling transformations T pgR m
[18]. With the help of Egs(4)—(7) and(20), the free energy
of the nucleus can be easily evaluated once the densities apg very low density,m* ~m, »~ /T, and then using the
known from the variational procedure and thER(T) is  expansion fordy,(7) for the density as given by Eq16),
calculated. In the hydrodynamic model, the compressioRye get, from Eq(29),
modulus of the nucleus is related to the GMR endfgyas
1 2m 2 IT
KA —:?(RT) ekn’l, (29)
Ee=1 \| — o (24 T
m(r<)
Herepu, is the neutron chemical potential of both the gas and
wherem is the nucleon mass an@?) is the mean square the nucleus, existing in thermodynamic equilibrium.
radius of the matter distribution. HeE;, K, and(r?) all
refer to zero temperature. In the effective interaction given 2. Metastable nucleus
by Egs.(1) and(2), the density exponent is chosen such
that the GMR energies in the heavy mass redighere the
scaling model is expected to be valigre fairly well repro-
duced. An optimal choice is given hy=1/6; the fit to the
experimental data is displayed in Fig. 2.

D. Neutron evaporation time trons emitted from the nucleus is given by
In calculating the evaporation times from a hot nucleus,
two different approaches are followedl) The nucleus is 7:27Tf°° f(e)def"maxv cosf sing d6 p (30
assumed to be in thermodynamic equilibrium with a sur- ' Uo 0 n

rounding nucleon gas and) the nucleus is assumed to be

isolated and thermodynamically unstable. L1
where co8,q= v min/v With zmuy,;,=Uq and

1. Nucleus in thermodynamic equilibrium 2
Assuming that the nucleus is in equilibrium with a sur- 3 1 Je
rounding gas of nucleons with neutron den$i§yat tempera- f(e)= 87 (ep )R el M1 1" (3D
0

ture T, the number of neutrons evaporating from the nucleus

would be equal to the number of neutrons entering it. Theyere s the neutron density in the nucleus and, e are

gggggrugift greeu;rgptsh:f&f;sV;?hb\slgﬂ)uc?mflz)r?iﬁgg azb- the neutron Fermi energies at zero and finite temperature.
W 9 The integral(30) can be evaluated to be

phase in unit time is

(e,un /T)k+1

pgJ Av(v)vcos® (m/2— ) ¢:§\E 1 LS
o= : Javf(v) ) o 8 m(eFo)SJZT k§=:0( ) (k+1)2 P, (32
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where u,=(er—Up). With p,=(2mer/2%)%%372, the wherep (r) are the nuclear densities calculated from the
evaporation time can be calculated from variational procedure.

—A7RET Ill. RESULTS AND DISCUSSIONS

' . Tk The parameters of the effective interaction given by Eqs.
[ &\ ¥2m R2T22 (el Tkt 53 (D=(3) are determinedfor a fixed value of the density ex-
e mh3 & -) (k+1)2 (33 ponentn in the interaction by reproducing the volume en-
ergy per particle of symmetric nuclear matter, its saturation

For not too high temperatures:~ e, the series is highly density, volume asymmetry energy, surface energy, and the

converaent. and then taking onlv the first term energy dependence of the real part of the nucleon-nucleus
gent, g only optical potential. The details of the procedure for the deter-

mination of these parameters are given in Hé&f3]. The
1 2m . . . . - .
—=_—5(RT)%eT, (34)  density exponent is varied until a fairly well reproduction
mh of the GMR energies in relatively heavier nuclei is achieved
] ) ) . (see Fig. 2 The parameters so obtained for the effective
an expression that agrees exactly with that given in(B8.  interaction are given in Table I. The incompressibility of
and with that given in Refd4] and[19] though obtained symmetric nuclear matter obtained from this interaction is
from a different physical premise. The choice of the chemi =238 MeV, close to the value ¢€.,=210+ 30 MeV ob-
cal potential is ambiguous for an isolated hot nucleus. In thgained from an extended analysis by Blaig22].
absence of any better prescription, we choose the chemical once the interaction is chosen, self-consistent density so-

EFO

potential obtained from phase-equilibrium conditions. lutions are obtained at different temperatures for a number of
nuclei immersed in an external nucleon gas. The calculations
E. Level density parameter range over the whole periodic taklexcluding the very light

nucle) near theB-stability line. For extremely small tem-

(T<4 MeV) may be nearly temperature independent WherperatureT (~0.1 MeV), one expects t_he external_gas pres-
at least no instability is involved, such as in the case of gian?ure to be nearly zero. We thus obtain the density which is

resonancefl8]. One interesting output of our calculation is Indistinguishable from the zero temperature solution. In ab-
hence to estimate an upper limit below which the bulkSence of an external pressure, at finite temperature, from Eq.

: : - (18) one expectsy to go over tou/T at large distances, and
| t t be affected too drastically by fi
nuciear PropeTiies may not be atscied foo drastica’y by 1 hen from Eq.(16), one findsp to be nonvanishing there.

nite temperature effects. One such example is the level de ) ! .
sity parameten entering in Bethe’s formula for calculating ingucs);r;ﬁengigs%rf?ﬁg%gﬁ:\o\wﬁigﬁfﬁ?g;éﬂg{;gﬁ??rg%%erg_
H H * . .
the density of states of an excited nuclgu#, e*) [20] With the inclusion of the pressure term, the density falls off
/4 smoothly to zero at a finite distance and the results are inde-
e* “Mexp(2Vae*). (35  pendent of the box size.
In Fig. 1, we tentatively show for a representative system,

In arriving at this formula, it is assumed that the nucleus is apamely, "Pb, how to pbt_aln the equ'l.'bm.Jm density solu-
ions for the nuclear liquid 2%Pb) maintaining both me-

zero temperature while the statistics over its spectrum is peF—

formed at finite temperature. This formula therefore has Vaphanic.all and chemical equilibrium with the external gas
lidity provided the level density parametaris not too sen- comprising of protons and neutrons. In the top panel of the

sitive to temperature. In earlier Hartree-Fock calculationd!9ure. the solid lines show the variation of the neutron and

[19] or in semiclassical studies in the subtraction procedur@roton chemical potentials in the liquid phaseicleus with
[9,21] with zero-range Skyrme interaction, it is already external pressurP (equated to be the pressure of the exter-

found that forT<4 MeV, a is nearly temperature indepen- nal ga3 for a fixed neutron-proton asymmeti, for the
dent; in our prescription with a finite range interaction, it nucleon gas and the dashed lines correspond to those for the

may be interesting to find out the range of validity of the r_1eu_tron an_d proton gas. The mfcersectlons_ of the neutron
assumption. liquid-gas lines and the proton liquid-gas lines show that

The single-particle level density,(e) for neutrons and chemical equilibria for the liquid-gas ph_as_es for both neutron
protons is given by21] T and proton are achieved, but the equilibrium press(otes-
ignated byP,, andP,) are different. In the bottom panel, it is
V2 shown that these equilibrium pressures intersect when plot-
gT(e):WJ drm*¥2(r)\Je—V(r), (36)  ted as a function oK. Thls intersection point _g|v_es_the
™ value of the pressure required for thermodynamic liquid-gas

Many average nuclear properties of not too hot nuclei

2

a

*\—
p(A,€) B

0. . . ~ phase equilibrium exerted by the external nucleon gas of
whereVis given by Eq(12). The level density parameter is asymmetryX, (given by the intersection pointThis also

given bya=3a, wherea,=7’/6g (e=e¢¢), and then in  gives the density of the nucleon gag and sinceX, is

the local density approximation, it can be written as known pg and pP are determined.
(372)13 In Fig. 3, the variations of the gas densitgp panel and
- i )
a= dr m* (1) pY3(1)1, 3 the corresponding gas pressdbettom paneél are displayed
642 27 [ (r)p-r)] S as a function of temperature for the stability of two represen-
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10'2 1505m
0.06fF ~———— - —— =~
= 160 0.05|-
[ E — T=0
£ F =T, (5MeV)
PR o 004
o, 1
10 é
3 i‘ 0.03-
10—]? 0.02
i 0.01-
?E 10—2=—
'; = ] ) | 1 ! N
§ [ 1 2 3 4 5 6 7
< _3- r(fm)
o™ 10
- FIG. 4. The charge density distributions f61°%Sm atT=0 and
B | at the limiting temperatur@;,,=5 MeV.

T (MeV) calculation, it turns out to be-0.0007.
In Fig. 6, the limiting temperaturd;,, is shown as a
FIG. 3. The equilibrium gas density and gas pressure as a funJynCt'on of mass of the_ ”‘_JF'eUS on tjgestability line. With
tion of temperature shown for two systerffi€a and?%%Pb. increasing mass, the limiting temperature decreases due to
Coulomb effects. The values of the limiting temperatures are
tative system£°Ca and2°® Pb. They extend up to the limit- consistent with the maximum excitation energy that can be

ing temperaturd,, beyond which the thermodynamic equi- deposite_(_Il]_ in finite nuclei in nuclear collisic_)r_13. In Fig. 7,
librium conditions can no longer be satisfied. At low the equilibrium nuclear masses on tjgestability line are
temperature, both the gas pressure and density are ve played as a function of ne.utl’on and prOton gaS densities at
small; they increase almost exponentially with increasingdifferent temperatures. At a fixed temperature, it is found that
temperature. The gas density reaches a value®#10% the density of the neutron gas increases monotonically with
(depending on the systerof the nuclear interior density at Mass number to maintain thermodynamic equilibrium. The
the limiting temperature. For the lighter nucleus, at the sam&ensity of the proton gas on the other hand shows a mini-
temperature, the gas density is usually smaller. It is alsgnum aroundA~120-130. This variation of the neutron and
found that(see Fig. , whereas for*°Ca the gas is extremely Proton gas densities with mass number is intimately related
proton rich, for 2°%Pb the neutron concentration is higher.
This is consistent with the fact that {tfCa the neutrons are
comparatively more tightly bound, whereas#Pb the pro-
tons have more separation energy than the neutrons. If the
Coulomb effects in the gas phase were considered, one ex- Ca
pects the proton concentratiopf)) there to be lower. 1271~

In Fig. 4, the proton density distribution fol®’Sm is
shown at zero temperature and alsoTat5 MeV corre- 1.26—
sponding to its limiting temperature. As expected, with in-
crease in temperature, the central density is reduced and the
surface becomes more diffuse, but these effects as obtained Zr
here are less pronounced compared to those of previous cal- 124
culations[23,24]. In Fig. 5, the variation with temperature of
the sharp-surface radius constagtis displayed for the sys-
tems“°Ca, °°Zr, and2°%b. This radius constant is related to
the mean square radigs?) by r,AY3=\/5/3(r?2 The ra-
dius increases nearly quadratically up to a temperature close
to the limiting temperature ag(T)~ry(0)(1+ aT?). How- 1 2 3 4 5
ever, near the limiting temperature, the radius shows a pla- T (MeV)
teau. This is due to a delicate interplay between the thermal
motion trying to diffuse the nuclear tail and the external pres- FIG. 5. The radius constant, as a function of temperature for
sure trying to compress it. In previous calculatid@8,24),  the systemg®Ca, °zr, and 2°%Pb. It is related to the mean square
the expansion coefficient is found to bea~0.001; in our  radius as (AY3= \/5/3(r?)*2,

1.28—

T (fm)

1.231-

1.22-
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FIG. 6. The limiting temperaturd;,, as a function of mass
number.
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to the behavior of the neutron and proton separation energies

with increasing mass. Exploiting the condition for thermody-

namic equilibrium, from Eq(16) for low gas densities we

find thatpg~eM’T, whereu is negative of the nucleon sepa-

FIG. 8. The temperature dependence of compression modulii
K 4 of the nuclei“°Ca, %zr, and 2%%pPb.

ration energy. If the neutron@rotong are more bound, the the behavior of the neutron and proton gas density with mass
corresponding neutrofproton gas density is therefore low. nymber. As the temperature is raised, the equilibrium gas
In our model calculations in the TF framework, it is found densities increase. Since the chemical potential is weakly
that the neutron separation energy decreases with mass nuglependent on temperature compared fb, The increase in

ber whereas the proton separation energy shows a maximufRe gas density with temperature is understood. The relation

at A=120-130. A similar behavior for the separation ener-

pa~e*'T also explains the weak dependence of the gas den-

gies is also observed in the liquid-drop model. This explainssity with mass number with increase in temperature. From
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FIG. 7. The equilibrium neutrofsolid line and protondashed
lines) gas densities for different masses on Bestability line at
different temperatures.

the figure it is also found that for a fixed neutron-proton
asymmetry and a given gas density, only one nucleus can
remain in stable equilibrium with a specific charge and mass.
This finding might have an important bearing in nucleosyn-
thesis in the astrophysical context. However, the situation
becomes more complicated there due to the presence of elec-
trons.

In Fig. 8, the temperature dependences of the compression
modulus of both light, medium-heavy, and heavy systems are
displayed. The decrease with temperature is given approxi-
mately byKA(T)~K(0)(1— 6T?) where 5~0.012-0.014,
depending on the system, being higher for lighter nuclei.
This temperature dependence-is3 times larger compared
to that for symmetric infinite nuclear mattgt3] and is in
conformity with that obtained in a recent calculatif?b]
using the Skyrme force, SKM The strong temperature de-
pendence of the surface free energy is the origin of this
sharper decline ifK5(T) compared tK_.(T).

In Fig. 9, the level density parameta(T) given by the
Eq. (37) is plotted as a function of temperature for four nu-
clei 4%Ca, %0 zr, 1%%m, and?*®Pb. The level density param-
eter increases slowly at low temperatures and then falls down
a little near the limiting temperature. The fractional increase
is most prominent for lighter nuclei~10% for “°Ca,
~5% for 2°%b). This temperature dependence is a little
stronger than that obtained by Suraatdal.[21] where a 2%
increase is reported. Near the limiting temperature, there is a
striking difference in the behavior of the level density param-
eter. Whereas in Ref21], a(T) increases rather sharply near
Tim» in our calculationa(T) decreases, presumably because
of the compressional effects introduced by the external gas
on the density tail. It may be further noted that the values of
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FIG. 9. The temperature dependence of the level density param-
etera for 4°Ca, %%zr, 1%%m, and?*®Pb.

a(T) obtained in our calculation are 15% smaller com-
pared to those obtained in R¢R1] where the SKM force is
used.

The level density parameter is intimately connected with
the entropy of the system 8~2a(T)T. In Fig. 10, we plot
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the entropy per particle as a function of temperature for a
light (Ca) and a heavyPb) nucleus from this approximate
relation (dashed ling and compare them with the values
(solid line) obtained from the Landau-quasiparticle approxi-
mation given by Eq(20). We also show(dotted ling the
entropy per particle for infinite symmetric nuclear matter at . . : .
different temperatures. The entropy increases almost Iinearl§(-r)/A is larger ].cor I|ghter nuclei as can be seen from Fig. 9.
with temperature. It is found that except at very low tempera- The evaporation times for neutrons are calculated for the

tures, the approximate values are always larger. It is als ame set of nuclei as in Fig. 10 at different temp_eratur_e_s i_n
seen that at the same temperature, lighter nuclei genera e model_s of both_ me_tastable and thermodynamic equilibria
; f';\nd are displayed in Fig. 11. At low temperatures, the evapo-

more entropy per particle. This is consistent with the fact tharation times calculated from both the models for a particular
nucleus are the same; at higher temperatures, the model for
thermodynamic equilibrium yields evaporation times that are
consistently lower. This means that hot nuclei in the meta-
stable description are comparatively more stable against neu-
tron evaporation. This is counterintuitive; in equilibrium cal-
- culations, since the external gas exerts a pressure on the
s nucleus, one expects it to be more stable than under zero
, pressure conditions as in the metastable situation. However,
in the metastable situation, the choice of the chemical poten-
B >, e tial that enters in Eq(33) is ambiguous. The chemical po-
°. " tential in the equilibrium situation is therefore used for the
L s L calculation of the lifetimes in the metastable description.
2 e This may be the possible reason for the longer lifetime ob-
< tained in the metastable situation.

FIG. 11. Lifetime against neutron evaporation as a function of
temperature fo°Ca and?%%Pb, evaluated for metastable situation
and for liquid-gas phase equilibrium.

IV. SUMMARY AND CONCLUSIONS
T (MeV)

We have proposed a prescription to solve self-consistently
FIG. 10. The dotted line shows the entropy per particle for sym-the density profile of two-component hot nuclei in thermo-
metric infinite nuclear matter. The solid lines correspond to entropydynamic equilibrium with a surrounding gas in a refined
per particle for*’Ca and2°%Pb (as markell calculated from Eq. Thomas-Fermi approximation. The effective interaction em-
(20). The dashed lines are the corresponding approximate valugdloyed is momentum and density dependent and of finite
given by 2a(T)T. range, the parameters of which are chosen such that the bulk
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properties of finite nuclei as well as the collective GMR en-remain immersed in stable equilibrium with a particular
ergies are quite well reproduced. The incompressibility ofcharge and mass. Increasing the temperature would entail a
symmetric nuclear matter then turns out tokhe=238 MeV, change in the density and composition of the external gas
in close agreement with values obtained from more detailedntil the chemical and mechanical equilibrium between the
calculations[22]. The density solutions for hot nuclei ob- nucleus and surrounding gas are lost at the limiting tempera-
tained in this prescription are found to be independent of théure. The calculated limiting temperatures are consistent with
box size in which the calculations are done. For stability ofthe highest possible excitation energies deposited in different
systems, it is found that the hotter the nuclei, the larger is tha@uclear systems in energetic nuclear collisions. As the tem-
pressure or equivalently the density of the surrounding gagerature increases, the nucleus expands, but the expansion of
At a fixed temperature, the density of the neutron gas inthe nuclear radius seems to be a little slower compared to
creases monotonically with mass number whereas the deprevious calculationg4,23,24, particularly near the limiting

sity of the proton gas shows a minimumAat+120-130, in  temperature. As a result, the temperature dependence of
close parallel with the observed behavior of neutron and pro6MR energies is mostly governed by the temperature depen-
ton separation energies with mass number in the liquid-dropgence of the compression modulus of finite nuclei and is
model. It further follows from the calculation that at a fixed given approximately by Eg(T)~Eg(0)[1—0.007T?],
temperature, in an external surrounding ¢@fsspecific den-  which is weak and consistent with calculatiof5] as re-

sity and neutron-proton asymmelryonly one nucleus can ported recently.
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