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J. N. De and N. Rudra*
Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Calcutta-700 064, India

Subrata Pal and S. K. Samaddar
Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta-700 064, India

~Received 26 April 1995!

Self-consistent density profiles of two-component hot nuclei in equilibrium with an external gas are cal
lated in the semi-classical Thomas-Fermi model with a new prescription. The energy functional is calcula
with a momentum and density dependent finite range two-body effective interaction. The evolution of eq
librium nuclear masses as a function of temperature and densities of the external neutron and proton g
investigated in this description. Limiting temperatures of nuclei, their lifetimes against neutron evaporati
temperature dependence of incompressibilites of finite nuclei and a few other observables are also studi
the present model.

PACS number~s!: 21.60.2n, 21.10.2k, 21.30.Fe, 21.65.1f
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I. INTRODUCTION

The properties of hot nuclear systems created in the la
ratory in intermediate energy heavy ion collisions can n
be investigated experimentally@1#. They give us information
about the temperature dependence of the surface tensio
finite nuclei, their incompressibility, level density paramet
etc., which are extremely useful in answering some imp
tant questions of astrophysical interest. The hot nuclei
created are not thermodynamically stable; they deexcite
emission of nucleons and light particles. The theoreti
modeling of such an evaporating nucleus poses some p
lems. The continuum states of a nucleus at nonzero temp
ture are occupied with probability given by a Fermi fact
@2# as a result of which the particle density does not vanis
large distances. The extracted observables then depen
the size of the box in which the calculation is performed. F
not too high temperatures, the evaporation times are q
long; the nucleus can then be considered to be in a m
stable state, very much like a superheated liquid drop@3#. A
free variation of the density profiles in the Thomas-Fer
~TF! description can then lead to a solution of the density
a sphere of radiusR ~which is also given variationally! with
zero pressure outside, but with externally given bound
conditions; i.e., the derivatives of the density at the cen
and at the surface should be zero@4#. In earlier thermal
Hartree-Fock~HF! @5# or semiclassical calculations@6,7#,
this problem was circumvented either by imposing artific
conditions on the size of the basis states or by demandin
exponentially decreasing density at large distances. In l
calculations, this problem was addressed in the HF@8# and
TF @9# approaches in a so-called subtraction procedu
where the nucleus was studied by means of a thermodyna
potential calculated as the difference between the thermo
namic potentials for the nucleus in equilibrium with a su
rounding gas and that for the gas alone. This has the d
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able feature that asymptotically the nuclear plus gas dens
falls off smoothly to the gas density and the result is ind
pendent of the size of the box. The solution does not exac
correspond to that of an isolated nucleus; the subtrac
grand potential contains a residual contribution due to t
coupling of the liquid and gas parts. This contribution is
however, expected to be small.

To compensate for the tendency of the nucleons to lea
the hot nucleus, a suitable external pressure has to be
posed@7,10# on the system to maintain thermodynamic equ
librium. This constraint appears somewhat artificial for th
description of an isolated hot nucleus in the laboratory, but
more relevant in the astrophysical context where a nucle
embedded in a hot nucleon gas is a possible scenario. In
paper, we look for a solution of the density profile of this ho
nucleus immersed in a nucleon gas at the same temperat
which supplies the necessary external pressure. Mechan
equilibrium is maintained from the equality of the pressure
the condensed phase~the nucleus! with the external pressure
exerted by the gas phase, and chemical equilibrium is ma
tained from the equality of the average number of particl
leaving the hot nucleus with the average number of partic
entering it; i.e., the pressure and the chemical potential in t
two phases are equal. Since each phase is a two-compo
phase of neutrons and protons, the chemical potentials
neutrons and protons in both the liquid and gas phase
equal separately.

With the above-mentioned thermodynamic equilibrium
conditions, the density profiles of nuclei at different temper
tures are calculated in a refined TF approximation scheme
this paper. Beyond a certain temperature, the equilibriu
conditions, however, cannot be maintained. The nucleus
unstable, and can no longer exist as a bound system. T
temperature is called the limiting temperatureTlim . We ex-
plore this limit for different nuclear systems. For a particula
temperature, density, and composition~neutron-proton ratio!
of the nucleon gas, we find that only one nuclear isotope c
coexist in equilibrium. The evolution of this equilibrium
nuclear mass as a function of temperature, density, and co
position of the nucleon gas is then calculated. From the c
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53 781REFINED THOMAS-FERMI DESCRIPTION OF HOT NUCLEI
culated nuclear densities at different temperatures, we furth
calculate the lifetime of nuclei against neutron evaporatio
and the nuclear level density parameter. Assuming that t
scaling model holds, we also calculate nuclear incompre
ibilities as a function of temperature.

In Sec. II, we review the variational Thomas-Fermi equa
tions with the new prescription. The expressions for the i
compressibility of finite nuclei, the neutron evaporation time
the level density parameter, etc., are also given. Results fr
the calculations are presented in Sec. III and the concludi
remarks are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In the following, we give a brief outline of the procedure
for determining the density profiles of hot nuclei in the TF
approximation with a chosen realistic two-body effective in
teraction.

A. Effective interaction

The TF interaction energy density is calculated with
momentum- and density-dependent finite-range two-body
fective interaction@11#. This interaction is of the Seyler-
Blanchard type@12,13#. It is given by

veff~r ,p,r!5Cl ,u@v1~r ,p!1v2~r ,r!#, ~1!

v152~12p2/b2! f ~r 1,r 2!,

v25d2@r1~r 1!1r2~r 2!#
nf ~r 1,r 2!, ~2!

with

f ~r 1,r 2!5
e2ur12r2u/a

ur 12r 2u/a
. ~3!

Herea is the spatial range andb the strength of repulsion in
the momentum dependence of the interaction;r5ur 12r 2u is
the relative coordinate, andp5up12p2u is the relative mo-
er
n
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mentum of the two interacting nucleons. The subscriptsl and
u in the strengthC refer to like pair (n-n or p-p! or unlike
pair (n-p) interaction,d andn are measures of the strength
of density dependence, andr1 andr2 are the densities at the
sites of the two nucleons. The five potential parametersCl ,
Cu , a, b, andd for a fixed value of the density exponentn
are determined by reproducing~i! the volume energy coeffi-
cient for symmetric nuclear matter (av5216.1 MeV!, ~ii !
saturation density of normal nuclear matter (r050.1533
fm23), ~iii ! the volume asymmetry energy coefficien
(J534 MeV!, ~iv! the surface energy coefficient of symmet
ric nuclear matter (aS518.01 MeV!, and~v! the energy de-
pendence of the real part of the nucleon-nucleus optical p
tential (dVAn /dE50.30; VAn is the potential mentioned!.

The details of the procedure for determining these para
eters are given in Ref.@13#. The parametern is obtained by
reproducing the giant monopole resonance~GMR! energies
of a large number of nuclei employing the scaling mod
@14#. The parameter set of the interaction is given in Table
We have tested that this interaction reproduces the grou
state binding energies, charge rms radii, charge distributio
etc., very well for a host of nuclei from16O to very heavy
systems. Moreover, it has been found that the properties
pure neutron matter calculated with this type of interactio
are in good agreement@15# with those obtained from other
sophisticated interactions.

B. Self-consistent density profile

The interaction energy density for a finite system with th
interaction chosen is given by

TABLE I. The parameters of the effective interaction~in MeV
fm units!.

Cl Cu a b d n K̀

291.7 910.6 0.6199 928.2 0.879 1/6 238
ey are
E I~r !5
2

h3(t
F 1h3E $v1~ ur2r 8u,up2p8u!1v2~ ur2r 8u,r!%$Clnt~r 8,p8!1Cun2t~r 8,p8!%nt~r ,p!Gdr 8dpdp8. ~4!

Here v1 and v2 are the potential functions given by Eq.~2!, t is the isospin index, andnt(r ,p) is the position-dependent
occupation probability. The Coulomb interaction energy density is given by the sum of the direct and exchange terms. Th
given by

ED~r !5e2prp~r !E dr8r 82rp~r 8!g~r ,r 8!, ~5!

Eex~r !52
3e2

4p
~3p2!1/3rp

4/3~r !. ~6!

Hererp(r ) is the density profile of the protons and

g~r ,r 8!5
~r1r 8!2ur2r 8u

rr 8
. ~7!

For one-component nuclear matter of constant densityr0 in equilibrium at temperatureT under a constant pressureP, the
self-consistent occupation probablityn(p) is obtained by minimizing the thermodynamic potential
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G5E2TS2mA1PV, ~8!

whereE andS are the total energy and entropy of the system,m the chemical potential, andV the volume. Following Ref.
@13#, the minimization leads to the expression for occupation probability as

n~p!5F11expH S p22m1V01p2V11V22m1P/r0D /TJ G21

, ~9!

wherem is the nucleon mass,V2 a rearrangement potential term appearing because of the density dependence in the inte
given by Eq.~1!, and V01p2V1 is the single-particle potential, the momentum-dependent part of which determines
effective nucleon mass defined as

m*5F 1m12V1G21

. ~10!

For the two-component finite nuclear system, the occupation probability is position dependent, and in the local d
approximation can be written as

nt~r ,p!5F11expH S p2

2mt* ~r !
1Vt

0~r !1Vt
2~r !1dt,pVC~r !2mt1P/r~r ! D /TJ G21

. ~11!

Here an extra termVC(r ) enters because of the inclusion of Coulomb force. To arrive at Eq.~11!, the zeroth order TF
approximation has been used. The corrections to the kinetic energy density in the form of density gradient terms have n
included because of the following reasons. First, the potential parameters are determined using the zeroth order TF
mation. Second, the corrections which are mostly important in the density tail region are not yet physically well founde@16#
and therefore have not been included in our calculations.

In Eq. ~11!,

Vt
0~r !5E dr 8@v2~ ur2r 8u,r!2 f ~r ,r 8!#@Clrt~r 8!1Cur2t~r 8!#1

4p

b2h3E dr 8f ~r ,r 8!

3@Cl„2mt* ~r 8!T…5/2J3/2„ht~r 8!…1Cu„2m2t* ~r 8!T…5/2J3/2„h2t~r 8!…#, ~12!

Vt
1~r !5

1

b2E dr 8f ~r ,r 8!@Clrt~r 8!1Cur2t~r 8!#, ~13!

Vt
2~r !5E dr 8

]v2
]r~r 8!(t8

@Clrt8~r !1Cur2t8~r !#rt8~r 8!, ~14!

and the Coulomb single-particle potential is the sum of direct and exchange terms,

VC~r !5e2pE dr8r 82rp~r 8!g~r ,r 8!2
3e2

4p
~3p2!1/3rp

1/3~r !. ~15!

The density is obtained from

rt~r !5
2

h3E nt~r ,p!dp

5
4p

h3
@2mt* ~r !T#3/2J1/2„ht~r !…. ~16!

In Eqs.~12! and ~16!, Jk(h)’s are the Fermi integrals,

Jk~h!5E
0

` xk

11exp~x2h!
dx ~17!

and

ht~r !5@mt2Vt
0~r !2Vt

2~r !2dt,pVC~r !2P/r~r !#/T. ~18!

The total entropy of the nucleus, in the Landau-quasiparticle approximation, is given by
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S5(
t

2
2

h3E $nt~r ,p!lnnt~r ,p!1@12nt~r ,p!# ln@12nt~r ,p!#%drdp, ~19!
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which after momentum integration leads to

S5E dr(
t

rt~r !F53 J3/2„ht~r !…

J1/2„ht~r !…
2ht~r !G . ~20!

To arrive at the self-consistent density profile at a giv
temperatureT in equilibrium with the external gas at th
sameT the following sequence of steps is followed.

~i! To start with, we fix an external pressureP and choose
guess densities for neutrons and protons given by Fe
functions normalized to the neutron and proton numbers
the nucleus.

~ii ! The interactionVt
1(r ) is calculated from Eq.~13! and

thenmt* (r ) is obtained from Eq.~10!.
~iii ! The fugacityht(r ) is calculated from Eq.~16!.
~iv! The different components of the single-particle pote

tials Vt
0(r ), Vt

2(r ), andVC(r ) are obtained from Eqs.~12!,
~14!, and~15!.

~v! The chemical potentialsmt’s are obtained from the
constraint of number conservation as@see Eq.~18!#

mt5
1

At
E dr @Tht~r !1Vt

0~r !1Vt
2~r !1dt,pVC~r !

1P/r~r !#rt~r !, ~21!

whereAt is the number of neutrons or protons.
~vi! The fugacityht(r ) is recalculated from Eq.~18! us-

ing mt obtained in the previous step.
~vii ! The densityrt(r ) is recalculated with this fugacity

from Eq. ~16! with themt* (r ) obtained in step~ii !.
Steps~i!–~vii ! are then repeated until the chemical pote

tials and the densities obtained in the (n21)th andnth itera-
tion match the desired accuracy.

~viii ! The above calculations for the densities are repea
for different values ofP and thus one obtains the liquid line
@see Fig. 1~a!# for the neutrons and the protons in the nucle
in theP-m plane.

~ix! To obtain the gas lines in theP2m plane for a fixed
neutron-proton asymmetryXg in the infinite nucleon gas@de-
fined asXg5(rg

n2rg
p)/rg , whererg is the density of the

gas, assumed to be neutral#, the gas pressure and the chem
cal potentialsmg

n andmg
p are obtained for different values o

the gas density@13#.
~x! The points of intersection of the liquid lines with th

gas lines givemg
p(Xg)5m l

p(Xg) andmg
n(Xg)5m l

n(Xg) where
the subscriptl refers to the liquid phase~the nucleus!, but the
pressurePp(Xg) andPn(Xg) at the points of intersection ar
in general different as can be seen from Fig. 1~a!.

~xi! The above steps are repeated for different values
Xg and the thermodynamically stable solution is obtained
finding out the intersection ofPp(Xg) andPn(Xg), as shown
in Fig. 1~b!.

In passing, we may remark that the pressure term as
troduced in Eq.~9! is extremely important in the descriptio
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of multifragmentation of nuclei under compression in
quantum statistical model, which would be presented in
different context.

C. Incompressibility of a finite nucleus

The incompressibility of infinite symmetric nuclear matt
at a finite temperatureT is given by

K`~T!5F9r2
]2f

]r2G
r5r`~T!

, ~22!

where f is the free energy per particle of the matter a
r`(T) is its saturation density at the temperature concern
For a finite nucleus, the compression modulus is calcula
in the scaling model@17# as

KA~T!5Fl2
]2@F~l!/A#

]l2 G
l→1

, ~23!

FIG. 1. ~a! TheP-m curve for 208Pb forXg50.17. The dashed
lines correspond to the gas phase and the solid lines correspo
the liquid ~nucleus! phase. The intersections of the liquid and g
lines define equilibriummn andmp and thus also give correspond
ing equilibrium pressuresPn andPp . ~b! The variation ofPn and
Pp with Xg is shown. Their intersection gives the equilibrium va
ues of pressure and neutron-proton asymmetryXg in the gas phase
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whereF5E2TS is the total free energy of the nucleus a
l is the scaling parameter. Whenever the distancer is scaled
as r→lr , the densityr(r )→l3r(lr ). The single-particle
occupations are not modified by scaling transformati
@18#. With the help of Eqs.~4!–~7! and~20!, the free energy
of the nucleus can be easily evaluated once the densitie
known from the variational procedure and thenKA(T) is
calculated. In the hydrodynamic model, the compress
modulus of the nucleus is related to the GMR energyEG as

EG5\A KA

m^r 2&
, ~24!

wherem is the nucleon mass and̂r 2& is the mean squar
radius of the matter distribution. HereEG , KA , and^r 2& all
refer to zero temperature. In the effective interaction gi
by Eqs.~1! and ~2!, the density exponentn is chosen such
that the GMR energies in the heavy mass region~where the
scaling model is expected to be valid! are fairly well repro-
duced. An optimal choice is given byn51/6; the fit to the
experimental data is displayed in Fig. 2.

D. Neutron evaporation time

In calculating the evaporation times from a hot nucle
two different approaches are followed:~i! The nucleus is
assumed to be in thermodynamic equilibrium with a s
rounding nucleon gas and~ii ! the nucleus is assumed to
isolated and thermodynamically unstable.

1. Nucleus in thermodynamic equilibrium

Assuming that the nucleus is in equilibrium with a s
rounding gas of nucleons with neutron densityrg

n at tempera-
tureT, the number of neutrons evaporating from the nucl
would be equal to the number of neutrons entering it.
number of neutrons hitting~and subsequently getting a
sorbed! unit area of the nucleus with velocityv from the gas
phase in unit time is

n05
rg
n*dvf ~v!vcosuQ~p/22u!

*dvf ~v!
.

FIG. 2. The GMR energies plotted as a function of mass n
ber. The points with error bars are the experimental energies@26#.
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The step functionQ is introduced to take into account only
those neutrons that are moving towards the surface. We t
get

n05
rg
n

4
^v&. ~25!

Assuming Fermi-Dirac distribution for the gas,

^v&5A2T

m

J1~hn!

J1/2~hn!
, ~26!

wherehn is given by Eq.~18! for the gas phase. In the limit
of very low density, asJk(h);G(k11)eh, the velocity dis-
tribution reduces to the Boltzmann distribution and then

n0'
rg
n

4
A 8T

pm
. ~27!

The rate of neutrons hitting the nuclear surface area 4pR2 is
N 54pR2n0 and then the evaporation time is given by

t5
1

N
5Frg

nR2A8pT

m G21

. ~28!

At very low density,m*'m, h'm/T, and then using the
expansion forJ1/2(h) for the density as given by Eq.~16!,
we get, from Eq.~28!,

1

t
5

2m

p\3 ~RT!2emn /T. ~29!

Heremn is the neutron chemical potential of both the gas a
the nucleus, existing in thermodynamic equilibrium.

2. Metastable nucleus

For an isolated hot nucleus, the evaporation rate can a
be calculated from the assumption that the nucleons mo
independently inside the nucleus in a single-particle poten
of strengthU0 obeying Fermi-Dirac distribution, and when
the energy associated with their radial motion is greater th
U0 , they escape out of the surface. There the flux of ne
trons emitted from the nucleus is given by

F 52pE
U0

`

f ~e!deE
0

umax
v cosu sinu du rn , ~30!

where cosumax5vmin /v with
1

2
mvmin

2 5U0 and

f ~e!5
3

8p

1

~eF0!
3/2

Ae

e~e2eF!/T11
. ~31!

Herern is the neutron density in the nucleus andeF0, eF are
the neutron Fermi energies at zero and finite temperatu
The integral~30! can be evaluated to be

F 5
3

8
A2

m

1

~eF0!
3/2T

2(
k50

`

~2 !k
~emn /T!k11

~k11!2
rn , ~32!

um-
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where mn5(eF2U0). With rn5(2meF /\
2)3/2/3p2, the

evaporation time can be calculated from

1

t
54pR2F

5S eF
eF0

D 3/22mR2T2

p\3 (
k50

`

~2 !k
~emn /T!k11

~k11!2
. ~33!

For not too high temperatureseF'eF0, the series is highly
convergent, and then taking only the first term

1

t
5

2m

p\3 ~RT!2emn /T, ~34!

an expression that agrees exactly with that given in Eq.~29!
and with that given in Refs.@4# and @19# though obtained
from a different physical premise. The choice of the chem
cal potential is ambiguous for an isolated hot nucleus. In
absence of any better prescription, we choose the chem
potential obtained from phase-equilibrium conditions.

E. Level density parameter

Many average nuclear properties of not too hot nuc
(T<4 MeV! may be nearly temperature independent wh
at least no instability is involved, such as in the case of gi
resonances@18#. One interesting output of our calculation
hence to estimate an upper limit below which the bu
nuclear properties may not be affected too drastically by
nite temperature effects. One such example is the level d
sity parametera entering in Bethe’s formula for calculatin
the density of states of an excited nucleusr(A,e* ) @20#:

r~A,e* !5
1

12S p2

a D 1/4e*25/4exp~2Aae* !. ~35!

In arriving at this formula, it is assumed that the nucleus is
zero temperature while the statistics over its spectrum is
formed at finite temperature. This formula therefore has
lidity provided the level density parametera is not too sen-
sitive to temperature. In earlier Hartree-Fock calculatio
@19# or in semiclassical studies in the subtraction proced
@9,21# with zero-range Skyrme interaction, it is alread
found that forT<4 MeV, a is nearly temperature indepen
dent; in our prescription with a finite range interaction,
may be interesting to find out the range of validity of t
assumption.

The single-particle level densitygt(e) for neutrons and
protons is given by@21#

gt~e!5
A2

p2\3E drmt*
3/2~r !Ae2Vt

0~r !, ~36!

whereVt
0 is given by Eq.~12!. The level density parameter i

given by a5(tat whereat5p2/6gt(e5eF), and then in
the local density approximation, it can be written as

a5
~3p2!1/3

6\2 E dr(
t

@mt* ~r !rt
1/3~r !#, ~37!
i-
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where rt(r ) are the nuclear densities calculated from
variational procedure.

III. RESULTS AND DISCUSSIONS

The parameters of the effective interaction given by E
~1!–~3! are determined~for a fixed value of the density ex
ponentn in the interaction! by reproducing the volume en
ergy per particle of symmetric nuclear matter, its saturat
density, volume asymmetry energy, surface energy, and
energy dependence of the real part of the nucleon-nuc
optical potential. The details of the procedure for the de
mination of these parameters are given in Ref.@13#. The
density exponentn is varied until a fairly well reproduction
of the GMR energies in relatively heavier nuclei is achiev
~see Fig. 2!. The parameters so obtained for the effect
interaction are given in Table I. The incompressibility
symmetric nuclear matter obtained from this interaction
K`5238 MeV, close to the value ofK`5210630 MeV ob-
tained from an extended analysis by Blaizot@22#.

Once the interaction is chosen, self-consistent density
lutions are obtained at different temperatures for a numbe
nuclei immersed in an external nucleon gas. The calculat
range over the whole periodic table~excluding the very light
nuclei! near theb-stability line. For extremely small tem
peratureT (;0.1 MeV!, one expects the external gas pre
sure to be nearly zero. We thus obtain the density whic
indistinguishable from the zero temperature solution. In
sence of an external pressure, at finite temperature, from
~18! one expectsh to go over tom/T at large distances, an
then from Eq.~16!, one findsr to be nonvanishing there
Thus the nuclear density profile becomes unphysical dep
ing on the size of the box in which the calculations are do
With the inclusion of the pressure term, the density falls
smoothly to zero at a finite distance and the results are in
pendent of the box size.

In Fig. 1, we tentatively show for a representative syste
namely, 208Pb, how to obtain the equilibrium density sol
tions for the nuclear liquid (208Pb) maintaining both me
chanical and chemical equilibrium with the external g
comprising of protons and neutrons. In the top panel of
figure, the solid lines show the variation of the neutron a
proton chemical potentials in the liquid phase~nucleus! with
external pressureP ~equated to be the pressure of the ext
nal gas! for a fixed neutron-proton asymmetryXg for the
nucleon gas and the dashed lines correspond to those fo
neutron and proton gas. The intersections of the neu
liquid-gas lines and the proton liquid-gas lines show t
chemical equilibria for the liquid-gas phases for both neut
and proton are achieved, but the equilibrium pressures~des-
ignated byPn andPp) are different. In the bottom panel, it i
shown that these equilibrium pressures intersect when p
ted as a function ofXg . This intersection point gives th
value of the pressure required for thermodynamic liquid-
phase equilibrium exerted by the external nucleon gas
asymmetryXg ~given by the intersection point!. This also
gives the density of the nucleon gasrg and sinceXg is
known rg

n andrg
p are determined.

In Fig. 3, the variations of the gas density~top panel! and
the corresponding gas pressure~bottom panel! are displayed
as a function of temperature for the stability of two repres



-
i
w
v
i

t

y
e
e

f

in
d

-
t

l

p
m
e

to
e
e

at
t
h
e
i-

d

u

786 53J. N. DE, N. RUDRA, SUBRATA PAL, AND S. K. SAMADDAR
tative systems40Ca and208Pb. They extend up to the limit
ing temperatureTlim beyond which the thermodynamic equ
librium conditions can no longer be satisfied. At lo
temperature, both the gas pressure and density are
small; they increase almost exponentially with increas
temperature. The gas density reaches a value of;5210 %
~depending on the system! of the nuclear interior density a
the limiting temperature. For the lighter nucleus, at the sa
temperature, the gas density is usually smaller. It is a
found that~see Fig. 7!, whereas for40Ca the gas is extremel
proton rich, for 208Pb the neutron concentration is high
This is consistent with the fact that in40Ca the neutrons ar
comparatively more tightly bound, whereas in208Pb the pro-
tons have more separation energy than the neutrons. I
Coulomb effects in the gas phase were considered, one
pects the proton concentration (rg

p) there to be lower.
In Fig. 4, the proton density distribution for150Sm is

shown at zero temperature and also atT55 MeV corre-
sponding to its limiting temperature. As expected, with
crease in temperature, the central density is reduced an
surface becomes more diffuse, but these effects as obta
here are less pronounced compared to those of previous
culations@23,24#. In Fig. 5, the variation with temperature o
the sharp-surface radius constantr 0 is displayed for the sys
tems40Ca, 90Zr, and 208Pb. This radius constant is related
the mean square radius^r 2& by r 0A

1/35A5/3̂ r 2&1/2. The ra-
dius increases nearly quadratically up to a temperature c
to the limiting temperature asr 0(T)'r 0(0)(11aT2). How-
ever, near the limiting temperature, the radius shows a
teau. This is due to a delicate interplay between the ther
motion trying to diffuse the nuclear tail and the external pr
sure trying to compress it. In previous calculations@23,24#,
the expansion coefficienta is found to bea'0.001; in our

FIG. 3. The equilibrium gas density and gas pressure as a f
tion of temperature shown for two systems40Ca and208Pb.
-
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calculation, it turns out to be'0.0007.
In Fig. 6, the limiting temperatureTlim is shown as a

function of mass of the nucleus on theb-stability line. With
increasing mass, the limiting temperature decreases due
Coulomb effects. The values of the limiting temperatures ar
consistent with the maximum excitation energy that can b
deposited@1# in finite nuclei in nuclear collisions. In Fig. 7,
the equilibrium nuclear masses on theb-stability line are
displayed as a function of neutron and proton gas densities
different temperatures. At a fixed temperature, it is found tha
the density of the neutron gas increases monotonically wit
mass number to maintain thermodynamic equilibrium. Th
density of the proton gas on the other hand shows a min
mum aroundA'1202130. This variation of the neutron and
proton gas densities with mass number is intimately relate

nc-

FIG. 4. The charge density distributions for150Sm atT50 and
at the limiting temperatureTlim55 MeV.

FIG. 5. The radius constantr 0 as a function of temperature for
the systems40Ca, 90Zr, and 208Pb. It is related to the mean square
radius asr 0A

1/35A5/3̂ r 2&1/2.
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53 787REFINED THOMAS-FERMI DESCRIPTION OF HOT NUCLEI
to the behavior of the neutron and proton separation ener
with increasing mass. Exploiting the condition for thermod
namic equilibrium, from Eq.~16! for low gas densities we
find thatrg;em/T, wherem is negative of the nucleon sepa
ration energy. If the neutrons~protons! are more bound, the
corresponding neutron~proton! gas density is therefore low
In our model calculations in the TF framework, it is foun
that the neutron separation energy decreases with mass
ber whereas the proton separation energy shows a maxim
at A'1202130. A similar behavior for the separation ene
gies is also observed in the liquid-drop model. This expla

FIG. 6. The limiting temperatureTlim as a function of mass
number.

FIG. 7. The equilibrium neutron~solid lines! and proton~dashed
lines! gas densities for different masses on theb-stability line at
different temperatures.
gies
y-

-

.
d
num-
um
r-
ins

the behavior of the neutron and proton gas density with ma
number. As the temperature is raised, the equilibrium g
densities increase. Since the chemical potential is weak
dependent on temperature compared to 1/T, the increase in
the gas density with temperature is understood. The relati
rg;em/T also explains the weak dependence of the gas de
sity with mass number with increase in temperature. Fro
the figure it is also found that for a fixed neutron-proton
asymmetry and a given gas density, only one nucleus c
remain in stable equilibrium with a specific charge and mas
This finding might have an important bearing in nucleosyn
thesis in the astrophysical context. However, the situatio
becomes more complicated there due to the presence of e
trons.

In Fig. 8, the temperature dependences of the compress
modulus of both light, medium-heavy, and heavy systems a
displayed. The decrease with temperature is given appro
mately byKA(T);KA(0)(12dT2) whered;0.01220.014,
depending on the system, being higher for lighter nucle
This temperature dependence is; 3 times larger compared
to that for symmetric infinite nuclear matter@13# and is in
conformity with that obtained in a recent calculation@25#
using the Skyrme force, SKM*. The strong temperature de-
pendence of the surface free energy is the origin of th
sharper decline inKA(T) compared toK`(T).

In Fig. 9, the level density parametera(T) given by the
Eq. ~37! is plotted as a function of temperature for four nu
clei 40Ca, 90 Zr, 150Sm, and208Pb. The level density param-
eter increases slowly at low temperatures and then falls dow
a little near the limiting temperature. The fractional increas
is most prominent for lighter nuclei (;10% for 40Ca,
;5% for 208Pb). This temperature dependence is a littl
stronger than that obtained by Suraudet al. @21# where a 2%
increase is reported. Near the limiting temperature, there is
striking difference in the behavior of the level density param
eter. Whereas in Ref.@21#, a(T) increases rather sharply near
Tlim , in our calculation,a(T) decreases, presumably becaus
of the compressional effects introduced by the external g
on the density tail. It may be further noted that the values

FIG. 8. The temperature dependence of compression modu
KA of the nuclei40Ca, 90Zr, and 208Pb.
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788 53J. N. DE, N. RUDRA, SUBRATA PAL, AND S. K. SAMADDAR
a(T) obtained in our calculation are;15% smaller com-
pared to those obtained in Ref.@21# where the SKM force is
used.

The level density parameter is intimately connected w
the entropy of the system byS'2a(T)T. In Fig. 10, we plot
the entropy per particle as a function of temperature for
light ~Ca! and a heavy~Pb! nucleus from this approximate
relation ~dashed line! and compare them with the value
~solid line! obtained from the Landau-quasiparticle approx
mation given by Eq.~20!. We also show~dotted line! the
entropy per particle for infinite symmetric nuclear matter
different temperatures. The entropy increases almost linea
with temperature. It is found that except at very low temper
tures, the approximate values are always larger. It is a
seen that at the same temperature, lighter nuclei gene
more entropy per particle. This is consistent with the fact th

FIG. 9. The temperature dependence of the level density par
etera for 40Ca, 90Zr, 150Sm, and208Pb.

FIG. 10. The dotted line shows the entropy per particle for sy
metric infinite nuclear matter. The solid lines correspond to entro
per particle for 40Ca and 208Pb ~as marked! calculated from Eq.
~20!. The dashed lines are the corresponding approximate va
given by 2a(T)T.
th
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at
rly
a-
lso
rate
at

a(T)/A is larger for lighter nuclei as can be seen from Fig. 9
The evaporation times for neutrons are calculated for t

same set of nuclei as in Fig. 10 at different temperatures
the models of both metastable and thermodynamic equilib
and are displayed in Fig. 11. At low temperatures, the evap
ration times calculated from both the models for a particul
nucleus are the same; at higher temperatures, the model
thermodynamic equilibrium yields evaporation times that a
consistently lower. This means that hot nuclei in the met
stable description are comparatively more stable against n
tron evaporation. This is counterintuitive; in equilibrium cal
culations, since the external gas exerts a pressure on
nucleus, one expects it to be more stable than under z
pressure conditions as in the metastable situation. Howev
in the metastable situation, the choice of the chemical pote
tial that enters in Eq.~33! is ambiguous. The chemical po-
tential in the equilibrium situation is therefore used for th
calculation of the lifetimes in the metastable description
This may be the possible reason for the longer lifetime o
tained in the metastable situation.

IV. SUMMARY AND CONCLUSIONS

We have proposed a prescription to solve self-consisten
the density profile of two-component hot nuclei in thermo
dynamic equilibrium with a surrounding gas in a refine
Thomas-Fermi approximation. The effective interaction em
ployed is momentum and density dependent and of fin
range, the parameters of which are chosen such that the b

m-

-
py

ues

FIG. 11. Lifetime against neutron evaporation as a function
temperature for40Ca and208Pb, evaluated for metastable situation
and for liquid-gas phase equilibrium.



r
il a
as
e
ra-
ith
ent
m-
n of
to

of
en-
is

53 789REFINED THOMAS-FERMI DESCRIPTION OF HOT NUCLEI
properties of finite nuclei as well as the collective GMR en
ergies are quite well reproduced. The incompressibility
symmetric nuclear matter then turns out to beK`5238 MeV,
in close agreement with values obtained from more detai
calculations@22#. The density solutions for hot nuclei ob-
tained in this prescription are found to be independent of t
box size in which the calculations are done. For stability
systems, it is found that the hotter the nuclei, the larger is t
pressure or equivalently the density of the surrounding g
At a fixed temperature, the density of the neutron gas
creases monotonically with mass number whereas the d
sity of the proton gas shows a minimum atA;1202130, in
close parallel with the observed behavior of neutron and p
ton separation energies with mass number in the liquid-dr
model. It further follows from the calculation that at a fixe
temperature, in an external surrounding gas~of specific den-
sity and neutron-proton asymmetry!, only one nucleus can
-
of

led

he
of
he
as.
in-
en-

ro-
op
d

remain immersed in stable equilibrium with a particula
charge and mass. Increasing the temperature would enta
change in the density and composition of the external g
until the chemical and mechanical equilibrium between th
nucleus and surrounding gas are lost at the limiting tempe
ture. The calculated limiting temperatures are consistent w
the highest possible excitation energies deposited in differ
nuclear systems in energetic nuclear collisions. As the te
perature increases, the nucleus expands, but the expansio
the nuclear radius seems to be a little slower compared
previous calculations@4,23,24#, particularly near the limiting
temperature. As a result, the temperature dependence
GMR energies is mostly governed by the temperature dep
dence of the compression modulus of finite nuclei and
given approximately by EG(T)'EG(0)@120.007T2#,
which is weak and consistent with calculations@25# as re-
ported recently.
s.
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