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The even-even and even-odd nuclei126Xe–132Xe and 131Ba–137Ba are shown to have a well-realized
SO8.SO6.SO3 fermion dynamical symmetry. Their low-lying energy levels can be described by a unified
analytical expression with two~three! adjustable parameters for even-odd~even-even! nuclei that is derived by
using the vector and spinor representations of the fermion model. Analytical expressions are given for wave
functions and forE2 transition rates that agree well with data. The distinction between the fermion dynamical
symmetry model~FDSM! and the interacting boson model~IBM ! SO6 limits is discussed. The experimentally
observed suppression of the energy levels with increasing SO5 quantum numbert can be explained as a
perturbation of the pairing interaction on the SO6 symmetry, which leads to an SO5 pairing effect for SO6
nuclei.

PACS number~s!: 21.60.Ev, 27.60.1j
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I. INTRODUCTION

In the past few decades, extremely rich experimental d
have accumulated for low-lying nuclear spectroscopy. T
observed levels are interwoven in a rich and complica
manner, and understanding them is a challenging prob
The low-energy spectroscopy of even-even, medium-he
and heavy nuclei can now be explained rather well by
interacting boson model~IBM ! @1#. The first attempt to de
scribe on the same footing the spectroscopy of both e
even and even-odd nuclei in an analytical way is due
Iachello @2#, through the concept of supersymmetry.

In this paper, we shall use the terminology NSUSY
denote nuclear dynamical supersymmetry. NSUSY is an
growth of the phenomenological IBM that treats fermio
r
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and bosons as basic building blocks and identifies the ev
even and even-odd collective nuclear states as multiplets
higher symmetry described by a supergroup U~6/4!, U~6/12!,
or U~6/20! @2–5#. The decomposition of U~6/4! @U~6/20!#
contains UB(6)3UF(4) @UB(6)3UF(20)] with UB(6) re-
ferring to the six bosons and UF(4) @U F(20)] to the odd
fermion moving in a single-j level of j53/2 ~multi-j levels
with j51/2, j53/2, j55/2, and j57/2). Later, Jolieet al.
@6# proposed a new reduction scheme for the supergr
U(6/20) and applied it to theA5130 mass region. They
considered the single-particle orbits 1/2, 3/2, 5/2, and
resulting from the coupling of a pseudo-orbitall52 part and
a pseudospins53/2. Instead of the group chain U(6/20
.UB(6)3 UF(4) @5#, they suggested use of the group cha
U~6/20!.UB~6!3UF~20!.OB~6!3UF~4!3UF~5!.spin~6!3UF~5!.spin~5!3OF~5!.spin~5!.spin~3!. ~1!
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NSUSY has had some successes~generally up to 15–30 %
accuracy for spectroscopic fitting for a few nuclei!. But the
basic building blocks of nuclei are fermions, and thes andd
bosons in the IBM are supposedly simulations of cohe
nucleon pairs with angular momenta 0 and 2. Therefore,
a simplification of the real situation to introduce UB(6) and
U F(4) @or UF(5), and UF(20)# as a direct produc
UB(6)3UF(4) @or UB(6)3UF(20), or UB(6)3UF(4)
3UF(5)#.

The fermion dynamical symmetry model~FDSM! @7,8# is
defined by a fermionic Lie algebra. It has symmetry lim
analogous to the IBM limits and takes Pauli principle in
account@9,10#. Furthermore, the states for even and odd s
tems in the FDSM belong to vector and spinor represe
nt
t is

ts
o
s-
ta-

tions, respectively, of the same SO8 or Sp6 group; thus, one
can describe even-even and even-odd nuclei in the FDS
without the concept of supersymmetry or additional degre
of freedom.

Two general regions are thought to exhibit some level
supersymmetry in the properties of low-lying nuclear state
the Pt region@5,11# and theA5130 ~Xe-Ba! region @12#. In
the Pt region, the normal-parity valence protons and neutro
are in the sixth and seventh shells, respectively, and acco
ing to the FDSM@8# they have SO8

p3Sp6
n symmetry, which

does not permit an analytical solution for the proton-neutr
coupled system. However it could have effective SO6-like
symmetry as we have shown in@13#. On the other hand,
nuclei in the Xe-Ba region have both their neutrons and th
715 © 1996 The American Physical Society
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716 53PAN, PING, FENG, CHEN, WU, AND GUIDRY
protons in the sixth shell with FDSM pseudo-orbital angu
momentumk52 and pseudospini53/2 for the normal-
parity levels. Thus they are expected to possess SO8

p3SO8
n

symmetry, which contains coupled SO8 symmetry ~the
FDSM analog of IBM-1!, and have analytic solutions for th
SO53SU2, SO6 and SO7 dynamical symmetries. In fact
there is now empirical evidence@12# that nuclei in the
A5130 region are better portrayed by an SO6 limit than the
Pt region. For these reasons, we have chosen the Xe-B
gion to discuss the possibility of a simplified and unifi
description for even-even and even-odd nuclei by the FD
as an alternative to the IBM and to NSUSY.

The organization of the paper is as follows: energy f
mulas for both even-even and even-odd nuclei and a c
parison with data are given in Sec. II, the respective w
functions are constructed in Sec. III, the electromagn
transitions are discussed in Sec. IV, and conclusions are
sented in Sec. V.

II. THE ENERGY SPECTRA

In the simplest version of the FDSM, the numbers
nucleons in the normal and abnormal orbits are fixed fo
given nucleus and therefore the quasispin group SU2 for the
abnormal levels plays no explicit dynamical role for low
lying states~it enters implicitly through the conservation o
particle number and through effective interaction para
eters!. The wave functions for both even and odd nuclei a
given by the following group chain:

~SO8
i . SO6

i . SO5
i 3 SO5

k. SO5
i1k. SO3

k1 i

@ l 1l 2l 3l 4# @s1s2s3# @t1t2# @t0# @v1v2# J,

~2!

where@ l 1l 2l 3l 4#, @s1s2s3#, and@t1t2# are the Cartan-Wey
labels for the groups SO8, SO6, and SO5, respectively,
t50(1) for even~odd! nuclei, and the superscript indicesk
and i indicate pseudo-orbital and pseudospin parts of
groups, respectively. The pseudo-orbitalkW and pseudospiniW

compose single-particle angular momentumjW @9,8#. We note
the resemblance between Eq.~2! and the NSUSY group
chain Eq.~1!. The FDSM Hamiltonian is

HFDSM5«1n11G0S
†S1G2D

†
•D1(

r51

3

BrP
r~ i !•Pr~ i !

1 (
r51,3

@BrP
r~k!•Pr~k!12brP

r~ i !•Pr~k!#, ~3!

where«1 is the energy for the normal-parity orbits~assumed
degenerate! andn1 is the number of nucleons in the norma
parity orbits,

S†5A0†, Dm
†5Am

2† ,

Am
r†5AV1/2@bki

† bki
† #0m

0r , r50,2, ~4!

where k52, i53/2, and V1[Vki5(2k11)(2i11)/2.
Similarly,

Pm
r ~ i !5AV1/2@bki

† b̃ki#0m
0r , r50,1,2,3, ~5!
lar
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P̄m
r ~k!5~2 !@r /2#A8/5Pm

r ~k!,

Pm
r ~k!5AV1/2@bki

† b̃ki#m0
r0 , r50,1,2,3, ~6!

where@r /2# is the integer part ofr /2. The operatorsPm
r ( i )

and P̄m
r (k) for r51 and 3 form the Lie algebras SO5

i and
SO5

k , respectively. The commutators among thePm
r ( i ) are

given by Eq.~3.12! of @7# for the i -active case and those fo
AV1/2@bki

† b̃ki#m0
r0 can be obtained from Eq.~3.12! of @7# for

the k-active case with

A3H r s t

1 1 1J→A5H r s t

2 2 2J .
In Eq. ~6! we have renormalized the multipole operato
P̄m
r (k) so that they are isomorphic withPm

r ( i ). Furthermore,
Pm
1 ( i ) and P̄m

1 (k) are related to the total pseudo-orbital a
gular momentum and pseudospin by

Pm
1 ~ i !5

1

A5
Im , P̄m

1 ~k!5
1

A5
Lm . ~7!

By using the Casimir operators of SO8, SO6, and
SO5, the Hamiltonian of Eq.~3! can be rewritten as

HFDSM5H01e1n11gSS
†
•S1g6CSO

6
i 1g5CSO

5
k1 i1g5

i CSO
5
i

1g5
kCSO

5
k1gI I

21gLL
21gJJ

2, ~8!

where the total angular momentum isJ5I1L , and

H05
1
4 ~n1!

21G2@CSO
8
i 2S0~S026!#,

S05
1
2 ~n12V1!,

gS5~G02G2!, g65~B22G2!, g55b3 ,

g5
i 5g582g5 , g585B32B2 , g5

k5B32b3 ,

gI5gI82gJ , gI85 1
5 ~B12B3!,

gJ5
1
5 ~b11b3!, gL5 1

5 ~B12B3!2 1
8 gJ . ~9!

The eigenvalue ofCSO8
is

CSO8
5(

i51

4

l i~ l i1822i !, ~10!

and the condition for the realization of the symmetry
gS50, implying that

G05G2 . ~11!

The low-lying states of even-even nuclei belong to the S8
irrep @V1/4 V1/4 V1/4 V1 /4#, i.e., the irrep with heritage
u50, u being the number of valence nucleons not contain
in SandD pairs@8,9#. By lettingG05G2 andB i5bi50 for
i51,3, from Eqs.~8!–~10! we have

Heven5E0
~e!1g6CSO

6
i 1g58C SO

5
i 1gI8I

2, ~12!



53 717FERMION DYNAMICAL SYMMETRY MODEL FOR THE EVEN- . . .
where

E0
~e!5 1

4 ~12G2!~n1!
21@ 1

2 G2~V116!1«1#n1 . ~13!

For odd nuclei the low-lying states are expected to belo
to the SO8 irrep @V1/4 V1/4 V1/4 V1/421#, correspond-
ing to heritageu51. The conditions for realizing the sym
metry of Eq.~2! are Eq.~11! andgI50, which implies that

B12B35b11b3 . ~14!

Under the conditions of Eqs.~11! and ~14!, and noting that
for u51 the pseudo-orbital angular momentum
L252(211)56, we have

Hodd5E0
~o!1g6CSO

6
i 1~g582g5!CSO

5
i 1g5CSO

5
i1k1gJJ

2,

~15!

E0
~o!5E0

~e!14g5
k16gL1 1

2 G2~22V1!. ~16!

Using the eigenvalue formulas for the SO6 and SO5 Casimir
operators, the energies for even and odd systems are

Eeven5E0
~e!1g6s~s14!1g58t~t13!1gI8J~J11!, ~17!
ng

-

is

whereJ(J11) is used instead ofI (I11) ~sinceL50, and
thusJ5I !, and

Eodd5E0
~o!1g6@s1~s114!1s2~s212!1~s3!

2#

1gJJ~J11!1~g582g5!@t1~t113!1t2~t211!#

1g5@v1~v113!1v2~v211!#. ~18!

The reduction rules are as follows@2#:

even system: SO8. SO6 .SO5 .SO3

@wwww# @s00# @t0# J,
~19!

w5
V1

4
, s5N1 ,N122, . . . ,1 or 0,

t5s,s21, . . . ,0, t53nD1l,

nD50,1,2,. . . , J5l,l11, . . . ,2l22,2l, ~20!

with N15n1/2, wheren1 is the number of the nucleons in
the normal parity levels, and
odd system: ~SO8
i . SO6

i . SO5
i 3 SO5

k. SO5
k1 i. SO3

k1 i

@www,w21# @s1 1
2 ,

1
2

1
2 # @t1 1

2 ,
1
2 # @10# @v1v2# J, ~21!

s5N1 ,N121, . . . ,1,0, t5s,s21, . . . ,0,
ble

ra

-

r-

-

whereN15@n1/2#. The relevant Clebsch-Gordan series f
SO5 are @14#

@t1
1
2 #3@10#5@t111,12 #1@t1

3
2 #1@t1

1
2 #1@t121,12 #,

@ 1
2
1
2 #@10#5@ 3

2
1
2 #1@ 1

2
1
2 # ~22!

and the SO3 content of the SO5 irreps @v1v2# is @2#

J5@2~v12v2!26nD1 3
2 #,@2~v12v2!26nD1 1

2 #, . . . ,

@~v12v2!23nD2 1
4 @12~2 !2nD1 3

2 #, ~23!

nD50,12,1,
3
2 , . . . . ~24!

The above discussions adopt as a simplification that
numbers of valence nucleon pairs in the normal- a
abnormal-parity levels,N1 andN0 , are fixed. In realityN1 or
N0 have a distribution and the semiempirical formula of@8#
has been used to obtainN1 , which may generally take non
integer values to simulate an average behavior of the nuc
states with different values ofN1 . For computing the spectra
and theB(E2) values, we have taken the nearest integer
the noninteger number.

The low-lying energy spectra for1202132Xe isotopes pre-
dicted by Eq.~17! are compared with data in Figs. 1 and
or

the
nd

-
lear

to

2,

and the parameters used in the calculations are given in Ta
I. The experimental spectra indicate that the SO3 parameter
gI8 is not sensitive to the neutron number in fitting the spect
of a chain of isotopes~including both even-even and even-
odd nuclei!. Therefore, in fitting the even-even nuclear spec
tra we fix the parametergI8 to be 11.9 keV, and the adjustable
parameters were taken to beg6 andg58 , which will be used
for the neighboring even-odd isotopes as well.

From Table I, we find that2g6 andg58 are nearly equal. It
is interesting to note that if the quadrupole-quadrupole inte
action is dominant over the pairing,uB2u@uG0u ~5 uG2u in
the symmetry limit!, and uB2u@uB3u ~cf. Eq. ~5.3c! in @15#!,
from Eq. ~9! we obtain the relation

g58>2g6 , ~25!

which is precisely the empirical relationA/4>B for the pa-
rameters in the IBM SO6 limit @12#. The parameterg6 can be
determined through the 03

1 ~i.e., s5N122) level. With the
parametersg6 given in Table I, the calculated 24

1 levels
(s5N122,t51) are in good agreement with the experi
mental results.

Comparing Eq.~17! with Eqs. ~6.2! and ~6.3! of @3#, or
Eqs. ~2.9! of @6#, we see that the spectral formulas in the
U~6/4! or U~6/20! NSUSY and in the FDSM are essentially
identical ~except for the replacement ofN by N1) for even
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nuclei, while for the odd nuclei they are similar in appea
ance but differ in two ways:~1! the parameters of the SO~3!
group for the even and odd systems are different here, but
same in U~6/20! or U~6/4! NSUSY. This difference comes
from the coupling termI–L in our case.~2! There is one
SO6 Casimir operator and two SO5 Casimir operators for the
FDSM, in contrast to two SO6 Casimir operators and one
SO5 Casimir operator in the U~6/4! NSUSY. These differ-
ences have a significant effect on the spectrum. In the U~6/4!
NSUSY, the five lowest-energy irreps of SO5 are @1/2 1/2#,
@3/2 1/2#, @5/2 1/2#, @7/2 1/2# and @9/2 1/2#; therefore the
states 3/2, 5/2, 7/2, 9/2, and 11/2 belonging to the irr
@5/2 1/2# of SO5 lie quite low in energy, while in the FDSM
the lowest six SO5 irreps are @1/2 1/2# 2, @3/2 1/2# 2,

FIG. 1. Comparison between calculated levels using Eq.~17!
and experimental energy levels for the even-even1202126Xe iso-
topes.
r-

the

ep

@3/2 3/2#, and@5/2 1/2/#. Consequently, for the FDSM in the
low-energy region there are more low-spin states~there are
two 1/2’s and four 3/2’s, while the 7/ 2, 9/2, and 11/2 stat
are pushed up!. This shows the same pattern as in U~6/20!.

Using Table I and Eq.~18!, the spectra of the neighboring
even-odd Xe isotopes can be calculated. For the odd-m
Xe and Ba isotopes, we takegJ to be 35.3 keV except for
127Xe . The difference betweengJ and gI8 comes from the
coupling of SO3

i and SO
3
k . We present the calculated and

experimental results for1272133Xe in Figs. 3 and 4, and for
1312135Ba in Fig. 5, with the parameters given in Table I

FIG. 2. Comparison between calculated levels using Eq.~17!
and experimental energy levels for the even-even1282132Xe iso-
topes.

TABLE I. Parameters for the even Xe isotopes.

Nuclei g6 ~keV! g58 ~keV! gI8 ~keV!

120Xe -60 53 11.9
122Xe -64 59 11.9
124Xe -68.8 64 11.9
126Xe -73.3 71 11.9
128Xe -78.2 79 11.9
130Xe -100.9 100 11.9
132Xe -106.5 122 11.9
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Apart from the constant term, the formula forEevencontains
three parameters, and that forEodd contains two parameters
beyond the three parameters that are determined by fitt
the spectra of neighboring even-even nuclei. With two ex
parameters (gJ is kept constant in the region discussed, e
cept for 127Xe!, Eq. ~18! reproduces the spectral patterns fo
the nuclei 1272133Xe and 1312135Ba with about 15 levels
each.

Experimentally, the odd nuclei in this region have bo
1/2 and 3/2 as the ground-state spin. The second SO5 Ca-
simir operator in Eq.~18! provides this possibility. For alter-
native signs of the parameterg5 , the ground-state spin can
take the values 1/2 or 3/2 . What is more, by allowingg5 to
change smoothly from positive to negative, we can rep
duce the systematic shift of the ground band of the Xe a
Ba isotopes, as shown in Figs. 6 and 7. From Figs. 3–5,
see that just as for U~6/20! NSUSY@6#, for 129Xe, 131Ba, and
133Ba, the FDSM predicts a natural occurrence of 1/21 as
the ground state and four low-energy 3/21 states as the ex-
cited states. We note that the major aim of this prese
FDSM description is to give a simple and unified descriptio
of spectral pattern of even and even-odd nuclei. For mo
quantitative agreement, additional physics should be tak

FIG. 3. Comparison between calculated levels using Eq.~18!
and experimental energy levels for the even-odd1272129Xe isotopes.
The even-odd nuclei are constructed by coupling the neighbor
even-even core to a valence neutron.
ing
tra
x-
r

th

ro-
nd
we

nt
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into account; for instance, the mixing of particles in norma
and unique parity levels and the single-particle energy co
tribution.

Due to scarcity of data, we are constrained to discuss on
the low-lying levels (s15N111/2). We could in principle
compare them with levels belonging tos15N121/2. If
more data for higher levels were available, this would allow
us to determine the parameterg6 for even-odd nuclei.
Clearly, a comparison of theg6 values obtained from fitting
even and odd nuclear spectra is a meaningful test for t
validity of the SO6 symmetry. Here we have only considered
fitting the levels witht51,2,3. If the levels witht.3 were
taken into account, theg58 value would have to be smaller in
order to fit the high-lying states; as a price, the unified goo
fit of the low-@t1t2# states for the even-even nuclei and
even-odd nuclei would be spoiled.

Comparison of pure SO6 spectra with the data for
1202132Xe ~see Figs. 1 and 2! gives reasonable agreement fo
t<3 states for1202126Xe. However, the experimental ener-
gies for the hight values in the nuclei1282132Xe are much
lower than predicted, with the discrepancies increasing f
the higher t values. This is strongly reminiscent of the

ing

FIG. 4. Comparison between calculated levels using Eq.~18!
and experimental energy levels for the even-odd1312133Xe isotopes.
The even-odd nuclei are constructed by coupling the neighbori
even-even core to a valence neutron.
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FIG. 5. Comparison between calculated levels and experimental energy levels for the even-odd1312135Ba isotopes. For the excited
@t1t2# states, the bandhead states are compared with experimental ones.
lei

so
stretching effect in nuclear rotational spectra. However,
more careful comparison shows that the energy levels wit
the same SO5 irrep ~samet) follow the J(J11) rule rather
well. Therefore the aforementioned discrepancy cannot
due to the usual stretching effect in which the deformati
should increase with angular momentum. In@16#, it was
pointed out that it is in fact an SO5 t-compression effect.
The driving force for this effect is the reduction of pairin
correlation with increasingt. Allowing for gS5G02G2
Þ0, thereby deviating from the SO6 limit, and treating the
gSS

†
•S term as a perturbation, leads to the following ener

formula:

E8even>E0
~e!1g6s~s14!1A8t~t13!2B8@t~t13!#2

1gI8J~J11!. ~26!

Figure 8 shows the spectrum for126Xe predicted by Eqs.
~17! and ~26!, respectively. Inclusion of the SO5 stretching
effect improves the agreement significantly. More examp
can be found in@16#.

For even-odd nuclei, the levels calculated in this inves
gation are limited to those for@t1t2#5@1/2 1/2#,@3/2 1/2#
bands, which corresponds to thet50,1 states of the even-

TABLE II. ~a! Parameters for the odd Xe isotopes.~b! Param-
eters for the odd Ba isotopes.

~a!
Nuclei g6~keV! g58 ~keV! g5 ~keV! gJ ~keV!

127Xe -73.3 71.0 -38.0 25.0
129Xe -78.2 79.0 -18.0 35.3
131Xe -100.9 100.0 30.0 35.3
133Xe -106.5 122.0 50.5 35.3
135Xe 142.1 70.6 35.3

~b!

Nuclei g5
i ~keV! g5 ~keV! gJ ~keV!

131Ba 72.5 -20 35.3
133Ba 105 -15 35.3
135Ba 90 50 35.3
137Ba 72 70 35.3
a
hin

be
on

g

gy

les

ti-

even core. Experimental energy levels for even-even nuc
show that thet-compression effect is negligible fort<2
states. Therefore, the effect in the even-odd nuclei is not
conspicuous as in the even-even nuclei.

III. WAVE FUNCTIONS

A. Even-even nuclei

According to Eq.~4.3a! in @15# the FDSM wave function
in the SO6 limit for u50 is

uN1stnDIM &5PN1stuN1stnDIM )b→ f
IBM , ~27!

wherePN1st is a Pauli factor,

PN1st5F ~V12N12s!!! ~V12N11s14!!!

V1!! ~V114!!! G1/2, ~28!

and uN1stnDIM )b→ f
IBM denotes a wave function resulting

from replacing the boson operatorss† anddm
† by the fermion

operatorsS† andDm
† , in the U6.O6.O5.O3 IBM wave

function uN1stnDIM ) IBM,

uN1stnDIM )b→ f
IBM

5jN1s~ I †!~N12s!/2f st~S
†,I †!utttnDIM )b→ f

IBM , ~29!

where utttnDIM ) IBM denotes the IBM U6.U5.SO5
.SO3 wave function and

jN1s5F ~2s14!!!

~N1s14!!! ~N2s!!! G
1/2

, ~30!

I †5D†
•D†2S†•S†, ~31!

whereI † is a generalized pair andf st(S
†,I †) is a polynomial

in S† andD† of order (s2t),

f st~S
†,I †!5 (

p50

@~s2t!/2#

Dp~st!~S†!s2t22p~ I †!p, ~32!

Dp~st!5F2s11~s2t!! ~2t13!!!

~s11!! ~s1t13!! G1/2 ~s112p!!

4p~s2t22p!!p!
.

~33!
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Here the notation for the wave functions is the same a
@15#.

B. Even-odd nuclei

In this section we construct the wave functions for sta
in odd-mass nuclei that corresponds to heritageu51. Ac-
cording to the vector coherent state technique@17#, the wave
function for thei -active part can be constructed by coupli
the ‘‘collective wave function’’uN1stnDI 8M 8)b→ f

IBM and the
‘‘intrinsic state,’’ now the one-fermion stateuu51&, by
means of the SO6. SO5.SO3 CG coefficients,

FIG. 6. The systematic shift of the ground band as a function
mass number for Xe isotopes.
in

tes

g

u2N111,@s1s2s3#@t1t2#nDIM &

5Kl
21~N1 ,@s1s2s3# !@ uN1@s#!b→ f

IBM uu51&] @t1t2#nDIM
@s1s2s3# ,

~34!

whereN1 is the total number ofS,D pairs in the ‘‘collective
wave function,’’ l is the number of generalized pair
I †,N15s12l , andKl

21(N1 ,@s1s2s3#) is the diagonal ma-
trix element of the inverse of theK matrix @17#.

Written out explicitly, Eq.~34! becomes

of FIG. 7. The systematic shift of the ground band as a function
mass number for Ba isotopes.
u2N111,$s11
1
2,t1%nDIM ,@10#k52,m&5

1

A2N1
Kl

21~N1 ,^s1 1
2 &! (

tI 8nD8
j

s1
1
2 t1nDI

stnD8 I 8
@b2m,3/2

† uN1stnD8 I 8!b→ f
IBM ]M

I , ~35!

where the factor 1/A21N is due to the different definitions ofALM
1 in @8,17#, the shorthand notation stands for

$s1 1
2 ,t1%[$ ^s1 1

2 &,@t1
1
2 #%,[@s1 1

2 &, 12
1
2 ], ~36!

and j
s1(1/2)t1nDI

stnD8 I 8 is the isoscalar factor for the group chain SO6.SO5.SO3 @18#, which is a product of the SO6.SO5 and

SO5.SO3 isoscalar factors,

j
s1~1/2!t1nDI

stnD8 I 8 5S @s00#^ 1
2 &

@t0# @ 1
2

1
2 #
U^s1 1

2 &

@t1
1
2 #

D S @t0#@ 1
2

1
2 #

nD8 I 8
3
2

U@t1
1
2 #

nDI
D . ~37!

By following the steps given in@17#, the matrixKl
21 is found to be

Kl
21~N1 ,^s1 1

2 &!5F ~V12N11s14!!! ~V12N12s22!!!

22N1~V122!!! ~V114!!! G1/25F 22N1V1

V12N12sG1/2PN1st . ~38!

Inserting~38! into ~35!

u2N111,$s1 1
2 ,t1%nDIM ,@10#k52,m&5F V1

V12N11s G1/2js1
1
2 t1nDI

stn8I 8
@b

2m
3
2

†
uN1stnD8 I 8&]M

I . ~39!
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Coupling thei -active andk-active parts gives the total wave function of the SO6 FDSM for even-odd nuclei

u2N111,$s1 1
2 ,t1%@v1v2#nD9 JM&5(

InD
S @t1

1
2 #@10#

nDI 2
U@v1v2#

nD9 J
D @ u2N111,$s1 1

2 ,t1%nDI ,@10#k52&]M
J . ~40!

Combining~34!–~40! we have

u2N111,$s1 1
2 ,t1%@v1v2#nD9 JM&5(

InD
(

tI 8nD8
S @t1

1
2 #@10#

nDI 2
U@v1v2#

nD9 J
D S @s00#^ 1

2 &

@t0# @ 1
2

1
2 #
U^s1 1

2

@t1
1
2 #

D S @t0#@ 1
3

1
2 #

nD8 I 8
3
2

U@t1
1
2 #

nDI
D

3(
j

~2 ! I 813/21JH I 8 3
2 I

2 J j
J Î Ĵ@ uN1stnD8 I 8&aj

†
M
J , ~41!

FIG. 8. ~a! The SO6 spectrum calculated with the parameters areg65273.3 ~keV!, g55 71 ~keV!, and gI511.9 ~keV!; ~b! the
comparison of the experimental spectrum of126Xe ~lower numbers! and the spectrum of SO~6! plus a perturbative pairing term~upper
numbers! @i.e., Eq.~26!#. The parameters here areg65273.3 ~keV!, A8580 ~keV!. B850.77 ~keV! andgI511.9 ~keV!.
-
n
n

e
l

l-
where Ĵ5A2J11. It is interesting to note that when the
fermion state for the core,uN1stnD8 I 8&, is replaced by the
boson stateuN1stnD8 I 8) and the Pauli factor is ignored, Eq
~41! goes over to the U~6/20! NSUSY wave function~2.14!
of @6#. Thus, NSUSY can be obtained as an approximation
the FDSM for odd-mass SO6 nuclei.

IV. ELECTROMAGNETIC TRANSITIONS

A. The E2 transition rate for even-even nuclei

In @8#, theE2 transition operator in the FDSM is define
as

T~E2!m
25qPm

2 ~ i ! ~42!

while theE2 transition operator for the IBM SO6 limit is
@18#

T~E2!m
25qBm

2 , Bm
25~d†s̃1s†d̃!m

2 . ~43!

Owing to the isomorphism between the commutators for t
FDSM and IBM:
.

to

d

he

@Pm
2 ~ i !,S†#↔@Bm

2 ,s†#, ~44!

@Pm
2 ~ i !,Dn

†#↔@Bm
2 ,dn

†#, ~45!

the formula for the reduced matrix elements of theE2 tran-
sition operator in the FDSM is identical to that in the IBM,

^Nst8nD8 J8iP2~ i !iNstnDJ&FDSM

5~Nst8nD8 J8iB2iNstnDJ! IBM. ~46!

Although it is well known now, it is nevertheless a remark
able fact that the FDSM and IBM have the same selectio
rules,Ds50 andDt561, and the same closed expressio
for theE2 transition rates@1#. The commonly needed results
are given in Table III . It should be noted that the O6 limit of
the IBM and the SO6 limit of the FDSM share the same
analytical form for the spectra and theE2 transitions, but the
accounting of the collective pair number is different in thes
two models: the collective pair number is half of the tota
valence nucleons (N) in the IBM, whereas in FDSM it is
taken as half of the total valence nucleons in the norma
parity levels (N1).
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TABLE III. B(E2) formulas for even-even nuclei in the SO6 limit.

uN1stJi& → uN1s8t8Jf& B(E2;Ji→Jf)

uN1N111L/2L12& → uN1N1L/2L&
q2
(L12)(2N11L18)

8(L15)
(2N12L)

uN1N112& → uN1N100& 1
5q

2N1(N114)

uN1N122& → uN1N112& 2
7q

2(N121)(N115)

uN1N134& → uN1N124& 10
63q

2(N122)(N116)

uN1N133& → uN1N124& 2
21q

2(N122)(N116)

uN1N133& → uN1N122& 5
21q

2(N122)(N116)

uN1N134& → uN1N122& 11
63q

2(N122)(N116)

uN1N130& → uN1N122& 7
21q

2(N122)(N116)
d

t
r

O

ose
As pointed out in@19#, when we define theE2 transition
operators as Eq.~42! or Eq. ~43!, theDs50 andDt561
selection rules prohibit some transitions that are observe
many nuclei. As a particular case of these selection rules,
quadrupole moments are predicted to be zero in the S6
limit, but most of the observed quadrupole moments of
transitional nuclei differ from zero. This deviation from ze
may be due to two causes: one is the breaking of the S6
symmetry; the other is that theE2 transition operator may
require a more general definition. We have chosen the la
to study this problem. It is straightforward to define a ne
E2 transition operator that relaxes the selection rule wh
e

in
the
O
he
o
O

tter
w
ile

assuming that the wave functions still have good S
6.SO5 symmetry. The new operator takes the form

T~E2!m
25qPm

2 ~ i !1q8~D†D̃ !m
2 . ~47!

The (D†D̃)m
2 term makes the following transition possible:

Ds562, Dt50,62. ~48!

The reduced matrix element of (D†D̃)m
2 can be calculated by

inserting a complete set of intermediate states~the reduced
matrix elements used here are defined according to the R
convention!
^N1st8nD8L8i~D†D̃ !2iN1stnDL&5A5~2L11! (
s9t9L9

~2 !L91L8^N1s8t8nD8L8iD†iN121s9t9nD9L9&

3^N1stnDLiD†iN121s9t9nD9L9&H 2 2 2

L L8 L9
J . ~49!

The SO3 reduced matrix element ofD† in Eq. ~49! is

^N111s8t8nD8L8iD†iN1stnDL&5^N111s8iD†iN1s&S s 1

t 1
Us8

t8
D S t 1

L 2
Ut8

L8
D , ~50!
-
where ^N111s8iD†iN1s& is the SO6 reduced matrix ele-
ment and the last two factors are the SO6.SO5 and
SO5.SO3 isoscalar factors, respectively, which have be
given in@21# for some simple cases. The SO5 reduced matrix
elements ofS† andD† are given in the Appendix.

Using vector coherent state techniques@17# for the u50
case, the SO6

i reduced matrix element ofD† can be ex-
pressed as

^p11s8iD†ips&5A2~Lp11s82Lps!1/2^p11s8izips&,
~51!
n

whereLps is the eigenvalue of the Toronto auxiliary opera
tor

Lps52
1

4
@p~p22V126!2s~s14!#, ~52!

^p11s11izips&5F ~s11!~ l1s13!

~s13! G1/2, ~53!

^p11s21izips&5F ~ l11!~s13!

~s13! G1/2, ~54!
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TABLE IV. Some quadrupole moments andB(E2) values for the transitionsDs50,62, Dt50,62.

B(E2;N1N122→N1N100) 5q82
N1(N121)(N114)(N115)

70(N111)2
(V122N112)2

B(E2;N1N133→N1N112) 5q82
5(N121)(N122)(N115)(N116)

294(N111)2
(V122N112)2

B(E2;N1N134→N1N112) 5q82
11(N121)(N122)(N115)(N116)

882(N111)2
(V122N112)2

B(E2;N1N134→N1N133) 5q82
2(N1

214N1123)2

231(N111)2
(V122N112)2

B(E2;N1N130→N1N112) 5q82
(N121)(N122)(N115)(N116)

42(N111)2
(V122N112)2

B(E2;N1N122→N1N124) 5q82
16(N1

214N1115)2

2205(N111)2
(V122N112)2

B(E2;N1N12200→N1N112) 5q82
(N112)(N113)(N114)(N115)

14N1(N111)2
(V122N112)(V114)

B(E2;N1N12212→N1N112) 5q82
(N121)(N122)(N113)(N114)

49N1(N111)2
(V122N112)(V114)

Q(N1N112) 5q8A2p

35

4(N1
214N119)

7(N111)
(V122N112)
with p5N15s12l5(1/2)(n121). For the special case
that will be used below, we have

^p11s11iD†ips&

5F ~V122s22l !~s11!~ l1s13!

~s13! G1/2, ~55!

^p11s21iD†ips&5F ~V11422l !~ l11!~s13!

~s11! G1/2.
~56!

In Table IV we summarize some expressions forB(E2) val-
ues and quadrupole moments in the FDSM SO6 limit for
s transitions withDt50,62 andDs562. The contribution
to theB(E2) from the second termq8(D†D̃)m

2 differs from
the corresponding termq8(d†d̃)m

2 in the IBM @19# by the
Pauli factors.

B. The transition rates for even-odd nuclei

For theu51 case, theE2 transition operator can be de-
fined as

T~E2!m
25qPm

2 ~ i !1q9Pm
2 ~k!. ~57!

The reduced matrix element is
^$N11
1
2 ,t18%@v18v28#J8iqP2~ i !1q9P2~k!i$N11

1
2 ,t1%@v1v2#J&

5(
II 8

S @t8 1
2 # @10#

I 8 2
U@v18v28#

J8
D S @t1

1
2 # @10#

I 2
U@v1v2#

J DM , ~58!

M5^$N11
1
2 ,t18%~ I 8,@10#k52!J8iqP2~ i !1q9P2~k!i$N11

1
2 ,t1%~ I ,@10#k52!J&. ~59!

According to Eq.~6.8! in Judd@20#, we have

@bki
† bki#m0

K05
1

A2i11
(
p51

n

@bk
†~p!bk~p!#m

K . ~60!
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TABLE V. RelativeB(E2) values for the even Xe isotopes.

120Xe 124Xe 126Xe 128Xe 130Xe
Ji→Jf Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo

22
1→21

1 100 100 100 100 100 100 100 100 100 100
→01

1 5.6 5.6 3.9 3.9 1.5 1.4 1.2 1.2 0.6 0.6
31

1→22
1 100 100 100 100 100 100 100 100 100 100

→41
1 50 40 46 40 34 40 37 40 25 40

→21
1 2.7 7.1 1.6 4.9 2.0 1.85 1.0 1.5 1.4 0.72

42
1→22

1 100 100 100 100 100 100 100 100 100 100
→41

1 62 91 91 91 76 91 133 91 107 91
→21

1 — 7.11 0.4 4.91 1.0 1.83 1.7 1.49 3.2 0.97
02

1→22
1 100 100 100 100 100 100 100 100 100 100

→21
1 — 7.11 1 4.91 7.7 1.83 14 1.49 26 0.97
Therefore, in computing the matrix elements ofPm
2 (k) the operator can be replaced by

Pm
2 ~k!5AV1

8 (
p51

n

@bk
†~p!bk~p!#m

2 . ~61!

Using ~61! we have

M5 ĴĴ8~2 ! I 81JH J8 J 2

I I 8 2J ^$N11
1
2 ,t18%I 8iqP2~ i !i$N1 1

2 ,t1%I &

1q9dt1t
18
d II 8~2 ! I1J8ĴĴ8A5V1

2

Î

î

~V122N121!

~V121! H J8 J 2

2 2 I J . ~62!

Now only the matrix elements ofPm
2 ( i ) remain to be calculated. The generators of spin~6! for the IBFM are

Gm
25Bm

21Fm
2 , Fm

25~a3/2
† ã3/2!m

2 ~63!

corresponding to the commutator for the IBFM

@Fm
2 ,a~3/2!mi

† #5~21!3/22mi^ imi1m,i2mi u2m&a~3/2!mi1m
† . ~64!

There is a similar commutator in the FDSM

@Pm
2 ~ i !,b22~3/2!mi

† #5A V1

2~2k11!
~21!3/22mi^ imi1m,i2mi u2m&b22~3/2!2mi1m

† , ~65!
th

tion

r

wheres5p or n, and the factorAV1 /2(2k11) is always
equal to 1 for the sixth shell.

Because of~44! and ~45! and ~64! and ~65!, we have the
following isomorphism between the commutators in
FDSM and IBFM:

@Pm
2 ,S†#↔@Bm

2 ,s†#5@Gm
2 ,s†#, ~66!

@Pm
2 ~ i !,Dn

†#↔@Bm
2 ,dn

†#5@Gm
2 ,dn

†#, ~67!

@Pm
2 ~ i !,b22~3/2!mi

† #↔@Fm
2 ,a~3/2!mi

† #5@Gm
2 ,a~3/2! mi

† #.

~68!

Therefore we establish the following identity:

^$N1 1
2 ,t18%I 8iP2~ i !i$N1 1

2 ,t1%I &
FDSM
e

5~$N1 1
2 ,t18%I 8iG2i$N1 1

2 ,t1%I !
IBFM. ~69!

The reduced matrix element ofGm
2 is derived in@18#. With

these results we can calculate theB(E2) values and the
quadrupole moments for odd-mass nuclei. The selec
rules for U~6/4! are @18#

Dt150,61, Dt250. ~70!

For the u51 case in the FDSM, owing to the Kronecke
product~22! the corresponding selection rules are

Dv150,61,62,63, Dv250,61. ~71!
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TABLE VI. RelativeB(E2) values for the even Ba isotopes.

126Ba 128Ba 130Ba 132Ba 134Ba
Ji→Jf Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo.a Theo

22
1→21

1 100 100 100 100 100 100 100 100 100 100 100
→01

1 11 11 9.2 9.2 5.7 5.7 0.2 0.2 1.0 1.1 3.06
31

1→22
1 100 100 100 100 100 100 100 100 100 100 100

→41
1 13 40 — 40 30 40 73 40 40 40 40

→21
1 5.8 14.4 — 12 1.5 7.46 0.2 0.24 1.0 1.26 3.89

42
1→22

1 100 100 100 100 100 100 100 100 100 100 100
→31

1 — 26.1 — 21.8 — 13.5 — 0.44 14.5 3.06 9.45
→41

1 28 91 42 91 89 91 75 91 77 91 91
→21

1 1.1 14.4 1.7 12 3.9 7.46 2.2 0.24 2.5 1.26 3.89
02

1→22
1 100 100 100 100 100 100 100 100 100 100 100

→21
1 — 14.4 — 12 — 7.46 0 0.24 4 1.26 3.89
a

t

s

-

a

ra-

s

r-

uli

ctra

s

With these rules, the restrictions for theB(E2) values will be
less severe than that of the IBFM@18#. This enables us to
explain some data that cannot be explained by the U~6/4!
IBFM.

From Table III and Table IV, we can calculate theB(E2)
values for the transitionsDv150,61,62. In order to make a
direct comparison between the calculated and experime
results without a knowledge ofq and q8, we compute the
relative B(E2) value rather than the absolute values. T
FDSM prediction and the experimental results@12,21# for Xe
and Ba isotopes are listed in Tables V and VI. For the tr
sitions with Ds50 and Dt561, the formulas for the
B(E2) in the IBM and FDSM are of the same form, but th
numerical values differ for a given nucleus because in
IBM the B(E2) is a function ofN, while in the FDSM it is
a function of N1 . For the transitions withDs562 and
Dt50,62, they also differ by the Pauli factor
(V122N112)2 or (V114)(V122N112), as shown in
Table IV.

From Tables V and VI, we can see that theB(E2) tran-
sitions for Xe and Ba isotopes exhibit an SO6 symmetry,
especially for theDt561 transitions. There are two pos
sible reasons to expect less accuracy for theDt562 tran-
sitions: one is the definition of the newT(E2) operator and
the other is the fitting of the parameter@q8/q#2. In fact,
the determination of @q8/q#2 from the rate
B(E2,22

1→01
1)/B(E2,22

1→21
1) is very inaccurate. A pos

sible way to obtainq andq8 is, as in@17#, through fitting the
B(E2,21

1→01
1) and the quadrupole momentQ(21

1), respec-
tively. For example, from Q(21

1)520.16 e b and
B(E2,21

1→01
1) 5 0.146 (e b! 2 for 134Ba, we can determine

(q8/q)2 to be equal to 0.34, which in turn gives theB(E2)
value listed in the last column~theo.b! of Table VI. By com-
paring the last two columns in Table VI, we see that the l
column gives a better fit.

In @22# the ratioR4 between twoB(E2) values is intro-
duced to distinguish the SO6 limit from the U5 limit of the
IBM,

R45
B~E2,41

1→21
1!

B~E2,41
1→01

1!
. ~72!

The explicit expression forR4 predicted by the IBM is
ntal

he

n-

e
he

-

st

R45H 2~N21!

N
for the U5 limit,

10~N21!~N15!

7N~N14!
for the SO6 limit,

~73!

whereN is the boson number. TheR4 value derived from the
FDSM has the same form as above, but withN replaced by
N1 ,

R45
10~N121!~N115!

7N1~N114!
. ~74!

TheN1 values can be estimated from shell model configu
tions of protons and neutrons in the odd-A nuclei, and are
shown in the Table 7.1 of@23#. In Table VII we list the
FDSM prediction forR4 along with the experimental result
of @22#. It can be seen that the SO6 limit of the FDSM seems
to explain the experimental data better than the IBM. Alte
natively, we note that if accurateR4 values are available, we
may be used to obtain the empiricalN1 value from Eq.~74!.

It should be mentioned again that apart from the Pa
effect, the FDSM differs from the IBM@21# in the value of
the number of the collective pairs (N1 vs N!. The spectrum
of thes5N1 band is not sensitive to the value ofN1 , but the
observation that the parametersg6 andg58 in Table I change
smoothly between nuclei, and that the experimental spe
for the even and odd nuclei can be fitted with the sameg6
and g58 values, suggest that the choice ofN1 taken in this
paper is reasonable.

The difference betweenN andN1 does affect the energie
for the bands withs5N122,N124, . . . . In @12#, it is

TABLE VII. The value ofR4 .

Nuclei N N1 R4
exp R4

FDSM ~SO6) R4
IBM ~SO6) R4

IBM ~U5)

120Xe 10 7 1.46~20! 1.34 1.38 1.80
124Xe 8 6 1.29~15! 1.31 1.35 1.75
126Ba 9 6 1.12~20! 1.34 1.37 1.75
128Ba 8 6 1.03~14! 1.31 1.35 1.75
130Ba 7 5 0.90~13! 1.27 1.34 1.71
130Xe 5 4 1.35~18! 1.21 1.27 1.60
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pointed out that the parameters for the SO6 nuclei in both the
A5130 and Pt regions have a common characteristic
g58>2g6 @see Eq.~28!#. With such an empirical relation, the
following energy ratio has a simple form in both the IBM
and the FDSM

EO3
1 ~s5N22!

E22
1 2E21

1 5
2~N11!

3
, ~75!

EO3
1 ~s5N122!

E22
1 2E21

1 5
2~N111!

3
. ~76!

A comparison of the ratios calculated using Eqs.~75! and
~76! and the experimental data is shown in Table VIII. Th
example indicates also that the FDSM SO6 model repro-
duces this ratio better than the IBM SO6 for nuclei in the
Xe-Ba region. This suggests that in this region an empiri
effective boson number may be needed to give a be
agreement with data in IBM calculations.

TABLE VIII. The E(03
1)/@E(22

1)2E(21
1)# ratio.

Nuclei N N1 Expt. IBM FDSM

118Xe 9 6 2.912 6.67 4.67
122Xe 9 6 3.68 6.67 4.67
124Xe 8 6 3.44 6.00 4.67
126Xe 7 5 3.58 5.33 4.00
128Xe 6 5 3.56 4.67 4.00
130Xe 5 4 3.44 4.00 3.33
134Ba 5 5 3.84 4.00 4.00
136Ba 4 4 2.918 3.33 3.33
138Ce 5 5 3.25 4.00 4.00
that

is

cal
tter

The E2 transition rate is generally more sensitive to th
parameterN1 than the spectra. The reasonableness of th
chosenN1 value can also be seen from the good agreeme
between the calculated and experimental values of t
B(E2) values for the isotopes of Ba and Xe, as shown i
Tables V and VI. Finally, we reiterate that asN1 increases in
the shell, the spins for the ground states of odd nuclei sw
naturally between 1/2 and 3/2~this transition occurs at
131Xe and135Ba for the isotopes of Xe and Ba, respectively!.
In Table IX, both experimental and theoreticalB(E2) val-

ues for the even-odd nuclei of129Xe and 131Xe are given,
and compared with the calculated results of the NSUSY cas
Here the effective charges~i.e.,q! are the same as the neigh-
boring even-even nuclei, and determined by the experimen
B(E2,21

1→01
1) values. While effective charges fork-active

part ~i.e.,q9) are fitted byE2 transitions of even-odd nuclei.
In this work, (q,q9)5~0.129,0.075! e b, ~0.143,0.093! e b
for 129Xe and 131Xe, respectively. The agreement with data
is comparable in the two cases, although the NSUSY calc
lations give a somewhat better agreement of the weaker tra
sitions. Finally, we reiterate that the group chain~2! is very
similar to the NSUSY group chain~1!. However, the pseudo-
orbital angular momentum 2 in group chain~1! is introduced
as one of several possible group reductions of U~6/20! in the
NSUSY, while in the FDSM it is a result of the reclassifica
tion ~in terms of thek-i basis! of the shell model single-
particle states for the sixth shell~see Table 2.1 in@8#!.

V. CONCLUSIONS

In this work, we provide simple but unified analytic solu-
tions of even and even-odd nuclei within the frameworko
the fermion dynamical symmetry model. The good agree
ment of both level pattern andE2 transitions with our sim-
plified solutions indicates a good SO~6! symmetry for both
even and even-odd nuclei inA5130 region. We find that
generally the FDSM results provide a unified description o
TABLE IX. Transition probabilities in129Xe (N155) and 131Xe (N154!, V1520.

129Xe 131Xe
B(E2)(e2 b2) B(E2)(e2 b2)

Ji→Jf FDSM Expt. Ref.@5# Ji→Jf FDSM Expt. Ref.@5#

3
2 1

1→ 1
2 1

1 0.036 0.007 1
2 1

1→ 3
2 1

1 0.0953 0.0039 0.0012

3
2 2

1→ 3
2 1

1 0.0186 ,0.0005 0.013 5
2 1

1→ 1
2 1

1 0.075 0.030 0.016

3
2 2

1→ 1
2 1

1 0.084 0.12 0.12 5
2 1

1→ 3
2 1

1 0.004 0.10 0.10

5
2 1

1→ 3
2 1

1 0.011 0.22 0.10 3
2 2

1→ 3
2 1

1 0.053 0.057 0.058

5
2 1

1→ 1
2 1

1 0.070 0.077 0.039 1
2 2

1→ 1
2 1

1 0.0000
1
22

1→
3
2 2

1 0.028 1
2 2

1→ 3
2 1

1 0.124 0.048 0.115

1
2 2

1→ 3
2 1

1 0.14 0.044 0.12 7
2 1

1→ 5
2 1

1 0.028 0.005 0.0013

1
2 2

1→ 1
2 1

1 0.0000 7
2 1

1→ 3
2 1

1 0.043 0.081 0.082

5
2 2

1→ 1
2 1

1 0.004 0.057 0.071 3
2 3

1→ 3
2 1

1 0.025 0.027 0.017

3
2 3

1→ 1
2 1

1 0.056 0.0032 0.0056 5
2 2

1→ 3
2 2

1 0.004 ,0.031 0.0011

3
2 4

1→ 1
2 1

1 0.0133 0.0030 0.0004 5
2 2

1→ 1
2 1

1 0.071 0.068 0.056

5
2 2

1→ 3
2 1

1 0.014 0.013 0.043

7
2 2

1→ 3
2 1

1 0.124 0.005 0.026
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the even and odd nuclei in this region that is comparable
or even somewhat better than NSUSY approach, but to
lesser degree in choosing one limit from NSUSY multigrou
chains.
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APPENDIX

The SO5 reduced matrix elements:

^N11,s11,tiS†iNst&5F ~V12s2N!~s2t11!~s1t14!~N1s16!

4~s12!~s13! G1/2, ~A1!

^N11,s21,tiS†iNst&52F ~V11s2N14!~s2t!~s1t13!~N2s12!

4~s11!~s12! G1/2, ~A2!

^N11,s11,t8iD†iNst&5F ~V12s2N!~N1s16!

4~s12!~s13! G1/23H F ~s1t14!~s1t15!~t11!

~2t15! G1/2, t85t11,

2F ~s2t11!~s2t12!~t12!

~2t11! G1/2, t85t21,

~A3!

^N11,s21,t8iD†iNst&5F ~V11s2N14!~N2s12!

4~s11!~s12! G1/23H 2F ~s1t12!~s1t13!~t12!

~2t11! G1/2, t85t11,

F ~s2t21!~s2t!~t11!

~2t15! G1/2, t85t21.

~A4!

The SO6. SO5 isoscalar factors:

S @s1 1
2 ,

1
2

1
2 # @100#

@t1 1
2 ,

1
2 # @10#

U @s81 1
2 ,

1
2

1
2 #

@t1 1
2 ,

1
2 #

D ,
s85s11, s85s21,

F ~s2t11!~s1t15!

2~s11!~s13!
G 1/2 F ~s2t!~s1t14!

2~s12!~s14!
G 1/2,

S @s1 1
2 ,

1
2

1
2 # @100#

@t1 1
2 ,

1
2 # @10#

U @s81 1
2 ,

1
2

1
2 #

@t1t2#
D ,

@t1t2# s85s11 s85s21

@t13
2,
1
2# F~s1t15!~s1t16!~t11!

2~s11!~s13!~2t15!
G1/2 2F ~s2t!~s2t21!~t11!

2~s12!~s14!~2t15! G1/2
@t1 1

2 ,
3
2 # 0 0

@t1 1
2 ,

1
2 #

2F ~s1t15!~s2t11!~t13!

2~s11!~s13!~3t12!~2t15!G
1/2 F ~s1t14!~s2t!~t12!

2~s12!~s14!~3t12!~2t15!
G 1/2

@t2 3
2 ,

1
2 #

2F ~s2t12!~s2t11!~t13!

2~s11!~s13!~2t13! G1/2 F ~s1t14!~s1t13!~t13!

2~s12!~s14!~2t13!
G 1/2
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