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The even-even and even-odd nucféPXe—1%2Xe and ®*'Ba—'"Ba are shown to have a well-realized
SO D SO;D SO; fermion dynamical symmetry. Their low-lying energy levels can be described by a unified
analytical expression with tw(ihree adjustable parameters for even-qagen-evehnuclei that is derived by
using the vector and spinor representations of the fermion model. Analytical expressions are given for wave
functions and folE2 transition rates that agree well with data. The distinction between the fermion dynamical
symmetry mode(FDSM) and the interacting boson mod#BM) SO limits is discussed. The experimentally
observed suppression of the energy levels with increasing @@ntum number can be explained as a
perturbation of the pairing interaction on the §8ymmetry, which leads to an S(pairing effect for SQ
nuclei.

PACS numbs(s): 21.60.Ev, 27.60t]

[. INTRODUCTION and bosons as basic building blocks and identifies the even-
. . even and even-odd collective nuclear states as multiplets of a
In the past few decades, e.xtremely rich experimental datﬁigher symmetry described by a supergroue/d), U(6/12)
have accumulated for low-lying puclea_r spectroscopy. Thtca?r U(6/20) [2—5]. The decomposition of (6/4) '[U(6/20)]’
observed levels are interwoven in a rich and complicate Lontains L(6)x UF(4) [UB(6)x UF(20)] with UB(6) re-

manner, and understanding them is a challenging pmblen?érring to the six bosons and 4) [UF(20)] to the odd
The low-energy spectroscopy of even-even, medlum_heav)férmion moving in a singlg-level of j =3/2 (multi-j levels

and heavy nuclei can now be explained rather well by the ™. =" oS g . .
interacting boson moddIBM) [1]. The first attempt to de- Vé']th ]_1/2’(;_3/2’ 1_532' ?ndj _Z]/Z)' L?ter,thJolleet al.
scribe on the same footing the spectroscopy of both ever}- 65)2rgposed a nlgv; r;atuct;]()eérl_sisgme or the sup_?kr]group
even and even-odd nuclei in an analytical way is due to ( ) ) an apphied 1t to — oY mass region. 1hey
lachello[2], through the concept of supersymmetry. consu_jered the smgle—partlcle orbits 1/2, 3/2, 5/2, and 7/2
In this paper, we shall use the terminology NSUSY tc)resultlng from the coupling of a pseudo—orbltalz'part and

denote nuclear dynamical supersymmetry. NSUSY is an ouf pge“dOSerB: 3/2. Instead of the group chain U(G/ZO).
growth of the phenomenological IBM that treats fermions= Y (6)X U™(4) [3], they suggested use of the group chain

U(6/20 D UB(6) x UF(20) D 0B(6) x UF(4) x UF(5) D spin(6) X UF(5) D spin5) x OF (5) Dspin(5) Dspin3). (1)

NSUSY has had some success$generally up to 15—-30 % tions, respectively, of the same $O@r Spg group; thus, one
accuracy for spectroscopic fitting for a few nugldBut the  can describe even-even and even-odd nuclei in the FDSM
basic building blocks of nuclei are fermions, and thendd  without the concept of supersymmetry or additional degrees
bosons in the IBM are supposedly simulations of coherenof freedom.
nucleon pairs with angular momenta 0 and 2. Therefore, itis Two general regions are thought to exhibit some level of
a simplification of the real situation to introduceé®?(6) and  supersymmetry in the properties of low-lying nuclear states:
UF(4) [or UF(5), and U(20)] as a direct product the Pt regior5,11] and theA=130 (Xe-Ba) region[12]. In
UB(6)xU"(4) [or UB(6)xUF(20), or UB(6)xUF(4) the Ptregion, the normal-parity valence protons and neutrons
x UF(5)]. are in the sixth and seventh shells, respectively, and accord-
The fermion dynamical symmetry mod@iDSM) [7,8]is  ing to the FDSM[8] they have S@XSp; symmetry, which
defined by a fermionic Lie algebra. It has symmetry limits does not permit an analytical solution for the proton-neutron
analogous to the IBM limits and takes Pauli principle into coupled system. However it could have effective SiRe
account9,10]. Furthermore, the states for even and odd syssymmetry as we have shown [d3]. On the other hand,
tems in the FDSM belong to vector and spinor representaauclei in the Xe-Ba region have both their neutrons and their
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protons in the sixth shell with FDSM pseudo-orbital angular P (k)=(—)"21{/8/5P" (k),
momentumk=2 and pseudospiti=3/2 for the normal- a a
parity levels. Thus they are expected to posses§ $6C; = Q1 /2[b] byi]"% % r=0123, (6)

symmetry, which contains coupled $Osymmetry (the

FDSM analog of IBM-1, and have analytic solutions for the where[r/2] is the integer part of/2. The operator®, (i)
SO;xSU,, SOs and SG dynamical symmetries. In fact, and p! (k) for r=1 and 3 form the Lie algebras %de
there is now empirical evidencgl2] that nuc_:lel in the SO5, respect|vely The commutators among “ﬁE(') are
A=130 region are better portrayed by an Slonit than the r%lven by Eq. (3 12 of [7] for thei-active case and those for

Pt region. For these reasons, we have chosen the Xe-Ba res—5
gion to discuss the possibility of a simplified and unified Mhe i(/ a[cl:)tlvt()aklcasecsvr:tr?e obtained from E¢3.12) of [7] for

description for even-even and even-odd nuclei by the FDS

as an alternative to the IBM and to NSUSY. r s t r s t
The organization of the paper is as follows: energy for- \/5[ ]_N/E[ ]

mulas for both even-even and even-odd nuclei and a com- 111 2.2 2

parison with data are given in Sec. Il, the respective wave Eq. (6) we have renormalized the multipole operators

functions are constructed in Sec. lll, the electromagnetltg ) so that th hic with" Furth
transitions are discussed in Sec. 1V, and conclusions are pr (k) so that they are isomorphic wifR, (i). Furthermore,

sented in Sec. V. P (i) and Pl x(K) are related to the total pseudo-orbital an-
gular momentum and pseudospin by

Il. THE ENERGY SPECTRA

1 — 1
1 Ty
In the simplest version of the FDSM, the numbers of PL()= \/5 wr Pul= \/§Lﬂ' @)
nucleons in the normal and abnormal orbits are fixed for a
given nucleus and therefore the quasispin group & the By using the Casimir operators of 30 SOg, and

abnormal levels plays no explicit dynamical role for low- SO5, the Hamiltonian of Eq(3) can be rewritten as
lying states(it enters implicitly through the conservation of

particle number and through effective interaction param-Hepsm=Ho+ €1n1+9sS" S+0g6Csg +95Csd<+'+gscsd5
eters. The wave functions for both even and odd nuclei are

given by the following group chain: +95Csdg+ 9I1?+gLL?+g,%, ®)

lots) Sd>  sdx sd> sA™*> sd"'  where the total angular momentumds1+L, and

[l1lol5l4] [o10203] [mi7] [170]  [wji0;] J,

@ Ho:%(n1)2+Gz[Csdé_So(So_6)],

where[l415l3l4], [010,03], and[ 7, 75] are the Cartan-Weyl So=1%(n;—Qy),

labels for the groups S§ SOg, and SQG, respectively,

7=0(1) for even(odd nuclei, and the superscript indicks 9s=(Go—G,), 0s=(B,—G,), gs=Dbs,
andi indicate pseudo-orbital and pseudospin parts of the

groups, respectively. The pseudo-orbﬁadind pseudospiﬁ g5 0:—0s, 0s=B3—B,, 95 —bgs,
compose single-particle angular momentﬁrﬁ9,8]. We note 0=9/—0;, g =%(B;— 3),

the resemblance between E@) and the NSUSY group
chain Eg.(1). The FDSM Hamiltonian is

3
Hepsu=e1n1+GoS'S+G,DT-D+ >, B,P(i)-P'(i) The eigenvalue 0€sq, is
r=1

9;=3(b1+b3), 9 =5(Z1—73)~509;. 9

4
+ 2 [AP(K)-P(+20,P'() P, (3) Csq,= 2, li(li+8-20), (109
r=1, =

wheree, is the energy for the normal-parity orbitassumed and the condition for the realization of the symmetry is
degenerateandn; is the number of nucleons in the normal- 9s=0, implying that

t bit
parity orbits, Gy=G,. (11

ST AOT DT :AZT
peom The low-lying states of even-even nuclei belong to thegSO
A= /0. /2(bl bl 10" —02 4 irrep [Ql/éfr O /4 O4/4 O, /4], i.e., the irrep with heritage
w V2Abiibiiloy:  1=0.2, @ u=0, u being the number of valence nucleons not contained

where k=2, i=3/2, and Q,=0,;=(2k+1)(2i+1)/2. inSandD pairs[8,9]. By lettingG,= G, and.%;=b; =0 for
Similarly, i=1,3, from Egs(8)—(10) we have

= O /2blib1%,, 1=0,123, (5) He*"=E® + g6Csql + 95C s+ 9y 1%, (12
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where whereJ(J+1) is used instead df(l+1) (sinceL=0, and
thusJ=1), and
EQ=14(1-Gp)(n)?+[3 Go(Q1+6)+21In;. (13)
ECU=Ef) +gglo1(01+4) + 0202+ 2) +(03)°]
For odd nuclei the low-lying states are expected to belong

to the SQ irrep[Q1/4 Q,/4 Q4/4 Q,/4—1], correspond- +059(3+ 1)+ (95— 9s)[ T1(71+3) + To( 72+ 1)]
ing to heritageu=1. The conditions for realizing the sym-

metry of Eq.(2) are Eq.(11) andg, =0, which implies that T sl wa(@1+3)+ wxlwpt 1] (18)

The reduction rules are as folloy2]:

Bl_B3:bl+b3. (14)

Under the conditions of Eq¢11) and (14), and noting that even system:  S¢D SG  2SG D30
for u=1 the pseudo-orbital angular momentum is [wwww] [000] [70] J,
L?2=2(2+1)=6, we have 19
HO%=E{” +g6Csq + (95— 0s) Csq +9sCsq+k+ 03, Q

o " 9esq, (95~ 9s) 56T dssq 8y (15 WITl, o0=Ny,N;—2,...,1 orQ,

Ey)=Ey +405+6g.+ 3 Go(2- Q). (1) r=0,0-1,...,0, 7=3ny+\,
Using the eigenvalue formulas for the g@nd SQ, Casimir ny=0,1,2..., J=AA+1,...,2A-22\, (20

operators, the energies for even and odd systems are
N , ’ with N;=n,/2, wheren, is the number of the nucleons in
E®"=Ey +ge0(0+4)+057(7+3)+9/J(J+1), (17)  the normal parity levels, and

|
odd system:  (SG,D saD sax Ss&> sdf'o st
(wwww—1] [o+3,33] [7+3,3] [10] [oiw;] J, (21

o=N;,N,—1,...10, r=0,0—1,...,0,

whereN;=[n4/2]. The relevant Clebsch-Gordan series forand the parameters used in the calculations are given in Table

SO; are[14] I. The experimental spectra indicate that the;S@arameter
g, is not sensitive to the neutron number in fitting the spectra
[713]1X[10]=[ 1+ 1 3]+ [ 3] +[ 3]+ [ 71— 151, of a chain of isotopesincluding both even-even and even-
odd nucle). Therefore, in fitting the even-even nuclear spec-
[331710]=[34]+[%%] (22)  trawe fix the parametey; to be 11.9 keV, and the adjustable
parameters were taken to gg andgs, which will be used
and the SQ content of the SQ irreps[ w,w,] is [2] for the neighboring even-odd isotopes as well.
From Table I, we find that- gg andgg are nearly equal. It
J=[2(w1— wy) —6vy+3],[2(w;— wy)—6ra+3],..., is interesting to note that if the quadrupole-quadrupole inter-
action is dominant over the pairingB,|>|Go| (= |G, in
[(w—wy)—3vy—2[1—(—)2a+2], (23)  the symmetry limit, and|B,|>|B5| (cf. Eq. (5.30 in [15]),

from Eq. (9) we obtain the relation

v,=0313,.... 24
A 21452 (24 géz — 06, (25
The above discussions adopt as a simplification that the
numbers of valence nucleon pairs in the normal- andvhich is precisely the empirical relatiol/4=B for the pa-
abnormal-parity leveld\; andNy, are fixed. In realitN, or ~ rameters in the IBM S@limit [12]. The parametegg can be
N, have a distribution and the semiempirical formula(8f  determined through thej0(i.e., o=N;—2) level. With the
has been used to obtalMy, , which may generally take non- parametersys given in Table |, the calculated 2 levels
integer values to simulate an average behavior of the nucledr=N;—2,7=1) are in good agreement with the experi-
states with different values ®f;. For computing the spectra mental results.
and theB(E2) values, we have taken the nearest integer to Comparing Eq(17) with Egs.(6.2) and (6.3) of [3], or
the noninteger number. Egs. (2.9 of [6], we see that the spectral formulas in the
The low-lying energy spectra fol?°~1%2Xe isotopes pre- U(6/4) or U(6/20) NSUSY and in the FDSM are essentially
dicted by Eq.(17) are compared with data in Figs. 1 and 2, identical (except for the replacement &f by N,) for even
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- 6 o— | ., o FIG. 2. Comparison between calculated levels using (&)
E L = = N - and experimental energy levels for the even-e¥&h ¥2Xe iso-
) . 3 gt = topes.
- + -
= 1.0 4—-2+_ P
- 22— ] [3/2 3/2], and[5/2 1/2]. Consequently, for the FDSM in the
0.0 Lo— ot— 126xe ] low-energy region there are more low-spin stafeere are
two 1/2's and four 3/2’s, while the 7/ 2, 9/2, and 11/2 states

are pushed up This shows the same pattern as if6120).

Using Table | and Eq(18), the spectra of the neighboring
even-odd Xe isotopes can be calculated. For the odd-mass
FIG. 1.. Comparison between calculated levels lfzsing (Eq) Xe and Ba isotopes, we talg to be 35.3 keV except for

and experimental energy levels for the even-evéh 126Xe iso- 12%e . The difference betweeg, andg/ comes from the
topes. coupling of SCQ and SQ. We present the calculated and
experimental results fot?”~3%e in Figs. 3 and 4, and for
nuclei, while for the odd nuclei they are similar in appear- 131-13%g4 in Fig. 5, with the parameters given in Table II.
ance but differ in two ways(1) the parameters of the $8)
group for the even and odd systems are different here, but the

same in W6/20) or U(6/4) NSUSY. This difference comes TABLE I. Parameters for the even Xe isotopes.

from the coupling termi-L in our case.2) There is one \clei g6 (keV) gt (keV) gl (keV)
SOg Casimir operator and two SQOCasimir operators for the 6 > !

FDSM, in contrast to two S@ Casimir operators and one '*Xe -60 53 11.9
SOg Casimir operator in the (8/4) NSUSY. These differ- 2%e -64 59 11.9
ences have a significant effect on the spectrum. In ti&#4y  ?*xe -68.8 64 11.9
NSUSY, the five lowest-energy irreps of $@re[1/2 1/2, 126xe -73.3 71 11.9
[3/2 1/2), [5/2 1/2], [7/2 1/2] and [9/2 1/2]; therefore the 128xe -78.2 79 11.9
states 3/2, 5/2, 7/2, 9/2, and 11/2 belonging to the irrepi3ke -100.9 100 11.9
[5/2 1/2] of SOg lie quite low in energy, while in the FDSM  132¢¢ -106.5 122 11.9

the lowest six SQ@ irreps are[1/2 1/2?, [3/2 1/2?,
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FIG. 3. Comparison between calculated levels using (&6) FIG. 4. Comparison between calculated levels using #8)

and experimental energy levels for the even-68d '**Xe isotopes.  and experimental energy levels for the even-otd 13Xe isotopes.

The even-odd nuclei are constructed by coupling the neighboringrhe even-odd nuclei are constructed by coupling the neighboring
even-even core to a valence neutron. even-even core to a valence neutron.

Apart from the constant term, the formula f&f'*" contains

three parameters, and that 8P contains two parameters into account; for instance, the mixing of particles in normal
beyond the three parameters that are determined by fittingnd unique parity levels and the single-particle energy con-
the spectra of neighboring even-even nuclei. With two extrdribution.

parametersq; is kept constant in the region discussed, ex- Due to scarcity of data, we are constrained to discuss only

cept for 12’Xe), Eq. (18) reproduces the spectral patterns for the low-lying levels ¢;=N;+1/2). We could in principle
the nuclei 2~ 13Xe and 3 13Ba with about 15 levels compare them with levels belonging t@;=N;—1/2. If

each. more data for higher levels were available, this would allow
Experimentally, the odd nuclei in this region have bothus to determine the parametey for even-odd nuclei.
1/2 and 3/2 as the ground-state spin. The second 68  Clearly, a comparison of thgs values obtained from fitting
simir operator in Eq(18) provides this possibility. For alter- €ven and odd nuclear spectra is a meaningful test for the
native signs of the parametgg, the ground-state spin can Vvalidity of the SO; symmetry. Here we have only considered
take the values 1/2 or 3/2 . What is more, by allowmgto fitting the levels with7=1,2,3. If the levels withr>3 were
change smoothly from positive to negative, we can reprotaken into account, thgs value would have to be smaller in
duce the systematic shift of the ground band of the Xe an@rder to fit the high-lying states; as a price, the unified good
Ba isotopes, as shown in Figs. 6 and 7. From Figs. 3-5, wét of the lowq{r;7,] states for the even-even nuclei and
see that just as for (/20 NSUSY[6], for °e, *Ba, and  even-odd nuclei would be spoiled.
133Ba, the FDSM predicts a natural occurrence of 1/2s Comparison of pure S spectra with the data for
the ground state and four low-energy 3/2tates as the ex- 2° '¥Xe (see Figs. 1 and)3jives reasonable agreement for
cited states. We note that the major aim of this present<3 states for'?®-126Xe. However, the experimental ener-
FDSM description is to give a simple and unified descriptiongies for the highr values in the nuclef?® 1*2Xe are much
of spectral pattern of even and even-odd nuclei. For mordower than predicted, with the discrepancies increasing for
guantitative agreement, additional physics should be takethe higher 7 values. This is strongly reminiscent of the



720 PAN, PING, FENG, CHEN, WU, AND GUIDRY 53

Th. 131p4 Exp. Th. 13384 EXp . Th*y 13584 Exp.
1.0 R . 2 , J.'._l -

. _ . BRI

- %‘_‘;L_ %— o 2 2 - 2 2 2
: o _ *

E 0.3 '{_ Iy i‘_ %; = %‘_ 'g_ zf _%—{_ D C i i ; E i i‘_f_ ]

PR PO T e R P :

= LT i tore - - r'e

—— 2 —
0 % ,_ % .2 {_ {_ % - %_z 3_
3 iy BABAR by B R o g 4 B4 B

FIG. 5. Comparison between calculated levels and experimental energy levels for the evEli-défBa isotopes. For the excited
[ 7175] states, the bandhead states are compared with experimental ones.

stretching effect in nuclear rotational spectra. However, a&ven core. Experimental energy levels for even-even nuclei
more careful comparison shows that the energy levels withishow that ther-compression effect is negligible for<2

the same SQ@irrep (samer) follow the J(J+ 1) rule rather states. Therefore, the effect in the even-odd nuclei is not so
well. Therefore the aforementioned discrepancy cannot beonspicuous as in the even-even nuclei.

due to the usual stretching effect in which the deformation

should increase with angular momentum. [lb6], it was I. WAVE FUNCTIONS

pointed out that it is in fact an SO7-compression effect.
The driving force for this effect is the reduction of pairing
correlation with increasingr. Allowing for gs=Gy— G, According to Eq.(4.39 in [15] the FDSM wave function
#0, thereby deviating from the SQimit, and treating the in the SQ; limit for u=0 is

gsS'- Sterm as a perturbation, leads to the following energy

A. Even-even nuclei

formula: INjomnAIM) =7y er|Nlo-TnA|M)b~>f’ (27)
Eeven~ Eée)+960(0+ 4)+ A" 7(7+3)—B'[7(7+3)]? where:%Nlm is a Pauli factor,

+9,J(J+1). (26) o [(Q=Ny= o) (Q =Ny + o+ 412 -

Nypor™ Q(Q+HN , (28

Figure 8 shows the spectrum fdf%e predicted by Egs.

(17) and (26), respectively. Inclusion of the SOstretching and |N;o7n,IM){2Y, denotes a wave function resulting

effect improves the agreement significantly. More examplegrom replacing the boson operatcn%ander by the fermion

can be found if16]. operatorsS' and D}, in the UsD0gD 05:) 05 IBM wave
For even-odd nuclei, the levels calculated in this investifynction [N;o7n,IM)'®M,

gation are limited to those fdrry75]=[1/2 1/2],[3/2 1/7]

bands, which corresponds to the=0,1 states of the even- |[Nyorn,IM)E%
TABLE 1l. (a) Parameters for the odd Xe isotop¢ls) Param- =§N10(IT)(N17”)/21‘M(ST,I T)lTTTnA|M)LBLAf, (29

eters for the odd Ba isotopes.

where |7rmn,IM)BM denotes the IBM YDUsDSQ;

@ D S0; wave function and
Nuclei ki e (k ki ki
12le ei gs(keV)  gg (keV) g5 (keV) g, (keV) (20+4)! 1 N
e -73.3 71.0 -38.0 25.0 N = (NF o+ H)IT(N=o)IT| (30
e -78.2 79.0 -18.0 35.3
181xe -100.9 100.0 30.0 35.3 I"'=pt.DT-s'. s, (31)
183xe -106.5 122.0 50.5 35.3
135 142.1 70.6 35.3 wherel T is a generalized pair arfg,.(S',17) is a polynomial
. in S" andD" of order (¢— 1),
Nuclei g5 (keV) gs (keV) g; (keV) (e —ni2]
f,(ShIT)= D,(or)(SH 7 2P(1T)P, (32
B31gg 725 -20 35.3 (5.1 pgo ploT)(S) (1% (32
133Ba 105 -15 35.3 L "
13534 90 50 35.3 b B 27 Y o= 7m)1(27+3)! (c+1—p)!
13784 72 70 353 o) e Do+ 7+ 3)1 | (o= r—2p)ipl"

(33
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FIG. 6. The systematic shift of the ground band as a function of

. FIG. 7. The systematic shift of the ground band as a function of
mass number for Xe isotopes.

mass number for Ba isotopes.

Here the notation for the wave functions is the same as in
[15]. |2N1+1[010505][ 71 72]NAIM)

B. Even-odd nuclei :Kl_l(Nli[0'10'20'3])[|N1[0'] IbBL\/If|U 1>]%:11;'22]Zi]|,\,, )
In this section we construct the wave functions for states (34)
in odd-mass nuclei that corresponds to heritagel. Ac-
cording to the vector coherent state technifflid, the wave  whereN; is the total number 08,D pairs in the “collective
function for thei-active part can be constructed by couplingwave function,” | is the number of generalized pairs
the “collective wave function”’|N;omm,l'M")EY and the  1T,N;=0+2I, andK; }(Ny,[o10,03]) is the diagonal ma-
“intrinsic state,” now the one-fermion statgu=1), by trix element of the inverse of thik matrix [17].

means of the SE@D SO;DS0O; CG coefficients, Written out explicitly, Eq.(34) becomes
1 1 Al IBM 11
|2N1+1{0o1+ 3,7} IM [10]k=2,m) = 2% H(Ny(o+3)) 2 § L1 [b2m3/2|N1<T7'nA| Jb—tlm (35
T’ n tarT

where the factor 1/2—? is due to the different definitions @, in [8,17], the shorthand notation stands for

{0'+2le} {<0'+ >[7'12]} —[0'+2> '% (36)
and ggin(i/z)f 0yl is the isoscalar factor for the group chain SOSQ; D SO;[18], which is a product of the SED SO, and
SO;D S0, |soscalar factors,

o 1 [600](z) |(o+3)|[[70][% 3] |[ 7 2]
§0'+(Al/2)7' n 11 1 ’ 3 ) (37)
b\ [70] [§ 31 [ 3] A"z | Nal

By following the steps given ifil7], the matrixKl_1 is found to be

_ (Q=Ni+o+H(Q—Ny—o—2)11 |2 [ 27Ma, V2
1 Iyy= = F
KNy {ot2) { 27 NMi(Q - 2)11(Q+ 4N 0,-Ny—o| Mo (38
Inserting(38) into (35)
1 Ql vz om’l’ T r ol
|2N1+1,{0'+§,7'1}HA|M,[lO]k:Z,m>= m g+%rlnAI[b2m§|N10—TnAl >]M (39)
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FIG. 8. (@ The SQ, spectrum calculated with the parameters gge= —73.3 (keV), gs= 71 (keV), and g,=11.9 (keV); (b) the
comparison of the experimental spectrum?8#Xe (lower numbers and the spectrum of S6) plus a perturbative pairing terfupper
numbers [i.e., EQ.(26)]. The parameters here agg= —73.3 (keV), A’ =80 (keV). B’ =0.77 (keV) andg,=11.9 (keV).

Coupling thei-active andk-active parts gives the total wave function of the SEDSM for even-odd nuclei

7 51110
|2N1+1,{0+%,Tl}[wlwz]nZJM>:E ([ 121110)
Iny nAl 2
Combining(34)—(40) we have
) [713](10]
|2N1+11{0'+%aTl}[wle]nA‘]M>:E > ’
Na T|,n& nAI 2

!

2

XE (_)|'+3/2+J[|
]

where J=2J+1. It is interesting to note that when the
fermion state for the cordN,onjl’), is replaced by the
boson statéN,o7nj|’) and the Pauli factor is ignored, Eq.
(41) goes over to the (6/20 NSUSY wave function2.14)

[wl,,wﬂ)[|2N1+1,{o+%,n}nu,[101k=2>m. (40)
nyJ
[wiw,]| [ [000)(3) |(o+ 3| [[70][5 3] |[r,3]
N 0701 [3 31 [ma3] )\ i3 | nal
20 ..
j _]lJ[|N1mn’A|'>am, (41)
J
[
[P2(i),S"][B2 s'], (44)
[P2(i),D]]~[B2 d]], (45)

of [6]. Thus, NSUSY can be obtained as an approximation téhe formula for the reduced matrix elements of & tran-

the FDSM for odd-mass SOnuclei.

IV. ELECTROMAGNETIC TRANSITIONS
A. The E2 transition rate for even-even nuclei

In [8], the E2 transition operator in the FDSM is defined
as

T(E2)2=qP4(i) (42)

while the E2 transition operator for the IBM SQlimit is
[18]

T(E2)2=qB2, B%=(d'S+s'd)2. (43)

sition operator in the FDSM is identical to that in the IBM,
(No7'njJ"|P%(i)|Norn,J)FPSM

=(No7'nyJ'|BNan,J)'BM, (46)
Although it is well known now, it is nevertheless a remark-
able fact that the FDSM and IBM have the same selection
rules,Aoc=0 andAr=*1, and the same closed expression
for the E2 transition rate$l]. The commonly needed results
are given in Table Il . It should be noted that theg @it of

the IBM and the S@ limit of the FDSM share the same
analytical form for the spectra and tB2 transitions, but the
accounting of the collective pair number is different in these
two models: the collective pair number is half of the total
valence nucleonsN) in the IBM, whereas in FDSM it is

Owing to the isomorphism between the commutators for théaken as half of the total valence nucleons in the normal-

FDSM and IBM:

parity levels ;).
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TABLE lll. B(E2) formulas for even-even nuclei in the @mit.

INyo7d;) — INyo' 7' 3¢) B(E2;J;—J)
[N;N;1+L/2L +2) - [N;N,L/2L) 2(L+2)(2N1+L+8)( 1)
8(L+5)

IN3N;12) - IN;N;00) 50°N(N; +4)
IN;N;22) - IN;N;12) 293 (N, —1) (N, +5)
IN1N;34) - IN;N;24) 8502(N1—2) (N, +6)
IN;N;33) - [N;N;24) 2_1q %(N;—2)(N;+6)
IN;N,33) - IN;N,;22) 319%(N1—2)(N; +6)
IN;N;34) — [N;N;22) 330%(N;—2) (N, +6)
IN;N;30) - IN;N;22) 2_1q2(N1_2)(N1+6)

As pointed out i 19], when we define th&2 transition assuming that the wave functions still have good SO
operators as Eq42) or Eq. (43), theAc=0 andA7=*1 62 SO; symmetry. The new operator takes the form
selection rules prohibit some transitions that are observed in ) - e 2
many nuclei. As a particular case of these selection rules, the T(E2),=qP,(i)+q'(D'D),. (47)
guadrupole moments are predicted to be zero in the SO
limit, but most of the observed quadrupole moments of the
transitional nuclei differ from zero. This deviation from zero Ao=+2, Ar=0,+2. (48)
may be due to two causes: one is the breaking of thg SO
symmetry; the other is that tHe2 transition operator may The reduced matrix element oD(D) can be calculated by
require a more general definition. We have chosen the latténserting a complete set of mtermedlate stathe reduced
to study this problem. It is straightforward to define a newmatrix elements used here are defined according to the Rose
E2 transition operator that relaxes the selection rule whileconvention

The (DTD) term makes the following transition possible:

(Nyor'niL'[[(DTD)3INjormn Ly =\B(2L+1) >, (—)Y"Y(Nyo'7'njL’[|DT|N;— 10" 7'n}L")

(T”T”L"
2 2 2
X (Njomm,L|DT|N;— 10" 7'n) L") Sl (49)
L L" L
The SO, reduced matrix element @ in Eq. (49) is
Pt t , + o 1|0’ T 1|7
(N;+10'7'njL'[[DY|NyomL)=(N;+10’'|D"|N,o) -1l 2l (50)

where(N;+1¢'||D'N;0) is the SQ reduced matrix ele- whereA,, is the eigenvalue of the Toronto auxiliary opera-
ment and the last two factors are the TS0, and  tor
SOsD SO; isoscalar factors, respectively, which have been
given in[21] for some simple cases. The $@&duced matrix
elements ofS" andD" are given in the Appendix.

Using vector coherent state techniqi¢g] for theu=0
case, the SPreduced matrix element db' can be ex-

1
Aps=—7[P(p=20,=6)—o(a+4)], (52

(o+1)(I1+0+3)]"2
pressed as (p+1lo+1||Z|po)= 073 , (53
. _ _ 112 ' (I+1)(o+3)]*?
(p+10’[DTpo)=V2(A pi 10— Ape) Xp+ 1o ||Z||p<?£>3,1) (p+1o—1|z|pa)= ﬁ . (54
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TABLE IV. Some quadrupole moments aBdE2) values for the transitiodsor=0,+2, Ar=0,%£2.

;o N1(N3—1)(N;+4)(N;+5)

(Q,—2N;+2)>?

70(N;+1)?

—q? 5(N;—1)(N;—2)(N;+5)(N; +6)

(Q,—2N;+2)?

294(N;+1)?

B(E2;N;N;34—N;N;12)

B(E2;N;N;34—N;N;33) =g

B(E2;N;N;30—N;N;12) =q’?

1IN~ 1)(Ny—2)(N; +5) (N, +6)
=4 882(N, + 1)

, 2(N+4N, +23)
231(N;+1)?

(N1=1)(Ny—2)(N;+5)(N1 +6)

(Q1—2N;+2)?

(Q;—2N;+2)?

(Q;—2N;+2)?

B(E2;N;N;22—N;N;24) =g

42(N;+1)?

,, 16(N3+4N; +15)°
2205(N; +1)?

,5 (N3 +2)(Ny+3)(N;+4)(Ny +5)

(Q;—2N;+2)?

B(E2;N;N;—200—N;N;12) =q

14N, (N;+1)?

(Q1—2N;+2)(2,14)

(N73=1)(Ny—2)(N;+3)(N.+4)

B(E2:N;N;—212-N;N;12) =q'2

(21—2N;+2)(Q114)

49N, (N;+1)?
. [2m4(Ni+4N;+9) 0
Q(N;N112) =q gw( 1—2N;+2)

with p=N;=0+21=(1/2)(n;—1). For the special cases transitions withA7=0,+2 andAo= *2. The contribution

that will be used below, we have

(p+1o+1|DYpo)

(Q1—20-2l)(c+1)(I+0+3) 1/2
:[ (o13) . (55
(Q1+4-21)(1+1)(c+3) 1/2
<p+1a—1||D*|pa>:[ LA
(56)

In Table IV we summarize some expressionsBgE?2) val-
ues and quadrupole moments in the FDSM gSlinit for

to the B(E2) from the second term’(DTﬁ)i differs from
the corresponding terrq’(d*d)i in the IBM [19] by the
Pauli factors.

B. The transition rates for even-odd nuclei

For theu=1 case, thée2 transition operator can be de-
fined as

T(E2)2=qP2(i)+q"P2(k). (57)

The reduced matrix element is

<{N1+ %-Ti}[‘”iwé]‘]'”q Pz(i )+ qNF’z(k)||{'\ll‘F %le}[a’le]‘D

B [7/3] [10] |[wjwo]|([713] [10] |[wiw,]
_%’ o2 | )( | o | 3 M BB
M=({N;+3,71}(1",[10]k=2)3"[|qP*(i) +q"P*(K)[{N1+ 3,7 }(1,[ 10]k=2)J). (59
According to Eqg.(6.8) in Judd[20], we have
1 n
[bibii16=—===2 [bk(p)b(p)I. (60)

\V2i+1p=1
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TABLE V. Relative B(E2) values for the even Xe isotopes.

12000 124y 1260 128y 1300
Ji—J; Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo.
2527 100 100 100 100 100 100 100 100 100 100
—05 5.6 5.6 3.9 3.9 15 1.4 1.2 1.2 0.6 0.6
37 —2; 100 100 100 100 100 100 100 100 100 100
—47 50 40 46 40 34 40 37 40 25 40
—27 2.7 7.1 1.6 4.9 2.0 1.85 1.0 1.5 1.4 0.72
47 —25 100 100 100 100 100 100 100 100 100 100
—47 62 91 91 91 76 91 133 91 107 91
—27 — 7.11 0.4 491 1.0 1.83 1.7 1.49 3.2 0.97
0; —25 100 100 100 100 100 100 100 100 100 100
—27 — 7.11 1 4.91 7.7 1.83 14 1.49 26 0.97

Therefore, in computing the matrix eIementstj(k) the operator can be replaced by

P (k)—\/ E [bi(p)b(p) 12 (61)

Using (61) we have

M=33'(—)"*? you2 o [ (INL+ 2,713 [aPP(DI{N+ 3,7}
| I/ 17271 q 217-1}>

an [BOLT (Q—2N;—1) (3 T 2
” _\I+J ’ —
+q 571T15||’( ) ‘]‘] 2’|‘ (Ql_l) 2 2 I . (62)

Now only the matrix elements d?i(i) remain to be calculated. The generators of &iffor the IBFM are

G.=B%+F2, F.=(alAs)’ (63)
corresponding to the commutator for the IBFM
[Fi,a23,2)mi]:(—1)3/27mi<imi+,u~,i —mi|2M>a(Ts/2)mi+ﬂ- (64)

There is a similar commutator in the FDSM

2.\ pt @ 3/2—m;/; ; T
[PL(1).0255/9m 1= m(—l) im;+ g, i =M 2025372 2m, 4 (65
|
whereo= 7 or », and the factorn/Q,/2(2k+1) is always =({N+3, 7} |GH{N+3,7.}1)BM, (69

equal to 1 for the sixth shell.
Because of44) and(45) and(64) and(65), we have the )
following isomorphism between the commutators in theThe reduced matrix element @, is derived in[18]. With

FDSM and IBFM: these results we can calculate tB§E2) values and the
quadrupole moments for odd-mass nuclei. The selection
[P2,S"—[B%,s"1=[G? ,s'], (66)  rules for U6/4) are[18]
P2(i),DT1—~[B? ,d'1=[G2 ,d], 6
[PL).Dy =1 A=l /] (67 A7r;=0,+1, A7,=0. (70)

[Pi(')vbzz(s/zmi]‘—’[':iaa(3/2)mi]—[Gi'a(3/2) mi]-
(68  For theu=1 case in the FDSM, owing to the Kronecker

. . . roduct(22) the corresponding selection rules are
Therefore we establish the following identity: P 22 P g

({N+3, 7} [PP()I{N+ 3, 7 }1) oM Aw,;=0,+1,+2,+3, Aw,=0,*1. (71)
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TABLE VI. Relative B(E2) values for the even Ba isotopes.

12684 12884 13084 13284 13434
Ji—J¢ Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo. Expt. Theo.a Theo.b

2;—27 100 100 100 100 100 100 100 100 100 100 100
—07 11 11 9.2 9.2 5.7 5.7 0.2 0.2 1.0 11 3.06
37 —2; 100 100 100 100 100 100 100 100 100 100 100

—4f 13 40 — 40 30 40 73 40 40 40 40
—27 5.8 14.4 — 12 15 7.46 0.2 0.24 1.0 1.26 3.89
4; —25 100 100 100 100 100 100 100 100 100 100 100
—37 — 26.1 — 21.8 — 13.5 — 0.44 145 3.06 9.45
—4f 28 91 42 91 89 91 75 91 77 91 91

—27 11 14.4 17 12 3.9 7.46 2.2 0.24 2.5 1.26 3.89
0;—25; 100 100 100 100 100 100 100 100 100 100 100

—)ZI — 14.4 — 12 — 7.46 0 0.24 4 1.26 3.89
With these rules, the restrictions for tB¢E2) values will be 2(N—1) o
less severe than that of the IBFM8]. This enables us to N for the Us limit,
explain some data that cannot be explained by tl&/4) R,= (73
IBEM. 10(N—1)(N+5)

From Table 11l and Table IV, we can calculate tBEE2) TN(N+4) forthe SG; limit,

values for the transitiorA w,=0,=1,=2. In order to make a
direct comparison between the calculated and experimentdthereN is the boson number. TH, value derived from the
results without a knowledge af andq’, we compute the FDSM has the same form as above, but witireplaced by
relative B(E2) value rather than the absolute values. TheNi,
FDSM prediction and the experimental res(itg,21 for Xe
and Ba isotopes are listed in Tables V and VI. For the tran- _ 10(N; —1)(N1 +5)
sitions with Ac=0 and Ar=+1, the formulas for the N 7N1(N;+4)
B(E2) in the IBM and FDSM are of the same form, but the _ i
numerical values differ for a given nucleus because in thd "€ N1 values can be estimated from shell model configura-
IBM the B(E2) is a function ofN, while in the FDSM it is tions of. protons and neutrons in the oddnuclei, and are
a function of N;. For the transitions witho=+2 and Shown in the Table 7.1 of23]. In Table VIl we list the
Ar=0,=2, they also differ by the Pauli factors FDSM prediction forR, along with the experimental results
(Q1—2N;+2)2 or (Q;+4)(Q,—2N,+2), as shown in of [22]. It can be seen that the Amit of the FDSM seems
Table IV. to explain the experimental data better than the IBM. Alter-
From Tables V and VI, we can see that B¢E2) tran- natively, we note that if accuraf®, values are available, we
sitions for Xe and Ba isotopes exhibit an S@ymmetry, ~May be used to obtain the empiridé} value from Eq.(74).
especially for theA 7= +1 transitions. There are two pos- !t Should be mentioned again that apart from the Pauli
sible reasons to expect less accuracy forhe=+2 tran-  €ffect, the FDSM differs from the IBM21] in the value of
sitions: one is the definition of the neW(E2) operator and the number of the collective pair&lg vs N). The spectrum
the other is the fitting of the parametq’/q]2. In fact, of thea'=. N, band is not sensitive to the yaluel‘di, but the
the determination of [q'/q]? from the rate observation that the pare_lmetg§andgg in Tab_le | change
B(E2,2; —0;)/B(E2,2f —27) is very inaccurate. A pos- smoothly between nuclei, a_nd that thg expe_rlmental spectra
sible way to obtairg andq’ is, as in[17], through fitting the  Or the even and odd nuclei can be fitted with the saype
B(E2,27 —0;) and the quadrupole mome@(2;), respec- and g5 values, suggest that the choice Nf taken in this

tively. For example, from Q(2/)=-0.16 eb and PapPer is reasonable. .
B(E)Z/ 2.0} = 0pl46 €h)? fer( 1§4)Ba we can determine The difference betweeN andN; does affect the energies
4 1 : )

(74

(9'/q)? to be equal to 0.34, which in turn gives tREE2) for the bands witho=N;=2N;=4,... . In[12] it is
value listed in the last colum(theo.b of Table VI. By com- TABLE VII. The value ofR,.

paring the last two columns in Table VI, we see that the last

column gives a better fit. Nuclei N N, RS® REPSM(S0,) REM (505 REV (Ug)

In [22] the ratioR, between twoB(E2) values is intro-

duced to distinguish the SQlimit from the Us limit of the ~ **Xe 10 7 1.4620) 1.34 1.38 1.80
IBM, 2%e 8 6 1.2915 1.31 1.35 1.75
o 282 9 6 1.1220 1.34 1.37 1.75

R _B(E24, —2,) 72 12885 8 6 1.0814) 1.31 1.35 1.75

4 B(E2,4, —0])" ¥Ba 7 5 0.9013 1.27 1.34 1.71

B0e 5 4 1.35%18 1.21 1.27 1.60

The explicit expression foR, predicted by the IBM is
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TABLE VIIl. The E(03)/[E(25)—E(27)] ratio. The E2 transition rate is generally more sensitive to the
: parameterN; than the spectra. The reasonableness of the

Nuclei N Ny Expt. IBM FDSM chosenN; value can also be seen from the good agreement
118y o 9 6 2912 6.67 467 between the calculat_ed and experimental values of t_he
122y B(E2) values for the isotopes of Ba and Xe, as shown in

e 9 6 3.68 6.67 4.67 . . . .
124 Tables V and VI. Finally, we reiterate that Bs increases in

Xe 8 6 3.44 6.00 4.67 . .

126y 5 5 3.58 5 33 4.00 the shell, the spins for the ground. states Qf odd nuclei swap
128y 5 s 3'5 5 4' o7 4' 00 naturally between 1/2 and 3/fhis transition occurs at
13°xe 5 00 333 131xe and 3Ba for the isotopes of Xe and Ba, respectiyely
134Be 5 4 44 4. : In Table IX, both experimental and theoreti&(E2) val-
13683 > > 3.84 4.00 400 yes for the even-odd nuclei df%e and 13iXe are given,

a 4 4 2.918 3.33 3.33 and compared with the calculated results of the NSUSY case.
138ce 5 5 3.25 4.00 4.00

Here the effective chargdse., q) are the same as the neigh-
boring even-even nuclei, and determined by the experimental
B(E2,2] —0;) values. While effective charges féractive
part(i.e.,q") are fitted byE2 transitions of even-odd nuclei.
pointed out that the parameters for the Qiclei in both the  In this work, (,q”)=(0.129,0.07% e b, (0.143,0.098 e b
A=130 and Pt regions have a common characteristic thdbr ?°Xe and *Xe, respectively. The agreement with data
0s=—gg [see Eq(28)]. With such an empirical relation, the is comparable in the two cases, although the NSUSY calcu-
following energy ratio has a simple form in both the IBM lations give a somewhat better agreement of the weaker tran-

and the FDSM sitions. Finally, we reiterate that the group ché® is very
similar to the NSUSY group chaifl). However, the pseudo-
Ed.(0=N-2) 2(N+1) orbital angular momentum 2 in group chd) is introduced
3 - = , (75) as one of several possible group reductions (6/20) in the
By, —Ez 3 NSUSY, while in the FDSM it is a result of the reclassifica-

tion (in terms of thek-i basig of the shell model single-

ESS(U: Ny—2) 2Nyt particle states for the sixth shéee Table 2.1 if8]).

E;,—Es, 3

(76)
V. CONCLUSIONS

A comparison of the ratios calculated using EG%) and In this work, we provide simple but unified analytic solu-
(76) and the experimental data is shown in Table VIII. Thistions of even and even-odd nuclei within the frameworkof
example indicates also that the FDSM §@odel repro- the fermion dynamical symmetry model. The good agree-
duces this ratio better than the IBM $@or nuclei in the  ment of both level pattern anfl2 transitions with our sim-
Xe-Ba region. This suggests that in this region an empiricaplified solutions indicates a good $) symmetry for both
effective boson number may be needed to give a betteeven and even-odd nuclei iA=130 region. We find that
agreement with data in IBM calculations. generally the FDSM results provide a unified description of

TABLE IX. Transition probabilities in*?*Xe (N;,=5) and ***Xe (N;=4), Q,=20.

129 o 131y g
B(E2)(e? b?) B(E2)(e? b?)
Ji—J; FDSM Expt. Ref.[5] Ji—J FDSM Expt. Ref[5]
3+_ 1+ 0.036 0.007 1+ 3+ 0.0953 0.0039 0.0012
21 21 21 21
8,84 0.0186  <0.0005 0.013 8+ 1+ 0.075 0.030 0.016
3+ 1+ 0.084 0.12 0.12 5+ 3+ 0.004 0.10 0.10
22 21 21 21
5+ 3+ 0.011 0.22 0.10 3+ 3+ 0.053 0.057 0.058
21 21 22 21
gfi%f 0.070 0.077 0.039 1+ 14 0.0000
1
53 0.028 1+ 3¥ 0.124 0.048 0.115
1+ 3+ 0.14 0.044 0.12 I+ .5+ 0.028 0.005 0.0013
22 21 21 21
1+ 1+ 0.0000 I+ 3¢ 0.043 0.081 0.082
8+ 1+ 0.004 0.057 0.071 8+, 3x 0.025 0.027 0.017
8 1y 0.056 0.0032 0.0056 5+ 3+ 0.004 <0.031 0.0011
3+ _ 1+ 0.0133 0.0030 0.0004 5+ 1+ 0.071 0.068 0.056
24 21 22 21
8+ .84 0.014 0.013 0.043
I+ 3+ 0.124 0.005 0.026
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APPENDIX
The SQ; reduced matrix elements:

(Q1—0—N)(o—7+1)(o+7+4)(N+0+6)|"2

(N+1,0+1,7|S"INo7)=

4(c+2)(c+3) ' (AL)
_ [(Qi+o=N+4)(o—7)(o+ 7+ 3)(N=0+2)|"?
(N+1,0—-1,7|S"INo7)= —[ 2o+ D)(0+2) , (A2)
(o+7+4)(0+7+5)(7+1) |2 i1
T =7+1,
N+10+17|DYNo7)= (Q2=0=N)(N+0+6))% (279) |
(N+Lo+ls TN T Aer2)(0+3) (e-r+D(o-r+2)(r+2)|*
- (2r+1) oo
(A3)
(o+7+2)(o+7+3)(7+2)]Y? i1
et 1Dy | (1T NEON=a 2] | 27+ 1) T
(N+Lo=17[D[No7)= 4o+1)(o+2) (o—r=1)(a—7)(r+1)]¥ o
(27+5) ! -7
(Ad)

The SG;D SOy isoscalar factors:

[o+ 3,3 3] [100] [0+ 3,3 3]
[r+3,3] [10] | [7+3.3] )
c'=o0+1, c'=0—-1,

1/2 1/2

(oc—71+1)(oc+7+5)
2(0+1)(c+3)

(o—7)(0c+7+4)
2(0+2)(c+4)

([w%,%%] (100 [a'+%,%%>

[T+ 3.3 [10] [7172]
[7172] o'=0+1 o' =o—1
[r+3 (a4 5ot 6)(rt )| o= D(omr=D(r+ D]
2(0+1)(0+3)(27+5) 2(o+2)(0+4)(27+5)

[r+3.3 0 0

[7+3.3 [ (o4 748) (o D)(743) ]I (c+t+d)(a—n)(r+2) |

2(0+1)(o+3)(3r+2)(27+5) 2(0+2)(c+4)(37+2)(27+5)

[7—2,1] (o—7+2)(o—7+1)(7+3)]|*? 12

(o+7+4)(oc+7+3)(7+3)
2(0+2)(c+4)(27+3)

2(c+1)(c+3)(27+3)
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