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Polarization observables in vector meson photoproduction
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The photoproduction of vector mesons ¢, ¢) is of renewed interest because intense high energy beams of
polarized electrons and photons are under development. These beams and also polarized targets make it
possible to explore the dynamics of basic baryon structure. As a step toward that goal, an analysis of all
possible polarization observables for the case of vector meson photoproduction from a nucleon target is
presented. The question of which observables are needed to determine completely the basic photoproduction
amplitudes and the relationships between spin observables are addressed. Such theorems are most readily
demonstrated by representing all observables as bilinear products of helicity amplitudes and using known
properties of Dirac gamma and spin-1 matrices. The general angular dependence of spin observables, espe-
cially near thresholds and resonances, is examined for the vector meson case. The criteria for a complete set of
observables and the relationships between observables are then presented.

PACS numbss): 24.70+s, 25.20.Lj, 13.60.Le, 13.88¢

I. INTRODUCTION are probably most sensitive to such a configuration mixture.

In view of the above motivation, in this paper we discuss
The photoproduction and electroproduction of mesons isome general features of spin observables for the photopro-
of renewed interest now that CEBAF has arrived. The threshduction of vector mesons. Our approach is similar to that
olds for p,w, and ¢ mesons will be readily attained and Used in studies of pseudoscalar meson production and of the

exceeded. The new high-intensity continuous beams, and tp— AA reaction near threshol@—9]. However, for a vec-

development of polarized targets and beams, will allow meator meson the spin 1 complicates the dynamics and a more
surement of spin observables with unprecedented precisiof€neral approach is required to keep track of all spin observ-
In addition, the measurement of recoil baryons, including theéPles and to demonstrate their general features, e.g., their

A (which due to its weak decaj—p+m is spin self- nodal structure and their normal energy evolution. For ex-
analyzing, will provide even more spin observables. Vector @MPI€, the question of which spin observables vanish at 0°
meson decays po 7 w— K K~ K,K) pro- and 180°, which have nodes, where these nodes occur and

. : . . o : how they are expected to evolve with eneryased on
vide a measure of their density matrices, which is equwalengimple centrifugal barrier and/or resonance constraiate

to determining the intensity, polarization, and tensor IOOIar'addressed here. In addition, we examine the question of what

ization of these vector mesons. Such measurements Wee i tes a complete set of measurements, e.g., which mea-
made in the 1960'¢1]. With CEBAF, data of higher preci-

; , surements are needed to determine the magnitude and phases
sion and completeness should be achievgpleThe polar-  of the basic amplitudes. Also, we wish to know which mea-
ization of both theg, using its decay t&,K, and of thep  surements are redundant, based on assumed symmetries.
using (p— mm will be measured at the CLAS detector at Such questions have been answered for the pseudoscalar me-
CEBAF [3]. From measurement of the angular distributionson cas¢10-17; those discussions are extended here to the
of the decay mesons, it should be possible to obtain the fuNector meson case. Indeed, generalized discussions already
density matrix of the vector meson and hence its vector anexist in the literaturd13,14], which are however quite dif-
tensor polarization. ferent from our treatment.

It is therefore timely and important to study the photo-  Our description uses a space of bilinear products of helic-
and electroproduction of vector mesons. The associated fority amplitudes, along with well-known properties ofx4t
factors and intermediate isobar states should test quark mognd 3x 3 matrix bases, to reveal the general features of spin
els. The ¢ meson is of particular interest because of itsobservables. We also use the idea of transversity amplitudes
simple s) 3S;- quark content. It is the positronium of [15]. For clarity, we also include the pseudoscalar case using
strange quarks and, in parallel to charmoniuce)( states, this bilinear form description and show how it generalizes to
should provide insights into basic QCD dynamics in the nonthe vector meson case and indeed to many other reactions.
perturbative region. Perhaps an intimate connection between
production ofss pairs and baryon polarization could provide
detailed tests of quark descriptions. For example, the family |I. THE BASIC AMPLITUDE AND SPIN OBSERVABLES
of reactions yp—K'A,yp—K*'3%pp—odeé, and oo
yp— ¢p all involve ss strangeness production. In addition, ~ For vector meson photoproductioy;+ N—V+N’, our
they could also involve preexistings content of the initial ~ basic amplitude is of the form
protons and antiprotons. That possibility has been explored
in a series of papers dedicated to finding direct evidence for R .
an admixture os pairs in baryon$4—6]. Spin observables T=(q\yAo| TIKAN L), (2.1
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Hyp H H
7= 20 10 30 40 , (23)
H40 HSO HlO _HZO
H2 1 Hlfl H31 _H41

where the JW parity relation,
(AN A2| TIPAA)

= (=DM (G Ay =N TIp—A—)y), (2.4
has been used, wher&;=\A—\; and A;=Ay—\,. The
rows of .7 are labeled by the final state helicities\(,\,)
and the columns by the initial photon and proton helicities
(M,\1).! The helicity amplitudes in7 are defined by the
following:

HlAVEO\Vv)\Z: +U2TIN=1, N =-1/2),
HZ)\VE<}\V1)\2:+1/2|T|)\:1! )\l:+l/2>,

H3>\VE<7\V,)\2=—1/2|T|7\=1, )\1:_1/2>,

H4)\VE<)\V')\2:_1/2|T|)\:1’ )\1:+1/2>, (25)

FIG. 1. The coordinate system and kinematical variables fOl’along with the JW panty rules. The pseudosca'ar meson case
vector meson photoproduction. Hevedenotes the vector meson s described by tha,=0(2x 4) part of the above matrix.
andAy its helicity. General spin observable®, for vector meson photopro-

duction can be expressed in the following trace form:
where the variables and the coordinate system conventions
are presented in Fig. 1. The incident and final relative mo- ~ TIL7(A,AN).7T(B\By/)]

menta are&k andq, respectively. Jacob-WickdW) [16] phase T{7.77] ’
conventions are used throughout this paper. WeNuset: 1

to describe the two transverse helicity states of the initiaWhere the trace is over spin-space helicity quantum numbers
photon,\ ;= =+ 1/2 to describe the targeNj proton helicity, ~A,A1,Ayv,\. This basic expression for observables is an
\y=*+1,0 for the final vector meson helicity ang for the ~ average over a classical ensemble of particles in the beam.
final (N') baryon helicity. For a real photon, the above am-Interference occurs only at the quantum level for the basic
plitude represents:82x 2x 2= 24 complex numbers. How- two-body reaction. The matrices have the dimensions
ever, by virtue of parity invariance there are 12 relations”(6X4), A,Ay(4x4), .7'(4x6), andB\By/(6X6).
between these amplitudes and consequently we have 12 in- Here A, denotes the usual>22 Hermitian spin matrices
dependent complex helicity amplitudes or 24 real numbers@l,&y), which describe the photon’s two spin degrees of

at each energy and angle. We denote these 12 helicity amplireedom. The X2 matrix A is similarly the (1gy) spin

(2.6

tudes by matrices, as i§N,(1,&N,), which describes the recoil bary-
on’s spin state. The vector meson maix is a 3X 3 matrix
- - and a complete set of these is provided by the33unit
Ao TIPAN Han (6), 2.2 . - L
(AR TIPAA D)= Ha, (6) 22 operator (), the usual spin-1 operato8; plus five indepen-
dent rank-2 operators,.,, 7,.1, andr,y. These operators
wherea=1, . ..,4 andv=+1,0, and the particular matrix are given in terms of the spin-1 spherical tensor operators
element assignments are given below. The pseudoscalar case i S
is recovered by simply taking.,—0 and then we have 51+1::S"_ Y_3x= S10=S,,
1X2X2x2=8 complex numbers and, after considering - \/5 \/5

parity symmetries, we obtain the usual four independent
(a=1,...,4)helicity amplitudesH 4(4) [10].

The vector meson amplitude can be displayed a<@ 6  We often use,;=+ 1 to designate the nucleon’s helicity, which
matrix in helicity space really has the values,;=*1/2.
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by the tensor operator coupling, =[S, XS], . Trp;
Associated with the above ensemble average, (E®), o(0)=pog
there are density matrices describing the polarization state of P
each particle. For example, the incident photon and the target
proton are described by where

| .. pi=Tpi 7T, (2.13
py=7 1+, Ps), (2.7 |
and po=0/(2k). Then, for a given experimental situation,
and one inserts the appropriate density matrices and extracts the
| associated spin observable in trace form, €6).
_ N - B If one has an unpolarized beam and an unpolarized target
=—(Iyton-Py). 2.8 '
PNTT (In+on-Py) 28 the initial density matrix is simply;=1,1\/4 and then with
. Trpi=1,ly and p;=(1,] N (77T the differential cross
The Pg above is the Stokes vector, which is used to describgection is
the photon’s polarization as discussed in R8f. The vector

I5N describes the target polarization; its component injthe

direction is denoted by = ISN-§/. The final state density ma-
trices are, for the final baryon,

1
()= pOZTr[.iT?T 1=po7(6). (2.19

- Here we define the cross-section functigg).
pN,:l(][N,—f—(;—N,.[SN,), (2.9 Another important case is the single spin observable

2 called the target polarizatiom. Now one has a polarized
target and the initial density matrix is
pi=pyX pn= (1,141, (Iy+ ay-Py). and the final density

ly .. matrix is p;=pyXpn=(lyln/4). Inserting these density
pv=§(lv+%- Py+37-Ty). (2.10  matrices into Eq(2.13, one finds that the target polarization
is given by

and, for the final vector meson,

Using the definitions=\/3/2S, gives us a vector meson -
izati Tr[.71 YT

polarization Qe-108-1_,T_ [ Yiruf‘y ]1 (2.15

. T.7.7 "]

. T

=5, 2.1 . . .
VT Tz 7T (213 where the labelsy, 8 anticipate a subsequent discussion.

Equation(2.6) can be deduced in this same manner for all
for which each component is normalized to i&l, since  possible experimental spin setups, including not only single
S =3. polarized spin cases, but also situations when two, three, or

The vector meson has not only a vector polarizationgeven, for the vector meson case, four spins are set up as
but also a tensor polarization, T\Z/‘. Here initial states or measured in the final state. In all cases, one
T Ty=3,(— 1)/47-27MT\2/*, for the tensor polarization in a Simply counts and measures a general cross section. Expres-

spherical tensor basis. Then one has sion; for extract[ng th(_e spin pbservables from such cross
sections are available in the literatui@14] or simply de-
s Tr[.??TTZ”] rived from the above density matrix formulation.
V= (2.12
.7 7]

L ) . . . Ill. OBSERVABLES IN BILINEAR HELICITY PRODUCT
The initial and final state density matrices are simply FORM

products of the above forms:
A. The BHP form and basis matrices

PI=PyXPNs PE=PVXPN Let us now map the above tra¢er ensemble average

where the helicity matrix elements of the above operatord0"™M OVer to abilinear helicity product(BHP) form. To cast
, L= the spin observables into a BHP form, one needs to insert the
afe’ ff’r ex?mple(xl|pN|A1>, etc. Here the quantitieBs, helicity amplitude matrix, Eq(2.3), in the trace form expres-
Pn. Py, Py, and T3 are real functions of angle and en- sjon, Eq.(2.6), with various choices of thé,B spin opera-
ergy which describe how the density matrix is formed fromtors. 2 Each spin observabl@ can be written in the follow-
the basic matricegor operators 1,0,,0y,0n,Sy, and ing general BHP product form:
724, Which act in their respective helicity space. These
“functions” are called spin observables, with the most famil- QB= 0B 7(9) = +}<H|Fawﬂ| H) 3.1)
iar being the polarization. ’ T2 ' '
To deduce the trace foriieq. (2.6)] for the spin observ-

ables, one begins by expressing the general cross sectionin
terms of the above density matrices; namely, 2The tedious algebra was done usigpLE .
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1 . wa B which yields the differential cross section using E2.14).
=3 > , Ha)\vrabw)\\/)\\’/H bA) The productQ®?=0*F.7, which is called a profile function,
abiy.hy is convenient since it is proportional to bilinear products of
(3.2 helicity amplitudes.
: _ _ _ _ N
See Eq.(2.14) for the definition of.7(6). This bilinear he- _A\nother example if\, =By=By, =1, andAy=oy then,

licity product form, which is the key expression for our we recover the target polarization profile function

analysis, often proves to be much more convenient than the
original trace formof Eq. (2.6).> We use the symbaf) to
indicate the aboverofile functionform, which is not to be
confused with the unit vector designation asyin

For any particular spin observable, the matri¢g€sare  \ynich motivated the earlier labels in E@.15.

one of 16 Hermitian % 4 matrices ando” is ;electeg from As one ranges over all possible choices of the operators
e Hermitian 3<3 matrices. The Hermiticity of'* and  angB, many of the traces vanish due to parity. There are 16
»” assures that_ Eq3.2) yl_elds real obseryables. T.ﬂé ma-  yalues of @, and 9 values of8. Therefore, we have
trices are Hermitian versions of the familiar 16 Dirac matri- 16« 9= 144 possiblel’“w? products, which correspond to

. 3 1
QI T=T7(0)= - S(HIT ' H), (3.6

ces: 144 distinct nonzero spin observables for the
1. 06,9 02 Oxi Oy 07 Xy Xz yz v+N—V+N' reaction, at each energy and angle. For the
r LyLiyio oo™, o, 07 0% pion case, there are only 16 €1, ...,16) such observ-
50 B° & ables. Since for the vect@pseudoscalaproduction we only
i . (3.3
VYLV need to know 237) of these 144(16) to make a complete

measurement, there is clearly a great redundancy in the full
fist of spin observables. Note that so far the only symmetry
invoked has been parify.

Note that here the four-dimensional space is not that of
relativistic four-spinor; instead, it is the=1, ... ,4 part of
the helicity amplitudd—laxv “space.”

The vector meson part of the helicity amplitude “space,”
i.e., theNy\y part, is a three-dimensional space with nine
associated Hermitian matricas®. These are constructed  The single-spin observables for vector meson production

B. Single-spin observables in BHP form

from nine spin-1 matrices as are now given explicitly in terms of the abové and w
R matrices. Single-spin observables involve experiments where
wP=1,13/2S,\6t,y, 6t \/6t,;, only one of the particles is polarized. We list first the case of

no particles being polarized:

7= %(H||H>, 3.7

VB2 = (ty—tyy) = 3t (3.4
where, in a Cartesian basis,

6 =(SS+58)/2- (23 8. which definesthe cross section and corresponds to Eq.

The matriced;; are Cartesian versions of the earlier opera-(2-14. For convenience, we count this case as a single-spin

tors 7,,,; however, we use a different notation siricacts in observable.

§ : ; Matrices that are diagonal in the transversity amplitude
the helicity amplitude spac@8HP) form of Eqg.(3.1), while ' ) .
72, appears in the trace form, E@.6); see Appendix A. basis are enclosed by a box in the above equations. The

The matriced”,w are defined to provide a complete Her- significance of these boxed exprgssi0n§ and general proper-
mitian basis with the properties: [TF*I'%]=46 and tes of single-spin observables will be discussed later.
T 0*w?]=36 The last ﬁvews',aj,g,g matricegﬁr;\re the The first single-spin observable is the target polarization
- H,B . ~

rank-2 operators associated with the vector meson’s tens@fofile T=Py-y.7
polarization. The properties of the matridésw are summa-

rized in the Appendices. . 1

Each value of the 16 superscriptsand of the 9 super- T=- §<H| [H), (3.9
scripts B label a particular choice of spin operators
A,, An, By, and By,.. For example, the choice

Ay=An=By=By/ =1 leads to the following BHP form: “The rule for parity, based on JW conventions, can be written as

4 P ST =717y for the pion case anel, 7.7 =747 for the
. 1 1 - ) . .
Qe=18=1= 7(g)= _2 2 [Han|2== (H|Iydy|H) vector meson case, wherg, is an operator defined by its action on
25=1 2,501 2 the spin-1 eigenstates WR,|1N)=(—1)1"2V|1—-\y).
(3.5 STransversity amplitudes are similar to helicity amplitudes except

that the axis of spin quantization is the transverse rather than the
particle’s momentum direction. Hence, transversity amplitudes are
3Note that the ket notatiofH) does not refer to a state vector, but defined using the axis of quantization perpendicular to the scatter-
is adopted here to represent the helicity amplitudes with the coning plane §) instead of using the particle momentum directions
vention that(axy|H)=Hg, (6). (2,2).
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the next observable is the recoil polarization . 1
5B o N - . CIN=S(H[Z]N[H).
Py =Py Y7, e.0., the polarization of the final baryon: )
. 1 > . . .
P..= —(HIT o). (3.9 The C is used to designate the spin observable profile func-
N 2< | | ) tion, while the symbol£” is used to designate a matrix in the
helicity Ham space. In addition, superscripts are used to
The next single-spin observable is the polarized photon
stipulate the two polarized patrticles in the reaction. Finally, a
asymmetryS =X .%7: matrix display will be used to present the Cartesian compo-
1 nents (,j) of the various spin observables; for example, in-
= (H|T["*w"[H). (3.10  stead of writing7; as %y, %y, %, these are presented
2 below as the top row of a matrix. These conventions allow us

to present the 99 double-spin observables in a relatively
Now we turn to the final vector meson, which has a vector, compact fornf

polarlzat|onPV= Pv-y T
1. Beam-target observables

. 1 /3 1 . .
Pv:§\é<H|1Sy|H>: §<H| [H), (3.1 Let us start with thg beam-targey{ N) double-spin ob-
servables. The Cartesian terms are

and also tensor polarizations, for which the transvefge ( A=
component is 0 _ 0
;——yN: FS A I"3 A
o= (HI,JH) = 5 (HIISE $)IH) ’ 0 - 819
1/ | o3l o] S S I & P
=5 H|TH ———|H). (3.12
6 Note that there are nine entries in the above Cartesian com-
. . . ponent §,y,z) display, but four vanish; namely,
with the spherical tensor components given by 7= T xi= Cyy= 7 2y=0. Also note that a set of five inde-

1 pendent”® matrices appear above far=3,5,9,11,12, along
T,= \ﬁ("” w8 H), (313  With ' and the linear combination” matrix [Eq. (3.16)].

6 Here both particles are in the initial state and the Cartesian
components refer to the initiak(y,z) axes of Fig. 1. Of the
nine possible beam-target spin observables, only five are
nonzero. Near the vector meson production threshold, only

_ _ .9 one of the above double-spin observables is nonzero;
Tz <H|[w @ M), (314 namely, 222 =T%0!, see Ref[17].

and

5 2. Beam-recoil observables
_ 8 9 = . .
Too= \/—(H|[w +w’]|H)= 2<H|tzz|H> For the beam-recoilf— N’) double-spin observables, we
have a similar dlspla),CVN —(1/2)<H|Z}7jN'|H>:

3
:§H<|5§—§|H>- (3.15 0 o

Only eight of the above single-spin observables are indepen- ,
dent, since we havé,,=(—1)“T,_,. rN = FM 0 _F7 :
The following characteristic combinations of theX3)

»®9matrices are used above and later: _Flﬁ 0 _r2
o 1 (1-\3) (1+\3)) [ ot (318
w® E% (1-43) (1+3) 1 w® |, bu_t a different set1 of I Amatriges appear; namely,
wC (1+ \/§) 1 (1- \/5) 0 a=2,7,10,14,16. Th@" andw”™ matrices appear again as in

31 Eq. (3.17). Here the Cartesian components of the initial pho-
(3.18 ton refers to the X,y,z) axes of Fig. 1, while the final axes

which is a unitary transformation in the basis.

0f the 99 possible double-spin observables for vector meson

photoproduction, 51 are nonzero, all others vanish by virtue of par-

The double-spin observables are now presented using thig considerations. The nonzero 51 observables are not in general
notation: independent of the other spin observables.

C. Double-spin observables in BHP form
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(x',y’,z") are used for the recoil barydd’. Therefore, we The Cartesian components for the refer to the original
can extract a particular double spin observable from Eq(x,y,z) axes and for the final vector particle refer to the final
(3.18 as (x',y',z") axes of Fig. 1. The result is

&= L i) =ion =
0 0 0 w® 0 w® ¢
X —0o" 0 o w* 0 w? 0 0
0 o 0 O
(3.20
Of the nine possible beam-recoil spin observables, only fiverhe spin observable in the photon density matrix of @q7)

are nonzero. Near the vector meson production thresholghas the three Cartesian components; whereas, the vector me-
only two of the above double-spin observables are nonzerg;gp density matrix E(2.10 has three vector plus five ten-
namely,Z’ZZ“f,E—szl, and ‘(;':'E —T'%y! see Ref[17].  sor polarization spin observables. Again, that is the origin of
the 3X 8 nature of the above double-spin observable display.
3. Target-recoil observables For convenience, we separate the helicity spage into

For the target-recoil \—N’) double-spin observables, Separaté\y|w|\y) andl'yy, matrices. To illustrate our nota-
we have yet another set of fouf matrices appearing: tion, the following double-spin observable
CV' =(2(H| 2N [H) with

where

v 1. v v
QROA=2[Q10M (1= 3) Q108+ (1+13)0109).

“ 1 y
Cly = 5(HIMw’H)=0**

_1"6 0 _F13
/ [ra can be extracted from E@3.20. Another example is
p_| 0 [0 o . (319
éyvzl HITlwS|H) = QL5
8 0 ris 24 =5(HIw’H) :

This time we havd ®s with «=4.6,8,13,15. Here the Car- Of the 24 possible beam-vector meson spin observables,

tesian components of the initial nucledw refers to the ?hnly hlZIdar$ nfo?ﬁero.b Nearlzthg vglctor _mesl())n prot?luctlon
(x,y,z) axes of Fig. 1, while the final axex'(y’,z’) are reshoid, 7ot the above oublesspin observab’es are

. SV AW AW AW AW AV
used for the recoil baryoN’. A particular double-spin ob- rozero, namely,C; ., CJ5. CJ4. Cis. CJs CI7,
servable from Eq(3.19 is Cy s, see Ref[17].

© NN 1 v 5. Recoil-vector meson observables
I == ~(HIT*w!H)=0%" . | |
yy 2 Similarly, the recoil-vector mesor\( —V) case involves
. i a final polarized baryonN’) and the 3+5 vector plus tensor
This is often called,,, where the subscript refers to the o mhonents of the final vector meson. In this case the Car-

normal to the scattering plane, which in our casg/#sy’.  egjan components for both thé and the final vector par-
Of the nine possible target-recoil spin observables, only fivgi-|a refer to the final X,'y'.z') axes of Fig. 1. Thus, a

?re n?ntﬁero.bNear(;het\)/lector me;on pr(t)):juction threshold, agly g gisplay appears again, where the double polarization
ve ot ™he above double-spin observables are nonzero, Ses(?)in observabl€ is expressed in terms of a helicity ampli-

Ref. [17]. v ,
[27] tude space matrig’; : Ci| V=(1/2(H|~} Y|H) with

4. Beam-vector meson observables
ZN'V: _(Flﬁ_ 1"2)

We now consider the first double-spin observable which

involves both a polarized photon and a final polarized vector w: 0 o' @ 0 ' 0 0
meson. We again display the Cartesian components ag an 3 6 s o
array, with the spin profile functio@;; constructed from the x| 0 0 0 o 0 o o
helicity space matrixz;; as C}¥=(1/2(H|Z7"|H). How- w2 0 w @ 0 w 0 0
ever, since the final vector meson has not only a vector po- (3.21)
larization, but also five possible tensor polarization compo- '

nents, the matrix now involves the followingx® matrix.  1q jjlustrate our notation again, the following double-spin
The three rows refer to the three Cartesian componentgygeryaple

i=1,2,3 orx,y,z of the photon’s Stokes vector, while the

first three columng=1,2,3 refer to the vector meson’s three . 1 .
ot 5 - Ch ¥ === (H|%*H)=0'"04

polarization componentsP,,. The last five columns x',z' 2

j=4,5,6,7,8 refer to the tensor polarization of the vector me-

son 6Ty, VBT, V6T}, (V3/2)=(T),+Ty)—3T},.  can be extracted from E3.21). Another example is
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NV 1 - ‘s ity conservation there are 123. Before use of parity there are
Cpa=- §<H|1" w’[H)=0%>. 216 quadruple spin observables; after use of parity conserva-
tion there are 108. Many of these double-, triple-, and

Of the 24 possible recoil-vector meson spin observablesjuadruple-spin observablgs involve linear combinations or
. o , :
only 12 are nonzero. Near the vector meson productioh€ same BHP formb“x «” that appear in other single- and

threshold, all of the above 12 double-spin observables ardouble-spin observables. That reveals many relations be-

nonzero, see Ref17]. tween spin observables and is an important advantage of the
BHP display.
6. Target-vector meson observables The basic question is which of these

8+51+123+108=290 observables can and need to be
easured to determine the 12 complex amplitudes? Clearly,
3 measurements are needed at each energy and angle, but

they have to be selected to yield independent information.

3 1 This problem is dealt with in Sec. V. In addition, one can ask

ci’\j‘VE _<H|g{\j‘V|H>, which observables are expected to have nodes not only at the

2 0° and 180° end points, but also in between? That and re-
lated questions are addressed next.

Finally, the target-vector mesonN(V) case has the
same type of display with the double-spin observable relate
to a helicity amplitude space matrix by

with again a 3X 8 matrix

ANV_ _ 110 1o
N (r ) IV. NODAL STRUCTURE LEGENDRE CLASS

2 4 5 7
oo 0 0 0 0 o 0 0 Having expressed the spin observables for vector meson

<[ 0 E 0 0 o 0 o ). photoproduction in BHP form using the basic matriteand
) 4 s . o, we can analyze these matrices for insights as to the
oo 0 o @ 0 o 0 0 “nodal structure” of observables. Note that the origirfal

(3.22 andw matrices can be organized into groups according to
their common “shape;” let us call these groupings “Leg-
Of the 24 possible target-vector meson spin observablegndre classes.” For example, the following matrices are of
only 12 are nonzero. Near the vector meson productioliagonal O) shapel I'2 T'° T'!5, whereas, the following
threshold, 10 of the above 12 double-spin observables arare antidiagonalAD): I'® I'* I'® I'’. The remaining eight
nonzero: namely,é)“(')zf, éz‘;{ ény (;)’:'ZY é'z\‘z\{ CQ\Z/Z, matrices are either of one clagslledPL for left parallelo-
CVY,, CNY, eV CNY see Ref[17]. gram form: roririEris o 5of asno}f;erlglas_é:glledPR
The significance of the boxed matrices will become cleafO" rght parallelogram shapel™ I'® I'**I'*". Similarly for
thf o space, one has matrices of diagonBl) (shape:w?

when we discuss the transversity amplitudes. Pe s A
o, antidiagonal AD) shape:w® »”, crossed shapeX(:

7. Some general remarks 0® 0°, ©® 0 and diamond or polygonR) shape:w?

w3, ® »’. Explicit I' and w matrices are presented in Ap-

There are 99 possible dpuble-spin o_bservables, which r&endix B, where they are grouped together by their common,
duce to 51 after use of parity conservation. The total numbefy Ap pL PR) for T or (D, AD, X, P) for w, shapes.

of nonzero observables near threshold is 37 out of these 51, \ye stress classification of the matrices by their shape be-
see Ref[17]. There are 18 single-spin observable® count  ,,qe classes of observables involvingind » matrices of

the cross section as a single-spin observalich reduce o same shape have angular dependences given by related

to 8 using parity. Of these 8, 5 are nonzero near or at threshy;uy res of the same Wignet functions. To illustrate this
old, which include the cross section plus 4 vector meson SPilmark. let us consider the general spin observalie?

observables; namelyl,..,T,y,T,;, andT,,. Since there are P : - .
12 complex amplitudes, yoyne needs-28=23 independent which is given in terms of thg helicity amp“tUdes"'*_v( 9)
measurements to determine the photoproduction amplitude8Y Ed:(3-2). The helicity amplitudes have the following par-
with one overall arbitrary phase. At first glance, it would tial wave expansion:
seem that with 8 single- and 51 double-spin observables, it
suffices to do just selected single- and double-spin measure- .
ments to completely determine the 12 amplitudes. This Han, ( 0)=>, (2J,+ DH G dib y (6), 4.1
provesnot to be the case. ! v Tanal

The reason for this conclusion is that many of these spin
observables y_ield redundant information. In Sec. V, it iswhereAaf and A ,; take on the following values:
shown that spin observables of the same “phase class” can
yield redundant information and that one needs to go beyond
single- plus double-spin observables to obtain a complete set Agi=Ay— {5 and Ag=¢,,
of experiments. The “phase class” will be defined later.

Triple- and also quadruple-spin observables have been de-
rived and complete the full set of X0 =144 spin observ- Where {1=0=—{3=—{,=1/2 and {;,=£,=1/2, §,=¢&3
ables. The results are given in Appendix F. Before use of 3/2, see Eq(2.5). Using the above expansion feli,, , and
parity there are 243 triple-spin observables; after use of par- b, in Egs.(3.1) and(3.2), we have
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. 1 3 TABLE |. Partial wave expansion of the helicity amplitudes. The
Q*B(g)=*~ 2 E Hai Hbi,ngwf N associated Wigned functions are shown along with an indication
2a,b,)\v,)\\'/ J1.32 Vo T Vv of their values at the 0° and 180° end points. Six of the helicity
amplitudesHa,AV(e) vanish at both end points; nameli, ;,
(0). (4.2 Hyg, Hy 1, Hao, Ha_1, Hyy. Three of the helicity amplitudes
vanish only at the 0° end point; namel; _;, H,o, Hs—;. Three
of the helicity amplitudes vanish only at the 180° end point;
namely,H,;, Hg 1, Hypo.

J2
}\\I/_ {b yfb

J1
Xdkvféavfa( 0)d
This bilinear form can be combined to extract the depen
dence on a single Wignat. One finds

08 > 2 7 Haa () Hay,  dya(9) J 0°  180°
Q*P(g)= 27+1)d{ ,.(6)
( JAA" aby N, (27 dia H14(0) HY 4 d1)5 34 0) J=32 0 0
5 H2,1(6) H?‘,l d“}‘,z,l,z(a) =12 1 0
X Eg,’ﬁfg[ab;kv Avl, (4.3 Hz(0) HY, diped6)  I=32 1 0
" Ha.1(6) Hin  dioud6) J=32 0 0
wit
Hio(6) Hio  dlipad6) J=32 0 0
1 * 7 3J !
=7 *Frab; "= a B 1y’ Hz0(6) H d?040)  J=12 0 1
i labihy A=+ r JHT HZ, : 20 112,11
AA [ vy 2J12,J2 awavxv aky by, Hso(6) H%,o di/2,3/2( 0) J=3/2 0 0
3 n, 7 Hao(6) Hio  dip.d6) J=12 1 0
% .
MN=da N A) Hi—1(0)  Hiy  dlgpgdd) JI=32 0 1
3 3 g Ha-1(6) Hy 1  dlgp0460) J3=32 0 0
! 2 ] (4 4) H3,7 1( 0) Hgyfl d{ 1/2‘3/2( 9) J=3/2 0 0
ba & AT ' Ha-1(6) Hi . dlipd0) J=12 0 1
Note thatA depends on the helicity labedsb and Ay )y,
while A" depends only on the helicity labeisb. That allows one to test and extract specific dynamical infor-

To understand the consequence of the above result, selghion from the nodal structure and energy evolution of spin
a particular choice of spin observable by designating the a%pservablegsee Ref[9))

sociated values of, and B; for example, take 10,1 for the
target polarization, see Eq2.15. Now consider the full

family of I'’x » matrices with the same matrix “shape” for structure(hence the nomenclature Legendre class exam-
bothI" andw. That family is called a “Legendre class.” For g

the target polarization case, the matrix productsine the general role of resonances on the nodal structure of

10111334 14 oce ol of the same shape and thus the assoSPin observables, it is most convenient to introduce explicit

ciated spin observables form a “Legendre claggHe mem- orbital angular momentum quantum numbers. Therefore, in a
bers of this target polarization class will be discussed Jater. S€Parate paper, Re¢fL7], the electric and magnetic multipole:
Since all members of a “Legendre class” vanish for the @mplitudes for vector meson photoproduction are studied in
same @,b;\y\!) values, they are all formed from the same d€tail. o
set of Wignerd functions,d” ,(6) of Egs. (4.3 and (4.4). Another way of examining the angular dependence of a
If, for example, every memAbgr of that set of Wigriefunc- Legendre class of spin observables is to return to the partial
tié)ns vanishes, at 0° and 180°, then every member of that’ave expansion, Ed4.1). For a given Legendre clasg, only
“Legendre class” of spin observables will also vanish atSelécted values d and\y appear. Thus, one can pick the
0° and 180°. Similarly, if every member of that set of corresponding helicity amplitudes from the first column of
Wigner d functions has a zero or a node at 90°, then everyTabIe [, then pr_oceed t(_) the partia_ll wave helicity amplitudes
member of that “Legendre class” of spin observables will 21d the associated Wignef functions in the second and
also have a zero or a node at 90°. These observations folloffird columns. The fourth column gives the range bf
from the fact that these families of spin observables are afeeded for that amplitude to contribute; while the last two
expressed by various combinatiofsee 2, above of the columns indicate the value of the Wignérfunction at the
same set of Wigned functions. The mixture coefficients, 0° and 180° end points.
=, do depend on the partial wave helicity amplitudes, which  Using this table, one can deduce which observables are
is how dynamics of the reaction affects the detailed angulazero at the end points. For example, consider the Legendre
dependences. If one truncates the partial wave expansion detass of observables for which boltf and w? are diagonal,
to either threshold or resonance considerations, then the.g., the classP'**%*< ! These observables depend on
blend of Wignerd's is strongly restricted and one can dem- |inear combinations OEaxvi|Ha,xv|2- From Table I it fol-

onstrate explicit associated angle dependences of the spif\ys that the associated observables do not necessarily van-

observable profiles. For example, if only ode,J; set of jsh at the end points. In this diagonal Legendre class the
partial wave helicity amplitudes are nonzero, then using the.

y oV oyN’ NV
triangle rule 7=J,+J,- - - J;—J,, only a limited number of single aS\(/j double observables a7 &7, 77 . %ZN’Z”
.

7 values appear, which severely restricts the nodal structurés2y, 7.7,

Thus the angular dependences of spin observables can be
grouped into classef8,9] with the same potential nodal

and %’Z\'Z',“/. This information is extracted from
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TABLE IlI. Spin observables in BHP form as productsltf and TABLE lll. Spin observables in BHP form as products bf
P matrices. Here thee=1, . .. 16,8=1-9, A,B,C range is dis- and »f matrices. Here thex=1, ... 16, B=1-6 range is dis-
played. Single-, double-, and triple-, but not quadruple-, spin obplayed.
servables are shown. The entries of “phase cld$s’X ®p do not

appear—they are all quadruple-spin observables. a\B 7 8 9 A B C
YV
B 1 2 3 4 5 6 1 3 T Tao Tyryr
v v v -
G Y Z <7y “ xyy’
1 4 Cax Py ZZZ’ 2 \/ZT / , / o
3l21 2 N'V N’V NV NN
! ! ' ' ' ' T %z6 ?‘/zz’7 Z 78 -7 X
2 g NV NV NV NV oY vy
D 27 7 21! “ 22y C g1 g1 214 © 27'5 3 _ VNN,V 9//7;\‘ _9//’}/2\‘7V _g’)’rz\lgv
3 _ NN NNV — gV _GNN'V NNV — gV ~ xzX y Y y
“ zxy 7 xy'x! yzy' “xy’z' “xy’a xyy’ 4 (/yV VNN,V NNV S z oWV
NNV ANN'V ONN'V 2NV o TPy T lyys X7 o8
xz5 Ot Crgz TyB 5 NV gMN gV NV
22 ~yx - yx7 - yx8
4 NN’ ?(yv %ny (;/ryV E/,'yV ?/ny ~zy'6
- Zyyr 7y6 “ xy’ x4 “yz 7 x5 _ Z,yN\,/
XXX
— NN — NN 6 NN’V NN’V NN/
yvy'y yy's 7 4 -7
xx'7 xx'7 xzZ
5 B %/)/N N’ Z'}/NV _ 9—//<yNV _ Z'yNV %:/nyV Z/)/NV , , , ,
oy The TThy TUh Tl s 7 L AL
NNV NNV NNV 2z X yz yz'1 yz'8
)Zylxr 7 zy'z! C 2y 4 ZN'\,IGV
yX
6 _ NN oNN'V NNV
”/xx’ ”/xx’y’ (’{xx’s 8 _ Z"YN’,\"
~ XXZ
7 yNN’ N’V N’V N’V N’V oN'V
}’//Zyxl ?{XZ/G ?{yz/y/ 5'//er4 %XZ’Z' %yZ'S _ ) NI\VI;V _ ZN’\IIISV
— ZX zX’
NN’V NN’V NN’V ] ‘
éyx’x’ Zyx'z’ Zyx’4 9 - ZIZ\IGV - %Z'Y'Z\;V - gzzl\év — gg)':‘y'\",
NN’ NN’V NN’V
8 7 — %y %05 10 _ NV NV N’V NNV N
y {2 av Zys 3 C Xy’ 7 CXV'8
9 N NV NV NV NV oY yy'x xy xy xy
“zz Z zx! “ zzy “ 27 ~ 74 © 25 _ ({97\/ _ Z;:‘g/
10 =T gN'V gN'V NV NV ANV ,
G 5 _ _ o _ o
ys;W ysNV 11 “Z 6 2N Zle — %‘yy?y'j‘
_ — ¢
Z vy Zys 12 g’V gN'V N’V — N NV NV
4 ’ ’ ’ ’ ©2y'6 Cyry Cyrg Xy xy7 xy8
(/yN \" (((7N \% _ nyN \" ({yN \" (/ny \% y y y
“yy'e  Uxyy “yy'a - Pyyz Pxy's &,/yy;\‘):,’
NV NV _ NV
?’(zyx’ é{zyz’ ///ZYG 13 _ EZNN'V _ NNV V,«yNN’
_ _ _ - 2 ’ C ot Z ’
11 %//WN _ ZNV _ ZyNY _ ZNV _ gNI — g NV xz'7 xz'8 XzX
zX xx’ zxy xz' X zx5 14 ((77N'V nyN’ V,yN’V (//yN’V
12 Py NV (,;MNY (/xyN'V (/xyN’V _ g’;yNSV XXX’ ~ yx! Zyx'7 “yx'8
© zy’x’ Xyy /zy’z’ ’zy’4 Y; VNN,V
_ YNV N’V YNV NV N’V 2 v2'6
Zyy6 4 7 Jya g;yz’ Zyis v , ,
y'y y 15 _ NNV NN
13 NN NNV G NN'V 7 227 © 228
“xz/ “xz'y’ “xz'5 NN’
14 yryNN’ _ yryN/V }—/yN'V (/[,ryN'V _ (/[,ryN'V g/*yN/V {’/XXX’
“zy? “xx'6 “yx'y! 7 xx'4 7 xx'z! “yx'y’ 16 N'V WN’V wa\/ VyNN'
VNN’V gNN’V gNN'v —%X,G T CPx7 T “zx8 “yyz'
“yz'x! yz'z' yz'4
15 NN’ NNV _gNN'V
7 27 Zzz'y’ ~ 275 . . .
16 _ N NV NV NV NV N The procedure consists of using Tables I-IIl along with
72X 7 x'x! “ Xy’ 7 x'2! x'4 “2x'5 the Legendre class information to determine the end-point

rules. Alternately, one can use the general results &qg3)
and(4.4).
Tables Il and Ill, where the relation between theand 8

choices of the matrices are related to explicit spin observ- \; TRANSVERSITY. PHASE CLASS AND COMPLETE

ables. EXPERIMENTS
Another example of how to use Tables I-Ill to deduce the
end-point behavior of a given Legendre class of observables A. Transversity

is seen by examining the Legendre class of observables for
which both T'* and w” are antidiagonal, e.g., the class: ] ) ) )
3467 »5A Only the helicity amplitude products with Let us deal with the question of which experiments are

a,b=(1,4),(2,3) and\,=—\, appear for these obsery- Needed to determine the magnitude and phase of the 12 he-

ables. Now using Table | with those products, it follows thatlicity amplitudes for vector meson production. Clearly, 23
this Legendre class involved bilinear helicity products that®XPeriments are needed at each energy and angle. It is well
vanish at both 0° and 180°. From Tables Il and IlI, we learnknown that for pseudoscalar meson photoproduction, it is
that the single-, double-, and triple-spin observables of thi®0ssible to determine the magnitude of the four transversity
NV N N ONN'V ONN'V NN'V amplitudes by measuring all four single-spin observables.
clas? arex., gyZ’,’ 5}/2'  Cyzs g><y’4  Cxaz gy><'4 ' The remaining three phasésne overall phase is arbitrary
ZZZNZV and gZZNiN . can be determined by selecting three additional double-spin

1. Pseudoscalar meson transversity
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observables, following the Barker-Donnachie-Storrow ~

(BDS) [11,12 rules. The pseudoscalar meson case can be |Ha,xv>52 U(4) >\ }\/|be ).

recovered from Eqs(3.7—(3.10, by setting w®—1 and b.Ay

omitting all observables which involve a final meson spin of .

1. In that limit, the BDS rules can be understood by perform-FOr the vector meson part of the transversntyspacel tge
ing a unitary transformation on tHé matrices along with a followmg matrices now have diagonaD{ form, @

6
unitary transformation on the helicity amplitudes to generatéj’8~9§g“dc'ag°”a| AD) form, ®°; crossed X) form,

O°® w ; and diamond or polygonR) shaped form,
the transversity amplitudds): »%0*@%®". We have extended the definition of transversity
. @ amplitudes to the case of a vector meson. The original ex-
|Ha>=§b: Ua,b|Hb>’ (5.1 pressions for the spin observable profil@&? are of the
same form as given in Eq4$3.7)—(3.22, except that the
and a new set oF matrices helicity amplitudeH ar, are replaced by the transversity am-

plitudesl:| any and the matrices are replaced]b§/—>l~““ and
wP— ®P. In this new representation the diagonal terms are

The 16 spin observables are invariant under such a unitafpdicated by the boxed matrices in Ed8.7)— (3.22. The
transformation in “helicity space:” shapes of the tranversity-transformed matrices are presented

in Appendices C and D.

[e=y@raeyt@, (5.2)

Q%c(H|T*|H)=(H|I"*|H).
) ) . . B. Phase class
The physically meaningful unitary operator is the transver-
sity choice, _ As discussed in Appendices C and D the shape of the
I',@ allows us to group these matrices into “phase classes.”
=i 1 As in the “Legendre classes” of the original matricEsw,
the shapes are defined by where nonzero entries appear in the
, , , (5.3 matrix. The classification into diagonal, antidiagonal, left
b -1 parallelogram, right parallelogram, crossed, and polygon
- =i -1 shapes is of significance in that these shapes select the con-
) tributing_bilinear helicity products. For example, if in the
which involves rotating the helicity quantization axsgnd  productT'*@” both matrices are diagonal, then that observ-
Z’) to the direction normal to the scattering plarey’, see  aple depends on linear combinations of the product

Fig. 1. With the above % 4 unitary transversity transforma- |_. |2 |f on the other hand the matrix produtt@? has
tion, the following matrices now are diagonal: v

H
N = =

I

H

an entry at the locatioa,b in thel’ space and at the location
470712 Av, Ay in the ® space, then that observable depends on the
following product:

whereas, the following are now antidiagonal: - - - ~ )
Haa H b,x(/:|Ha,>\v||Hb,>\\'/|eXp(¢b,>\\’/_ ban,):

f*2f*7f‘l4f‘16.
whereH an,=| I:|a,)\v|exp(¢al)\v), etc. Thus, the shapes of the

matrices in the tranversity description tell us which phases
qﬁb,)\\f/— ban,= qb;”,a)\v are needed to determine the associated
V

The remaining eight matrices are either of one clasdled
PL for left parallelogram form

1"61'*81'*131'*15 . . . ..

' spin observable. In Fig. 2, the basic problem of determining
the 12 amplitudes is illustrated, where the lengths of the
vectors correspond to the magnitude of the transversity am-
3579 1L plitudes, and the phases of these complex amplitudes are also
shown. To fix this diagram, we need to determine 12 magni-
tudes and then 11 phases; one overall phase and the overall
orientation of the diagram of Fig. 2 is arbitrary. This situation

The above procedure can now be extended to the vectgs a generalization of the pseudoscalar case, which is de-
meson case by introducing an additional unitary transversitgcribed in Appendix E and by Fig. 3.
transformation in the &3 space:

or of another clasgcalled PR for right parallelogram forry

2. Vector meson transversity

1 \/Ei 1 C. Complete experiments
: . The phase classification of the transversity matrices are a
(=1 — — . . -
U ) V2i 0 V2i ' (5.4 guide to the task of picking a complete set of experiments.
1 \/fi -1 Thus the procedure is to first select experiments which give

information about the magnitudes of the 12 transversity am-
which makes they axis the quantization axis for the spin-1 plitudes and then to pick experiments which yield nonredun-
meson. Correspondingly, there is now a transformation irdant phase information. In the pseudoscalar case, the single-
“helicity space:” (H|I"*w?|H)=(H|T*T'#|H), with spin observables yield the magnitudes of all four transversity
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H, . ®” are of the diagonal phase class. These observables are
’ produced by all productd: 1#101% 313A see Appendices
C and D.

In the vector meson case there are only eight independent
single-spin observables, so we learn that this case is not as
favorable as the pseudoscalar meson case, where the single-
spin observables sufficed to determine all four amplitude
magnitudes. Indeed, the situation is that only six of the vec-
tor meson photoproduction single-spin observables are of di-
agonal form; namely,7,T,Py/,2,Py, and the tensor polar-
ization T,,. Thus we need to turn to the double-spin
observables for the remaining six diagonal phase class ma-
Hy trices reside. Therefore, for vector meson photoproduction it
;i is not possible to determine the magnitudes of the 12 trans-

40 versity amplitudes by only measuring six single-spin observ-

FIG. 2. This diagram displays the magnitudes and selected relaqbles'

tive phase angles of the 12 transversity amplitudes
Hi - Ha, (with A\,=0,=1) for photoproduction of vector VI. CONCLUSIONS

mesons. The 12 complex amplitudes are determined within an over- gayeral conclusions can be drawn from describing spin
all phase if the 12 magnitudes and 11 angles are fixed by 23 apprspsaryvaples for vector meson photoproduction in bilinear he-
priate measurements. The magnitudes are determined by measuriﬁ}gity product form. Here one essentially extends the BDS

six single-spin observables plus six double-spin observables, see ttﬁ 12 rules to include the vector meson degree of freedom
text. Then independent phase angle measurements are made by e-.l’.he diagonal matrices in the transversity basis are indi-.

lecting spin observables from different “phase class” observables, . .
The phase angles are labeled by the convenﬂ;qu, . cated by boxes in Eq$3.7)—(3.22. For the corresponding
\

observables, the diagonal nature of the produfth” means
that those observables depend on linear combinations of the

amplitudes. Then three double-spin observables, selected usquared magnitude of the transversity amplitudes, e.g., they
ing the BDS[11,17 rules, yield three phases. The task is depend on combinations of |H

similar for the vector case, but the result is more compli- Those experiments which depend only on the magnitude

cated. : . X O
To extract the magnitudes of the transversity amplitudesOf the transversity amplitude are the following six single-

we need to examine all observables for which bbthand Spin observables:

. |2
iyl

T T, Pu 3Py Ty,
H, plus the following six double-spin observables:

CHChCly Cly Chy' Gy
Note the abovex component for the photon beam corre-
sponds to a photon linearly polarized perpendicular to the
scattering plang8]. In contrast to the pseudoscalar meson

H, production case, the magnitudes of the transversity ampli-
tudes for the vector meson case cannot be determined by just
single-spin observable measurements, one needs to also per-
form six double-spin measurements. Only six of the eight
independent single-spin observables are of diagonal form;
the remaining two single-spin observables provide transver-
sity amplitude phase information. In addition, of those six
double-spin observables three involve measuring the spin

H, state of the final vector mesdwia its decay
FIG. 3. This diagram displays the magnitudes and selected rela- CVZ;{)\,/ ,é’;‘;’,ég‘;v,

tive phase angles of the four transversity amplitutgs ... H,

for photoproduction of pseudoscalar mesons. The four complex amWo require a polarized photon beam

plitudes are determined within an overall phase if the four magni- . .

tudes and three angles are fixed by seven appropriate measure- CZyN,CZy )

ments. The magnitudes are determined by measuring the four . )

single-spin observables, then independent phase angle measufdld One requires a polarized target and measurement of the
ments are made by selecting three double-spin observables from 8Pin state of the recoil final baryon

least two different “phase class” observables. The phase angles are < NN

labeled by the conventiopst . Cyy -
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That sets the task for determining the magnitudes of théudes. That simplification is also of benefit for vector

transversity amplitudes, which provide the most convenientnesons, which suggests that there are compelling reasons to

situation. Note that near threshold, the two spin observablegse transversity amplitudes.

éxv;/ and égy vanish. We hope that the procedure described here will be useful
in ascertaining the information content and the nodal behav-

depend on transversity amplitude phase differences. As af" of vector meson spin observables and in planning experi-
X ments. Measurement of all spin observables needed to fully
extension of the BDS rules for the pseudoscalar meson cas

. determine the 12 amplitudes is probably not feasible, al-
these transversity phase-dependent observables form ph ﬁ%ugh it is good to know what is needed for that full task.

_classes _in i some experiments provide rgdundant pha?:%/en without a full experimental determination of the pho-
information. A graphical procedure for analyzing the redun-,,.oqyction amplitudes, it is possible to extract useful dy-

dancy and phase class of experiments for vector meson prymical information, which is not an uncommon situation in
duction is illustrated in Fig. 2. strong interaction physics.

The procedure consists of picking a set of phases between Note added in proofit was called to our attention by
transversity amplitudes that correspond to a given phasprofessor R. Workman that quadrant ambiguities for the
class for thel and » matrices. Then list all thé X ma-  phases are discussed in a paper by N. W. Dean and Ping Lee,
trices of that same phase class. It is best to start with the twphys. Rev. D5, 2741(1972. This is under study using our
single-spin observables that are not diagonal in the transveBHP method.
sity basis; for exampld,y,To,. The corresponding experi-
ments can be selected from Tables Il and Ill, where only the ACKNOWLEDGMENTS
experiments corresponding to the number of unknown
phases need to be performed. In that process, some experi- We Wish to thank Dr. S. N. Yang, Dr. B. Saghai, and Dr.
ments prove to be feasible, some are difficult if not impos—c- Fasano for their helpful co_mments. The research on this
sible; indeed, in some cases one needs to go to triple-spi@Per by F.T. was supported in part by the NSF.
observables. In any event, this selection procedure can be
used to answer the question of the experiments needed for a APPENDIX A: BASIS MATRICES
full determination of all phases and also which ones will be

extremely difficult to determine because of realistic experi- ) _ N )
mental conditions. The basic properties of the 16 Hermitikhmatrices are

In addition to these features of using the bilinear helicityPresented here. These are well-known matrices, except that

product form, one can deduce many other aspects of spiff® have made them Hermitian in order to generate real ob-

observables based on general knowledge of the properties ﬁrvables when gsed in the four'-dlmensm_nal part of our he-

the T*w# matrices. For example, when a “Lorentz” icity space amplitudes. The basic pTropertles are

(Sy*S t=/*y") transformation or a parity, chirality, or T TP]=48, T'=T"

time reversal operation is performed on & and w” ma-

trices in the “helicity amplitude space,” they reveal linear

relations between spin observables. If Fierz transformation o

are made on thE* andw” matrices, again in helicity space, =2,Cpl'” and Cﬂ:(l"‘)l'[rﬁx]- The definition of the

. . . . I matrices in terms ofy*,y>,¢*?, ... is presented in Eq.

then quadratic relationships between spin observables aEg 3

readily deduced. e
An important part of our analysis is the use of transversity

amplitudes. Many other types of amplitudes can be defined.

For example, one can use the unitary transformations from The basic properties of the nine Hermitianmatrices are

the Diracy matrices to the chiral, Majorana, or othgma-  presented here. These are Hermitian in order to generate real

trices sets to define new amplitudes; corresponding unitargbservables when used in the three-dimensional part of our

transformations in the vector meson helicity three-space cahelicity space amplitudes. The basic properties are

also be invoked. Thus the amplitude basis is hardly unique Tr[w“wﬁ]:sgaﬁ, 0*T=p,

and one can deduce other sets and therefore deduce other

spin observables as the ones to measure to determine t& in the 4<4 case, these properties allow one to expand a

magnitude and/or phases of these alternately defined ampljeneral 3< 3 matrix and to extract the associated expansion

tudes. However, there is something very special about theoefficients.

transversity amplitudes, which is closely related to using the The nine w matrices are defined in the text as a unit

normal to the scattering plan as the spin-quantization axismatrix, plus three vector spin-one matrices, plus a rank-2

The special property is that the transversity amplitudes makgensor. As given earlier the Cartesian form of the rank-2,

the optimum number of single-spin observables independerfymmetric Hermitian tensor is

of amplitude phases. Correspondingly, phase information is

relegated to the more complicated spin observables. This is . :M_ E .

most dramatic for the four single-spin observables for pseu- ! 2 37

doscalar meson photoproduction in that single-spin observ-

ables provide the magnitude of all four transversity ampli-The associated spherical tensor form is

Observables for which both® and &? are not diagonal

1. Four x four matrices

These permit one to expand anyK4 matrix X in terms of
eI''s and to extract the expansion coefficieltg using:

2. Three x three matrices
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1
=— —(0?+ 09, (PL) and had 1911131455 jts members:

G

3 The third Legendre class is of left parallelogram shape
tag \/;Tzz

a b c d
Ty +i —i +i —i
r, -1 -1 -1 -1,
T -1 -1 +1 +1
+txx—tyyiit );i(“’a_“’g)ii_ws Fy +i =i =i i

2 W R\ T2 TR
where these are also expressed in terms of the Cartesian The third Legendre class is of right parallelogram shape
rank-2 tensor or the®~° matrices. (PR) and hag''%1314as its members:
The following diagonal terms are of particular interest:

i 1 64;, .7
tZtlzl(txziltyz)zl_(a} Flw ),

G

O o o W
o o o o
© 0o o o

trro=

a b c d

ottty tpo  , 2 0 0 ao . . . .
tyy—_T_%_Sy_? 00 0 b s +i —i =i +i
FPR: c 0 0 0, Fg -1 +1 -1 +l
Ty —i =i +i i

0d OO

ot b g +1 +1 +1 +1

. 2
TP T X E
Here the matrix;; is mapped to the rank-2 spherical tensorTS;Sred:hgﬁgznirg é;ng’ﬂ;{%n;;g:vg];eiet:rm'?ﬁgi?r:]g;;?:tﬁt
operatott,,, ; it is used in the BHP form for spin observables. fqure P P €9

The same rules apply to the operatgy, , which appears in Later, the associated shapes for the transversity trans-

the trace form for spin observables. e .
P formed matrice$” will be presented, which are useful for the

analysis of a complete set of experiments.
APPENDIX B: ORIGINAL BASIS MATRICES

1. Original four: xfour 2. Original three X three

The 161" matrices can be grouped into four classes with . . .
. : oo » The ninew matrices can also be grouped into four classes

four members in each class according to their “shape.” By . - » ;
according to their “shape.” By shape, we mean the location

shape, we mean the location of nonzero entries. For the ; > . .
of nonzero entries. For the original Hermitian matrices, the

original (Dirac) Hermitian matrices the shapes are diagonalsha es are diagonaD{, antidiagonal AD), diamond or
(D), antidiagonal AD), left parallelogram PL), and right pon%on @) ang crosséd)() In t%is case th'ere are twd
parallelogram PR). The first Legendre class is of diagonal oneAD, four P, and twoX matrices, which accounts for the

1,2,9,15 H .
shape D) and hasl as its members: nine »” matrices. In addition, we classify the three matrices
»™BC which are particular linear combinations ef®*,
a b c d see Egs(3.17) and (3.16. The matrixw” is antidiagonal;
a0 0o I, +1 +1 +1 +1 whereasw® and »® are of crossedX shape. The explicit
0O b 0O r 1 1 1 1 forms are
I'p= +1 +1 -1 -1,
°“lo 0 ¢ o] ?
r{ +1 -1 +1 -1
000 dl S 41 41 -1 a 0 0 a b
15 w, +1 +1 +1
_ o wp=|0 b 0], ,
The second Legendre class is of antidiagonal sha@de) ( 0 0 V3 0 J3
and had3*%"as its members: ¢l o = 5
a b o d
0 0 0 a i . ) )
00 b 0 rs +i +i =i =i 0 0 a a b c
Fao=|g ¢ o of '+ *t 71 71 *L 0 b 0 R
= w —_ — -
¢ -1 -1 -1 -1 @AD ) 5 I 5 I >
d 0 0O c 0 O
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0 a O a b C d
wp=|b 0 c|, a000f1+1+1+1+1
0do i 0000w 1 s 1
D: I 4 - - -
0 0 c O ~
a b c d 00 0 d g -1 +1 +1 -1
o) +J_§ +E +E +E Iy, -1 +1 -1 +1
2 2 2 2
The second phase class is of antidiagonal sh#de)(and
w3 —iﬁ +iﬁ —i\/—§ +i\/—§ hasI'2714163s its members:
2 2 2 2
B B BB 000a . o 2 ¢
wg +— += - - r, +1 +1 +1 +1
2 2 2 2 0 0b O 2
3 B 3 B Pwo=lg ¢ o of L7 70 70 T
w _] — —_ - ] — ~
7 i +|2 +|2 = oo o f, -1 +1 +1 -1
T +i —i +i i
a 0 b The third phase class is of left parallelogram shepe)(and
wx=0 ¢ 0], hasI'®8131535 its members:
d 0 e b q
a c
a bfc 3_6 Egzgf6—1—1+1+1
1 3 3 1 ~ ~ . . . .
wo T3 Tz Tty T3 S R L
r +io—=i =i i
1 J3 J3 1 0o 0odo|l _®
Wg _E —7 +1 —7 _E rs -1 -1 -1 -1
J3 1 L 1 V3 The fourth phase class is of right parallelogram shapR)(
wg —— t3 7 2 T and had3*91as its members:
3 1 1 3
‘”C+§+§“§+g 0 o0ao0 . o0 ¢
r; —i —i +i +i
- 0 0 0 b ~
ape . . . . . FPR: , FS +1 _1 +1 _l ;
The classification of these matrices is helpful in the analysis c 0 0 O -
of the angular dependence of spin observables, e.g., of the 0do o gy +1 +1 +1 +1
“Legendre class” and the associated nodal structure. The Ty +i =i =i +i
associated shapes for the transversity transformed matrices
®, which are useful for the analysis of a complete set of _
experiments, will be presented later. APPENDIX D: TRANSVERSITY THREE x THREE

After the transversity transformation, the niédematrices
still form four classes. For these transversity Hermitian ma-
trices, the shapes are still diagon8l)( antidiagonal AD),

Introducing the transversity amplitudes involves a unitarydiamond or polygonR), and crossedX). In this case there
transformation of the basis matrices, see E&sl)—(5.4). are twoD, one AD, four P, and twoX matrices, which
These transformed matrices are presented here for thccounts for the niné” matrices. In addition, we classify
4% 4 T and 3<3. & cases. the three matrice®”C, which are particular linear combi-

' ' nations of&'89, see Eqs(3.17) and(3.16). The matrixa® is
now diagonal; wherea®® and ®© are of crosse shape.
1. Transversity four x four The first phase class is of diagonal shaj® (and has

o132~ as its members:

APPENDIX C: TRANSVERSITY BASIS MATRICES

After the transversity transformation, the T6matrices
still form four classes, with four members in each class.

Since these matrices are part of the analysis of which experi- a b ¢

ments are needed to determine the magnitude and phase of a 0 o0 v, +1 +1 +1

the tr%nsversny amplitudes, we refer to these as the “phase =0 b 0O, _ J6 /6.

class. 0 o w3 + - 0o - -
c

_ The first phase class is of diagonal shaji¥) @nd has
14101255 jts members: op +1 -1 +1
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The second phase class is of antidiagonal sh#i@)(and 1. Single-spin observables

~ 6 . . . .
has®” as its sole member: There are four single-spin observables for pseudoscalar

0 0 a a b c meson photoproduction, where we include the cross section:
. 1
opp=| 0 b 0}, @ +|\/_6 0 _i\/_é_ cross section: I=§<H||H>, (ED
c 0 O 2
The third phase class is of polygon shage) (and has ) “:_E 19
»>*>7as its four members: target: T 2<H| [H). (&2
0 a O . 1
. recoil: PN,:—<H||H), (E3)
wp= b 0 c , 2
0 do 1
S 4
a b c d beam: 2—2<H||H>. (E4)
0, — \/_§ — \/_§ — \/_§ _ \/_§ Note that all of these single-spin observables are diagonal in
2 2 2 2 the transversity amplitude case, which is the meaning of the
J3 J3 J3 J3 boxedI" matrices. Therefore, measurement of the four spin
Wy —i7 +i7 —i7 +i7 observables yields _the magnitudes of all four transversity
' amplitudesH, ... H,. To determine the amplitude phases,
5 V3 V3 N V3 N V3 one needs to measure double-spin observables.
> 2 2 2 2
2. Double-spin observables
07 Tl Al Al Tl There are four transversity amplitudes and hence four am-

plitude phases; however, one overall phase is arbitrary.
The fourth phase class is of crossed shap® &nd has Therefore, one needs to perform three measurements to fix

o89B.C as its four members: these three phases, see Fig. 3:
. 1
a 0 b beam-target:CiyjN=§<H|%ﬁN|H>,
ox=[0 c 0],
d 0 e o -[r4d o 0 —Py O
a b c d e gWN=| 15 0 r3|=(H 0 G|,
5 1-y3 3+y3 1-y3 3+y3 1-.3 rt o re F 0 E
g 4 2 4 4
! 1 ’
. 1+y3 3-y3 1+3 3-3 1+.3 beam-recoil: checkC™ = Z(H|#7" |H),
(OF) — 2
4 4 2 4 4
. 1-3 3+.3 +1—J§ 3+y3 1-3 0 0 0 -T O
w
S 4 2 4 4 eN=| 4 o _r7|=[0¢ 0 O,
. 1+y3 3-3 +1+J§ 3—-J3 1+.3 r g _r2 C, 0 C,
w
¢ Ty 4 2 4 4
e 1
These phase classes are useful in specifying the experiments target-recoil: Ci’\jIN = §<H| gf\,‘N [H),
needed to determine the magnitude and phases of the 12
complex transversity amplitudes. _rs 0 _ris
T, 0 T,
APPENDIX E: PSEUDOSCALAR MESONS NN — 0 _ 0 = 0 -3 0
8 15
We can return to the case of pseudoscalar meson photo- r 0 r Ly 0 Ly

production by omitting all vector meson spin observables

and by replacing allo matrices by zero, except for the  The three boxed” matrices in the above double-spin ob-
»'—1 case. In addition, the 12 amplitudes reduce to 4servables already appeared in the single-spin observables.
Hax,—Ha. This limit is equivalent to looking at the Thys there are only four, instead of five, members in each of
Ay— 0 terms only. For the pseudoscalar meson case, we nekie above double-spin categories. In particular, the following
present the BHP spin observable profiles. double-spin observables are equal to single-spin observables:
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77N=— ny’=_ erN’Z_ “ , l B ,
Z=—Pn. TRy =T, 7, 2. cyn :§<H|ggi“j”“ [H), (ED)
These equalities are direct consequences of parity conserva-
tion. For the vector meson case, the appearance ofothe 15 8
matrix in the corresponding double-spin observables yields r 0 -T —Ly, O Ly
linear relations between observables, not the above restric.,nn' _ _|r2 _ _

. : . g zvin =1 0 r 0 0 I 0
tion; hence, in that case there are five double-spin observ-*"

ables in these categories. res o -Ts Ty, 0 —Ty
In addition, thel’* matrices for each double-spin observ-

able are of the same “phase class.” F6?", «=3,5,9,11 0 -r° o o -E 0

appear, which are of phase claBf. Based on this shape )

category, these observables depend on the following relativez V' =| —T? 0 T*®|=| C, 0 —Cy [,

phases:¢; 3,¢, 4. For z™' a=27,14,16 appear, which o -T¥ o 0 F 0

are of phase clasaD. Based on this shape category, these

observables depend on the following relative phases: 3

b14,¢23. For NV «=6,8,13.15 appear, which are of , 0 - 0 0 G 0

phase clas®L. Based on this shape category, these observ- Z"zyi’f'\‘ =|T" 0 T¥|=[-0, 0 Oy

ables depend on the following relative phases:,, ¢3 4. 0 TI° 0 0 H 0

Here, we label the phases usithg , for the phase difference
= ¢,— ¢, between the transversity amplitudels and
Pan=da— Py y amplitude Here all three particles with spin are involved. Of the 3

Hy, see Fig. 3. : . :
Making three measurements of the same phase class O&gs&ble triple-spin observables, 15 are nonzero. Three of

servables would be redundant; only two are needed for th ese are equal to spin spin observables and the remaining 12

wo phases. The third measurement should be taken frof'® equal to double-spin observables. Therefore, there is no
another phase class. Thus one needs three double-spin m&&YW information in triple-spin ohservables for pseudoscalar

curemen, bt it more than b o a e phase clasf = IO, s e ot ecessary o
Here we have presented a derivation of the B[1%,12 P '

~ . . case for vector meson photoproduction.
rules, based on the shape of fhenatrices and the geometric P P
picture of the transversity amplitudes shown in Fig. 3. The

advantage of this rendition of the BDS theorem is that it can APPENDIX F: VECTOR MESONS
be generalized to the case of vector meson photoproduction, . ]
see Fig. 2. The single- and double-spin observables were presented

in the text. Using the BHP approach andapLE, it is pos-
sible to derive explicit expressions for the triple- and
quadruple-spin observables for vector meson photoproduc-

In the pseudoscalar meson case, the following triple-spiion. Triple-spin observables involve the spin of three par-
observables can be derived in the BHP form. Again, thejcles, including the vector and tensor polarization of the vec-
triple-spin observables are displayed in a Cartesian formabr meson.

3. Triple-spin observables

with
. , 1 ) ) 1. Triple-spin observables
CHN = S(HIZ"|H), (E5) , , _
2 There are four types of triple-spin observables. The first
1 three typesN,N’,V, y,N’,V, andy,N,V involve the vector
SINN'_ = g1 NN meson. The fourth type involves thgeN,N’ particles and
Cyi 2<|_|| oy [H). (6 does not include the vector meson:

7 Xxij

PNNV=(e-Tr¥)| o 0 o' 0 0 w
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0 m 0 0 0® 0 0 o°

ANV=—(Te-TT¥| 0* 0 o' 0 0 o 0 0 (F1)
0 E 0 0 w 0 o o°

o’ 0 —w® 0wt 0 —-w? 0 0
apv=rrd-r| o o] o0 0 W 0 W' W,
o’ 0 -0’ 0w 0 -

0 E 0 0 0 0B o€
;{I’]‘V (T14— —]"7) o 0 - o 0 —-w? 0

OHOOwGOwaC
0 [0 o o o

w wg
Ve iy o 0 ot W 0 W 0 0|, (F2
0 E 0 0 w 0 o o

7

w 0 -w® w* 0
av=—atqry| o [ o o W
o' 0 —w® w* 0

0 [0 o0 0 0 0 o
((%N (F5—F3) o 0 -0 o' 0 -0® 0 0
0 0] o 0 & 0 W W

0 E 0 0 o 0 w® o°

ZZ{}‘V:—(Fll“g) > 0 o © 0 o 0 0 (F3)

OEOOwGOwESw9

rt* o -ré o -T° o 0o -I* o
v o -1t o |, epv=| -T2 o oA, evo[T7 o %Y. 4
rs+ o -rs o -TY o 0o T® o

2. Quadruple-spin observables

Quadruple-spin observables involve the spin of all four particles, including the vector and tensor polarization of the vector
meson. Of course all of these involve the vector meson, including its vector and tensor polarization; heng® artesian
display appears again. The question arises: Are all of the quadruple-spin observables redundant? In the pseudoscalar mesol

case the full case of triple-spin observables was redundant in that it was were all determined by single- and/or double-spin
observable measurements. In the vector meson case, we have

oﬂoowﬁonC

@

(/)Z)'::\‘V (1—‘15_1"9_1-*8) w7 0 —(,)5 w4 0 —w2 0 0
0[] o0 0 o 0 W W
o 0 —-® o 0 —-w? 0 0

ZINNY = (r2r16) 0 E 0 0 w 0 o o

o 0 -0’ 0 0 —-w? 0 0
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0 [o]

V;/L\III\IV (1’*13_1‘*11_1’*6) (1)7 0
0 [
o’ 0
rpv=c-rerers)| o [o]
o’ 0

0[]
ap=er{des| v o
0[]

o' 0

(/;/y;\ﬂ\l V_( I"13 Flll"6) 0 E
o’ 0

w? 0

rv=re-rars)| o (o]
w? 0

0

AT ) PR
0

w? 0

Vz;\llz\l V_( 1-*81*5 1‘*15) 0 m
w? 0
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