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Polarization observables in vector meson photoproduction
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The photoproduction of vector mesons (r,v,f) is of renewed interest because intense high energy beams
polarized electrons and photons are under development. These beams and also polarized targets
possible to explore the dynamics of basic baryon structure. As a step toward that goal, an analysis
possible polarization observables for the case of vector meson photoproduction from a nucleon tar
presented. The question of which observables are needed to determine completely the basic photopro
amplitudes and the relationships between spin observables are addressed. Such theorems are mos
demonstrated by representing all observables as bilinear products of helicity amplitudes and using k
properties of Dirac gamma and spin-1 matrices. The general angular dependence of spin observables
cially near thresholds and resonances, is examined for the vector meson case. The criteria for a complet
observables and the relationships between observables are then presented.

PACS number~s!: 24.70.1s, 25.20.Lj, 13.60.Le, 13.88.1e
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I. INTRODUCTION

The photoproduction and electroproduction of mesons
of renewed interest now that CEBAF has arrived. The thre
olds for r,v, and f mesons will be readily attained and
exceeded. The new high-intensity continuous beams, and
development of polarized targets and beams, will allow me
surement of spin observables with unprecedented precis
In addition, the measurement of recoil baryons, including t
L ~which due to its weak decayL→p1p2 is spin self-
analyzing!, will provide even more spin observables. Vecto
meson decays (r→pp;v→ppp;f→K1K2,K̄,K) pro-
vide a measure of their density matrices, which is equivale
to determining the intensity, polarization, and tensor pola
ization of these vector mesons. Such measurements w
made in the 1960’s@1#. With CEBAF, data of higher preci-
sion and completeness should be achievable@2#. The polar-
ization of both thef, using its decay toK̄,K, and of ther
using (r→pp will be measured at the CLAS detector a
CEBAF @3#. From measurement of the angular distributio
of the decay mesons, it should be possible to obtain the
density matrix of the vector meson and hence its vector a
tensor polarization.

It is therefore timely and important to study the photo
and electroproduction of vector mesons. The associated fo
factors and intermediate isobar states should test quark m
els. Thef meson is of particular interest because of i
simple (s̄s) 3S12 quark content. It is the positronium o
strange quarks and, in parallel to charmonium (c̄c) states,
should provide insights into basic QCD dynamics in the no
perturbative region. Perhaps an intimate connection betw
production ofs̄s pairs and baryon polarization could provid
detailed tests of quark descriptions. For example, the fam
of reactions gp→K1L,gp→K1S0,p̄p→ff, and
gp→fp all involve s̄s strangeness production. In addition
they could also involve preexistings̄s content of the initial
protons and antiprotons. That possibility has been explo
in a series of papers dedicated to finding direct evidence
an admixture ofs̄s pairs in baryons@4–6#. Spin observables
53/96/53~2!/593~18!/$06.00
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are probably most sensitive to such a configuration mixtur
In view of the above motivation, in this paper we discus

some general features of spin observables for the photop
duction of vector mesons. Our approach is similar to th
used in studies of pseudoscalar meson production and of
p̄p→L̄L reaction near threshold@7–9#. However, for a vec-
tor meson the spin 1 complicates the dynamics and a mo
general approach is required to keep track of all spin obse
ables and to demonstrate their general features, e.g., th
nodal structure and their normal energy evolution. For e
ample, the question of which spin observables vanish at
and 180°, which have nodes, where these nodes occur
how they are expected to evolve with energy~based on
simple centrifugal barrier and/or resonance constraints! are
addressed here. In addition, we examine the question of w
constitutes a complete set of measurements, e.g., which m
surements are needed to determine the magnitude and ph
of the basic amplitudes. Also, we wish to know which mea
surements are redundant, based on assumed symmet
Such questions have been answered for the pseudoscalar
son case@10–12#; those discussions are extended here to t
vector meson case. Indeed, generalized discussions alre
exist in the literature@13,14#, which are however quite dif-
ferent from our treatment.

Our description uses a space of bilinear products of hel
ity amplitudes, along with well-known properties of 434
and 333 matrix bases, to reveal the general features of sp
observables. We also use the idea of transversity amplitud
@15#. For clarity, we also include the pseudoscalar case usi
this bilinear form description and show how it generalizes
the vector meson case and indeed to many other reaction

II. THE BASIC AMPLITUDE AND SPIN OBSERVABLES

For vector meson photoproduction,gW 1NW→VW 1NW 8, our
basic amplitude is of the form

F [^qW lVl2uTukWll1&, ~2.1!
593 © 1996 The American Physical Society
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594 53PICHOWSKY, ŞAVKLI, AND TABAKIN
where the variables and the coordinate system conventi
are presented in Fig. 1. The incident and final relative m
menta arekW andqW , respectively. Jacob-Wick~JW! @16# phase
conventions are used throughout this paper. We usel561
to describe the two transverse helicity states of the init
photon,l1561/2 to describe the target (N) proton helicity,
lV561,0 for the final vector meson helicity andl2 for the
final (N8) baryon helicity. For a real photon, the above am
plitude represents 3323232524 complex numbers. How-
ever, by virtue of parity invariance there are 12 relatio
between these amplitudes and consequently we have 12
dependent complex helicity amplitudes or 24 real numbe
at each energy and angle. We denote these 12 helicity am
tudes by

^qW lVl2uTupW ll1&→HalV
~u!, ~2.2!

wherea51, . . . ,4 andlV561,0, and the particular matrix
element assignments are given below. The pseudoscalar
is recovered by simply takinglV→0 and then we have
132323258 complex numbers and, after considerin
parity symmetries, we obtain the usual four independe
(a51, . . . ,4) helicity amplitudesHa(u) @10#.

The vector meson amplitude can be displayed as a 634
matrix in helicity space

FIG. 1. The coordinate system and kinematical variables
vector meson photoproduction. HereV denotes the vector meson
andlV its helicity.
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F 5S H21 H11 H321 2H421

H41 H31 2H121 H221

H20 H10 2H30 H40

H40 H30 H10 2H20

H221 H121 H31 2H41

H421 H321 2H11 H21

D , ~2.3!

where the JW parity relation,

^qW lVl2uTupW ll1&

5~21!L f2L i^qW 2lV2l2uTupW 2l2l1&, ~2.4!

has been used, whereL i[l2l1 and L f[lV2l2 . The
rows of F are labeled by the final state helicities (lV ,l2)
and the columns by the initial photon and proton helicitie
(l,l1).

1 The helicity amplitudes inF are defined by the
following:

H1lV
[^lV ,l2511/2uTul51, l1521/2&,

H2lV
[^lV ,l2511/2uTul51, l1511/2&,

H3lV
[^lV ,l2521/2uTul51, l1521/2&,

H4lV
[^lV ,l2521/2uTul51, l1511/2&, ~2.5!

along with the JW parity rules. The pseudoscalar meson c
is described by thelV50(234) part of the above matrix.

General spin observables,V, for vector meson photopro-
duction can be expressed in the following trace form:

V5
Tr@F ~AgAN!F †~BVBN8!#

Tr@F F †#
, ~2.6!

where the trace is over spin-space helicity quantum numb
l,l1 ,lV ,l2 . This basic expression for observables is a
average over a classical ensemble of particles in the bea
Interference occurs only at the quantum level for the bas
two-body reaction. The matrices have the dimensio
F (634), AgAN(434), F †(436), andBVBN8(636).

HereAg denotes the usual 232 Hermitian spin matrices
(1,sW g), which describe the photon’s two spin degrees
freedom. The 232 matrix AN is similarly the (1,sW N) spin
matrices, as isBN8(1,s

W
N8), which describes the recoil bary-

on’s spin state. The vector meson matrixBV is a 333 matrix
and a complete set of these is provided by the 333 unit
operator (1), the usual spin-1 operatorsSW , plus five indepen-
dent rank-2 operatorst262 , t261 , andt20. These operators
are given in terms of the spin-1 spherical tensor operator

S16157
Sx6 iSy

A2
57

S6

A2
, S105Sz ,

1We often usel1561 to designate the nucleon’s helicity, which
really has the valuesl1561/2.

or
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53 595POLARIZATION OBSERVABLES IN VECTOR MESON . . .
by the tensor operator couplingt2m5@S13S1#2m .
Associated with the above ensemble average, Eq.~2.6!,

there are density matrices describing the polarization state
each particle. For example, the incident photon and the tar
proton are described by

rg5
I g

2
~1g1sW g•PW S!, ~2.7!

and

rN5
I N
2

~1N1sW N•PW N!. ~2.8!

ThePW S above is the Stokes vector, which is used to descri
the photon’s polarization as discussed in Ref.@8#. The vector
PW N describes the target polarization; its component in theŷ

direction is denoted byT[PW N• ŷ. The final state density ma-
trices are, for the final baryon,

rN85
I N8
2

~1N81sW N8•P
W
N8!, ~2.9!

and, for the final vector meson,

rV5
I V
3

~1V1SW •PW V13t•TV!. ~2.10!

Using the definitionSW [A3/2SW , gives us a vector meson
polarization

PW V5
Tr@F F †SW #

Tr@F F †#
, ~2.11!

for which each component is normalized to be<1, since
SW •SW 53.

The vector meson has not only a vector polarizatio
but also a tensor polarization, TV

2m . Here
t•TV[(m(21)mt22mTV

2m , for the tensor polarization in a
spherical tensor basis. Then one has

TV
2m5

Tr@F F †t2m#

Tr@F F †#
. ~2.12!

The initial and final state density matrices are simp
products of the above forms:

r i[rg3rN , r f[rV3rN8,

where the helicity matrix elements of the above operato
are, for example,̂l18urNul1&, etc. Here the quantitiesPW S ,

PW N , PW N8, P
W
V , andTV

2m are real functions of angle and en
ergy which describe how the density matrix is formed fro
the basic matrices~or operators! 1,sW g ,sW N ,sW N8,S

W
V , and

t2m , which act in their respective helicity space. Thes
‘‘functions’’ are called spin observables, with the most fami
iar being the polarization.

To deduce the trace form@Eq. ~2.6!# for the spin observ-
ables, one begins by expressing the general cross sectio
terms of the above density matrices; namely,
of
get
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s~u!5r0
Trr f

Trr i
,

where

r f5F r iF
†, ~2.13!

and r05q/(2k). Then, for a given experimental situation
one inserts the appropriate density matrices and extracts
associated spin observable in trace form, Eq.~2.6!.

If one has an unpolarized beam and an unpolarized targ
the initial density matrix is simplyr i5I gI N/4 and then with
Trr i5I gI N and r f5(I gI N/4)(F F

†) the differential cross
section is

s~u!5r0
1

4
Tr@F F †#[r0I ~u!. ~2.14!

Here we define the cross-section functionI (u).
Another important case is the single spin observab

called the target polarizationT. Now one has a polarized
target and the initial density matrix is
r i5rg3rN5(I gI N/4)1g(1N1sW N•PW N). and the final density
matrix is r f5rV3rN85(I VI N8/4). Inserting these density
matrices into Eq.~2.13!, one finds that the target polarization
is given by

Va510,b51→T5
Tr@F 1gsW N• ŷF

†#

Tr@F F †#
, ~2.15!

where the labelsa,b anticipate a subsequent discussion.
Equation~2.6! can be deduced in this same manner for a

possible experimental spin setups, including not only sing
polarized spin cases, but also situations when two, three
even, for the vector meson case, four spins are set up
initial states or measured in the final state. In all cases, o
simply counts and measures a general cross section. Exp
sions for extracting the spin observables from such cro
sections are available in the literature@8,14# or simply de-
rived from the above density matrix formulation.

III. OBSERVABLES IN BILINEAR HELICITY PRODUCT
FORM

A. The BHP form and basis matrices

Let us now map the above trace~or ensemble average!
form over to abilinear helicity product~BHP! form. To cast
the spin observables into a BHP form, one needs to insert
helicity amplitude matrix, Eq.~2.3!, in the trace form expres-
sion, Eq.~2.6!, with various choices of theA,B spin opera-
tors. 2 Each spin observableV can be written in the follow-
ing general BHP product form:

V̌ab5VabI ~u!56
1

2
^HuGavbuH&, ~3.1!

2The tedious algebra was done usingMAPLE .
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596 53PICHOWSKY, ŞAVKLI, AND TABAKIN
56
1

2 (
a,b,lV ,lV8

HalV
* Gab

a v
lVl

V8
b

Hbl
V8
.

~3.2!

See Eq.~2.14! for the definition ofI (u). This bilinear he-
licity product form, which is the key expression for ou
analysis, often proves to be much more convenient than
original trace formof Eq. ~2.6!.3 We use the symbolV̌ to
indicate the aboveprofile functionform, which is not to be
confused with the unit vector designation as inŷ.

For any particular spin observable, the matricesGa are
one of 16 Hermitian 434 matrices andvb is selected from
nine Hermitian 333 matrices. The Hermiticity ofGa and
vb assures that Eq.~3.2! yields real observables. TheG ma-
trices are Hermitian versions of the familiar 16 Dirac mat
ces:

G1, . . . ,1651,g0,igW ,is0x,is0y,is0z,sxy,sxz,syz,

ig5g0,g5gW ,g5. ~3.3!

Note that here the four-dimensional space is not that o
relativistic four-spinor; instead, it is thea51, . . . ,4 part of
the helicity amplitudeHalV

‘‘space.’’
The vector meson part of the helicity amplitude ‘‘space

i.e., thelVlV8 part, is a three-dimensional space with ni
associated Hermitian matricesvb. These are constructe
from nine spin-1 matrices as

vb51,A3/2SW ,A6txy ,A6txz ,A6tyz ,

A3/2@6~ txx2tyy!2A3tzz#, ~3.4!

where, in a Cartesian basis,

t i j[~SiSj1SjSi !/22~2/3!d i j .

The matricest i j are Cartesian versions of the earlier ope
torst2m ; however, we use a different notation sincet acts in
the helicity amplitude space~BHP! form of Eq. ~3.1!, while
t2m appears in the trace form, Eq.~2.6!; see Appendix A.

The matricesG,v are defined to provide a complete He
mitian basis with the properties: Tr@GaGb#54dab , and
Tr@vavb#53dab . The last fivev5,6,7,8,9 matrices are the
rank-2 operators associated with the vector meson’s ten
polarization. The properties of the matricesG,v are summa-
rized in the Appendices.

Each value of the 16 superscriptsa and of the 9 super-
scripts b label a particular choice of spin operato
Ag , AN , BV , and BN8. For example, the choice
Ag5AN5BV5BN851 leads to the following BHP form:

V̌a51,b515I ~u!5
1

2(a51

4

(
lV50,61

uHalu25
1

2
^Hu1N1VuH&,

~3.5!

3Note that the ket notationuH& does not refer to a state vector, bu
is adopted here to represent the helicity amplitudes with the c
vention that̂ alVuH&[HalV

(u).
r
the

i-

f a

,’’
e

a-

-

sor

s

which yields the differential cross section using Eq.~2.14!.
The productV̌ab[VabI , which is called a profile function,
is convenient since it is proportional to bilinear products
helicity amplitudes.

Another example isAg5BV5BN851, andAN5sy
N then,

we recover the target polarization profile function

V̌a510,b51→Ť5TI ~u!52
1

2
^HuG10v1uH&, ~3.6!

which motivated the earlier labels in Eq.~2.15!.
As one ranges over all possible choices of the operatorA

andB, many of the traces vanish due to parity. There are
values of a, and 9 values ofb. Therefore, we have
16395144 possibleGavb products, which correspond to
144 distinct nonzero spin observables for th
gW 1NW→VW 1NW 8 reaction, at each energy and angle. For th
pion case, there are only 16 (a51, . . .,16) such observ-
ables. Since for the vector~pseudoscalar! production we only
need to know 23~7! of these 144~16! to make a complete
measurement, there is clearly a great redundancy in the
list of spin observables. Note that so far the only symme
invoked has been parity.4

B. Single-spin observables in BHP form

The single-spin observables for vector meson producti
are now given explicitly in terms of the aboveG and v
matrices. Single-spin observables involve experiments wh
only one of the particles is polarized. We list first the case
no particles being polarized:

I5
1

2
^Hu G1n v1n uH&, ~3.7!

which defines the cross section and corresponds to E
~2.14!. For convenience, we count this case as a single-s
observable.

Matrices that are diagonal in the transversity amplitud
basis5 are enclosed by a box in the above equations. T
significance of these boxed expressions and general pro
ties of single-spin observables will be discussed later.

The first single-spin observable is the target polarizati
profile Ť[PW N• ŷI :

Ť52
1

2
^Hu G10n v1n uH&, ~3.8!

t
n-

4The rule for parity, based on JW conventions, can be written
P gP PF 5F †PN for the pion case andP gP PF 5F †P VPN for the
vector meson case, whereP V is an operator defined by its action on
the spin-1 eigenstates byP Vu1lV&5(21)12lVu12lV&.
5Transversity amplitudes are similar to helicity amplitudes exce

that the axis of spin quantization is the transverse rather than
particle’s momentum direction. Hence, transversity amplitudes
defined using the axis of quantization perpendicular to the scat
ing plane (ŷ) instead of using the particle momentum direction
( ẑ,ẑ8).
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53 597POLARIZATION OBSERVABLES IN VECTOR MESON . . .
the next observable is the recoil polarizati
P̌N8[PW N8• ŷ8I , e.g., the polarization of the final baryon:

P̌N85
1

2
^Hu G12n v1n uH&. ~3.9!

The next single-spin observable is the polarized pho
asymmetryŠ[SW • x̂I :

Š5
1

2
^HuG4vAuH&. ~3.10!

Now we turn to the final vector meson, which has a vec
polarizationP̌V[PW V• ŷ8I :

P̌V5
1

2
A3

2
^Hu1SyuH&5

1

2
^Hu G1n v3n uH&, ~3.11!

and also tensor polarizations, for which the transverseŷ)
component is

Ťyy5
1

2
^Hu1tyyuH&5

1

2
^Hu1~Sy

22 2
3 !uH&

5
1

2K HUG1F3 vAn2 v1n
6 GUHL , ~3.12!

with the spherical tensor components given by

Ť215A1

6
^Hu G1nv6uH&, ~3.13!

and

Ť225
1

A3
1

4
^Hu G1n @v82v9#uH&, ~3.14!

Ť2052
1

A6
^Hu G1n @v81v9#uH&5

3

2
^HutzzuH&,

5
3

2
H^uSz

22 2
3 uH&. ~3.15!

Only eight of the above single-spin observables are inde
dent, since we haveŤ2m5(21)mŤ22m .

The following characteristic combinations of the (333)
v1,8,9 matrices are used above and later:

S vA

vB

vC
D [

1

3 S 1 ~12A3! ~11A3!

~12A3! ~11A3! 1

~11A3! 1 ~12A3!
D S v1

v8

v9
D ,

~3.16!

which is a unitary transformation in thev basis.

C. Double-spin observables in BHP form

The double-spin observables are now presented using
notation:
n

ton

tor

(

en-

the

Či j
gN[

1

2
^HuC i j

gNuH&.

The Č is used to designate the spin observable profile fun
tion, while the symbolC is used to designate a matrix in the
helicity HalV

space. In addition, superscripts are used
stipulate the two polarized particles in the reaction. Finally,
matrix display will be used to present the Cartesian comp
nents (i , j ) of the various spin observables; for example, in
stead of writingC i j as C xx ,C xy ,C xz , these are presented
below as the top row of a matrix. These conventions allow
to present the 99 double-spin observables in a relative
compact form.6

1. Beam-target observables

Let us start with the beam-target (g2N) double-spin ob-
servables. The Cartesian terms are

C gN5S 0 2 G12n vAn 0

G5 vAn 0 G3 vAn

G11 v1n 0 G9 v1n
D . ~3.17!

Note that there are nine entries in the above Cartesian co
ponent (x,y,z) display, but four vanish; namely,
C xx5C xz5C yy5C zy50. Also note that a set of five inde-
pendentGa matrices appear above fora53,5,9,11,12, along
with v1 and the linear combinationvA matrix @Eq. ~3.16!#.
Here both particles are in the initial state and the Cartes
components refer to the initial (x,y,z) axes of Fig. 1. Of the
nine possible beam-target spin observables, only five a
nonzero. Near the vector meson production threshold, o
one of the above double-spin observables is nonze
namely,C zz

gN[G9v1, see Ref.@17#.

2. Beam-recoil observables

For the beam-recoil (g2N8) double-spin observables, we

have a similar display,Či j
gN8[~1/2!^HuC i j

gN8uH&:

C gN85S 0 G10n vAn 0

G14 vAn 0 2G7 vAn

2G16 v1n 0 2G2 v1n
D ,

~3.18!

but a different set of G matrices appear; namely,
a52,7,10,14,16. Thev1 andvA matrices appear again as in
Eq. ~3.17!. Here the Cartesian components of the initial pho
ton refers to the (x,y,z) axes of Fig. 1, while the final axes

6Of the 99 possible double-spin observables for vector mes
photoproduction, 51 are nonzero, all others vanish by virtue of p
ity considerations. The nonzero 51 observables are not in gene
independent of the other spin observables.
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598 53PICHOWSKY, ŞAVKLI, AND TABAKIN
(x8,y8,z8) are used for the recoil baryonN8. Therefore, we
can extract a particular double spin observable from
~3.18! as

Čxy8
gN85

1

2
^HuG10vAuH&[V̌10,A,

where

V̌10,A5
1

3
@V̌10,11~12A3!V̌10,81~11A3!V̌10,9#.

Of the nine possible beam-recoil spin observables, only
are nonzero. Near the vector meson production thresh
only two of the above double-spin observables are nonz

namely,C zz8
gN8[2G2v1, andC zx8

gN8[2G16v1, see Ref.@17#.

3. Target-recoil observables

For the target-recoil (N2N8) double-spin observables
we have yet another set of fourG matrices appearing

Či j
NN8[~1/2!^HuC i j

NN8uH& with

C NN85S 2G6 0 2G13

0 2 G4n 0

G8 0 G15
D v1n . ~3.19!

This time we haveGa’s with a54,6,8,13,15. Here the Car
tesian components of the initial nucleonN refers to the
(x,y,z) axes of Fig. 1, while the final axes (x8,y8,z8) are
used for the recoil baryonN8. A particular double-spin ob-
servable from Eq.~3.19! is

Čyy8
NN852

1

2
^HuG4v1uH&[V̌4,1.

This is often calledDnn , where the subscriptn refers to the
normal to the scattering plane, which in our case isŷ5 ŷ8.
Of the nine possible target-recoil spin observables, only fi
are nonzero. Near the vector meson production threshold
five of the above double-spin observables are nonzero,
Ref. @17#.

4. Beam-vector meson observables

We now consider the first double-spin observable wh
involves both a polarized photon and a final polarized vec
meson. We again display the Cartesian components as ai , j
array, with the spin profile functionČi j constructed from the
helicity space matrixC i j as Či j

gV[~1/2!^HuC i j
gVuH&. How-

ever, since the final vector meson has not only a vector
larization, but also five possible tensor polarization comp
nents, the matrix now involves the following 338 matrix.
The three rows refer to the three Cartesian compone
i51,2,3 or x,y,z of the photon’s Stokes vector, while th
first three columnsj51,2,3 refer to the vector meson’s thre
polarization componentsPW V . The last five columns
j54,5,6,7,8 refer to the tensor polarization of the vector m
son A6TxyV ,A6TxzV ,A6TyzV ,(A3/2)6(Txx

V 1Tyy
V )2A3TzzV .
q.

ve
old,
ro;

,

ve
, all
see

ch
tor

po-
o-

nts

e

e-

The Cartesian components for theg refer to the original
(x,y,z) axes and for the final vector particle refer to the fin
(x8,y8,z8) axes of Fig. 1. The result is

C gV5~ G4n G4nG1!

3S 0 v3n 0 0 v6 0 vB vC

2v7 0 v5 v4 0 v2 0 0

v2 0 v4 v5 0 v7 0 0
D .

~3.20!

The spin observable in the photon density matrix of Eq.~2.7!
has the three Cartesian components; whereas, the vector
son density matrix Eq.~2.10! has three vector plus five ten-
sor polarization spin observables. Again, that is the origin
the 338 nature of the above double-spin observable displ

For convenience, we separate the helicity spaceHalV
into

separatêlVuvulV8 & andGab matrices. To illustrate our nota-
tion, the following double-spin observable

Čxy8
gV

5
1

2
^HuG4v3uH&5V̌4,3

can be extracted from Eq.~3.20!. Another example is

Čz4
gV5

1

2
^HuG1v5uH&5V̌1,5.

Of the 24 possible beam-vector meson spin observab
only 12 are nonzero. Near the vector meson producti
threshold, 7 of the above 12 double-spin observables
nonzero; namely,Čz,x8

gV , Čz,z8
gV , Čy,4

gV , Čx,5
gV , Čy,6

gV , Čx,7
gV ,

Čx,8
gV , see Ref.@17#.

5. Recoil-vector meson observables

Similarly, the recoil-vector meson (N82V) case involves
a final polarized baryon (N8) and the 315 vector plus tensor
components of the final vector meson. In this case the C
tesian components for both theN8 and the final vector par-
ticle refer to the final (x,8y8,z8) axes of Fig. 1. Thus, a
338 display appears again, where the double polarizat
spin observableČ is expressed in terms of a helicity ampli

tude space matrixC i j : Či j
N8V[(1/2)^HuC i j

N8VuH& with

C N8V52~G162 G12nG2!

3S v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0
D .

~3.21!

To illustrate our notation again, the following double-spi
observable

Čx8,z8
N8V 52

1

2
^HuG16v4uH&[V̌16,4

can be extracted from Eq.~3.21!. Another example is
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Čz8,4
N8V52

1

2
^HuG2v5uH&[V̌2,5.

Of the 24 possible recoil-vector meson spin observabl
only 12 are nonzero. Near the vector meson producti
threshold, all of the above 12 double-spin observables
nonzero, see Ref.@17#.

6. Target-vector meson observables

Finally, the target-vector meson (N2V) case has the
same type of display with the double-spin observable rela
to a helicity amplitude space matrix by

Či j
NV[

1

2
^HuC i j

NVuH&,

with again a 338 matrix

C NV52~G11 G10nG9!

3S v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0
D .

~3.22!

Of the 24 possible target-vector meson spin observabl
only 12 are nonzero. Near the vector meson producti
threshold, 10 of the above 12 double-spin observables
nonzero; namely,Čxx8

NV , Čzx8
NV , Čyy8

NV , Čxz8
NV , Čzz8

NV , Cy,zz
NV ,

Cx,yz
NV , Cy,xz

NV , Cy,xx
NV , Cx,xy

NV , see Ref.@17#.
The significance of the boxed matrices will become cle

when we discuss the transversity amplitudes.

7. Some general remarks

There are 99 possible double-spin observables, which
duce to 51 after use of parity conservation. The total numb
of nonzero observables near threshold is 37 out of these
see Ref.@17#. There are 18 single-spin observables~we count
the cross section as a single-spin observable!, which reduce
to 8 using parity. Of these 8, 5 are nonzero near or at thre
old, which include the cross section plus 4 vector meson s
observables; namely,Txx ,Tyy ,Tzz, andTxz . Since there are
12 complex amplitudes, one needs 2421523 independent
measurements to determine the photoproduction amplitud
with one overall arbitrary phase. At first glance, it woul
seem that with 8 single- and 51 double-spin observables
suffices to do just selected single- and double-spin measu
ments to completely determine the 12 amplitudes. Th
provesnot to be the case.

The reason for this conclusion is that many of these sp
observables yield redundant information. In Sec. V, it
shown that spin observables of the same ‘‘phase class’’ c
yield redundant information and that one needs to go beyo
single- plus double-spin observables to obtain a complete
of experiments. The ‘‘phase class’’ will be defined later.

Triple- and also quadruple-spin observables have been
rived and complete the full set of 16395144 spin observ-
ables. The results are given in Appendix F. Before use
parity there are 243 triple-spin observables; after use of p
es,
on
are

ted
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ity conservation there are 123. Before use of parity there are
216 quadruple spin observables; after use of parity conserva
tion there are 108. Many of these double-, triple-, and
quadruple-spin observables involve linear combinations or
the same BHP formsGa3vb that appear in other single- and
double-spin observables. That reveals many relations be
tween spin observables and is an important advantage of th
BHP display.

The basic question is which of these
8151112311085290 observables can and need to be
measured to determine the 12 complex amplitudes? Clearly
23 measurements are needed at each energy and angle, b
they have to be selected to yield independent information
This problem is dealt with in Sec. V. In addition, one can ask
which observables are expected to have nodes not only at th
0° and 180° end points, but also in between? That and re
lated questions are addressed next.

IV. NODAL STRUCTURE LEGENDRE CLASS

Having expressed the spin observables for vector meso
photoproduction in BHP form using the basic matricesG and
v, we can analyze these matrices for insights as to the
‘‘nodal structure’’ of observables. Note that the originalG
andv matrices can be organized into groups according to
their common ‘‘shape;’’ let us call these groupings ‘‘Leg-
endre classes.’’ For example, the following matrices are of
diagonal (D) shape:G1 G2 G9 G15; whereas, the following
are antidiagonal (AD): G3 G4 G6 G7. The remaining eight
matrices are either of one class~calledPL for left parallelo-
gram form!: G10 G11 G13 G14, or of another class~calledPR
for right parallelogram shape!: G5 G8 G12 G16. Similarly for
the v space, one has matrices of diagonal (D) shape:v1

v4, antidiagonal (AD) shape:v5 vA, crossed shape (X):
v8 v9, vB vC, and diamond or polygon (P) shape:v2

v3, v6 v7. Explicit G andv matrices are presented in Ap-
pendix B, where they are grouped together by their common
(D, AD, PL, PR) for G or (D, AD, X, P) for v, shapes.

We stress classification of the matrices by their shape be
cause classes of observables involvingG andv matrices of
the same shape have angular dependences given by relat
mixtures of the same Wignerd functions. To illustrate this
remark, let us consider the general spin observableV̌a,b,
which is given in terms of the helicity amplitudesHa,lV

(u)
by Eq.~3.2!. The helicity amplitudes have the following par-
tial wave expansion:

HalV
~u!5(

J1
~2J111!HalV

J1 dLa f ,Lai

J1 ~u!, ~4.1!

whereLa f andLai take on the following values:

La f5lV2za and Lai5ja ,

where z15z252z352z451/2 and j25j451/2, j15j3
53/2, see Eq.~2.5!. Using the above expansion forHalV

and

Hbl
V8
in Eqs.~3.1! and ~3.2!, we have
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V̌ab~u!56
1

2 (
a,b,lV ,lV8

(
J1 ,J2

H
alV

J1* H
bl

V8

J2 Gab
a v

lVl
V8

b

3dlV2za ,ja

J1 ~u!d
l
V82zb ,jb

J2 ~u!. ~4.2!

This bilinear form can be combined to extract the depe
dence on a single Wignerd. One finds

V̌ab~u!5 (
J ,L,L8

(
a,b,lV ,lV8

~2J11!dL,L8
J

~u!

3JL,L8
J ,ab

@ab;lV ,lV8 #, ~4.3!

with

JL,L8
J ,ab

@ab;lV ,lV8 #[6
1

2 (
J1 ,J2

Gab
a v

lVl
V8

b
H
alV

J1* H
bl

V8

J2

3S J1 J2 J

lV2za lV82zb L
D

3S J1 J2 J

ja jb L8
D . ~4.4!

Note thatL depends on the helicity labelsa,b andlV ,lV8 ,
while L8 depends only on the helicity labelsa,b.

To understand the consequence of the above result, s
a particular choice of spin observable by designating the
sociated values ofa, andb; for example, take 10,1 for the
target polarization, see Eq.~2.15!. Now consider the full
family of G3v matrices with the same matrix ‘‘shape’’ fo
bothG andv. That family is called a ‘‘Legendre class.’’ Fo
the target polarization case, the matrix produ
G10,11,13,143v1,4 are all of the same shape and thus the as
ciated spin observables form a ‘‘Legendre class.’’~The mem-
bers of this target polarization class will be discussed lat!

Since all members of a ‘‘Legendre class’’ vanish for th
same (a,b;lVlV8 ) values, they are all formed from the sam
set of Wignerd functions,dL,L8

J (u) of Eqs.~4.3! and ~4.4!.
If, for example, every member of that set of Wignerd func-
tions vanishes at 0° and 180°, then every member of t
‘‘Legendre class’’ of spin observables will also vanish
0° and 180°. Similarly, if every member of that set
Wigner d functions has a zero or a node at 90°, then ev
member of that ‘‘Legendre class’’ of spin observables w
also have a zero or a node at 90°. These observations fo
from the fact that these families of spin observables are
expressed by various combinations~seeJ, above! of the
same set of Wignerd functions. The mixture coefficients
J, do depend on the partial wave helicity amplitudes, wh
is how dynamics of the reaction affects the detailed angu
dependences. If one truncates the partial wave expansion
to either threshold or resonance considerations, then
blend of Wignerd’s is strongly restricted and one can dem
onstrate explicit associated angle dependences of the
observable profiles. For example, if only oneJ1 ,J2 set of
partial wave helicity amplitudes are nonzero, then using
triangle ruleJ5J11J2•••J12J2 , only a limited number of
J values appear, which severely restricts the nodal struct
n-
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That allows one to test and extract specific dynamical info
mation from the nodal structure and energy evolution of sp
observables~see Ref.@9#!.

Thus the angular dependences of spin observables ca
grouped into classes@8,9# with the same potential nodal
structure~hence the nomenclature Legendre class!. To exam-
ine the general role of resonances on the nodal structure
spin observables, it is most convenient to introduce expli
orbital angular momentum quantum numbers. Therefore, i
separate paper, Ref.@17#, the electric and magnetic multipole
amplitudes for vector meson photoproduction are studied
detail.

Another way of examining the angular dependence of
Legendre class of spin observables is to return to the par
wave expansion, Eq.~4.1!. For a given Legendre class, only
selected values ofa andlV appear. Thus, one can pick the
corresponding helicity amplitudes from the first column o
Table I, then proceed to the partial wave helicity amplitud
and the associated Wignerd functions in the second and
third columns. The fourth column gives the range ofJ
needed for that amplitude to contribute; while the last tw
columns indicate the value of the Wignerd function at the
0° and 180° end points.

Using this table, one can deduce which observables
zero at the end points. For example, consider the Legen
class of observables for which bothGa andvb are diagonal,
e.g., the class:G1,2,9,153v1,4. These observables depend o
linear combinations of(alV

6uHa,lV
u2. From Table I it fol-

lows that the associated observables do not necessarily v
ish at the end points. In this diagonal Legendre class

single and double observables areI , C zz8
gV , C zz8

gN8, C z8z8
N8V ,

C zz
gN , C zz8

NV , andC zz8
NN8. This information is extracted from

TABLE I. Partial wave expansion of the helicity amplitudes. Th
associated Wignerd functions are shown along with an indication
of their values at the 0° and 180° end points. Six of the helici
amplitudesHa,lV

(u) vanish at both end points; namely,H1,1,
H1,0, H2,21 , H3,0, H3,21 , H4,1. Three of the helicity amplitudes
vanish only at the 0° end point; namely,H1,21 , H2,0, H4,21 . Three
of the helicity amplitudes vanish only at the 180° end poin
namely,H2,1, H3,1, H4,0.

Ha,lV
(u) Ha,lV

J dL f ,L i

J (u) J 0° 180°

H1,1(u) H1,1
J d1/2,3/2

J (u) J>3/2 0 0
H2,1(u) H2,1

J d1/2,1/2
J (u) J>1/2 1 0

H3,1(u) H3,1
J d3/2,3/2

J (u) J>3/2 1 0
H4,1(u) H4,1

J d3/2,1/2
J (u) J>3/2 0 0

H1,0(u) H1,0
J d21/2,3/2

J (u) J>3/2 0 0
H2,0(u) H2,0

J d21/2,1/2
J (u) J>1/2 0 1

H3,0(u) H3,0
J d1/2,3/2

J (u) J>3/2 0 0
H4,0(u) H4,0

J d1/2,1/2
J (u) J>1/2 1 0

H1,21(u) H1,21
J d23/2,3/2

J (u) J>3/2 0 1
H2,21(u) H2,21

J d23/2,1/2
J (u) J>3/2 0 0

H3,21(u) H3,21
J d21/2,3/2

J (u) J>3/2 0 0
H4,21(u) H4,21

J d21/2,1/2
J (u) J>1/2 0 1



h
int

e
he-
3
ell
is
ity
s.

in

53 601POLARIZATION OBSERVABLES IN VECTOR MESON . . .
Tables II and III, where the relation between thea and b
choices of the matrices are related to explicit spin obse
ables.

Another example of how to use Tables I–III to deduce
end-point behavior of a given Legendre class of observa
is seen by examining the Legendre class of observables
which both Ga and vb are antidiagonal, e.g., the clas
G3,4,6,73v5,A. Only the helicity amplitude products with
a,b5(1,4),(2,3) andlV852lV appear for these observ
ables. Now using Table I with those products, it follows th
this Legendre class involved bilinear helicity products th
vanish at both 0° and 180°. From Tables II and III, we lea
that the single-, double-, and triple-spin observables of

class areS, C yz8
gV , C yz8

gN8, C yz
gN , C xy84

NN8V , C xzz8
NN8V , C yx84

NN8V ,

C xz8z8
gN8V , andC xzz8

gNN8.

TABLE II. Spin observables in BHP form as products ofGa and
vb matrices. Here thea51, . . . 16,b5129, A,B,C range is dis-
played. Single-, double-, and triple-, but not quadruple-, spin
servables are shown. The entries of ‘‘phase class’’G̃PL3ṽP do not
appear—they are all quadruple-spin observables.

a\b 1 2 3 4 5 6

1 I C zx8
gV PV C zz8

gV
C z4

gV A 2
3T21

2 2C zz8
gN8 2C z8x8

N8V
C zz8y8

gN8V 2C z8z8
N8V 2C z84

N8V
C zz85

gN8V

3 2C zxy8
gNN8 2C xy8x8

NN8V 2C yzy8
gNV

2C xy8z8
NN8V 2C xy84

NN8V 2C xyy8
gNV

C xz5
NN8V 2C xz4

NN8V
C xzz8

NN8V 2C yz5
gNV

4 2C yy8
NN8 C y6

gV
C xy8

gV
C x4

gV
C yz8

gV
C x5

gV

2C yy8y8
NN8V 2C yy85

NN8V

5 2C zzy8
gNN8 C xx6

gNV
2C yxy8

gNV 2C xx4
gNV

C xxz8
gNV

C yx5
gNV

C zy8x8
NN8V

C zy8z8
NN8V

C zy84
NN8V

6 2C xx8
NN8

C xx8y8
NN8V

C xx85
NN8V

7 C zyx8
gNN8

C xz86
gN8V 2C yz8y8

gN8V 2C xz84
gN8V

C xz8z8
gN8V 2C yz85

gN8V

C yx8x8
NN8V

C yx8z8
NN8V

C yx84
NN8V

8 C zx8
NN8 2C zx8y8

NN8V 2C zx85
NN8V

9 C zz
gN

2C zx8
NV

2C zzy8
gNV

2C zz8
NV 2C z4

NV 2C zz5
gNV

10 2T C yy
N8V C y5

N8V

2C yy8
NV 2C y5

NV

C yy86
gN8V

C xy8y8
gN8V 2C yy84

gN8V
C yy8z8

gN8V
C xy85

gN8V

2C zyx8
gNV

2C zyz8
gNV 2C zy6

gNV

11 C zx
gN

2C xx8
NV

2C zxy8
gNV

2C xz8
NV 2C x4

NV 2C zx5
gNV

12 PN8 C zy8x8
gN8V 2C xyy8

gNV
C zy8z8

gN8V
C zy84

gN8V 2C xy5
gNV

2C yy6
gNV

C y8y8
N8V C yy4

gNV
2C yyz8

gNV
C y85

N8V

13 C xz8
NN8

C xz8y8
NN8V

C xz85
NN8V

14 C zyz8
gNN8 2C xx86

gN8V
C yx8y8

gN8V
C xx84

gN8V 2C xx8z8
gN8V

C yx8y8
gN8V

C yz8x8
NN8V

C yz8z8
NN8V

C yz84
NN8V

15 C zz8
NN8 2C zz8y8

NN8V 2C zz85
NN8V

16 2C zx8
gN8 2C x8x8

N8V 2C zx8y8
gN8V 2C x8z8

N8V 2C x84
N8V 2C zx85

gN8V
rv-

the
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The procedure consists of using Tables I–III along wit
the Legendre class information to determine the end-po
rules. Alternately, one can use the general results Eqs.~4.3!
and ~4.4!.

V. TRANSVERSITY, PHASE CLASS, AND COMPLETE
EXPERIMENTS

A. Transversity

1. Pseudoscalar meson transversity

Let us deal with the question of which experiments ar
needed to determine the magnitude and phase of the 12
licity amplitudes for vector meson production. Clearly, 2
experiments are needed at each energy and angle. It is w
known that for pseudoscalar meson photoproduction, it
possible to determine the magnitude of the four transvers
amplitudes by measuring all four single-spin observable
The remaining three phases~one overall phase is arbitrary!
can be determined by selecting three additional double-sp

ob-

TABLE III. Spin observables in BHP form as products ofGa

and vb matrices. Here thea51, . . . 16, b5126 range is dis-
played.

a\b 7 8 9 A B C

1 C z6
gV T22 T20 Ty8y8

2C xyy8
gNN8

2 2C z86
N8V

C zz87
gN8V

C zz88
gN8V 2C yyx8

gNN8

3 2C xzx8
NN8V C yz

gN 2C yz7
gNV 2C yz8

gNV

4 2C yx8
gV

2C yy87
NN8V 2C yy88

NN8V S C x7
gV

C x8
gV

5 C zy86
NN8V C yx

gN
C yx7

gNV
C yx8

gNV

2C xxx8
gNV

6 C xx87
NN8V

C xx87
NN8V 2C xzz8

gNN8

7 2C xz8x8
gN8V 2C yz8

gN8 2C yz87
gN8V 2C yz88

gN8V

C yx86
NN8V

8 2C xxz8
gNN8

2C zx87
NN8V 2C zx88

NN8V

9 2C z6
NV 2C zz7

gNV 2C zz8
gNV

2C yxy8
gNN8

10 2C yy8x8
gN8V C y7

N8V C y8
N8V

C xy8
gN8

C xy87
gN8V

C xy88
gN8V

2C y7
NV 2C y8

NV

11 2C x6
NV 2C zx7

gNV 2C zx8
gNV

2C yzy8
gNN8

12 C zy86
gN8V

C y87
N8V

C y88
N8V 2C xy

gN 2C xy7
gNV 2C xy8

gNV

C yyx8
gNV

13 2C xz87
NN8V 2C xz88

NN8V
C xzx8

gNN8

14 C xx8x8
gN8V

C yx8
gN8

C yx87
gN8V

C yx88
gN8V

C yz86
NN8V

15 2C zz87
NN8V 2C zz88

NN8V

C xxx8
gNN8

16 2C x86
N8V 2C zx87

gN8V 2C zx88
gN8V

C yyz8
gNN8
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observables, following the Barker-Donnachie-Storro
~BDS! @11,12# rules. The pseudoscalar meson case can
recovered from Eqs.~3.7!–~3.10!, by settingvA→1 and
omitting all observables which involve a final meson spin
1. In that limit, the BDS rules can be understood by perform
ing a unitary transformation on theG matrices along with a
unitary transformation on the helicity amplitudes to genera
the transversity amplitudesuH̃&:

uH̃a&[(
b

Ua,b
~4! uHb&, ~5.1!

and a new set ofG matrices

G̃a[U~4!GaU†~4!. ~5.2!

The 16 spin observables are invariant under such a unit
transformation in ‘‘helicity space:’’

V̌a}^HuGauH&[^H̃uG̃auH̃&.

The physically meaningful unitary operator is the transve
sity choice,

åU~4!5
1

2 S 1 2 i i 1

1 i 2 i 1

1 i i 21

1 2 i 2 i 21

D , ~5.3!

which involves rotating the helicity quantization axis (ẑ and
ẑ8) to the direction normal to the scattering planeŷ5 ŷ8, see
Fig. 1. With the above 434 unitary transversity transforma-
tion, the following matrices now are diagonal:

G̃1G̃4G̃10G̃12,

whereas, the following are now antidiagonal:

G̃2G̃7G̃14G̃16.

The remaining eight matrices are either of one class~called
PL for left parallelogram form!,

G̃6G̃8G̃13G̃15,

or of another class~calledPR for right parallelogram form!,

G̃3G̃5G̃9G̃11.

2. Vector meson transversity

The above procedure can now be extended to the vec
meson case by introducing an additional unitary transvers
transformation in the 333 space:

U~3!5
1

2 S 21 A2i 1

2A2i 0 2A2i
1 A2i 21

D , ~5.4!

which makes theŷ axis the quantization axis for the spin-1
meson. Correspondingly, there is now a transformation
‘‘helicity space:’’ ^HuGavbuH&[^H̃uG̃aG̃buH̃&, with
w
be

of
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in

uH̃a,lV
&[ (

b,lV8
Ua,b

~4!U
lV ,lV8
~3! uHb,l

V8
&.

For the vector meson part of the transversityṽ space, the
following matrices now have diagonal (D) form, ṽ1ṽ3

ṽA; antidiagonal (AD) form, ṽ6; crossed (X) form,
ṽ8ṽ9ṽBṽC; and diamond or polygon (P) shaped form,
ṽ2ṽ4ṽ5ṽ7. We have extended the definition of transvers
amplitudes to the case of a vector meson. The original
pressions for the spin observable profilesV̌ab are of the
same form as given in Eqs.~3.7!–~3.22!, except that the
helicity amplitudesHalV

are replaced by the transversity am

plitudesH̃a,lV
, and the matrices are replaced byGa→G̃a and

vb→ṽb. In this new representation the diagonal terms a
indicated by the boxed matrices in Eqs.~3.7!– ~3.22!. The
shapes of the tranversity-transformed matrices are prese
in Appendices C and D.

B. Phase class

As discussed in Appendices C and D the shape of
G̃,ṽ allows us to group these matrices into ‘‘phase classe
As in the ‘‘Legendre classes’’ of the original matricesG,v,
the shapes are defined by where nonzero entries appear i
matrix. The classification into diagonal, antidiagonal, le
parallelogram, right parallelogram, crossed, and polyg
shapes is of significance in that these shapes select the
tributing bilinear helicity products. For example, if in th
productG̃aṽb both matrices are diagonal, then that obse
able depends on linear combinations of the prod
uH̃a,lV

u2. If on the other hand the matrix productG̃aṽb has

an entry at the locationa,b in the G̃ space and at the location
lV ,lV8 in the ṽ space, then that observable depends on
following product:

H̃a,lV
* H̃b,l

V8
5uH̃a,lV

uuH̃b,l
V8
uexpi ~fb,l

V8
2fa,lV

!,

whereH̃a,lV
5uH̃a,lV

uexpi(fa,lV
), etc. Thus, the shapes of th

matrices in the tranversity description tell us which phas
fb,l

V8
2fa,lV

[f
l
V8lV

b,a
are needed to determine the associa

spin observable. In Fig. 2, the basic problem of determin
the 12 amplitudes is illustrated, where the lengths of t
vectors correspond to the magnitude of the transversity a
plitudes, and the phases of these complex amplitudes are
shown. To fix this diagram, we need to determine 12 mag
tudes and then 11 phases; one overall phase and the ov
orientation of the diagram of Fig. 2 is arbitrary. This situatio
is a generalization of the pseudoscalar case, which is
scribed in Appendix E and by Fig. 3.

C. Complete experiments

The phase classification of the transversity matrices ar
guide to the task of picking a complete set of experimen
Thus the procedure is to first select experiments which g
information about the magnitudes of the 12 transversity a
plitudes and then to pick experiments which yield nonredu
dant phase information. In the pseudoscalar case, the sin
spin observables yield the magnitudes of all four transvers
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amplitudes. Then three double-spin observables, selected
ing the BDS@11,12# rules, yield three phases. The task
similar for the vector case, but the result is more comp
cated.

To extract the magnitudes of the transversity amplitude
we need to examine all observables for which bothG̃a and

FIG. 2. This diagram displays the magnitudes and selected re
tive phase angles of the 12 transversity amplitud
H̃1lV

, . . . ,H̃4lV
~with lV50,61) for photoproduction of vector

mesons. The 12 complex amplitudes are determined within an ov
all phase if the 12 magnitudes and 11 angles are fixed by 23 app
priate measurements. The magnitudes are determined by measu
six single-spin observables plus six double-spin observables, see
text. Then independent phase angle measurements are made b
lecting spin observables from different ‘‘phase class’’ observable
The phase angles are labeled by the conventionflVl

V8
st .

FIG. 3. This diagram displays the magnitudes and selected re
tive phase angles of the four transversity amplitudesH̃1 , . . . ,H̃4

for photoproduction of pseudoscalar mesons. The four complex a
plitudes are determined within an overall phase if the four mag
tudes and three angles are fixed by seven appropriate meas
ments. The magnitudes are determined by measuring the f
single-spin observables, then independent phase angle meas
ments are made by selecting three double-spin observables from
least two different ‘‘phase class’’ observables. The phase angles
labeled by the conventionfst .
us-
s
li-

s,

ṽb are of the diagonal phase class. These observables
produced by all products:G̃1,4,10,123ṽ1,3,A, see Appendices
C and D.

In the vector meson case there are only eight independ
single-spin observables, so we learn that this case is no
favorable as the pseudoscalar meson case, where the sin
spin observables sufficed to determine all four amplitu
magnitudes. Indeed, the situation is that only six of the ve
tor meson photoproduction single-spin observables are of
agonal form; namely,I ,Ť,P̌N8,Š,P̌V , and the tensor polar-
ization Ťyy . Thus we need to turn to the double-spi
observables for the remaining six diagonal phase class m
trices reside. Therefore, for vector meson photoproduction
is not possible to determine the magnitudes of the 12 tra
versity amplitudes by only measuring six single-spin obser
ables.

VI. CONCLUSIONS

Several conclusions can be drawn from describing sp
observables for vector meson photoproduction in bilinear h
licity product form. Here one essentially extends the BD
@11,12# rules to include the vector meson degree of freedo

The diagonal matrices in the transversity basis are in
cated by boxes in Eqs.~3.7!–~3.22!. For the corresponding
observables, the diagonal nature of the productG̃aṽb means
that those observables depend on linear combinations of
squared magnitude of the transversity amplitudes, e.g., th
depend on combinations of6uH̃ i ,lV

u2.
Those experiments which depend only on the magnitu

of the transversity amplitude are the following six single
spin observables:

I ,Ť,P̌N8,Š,P̌V ,Ťyy ,

plus the following six double-spin observables:

Čxy
gN ,Čxy

gN8 ,Čyy
NN8 ,Čxy

gV ,Čyy
NV ,Čyy

N8V .

Note the abovex component for the photon beam corre
sponds to a photon linearly polarized perpendicular to t
scattering plane@8#. In contrast to the pseudoscalar meso
production case, the magnitudes of the transversity am
tudes for the vector meson case cannot be determined by
single-spin observable measurements, one needs to also
form six double-spin measurements. Only six of the eig
independent single-spin observables are of diagonal for
the remaining two single-spin observables provide transv
sity amplitude phase information. In addition, of those s
double-spin observables three involve measuring the s
state of the final vector meson~via its decay!

Čxy
gV ,Čyy

NV ,Čyy
N8V ,

two require a polarized photon beam

Čxy
gN ,Čxy

gN8 ,

and one requires a polarized target and measurement of
spin state of the recoil final baryon

Čyy
NN8 .
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That sets the task for determining the magnitudes of
transversity amplitudes, which provide the most conveni
situation. Note that near threshold, the two spin observab
Čxy

gV and Čxy
gN vanish.

Observables for which bothG̃a and ṽb are not diagonal
depend on transversity amplitude phase differences. As
extension of the BDS rules for the pseudoscalar meson c
these transversity phase-dependent observables form p
classes in which some experiments provide redundant ph
information. A graphical procedure for analyzing the redu
dancy and phase class of experiments for vector meson
duction is illustrated in Fig. 2.

The procedure consists of picking a set of phases betw
transversity amplitudes that correspond to a given ph
class for theG andv matrices. Then list all theG3v ma-
trices of that same phase class. It is best to start with the
single-spin observables that are not diagonal in the trans
sity basis; for exampleT20,T21. The corresponding experi
ments can be selected from Tables II and III, where only
experiments corresponding to the number of unkno
phases need to be performed. In that process, some ex
ments prove to be feasible, some are difficult if not impo
sible; indeed, in some cases one needs to go to triple-
observables. In any event, this selection procedure can
used to answer the question of the experiments needed
full determination of all phases and also which ones will
extremely difficult to determine because of realistic expe
mental conditions.

In addition to these features of using the bilinear helic
product form, one can deduce many other aspects of
observables based on general knowledge of the propertie
the Gavb matrices. For example, when a ‘‘Lorentz
(SgmS215l n

mgn) transformation or a parity, chirality, o
time reversal operation is performed on theGa andvb ma-
trices in the ‘‘helicity amplitude space,’’ they reveal linea
relations between spin observables. If Fierz transformati
are made on theGa andvb matrices, again in helicity space
then quadratic relationships between spin observables
readily deduced.

An important part of our analysis is the use of transvers
amplitudes. Many other types of amplitudes can be defin
For example, one can use the unitary transformations fr
the Diracg matrices to the chiral, Majorana, or otherg ma-
trices sets to define new amplitudes; corresponding uni
transformations in the vector meson helicity three-space
also be invoked. Thus the amplitude basis is hardly uniq
and one can deduce other sets and therefore deduce
spin observables as the ones to measure to determine
magnitude and/or phases of these alternately defined am
tudes. However, there is something very special about
transversity amplitudes, which is closely related to using
normal to the scattering plan as the spin-quantization a
The special property is that the transversity amplitudes m
the optimum number of single-spin observables independ
of amplitude phases. Correspondingly, phase information
relegated to the more complicated spin observables. Th
most dramatic for the four single-spin observables for ps
doscalar meson photoproduction in that single-spin obse
ables provide the magnitude of all four transversity amp
the
ent
les
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tudes. That simplification is also of benefit for vector
mesons, which suggests that there are compelling reasons
use transversity amplitudes.

We hope that the procedure described here will be usef
in ascertaining the information content and the nodal beha
ior of vector meson spin observables and in planning exper
ments. Measurement of all spin observables needed to fu
determine the 12 amplitudes is probably not feasible, a
though it is good to know what is needed for that full task
Even without a full experimental determination of the pho-
toproduction amplitudes, it is possible to extract useful dy
namical information, which is not an uncommon situation in
strong interaction physics.

Note added in proof.It was called to our attention by
Professor R. Workman that quadrant ambiguities for th
phases are discussed in a paper by N. W. Dean and Ping L
Phys. Rev. D5, 2741~1972!. This is under study using our
BHP method.
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APPENDIX A: BASIS MATRICES

1. Four 3 four matrices

The basic properties of the 16 HermitianG matrices are
presented here. These are well-known matrices, except th
we have made them Hermitian in order to generate real o
servables when used in the four-dimensional part of our he
licity space amplitudes. The basic properties are

Tr@GaGb#54dab, Ga†5Ga.

These permit one to expand any 434 matrixX in terms of
the G ’s and to extract the expansion coefficientsCb using:
X5(bCbGb andCb5(1/4)Tr@GbX#. The definition of the
G matrices in terms ofgm,g5,smn, . . . is presented in Eq.
~3.3!.

2. Three3 three matrices

The basic properties of the nine Hermitianv matrices are
presented here. These are Hermitian in order to generate r
observables when used in the three-dimensional part of o
helicity space amplitudes. The basic properties are

Tr @vavb#53dab , va†5va.

As in the 434 case, these properties allow one to expand
general 333 matrix and to extract the associated expansio
coefficients.

The ninev matrices are defined in the text as a unit
matrix, plus three vector spin-one matrices, plus a rank-
tensor. As given earlier the Cartesian form of the rank-2
symmetric Hermitian tensor is

t i j5
SiSj1SjSi

2
2
2

3
d i j .

The associated spherical tensor form is
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t205A3

2
tzz52

1

A6
~v81v9!,

t26157~ txz6 i t yz!57
1

A6
~v66 iv7!,

t2625S 1
txx2tyy

2
6 i t xyD5

1

A3
S v82v9

2 D6
i

A6
v5,

where these are also expressed in terms of the Carte
rank-2 tensor or thev529 matrices.

The following diagonal terms are of particular interest

tyy52
t221t222

2
2
t20

A6
5Sy

22
2

3
,

txx51
t221t222

2
2
t20

A6
5Sx

22
2

3
.

Here the matrixt i j is mapped to the rank-2 spherical tens
operatort2m ; it is used in the BHP form for spin observable
The same rules apply to the operatort2m , which appears in
the trace form for spin observables.

APPENDIX B: ORIGINAL BASIS MATRICES

1. Original four 3 four

The 16G matrices can be grouped into four classes w
four members in each class according to their ‘‘shape.’’
shape, we mean the location of nonzero entries. For
original ~Dirac! Hermitian matrices the shapes are diago
(D), antidiagonal (AD), left parallelogram (PL), and right
parallelogram (PR). The first Legendre class is of diagon
shape (D) and hasG1,2,9,15as its members:

GD5F a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

G ,
a b c d

G1 11 11 11 11

G2 11 11 21 21

G9 11 21 11 21

G15 21 11 11 21

.

The second Legendre class is of antidiagonal shape (AD)
and hasG3,4,6,7as its members:

GAD5F 0 0 0 a

0 0 b 0

0 c 0 0

d 0 0 0

G ,
a b c d

G3 1 i 1 i 2 i 2 i

G4 11 21 21 11

G6 21 21 21 21

G7 1 i 2 i 1 i 2 i

.

sian

or
s.

ith
By
the
nal

al

The third Legendre class is of left parallelogram sha
(PL) and hasG10,11,13,14as its members:

GPL5F 0 a 0 0

b 0 0 0

0 0 0 c

0 0 d 0

G ,
a b c d

G10 1 i 2 i 1 i 2 i

G11 21 21 21 21

G13 21 21 11 11

G14 1 i 2 i 2 i 1 i

.

The third Legendre class is of right parallelogram sha
(PR) and hasG10,11,13,14as its members:

GPR5F 0 0 a 0

0 0 0 b

c 0 0 0

0 d 0 0

G ,
a b c d

G5 1 i 2 i 2 i 1 i

G8 21 11 21 11

G12 2 i 2 i 1 i 1 i

G16 11 11 11 11

.

These shapes are important for the determination of the
gular dependence of spin observables, e.g., their nodal st
ture.

Later, the associated shapes for the transversity tra
formed matricesG̃ will be presented, which are useful for the
analysis of a complete set of experiments.

2. Original three 3 three

The ninev matrices can also be grouped into four class
according to their ‘‘shape.’’ By shape, we mean the locatio
of nonzero entries. For the original Hermitian matrices, th
shapes are diagonal (D), antidiagonal (AD), diamond or
polygon (P), and crossed (X). In this case there are twoD,
oneAD, four P, and twoX matrices, which accounts for the
ninevb matrices. In addition, we classify the three matrice
vA,B,C, which are particular linear combinations ofv1,8,9,
see Eqs.~3.17! and ~3.16!. The matrixvA is antidiagonal;
whereasvB and vC are of crossedX shape. The explicit
forms are

vD5F a 0 0

0 b 0

0 0 c
G , a b c

v1 11 11 11

v4
A3
2

0 2
A3
2

,

vAD5F 0 0 a

0 b 0

c 0 0
G , a b c

v5 2 i
A6
2

0 1 i
A6
2

vA 21 11 21

,
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vP5F 0 a 0

b 0 c

0 d 0
G ,

a b c d

v2 1
A3
2

1
A3
2

1
A3
2

1
A3
2

v3 2 i
A3
2

1 i
A3
2

2 i
A3
2

1 i
A3
2

v6 1
A3
2

1
A3
2

2
A3
2

2
A3
2

v7 2 i
A3
2

1 i
A3
2

1 i
A3
2

2 i
A3
2

,

vX5F a 0 b

0 c 0

d 0 e
G ,

a b c d e

v8 2
1

2
1

A3
2

11 1
A3
2

2
1

2

v9 2
1

2
2

A3
2

11 2
A3
2

2
1

2

vB 2
A3
2

1
1

2
11

1

2
2

A3
2

vC 1
A3
2

1
1

2
11

1

2
1

A3
2

.

The classification of these matrices is helpful in the analy
of the angular dependence of spin observables, e.g., of
‘‘Legendre class’’ and the associated nodal structure. T
associated shapes for the transversity transformed matr
ṽ, which are useful for the analysis of a complete set
experiments, will be presented later.

APPENDIX C: TRANSVERSITY BASIS MATRICES

Introducing the transversity amplitudes involves a unita
transformation of the basis matrices, see Eqs.~5.1!–~5.4!.
These transformed matrices are presented here for
434, G̃ and 333, ṽ cases.

1. Transversity four 3 four

After the transversity transformation, the 16G̃ matrices
still form four classes, with four members in each clas
Since these matrices are part of the analysis of which exp
ments are needed to determine the magnitude and phas
the transversity amplitudes, we refer to these as the ‘‘ph
class.’’

The first phase class is of diagonal shape (D) and has
G̃1,4,10,12as its members:
sis
the
he
ices
of

ry

the

s.
eri-
e of
ase

G̃D5F a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

G ,
a b c d

G̃1 11 11 11 11

G̃4 11 11 21 21

G̃10 21 11 11 21

G̃12 21 11 21 11

.

The second phase class is of antidiagonal shape (AD) and
hasG̃2,7,14,16as its members:

G̃AD5F 0 0 0 a

0 0 b 0

0 c 0 0

d 0 0 0

G ,
a b c d

G̃2 11 11 11 11

G̃7 2 i 2 i 1 i 1 i

G̃14 21 11 11 21

G̃16 1 i 2 i 1 i 2 i

.

The third phase class is of left parallelogram shape (PL) and
hasG̃6,8,13,15as its members:

G̃PL5F 0 a 0 0

b 0 0 0

0 0 0 c

0 0 d 0

G ,
a b c d

G̃6 21 21 11 11

G̃8 2 i 1 i 2 i 1 i

G̃13 1 i 2 i 2 i 1 i

G̃15 21 21 21 21

.

The fourth phase class is of right parallelogram shape (PR)
and hasG̃3,5,9,11as its members:

G̃PR5F 0 0 a 0

0 0 0 b

c 0 0 0

0 d 0 0

G ,
a b c d

G̃3 2 i 2 i 1 i 1 i

G̃5 11 21 11 21

G̃9 11 11 11 11

G̃11 1 i 2 i 2 i 1 i

.

APPENDIX D: TRANSVERSITY THREE 3 THREE

After the transversity transformation, the nineṽ matrices
still form four classes. For these transversity Hermitian m
trices, the shapes are still diagonal (D), antidiagonal (AD),
diamond or polygon (P), and crossed (X). In this case there
are twoD, one AD, four P, and twoX matrices, which
accounts for the nineṽb matrices. In addition, we classify
the three matricesṽA,B,C, which are particular linear combi-
nations ofṽ1,8,9, see Eqs.~3.17! and~3.16!. The matrixṽA is
now diagonal; whereasṽB and ṽC are of crossedX shape.

The first phase class is of diagonal shape (D) and has
ṽ1,3,A as its members:

ṽD5F a 0 0

0 b 0

0 0 c
G ,

a b c

ṽ1 11 11 11

ṽ3 1
A6
2

0 2
A6
2

ṽA 11 21 11

.
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The second phase class is of antidiagonal shape (AD) and
hasṽ6 as its sole member:

ṽAD5F 0 0 a

0 b 0

c 0 0
G , a b c

ṽ6 1 i
A6
2

0 2 i
A6
2

.

The third phase class is of polygon shape (P) and has
ṽ2,4,5,7as its four members:

ṽP5F 0 a 0

b 0 c

0 d 0
G ,

a b c d

ṽ2 2
A3
2

2
A3
2

2
A3
2

2
A3
2

ṽ4 2 i
A3
2

1 i
A3
2

2 i
A3
2

1 i
A3
2

ṽ5 2
A3
2

2
A3
2

1
A3
2

1
A3
2

ṽ7 2 i
A3
2

1 i
A3
2

1 i
A3
2

2 i
A3
2

.

The fourth phase class is of crossed shape (X) and has
ṽ8,9,B,C as its four members:

ṽX5F a 0 b

0 c 0

d 0 e
G ,

a b c d e

ṽ8
12A3
4

31A3
4

2
12A3
2

31A3
4

12A3
4

ṽ9
11A3
4

32A3
4

2
11A3
2

32A3
4

11A3
4

ṽB
12A3
4

31A3
4

1
12A3
2

31A3
4

12A3
4

ṽC
11A3
4

32A3
4

1
11A3
2

32A3
4

11A3
4

.

These phase classes are useful in specifying the experim
needed to determine the magnitude and phases of the
complex transversity amplitudes.

APPENDIX E: PSEUDOSCALAR MESONS

We can return to the case of pseudoscalar meson pho
production by omitting all vector meson spin observabl
and by replacing allv matrices by zero, except for the
v1,A→1 case. In addition, the 12 amplitudes reduce to
Ha,lV

→Ha . This limit is equivalent to looking at the

lV→0 terms only. For the pseudoscalar meson case, we n
present the BHP spin observable profiles.
nts
12

to-
s

4:

ext

1. Single-spin observables

There are four single-spin observables for pseudoscal
meson photoproduction, where we include the cross sectio

cross section: I5
1

2
^Hu G1n uH&, ~E1!

target: Ť52
1

2
^Hu G10n uH&, ~E2!

recoil: P̌N85
1

2
^Hu G12n uH&, ~E3!

beam: Š5
1

2
^Hu G4n uH&. ~E4!

Note that all of these single-spin observables are diagonal
the transversity amplitude case, which is the meaning of th
boxedG matrices. Therefore, measurement of the four spi
observables yields the magnitudes of all four transversit
amplitudesH̃1 , . . . ,H̃4 . To determine the amplitude phases,
one needs to measure double-spin observables.

2. Double-spin observables

There are four transversity amplitudes and hence four am
plitude phases; however, one overall phase is arbitrar
Therefore, one needs to perform three measurements to
these three phases, see Fig. 3:

beam-target:Či j
gN5

1

2
^HuC i j

gNuH&,

C gN5S 0 2 G12n 0

G5 0 G3

G11 0 G9
D 5S 0 2PN8 0

H 0 G

F 0 E
D ,

beam-recoil: checkCi j
gN85

1

2
^HuC i j

gN8uH&,

C gN85S 0 G10n 0

G14 0 2G7

2G16 0 2G2
D 5S 0 2T 0

Ox8 0 Oz8

Cx8 0 Cz8

D ,

target-recoil: Či j
NN85

1

2
^HuC i j

NN8uH&,

C NN85S 2G6 0 2G13

0 2 G4n 0

G8 0 G15 D 5S Tx8 0 Tz8
0 2S 0

Lx8 0 Lz8
D .

The three boxedG matrices in the above double-spin ob-
servables already appeared in the single-spin observable
Thus there are only four, instead of five, members in each o
the above double-spin categories. In particular, the followin
double-spin observables are equal to single-spin observable
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C xy
gN52PN8, C xy8

gN852T, C yy8
NN852S.

These equalities are direct consequences of parity conse
tion. For the vector meson case, the appearance of thevA

matrix in the corresponding double-spin observables yiel
linear relations between observables, not the above rest
tion; hence, in that case there are five double-spin obse
ables in these categories.

In addition, theGa matrices for each double-spin observ
able are of the same ‘‘phase class.’’ ForC gN, a53,5,9,11
appear, which are of phase classPR. Based on this shape
category, these observables depend on the following relat
phases:f1,3,f2,4. For C

gN8, a52,7,14,16 appear, which
are of phase classAD. Based on this shape category, thes
observables depend on the following relative phase
f1,4,f2,3. For C NN8, a56,8,13.15 appear, which are of
phase classPL. Based on this shape category, these obse
ables depend on the following relative phases:f1,2,f3,4.
Here, we label the phases usingfa,b for the phase difference
fa,b5fa2fb between the transversity amplitudesH̃a and
H̃b , see Fig. 3.

Making three measurements of the same phase class
servables would be redundant; only two are needed for t
two phases. The third measurement should be taken fr
another phase class. Thus one needs three double-spin m
surements, but not more than two from a given phase cla
Here we have presented a derivation of the BDS@11,12#
rules, based on the shape of theG̃ matrices and the geometric
picture of the transversity amplitudes shown in Fig. 3. Th
advantage of this rendition of the BDS theorem is that it ca
be generalized to the case of vector meson photoproducti
see Fig. 2.

3. Triple-spin observables

In the pseudoscalar meson case, the following triple-sp
observables can be derived in the BHP form. Again, th
triple-spin observables are displayed in a Cartesian form
with

Čxi j
gNN85

1

2
^HuC i j

gNN8uH&, ~E5!

Čyi j
gNN85

1

2
^HuC yi j

gNN8uH&, ~E6!
va-

ds
ric-
rv-

-

ive

e
s:

v-

ob-
he
m
ea-
ss.

e
n
on,

in
e
at

Čzi j
gNN85

1

2
^HuC zi j

gNN8uH&, ~E7!

C xi j
gNN85S G15 0 2G8

0 2 G1n 0

G13 0 2G6
D5S 2Lz8 0 Lx8

0 2I 0

Tz8 0 2Tx8

D ,

C yi j
gNN85S 0 2G9 0

2G2 0 G16

0 2G11 0
D 5S 0 2E 0

Cz8 0 2Cx8

0 F 0
D ,

C zi j
gNN85S 0 2G3 0

G7 0 G14

0 G5 0
D 5S 0 G 0

2Oz8 0 Ox8

0 H 0
D .

Here all three particles with spin are involved. Of the 339
possible triple-spin observables, 15 are nonzero. Three
these are equal to spin spin observables and the remainin
are equal to double-spin observables. Therefore, there is
new information in triple-spin observables for pseudosca
meson photoproduction, and it is fortunately not necessar
consider such complicated measurements. This is not
case for vector meson photoproduction.

APPENDIX F: VECTOR MESONS

The single- and double-spin observables were presen
in the text. Using the BHP approach andMAPLE, it is pos-
sible to derive explicit expressions for the triple- an
quadruple-spin observables for vector meson photoprod
tion. Triple-spin observables involve the spin of three p
ticles, including the vector and tensor polarization of the ve
tor meson.

1. Triple-spin observables

There are four types of triple-spin observables. The fi
three types,N,N8,V, g,N8,V, andg,N,V involve the vector
meson. The fourth type involves theg,N,N8 particles and
does not include the vector meson:
C xi j
NN8V5~G62G3G13!S 0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9
D ,

C yi j
NN8V5~G72 G4nG14!S v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0
D ,
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C zi j
NN8V52~G82G5G15!S 0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9
D , ~F1!

C xi j
gN8V5~G14 G10n2G7!S v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0
D ,

C yi j
gN8V5~G142 G10n2G7!S 0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC
D ,

C zi j
gN8V52~G162 G12nG2!S 0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9
D , ~F2!

C xi j
gNV52~G5 G12nG3!S v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0
D ,

C yi j
gNV52~G52 G12nG3!S 0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC
D ,

C zi j
gNV52~G11 G10nG9!S 0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9
D , ~F3!

C xi j
gNN85S G15 0 2G8

0 2G1 0

G13 0 2G6
D vAn , C yi j

gNN85S 0 2G9 0

2G2 0 G16

0 2G11 0
D vAn , C zi j

gNN85S 0 2G3 0

G7 0 G14

0 G5 0
D v1n . ~F4!

2. Quadruple-spin observables

Quadruple-spin observables involve the spin of all four particles, including the vector and tensor polarization of the
meson. Of course all of these involve the vector meson, including its vector and tensor polarization; hence, the 338 Cartesian
display appears again. The question arises: Are all of the quadruple-spin observables redundant? In the pseudosca
case the full case of triple-spin observables was redundant in that it was were all determined by single- and/or dou
observable measurements. In the vector meson case, we have

C xxi j
gNN8V5~G152G92G8!S 0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC
D ,

C xyi j
gNN8V52~G2 G1nG16!S v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0
D ,
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C xzi j
gNN8V5~G132G112G6!S 0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC
D ,

C yxi j
gNN8V5~2G15G9G8!S v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0
D ,

C yyi j
gNN8V5~2G2 G1nG16!S 0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC
D ,

C yzi j
gNN8V5~2G132G11G6!S v7 0 2v5 v4 0 2v2 0 0

0 v3n 0 0 v6 0 vB vC

v7 0 2v5 v4 0 2v2 0 0
D ,

C zxi j
gNN8V5~G62G3G13!S v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0
D ,

C zyi j
gNN8V5~G72 G4nG14!S 0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9
D ,

C zzi j
gNN8V5~2G8G52G15!S v2 0 v4 v5 0 v7 0 0

0 v3n 0 0 v6 0 v8 v9

v2 0 v4 v5 0 v7 0 0
D . ~F5!
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