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Leading-order nuclear -y exchange force
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The leading-order isospin-violating force from simultaneauand y exchange is calculated. The charge-
symmetric, but charge-dependent, force is calculated for static nucleons and in Coulomb gauge. Infrared
divergences and other technical problems are discussed. The resulting force is roughly 3 orders of magnitude
smaller than OPEP and roughly the same size as the Breit correction to single-photon exchange. The present
calculation corresponds to a subset of one-loop diagrams in chiral perturbation theory for isospin violation in
the nucleon-nucleon force.

PACS numbds): 21.30.Fe, 11.30.Hv, 21.10.Dr, 21.45;

Isospin violation in the nuclear force is a topic of recur- nominal one-pion range. We wish to calculate the leading-
ring interest [1,2]. Charge dependence or charge-order part of these forces and simultaneously estimate the
independence breakin@1B) (differences between-p T=1  size. We will find that this part of the force is charge sym-
scattering andhn or pp scattering is large and well estab- metric, but does break charge independence.
lished. Charge-symmetry breakif@SB) (the difference be- Typical mechanisms for this type of force are shown in
tweennn andpp scattering after long-range electromagneticFig. 1. These graphs can be considered either as conventional
forces are removeds smaller and fairly well established. ~ Feynman diagrams or as time-ordered diagrams. Our rules

The presently accepted valyé&] of the nn scattering for the calculation are(1) work in the static limit for the
length is more attractive than the correspondimgquantity  nucleon(M —«, whenM is the nucleon magsand(2) work
(this was not always tryeThis difference in the short-range in the Coulomb gauge for the photon exchange. The reason
nuclear forces can be coupled with long-range electromagdfor the static limit is tractability and hindsight. In addition, it
netic forces to explain thtHe—°H mass differencé4]. Al- corresponds to the leading order for such forces in chiral
though the bulk of the 764-keV binding-energy difference isperturbation theory. We will see that the force is not large
due to the well-understoofb] Coulomb force(648 keV), and the leading order probably suffices. The tractability ar-
much of the rest is explained by the stronger (thanpp) gument is both obvious and subtle.
force[6—8]. This understanding is one of the most important The subtlety arises from ambiguities in defining nucleon
accomplishments in the few-nucleon field, where there havéields. Many years agf23] it was shown thaPS and PV
been many recent succes$@s forms of pion-nucleon coupling in chiral Lagrangians were

Charge dependence is fairly larGgefew % of the strong basically the samé@f one ignores nonlinearitigsThe (uni-
force) and also plays a role in the few-nucleon problem. Ittary) transformation that accomplishes the transmogrification
has long been known that nuclear forces fit to Thel np  has been much used in nuclear physics calculatigds25
data produce-200 keV too much binding in the triton, while and involves an unphysical chiral rotation parameienn
those fit to the(weakej pp force give~100 keV too little  addition, there is another parameterthat determines the
binding[10]. This CIB is important as we struggle to recon- quasipotentia{three-dimensionalrepresentation of the four-
cile the ~900-keV discrepancy between experiment anddimensional amplitude that defines the potential.
nonrelativistic triton calculations using the best local poten- Consistent calculations of observables must be indepen-
tial models. These “best” models are recent ongk,4] that  dent of u and v, although the explicit forms of various op-
fit all nucleon-nucleon scattering data very well aaduire  erators and wave functions will depend on the values. The
a charge-dependent force. The latter is a combination of usppropriate transformations are of orde® /M, whereV
ing the (different) physical masses for the charged and neuis OPEP. Performing the transformation on the Coulomb in-
tral pions in the one-pion exchange poten{@PEP (the teraction part of the nuclear Hamiltonian leads to new inter-
larger charged-pion mass generates a strongeorce) and  actions of order ¢V _,/M). In order to avoid treating the
less-well-understood shorter-range components. ambiguity problem, we tak®& —o and calculate only static

There are other forces of pion range, however, that aréerms. Our operators are therefore independent of those prob-
rarely considered. Indeed, there are widely varying estimatelems, although the full problem appears in next-to-leading
of their sizes, and their status, even their viability, remainsorder.
murky. These forces are thimultaneous -y exchange The choice of Coulomb gauge is highly appropriate to
forces between two nucleorjd2-18, and three-nucleons bound-state problems mediated by a potenf26]. The
[19-22. Because the photon is massless,#he force has a  dominant part of one-photon exchange is static Coulomb

0556-2813/96/5@)/588(5)/$06.00 53 588 © 1996 The American Physical Society



53 LEADING-ORDER NUCLEAR 7~y EXCHANGE FORCE 589

corresponding one where the pion and photon are inter-
changedl are merely the iteration of static Coulomb inter-
action and astatic pion exchange. Since this is already im-
plicitly contained in the Schidinger equation, we ignore it.
Figure Xb) corresponds to a static Coulomb interaction over-
lapped by a nonstatic pion exchange. The corresponding re-
FIG. 1. Sequential interactions of the OPEP and the Coulomigrded potential operator for this time ordering was devel-

potential(contained in any solution of the Schiiager equatiohis oped in Egs.(5)—(8) of Ref. [25] and can be obtained by
shown in(a). The overlapping retarded pion-Coulomb interaction is replacingH in those equations with
c

depicted in(b), while the double seagull is illustrated {n). In the

Coulomb gauge in the static limit, on{§p) and(c) contribute to the 3 « o

-y exchange force. Nucleons are shown as solid lines, pions R :l d*q [J7(a),[Vc,Iz(—a)]] )
shown as dashed lines, and photons are depicted by wavy lines. o2 (2m)3 2Ef7 '
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whereE_=(q%+m2)¥2 v is the Coulomb interaction,

interaction between two nucleons and can be immediately a oo

incorporated into the nuclear force, with the retarded trans- Ve=+ 2 - 3)
verse components treated perturbatively. This has several ad- ij
vantages. Coulomb photons in any other gauge do not propa- )
gate instantaneously and can overlap the exchanges of &nhas the value (D) for theith proton(neutron, andJZ(q)
arbitrary number of mesons, which leads to a challenginds the static operator for absorbing an incoming pion with
calculation. The second reason is that the transverse photoR¥mentumg in charge stater obtained from Eq(1),

couple to the nucleon currents, which are explicitly of order

(1/M) and by our rules can be neglected. The third reason is o . o . e x

that there are infrared divergences in Feynman gauge Jo(a)=— 'fZ (i) o(i)-qe'd, 4
[~fd3q/g®~In(q) for small momentum transferg]. These
cancel in a complete and consistent treatment, but will no
otherwise[27]. At least to ordef1/M?), there are no infrared
problems in the Coulomb gauge for our process.

Viewed as an exercise in heavy-baryon chiral perturbatio
theory (yPT), our calculation below will treat a subset of
leading-order graphs. This approd@8] (yPT) relies on an
expansion in powers of A whereA~1 GeV is the large-
mass scale of QCD. For the purposes of this and simila
calculations A subsumes heavy meson and baryon masses
well as the nucleon madd. Especially important is the ex-
pansion in powers of M. By leading order we mean order
(1/A)°. To this order only short-ranges-function) counter-
terms arise, and these can be ignored. All of the vertices we
require are contained in the lowest-order Lagrangian

\tivherefng/Z .. 0a is the axial-vector coupling constant
(1.26, andf . is the pion decay constar®2.4 Me\). The
quantitieso(i), #(i), andx; are the(Paul) spin and isospin
rz)perators and the coordinates of nucléon
The remaining static diagram that contributes is Fig),1

which is generated by the static Kroll-Ruderman interaction
i.e., the gauge term iRV coupling and the second term in

g. (1)]. This contributes an amplitude for absorbing both a
Zﬁon (with isospin componentr and momentunty) and a
photon(with momentumk). The latter couples only via the
vector potential and this leads to a seagull operator with the

_ _ S'=—ef> ofi)rh(i)e3Pei @ %, (5)
LO=fNeg- V(7 m)N—efNo- A(7X m),N |

—eNeAN+--- , (1) Note that any coupling of the vector potential from this in-
teraction to a nucleon line i®(1/M) and can be ignored.
Just as Eq(2) follows immediately from second-ordéold-
fashioned perturbation theory applied to Fig(k, the same
process applied to Fig.(d) yields

where e is the fundamental(proton charge, f is the
m-nucleon coupling constant, arahas the value 10) for
protons (neutron$. The symbolsN, , and A* refer to
nucleon, pion, and photon fields. The ellipsis refers to mul-

3 3
tipion interactions that we will not need. In addition &, SG_ _ dq d>k SI-S*
L™ (for n>0) represents higher-order {i/A) Lagrangians k4 (2m)° (2m)° (2E,)(2E,)(E,+E,)’
that we explicitly neglect. We expect these terms to generate (6)

corrections of orderrfi/A ~10-20 %}. The chiral expan-

sion in the nuclear physics case is discussed in great detail ifihe factors(2E,) and(2E,) are the wave function normal-

[29], where extensive references can also be found. ization factors for the pion and photon, respectively, while
Thus our calculational task is enormously simplified. We(E . +E,) is the (statio energy denominator. The notation

will throw away all operators and contributions that are non-S{-S “ recalls that in the Coulomb gauge only the transverse

static, and we will calculate all diagrams for which the pho-(to k, the photon directioncomponents ofS* contribute.

ton (in the Coulomb gaugetraverses from one nucleon to Substituting Eq(5) for S* and extracting the potential gives

another. There are three such processes. Figi@e(dnd a  immediately
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d3q
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wherex;;=x; —X; . The isospin factor vanishes fa® exchange and is charge symmetftiit CIB). There is no CSB contri-
bution in this order.

Expression(6) is simple in momentum space, but involves a complicated convolution in configuration space. We use the
identity [30]

1 B 2 fw dx 8
E1Eo(Es+Ey) 7 Jo (ES+AN?)(E3+A\2)’ @
which leads to
o d3q d*k ek Xig(i), - o(j)
SG_ 2 1
V3S=—2af ; T,Jf dxf @m? ) @ LD 9)
where
Tij=a(i)-7(j)— (i) 7(j). (10
The Fourier transforms are elementary. Using the definition ¢6*#—k*k?= 5*#—k*k?/k?) leads to the form
2af? i)-o(j) (= dn e VAFF Mo 1—e M
V= e 2 —2—0() atl f dx e‘“iie‘\/m—mixHJ’ —— =z, o) Vo)) Vij| ——|.
(47) Xij 0 A Xij Xij

11

Note that form factors could easily be inserted in E).to regulate the smalt;; behavior, which would lead to the Yukawa

functions in Eq.(11) being replaced by a more complicated sum of terms. Note also that the Feynman-gaugghee fiudt

term) leads to a central force, while the Coulomb-gauge corrgstcond termproduces a tensor force, as well.
Performing the tedious derivatives and evaluating the integrals leads to the final result

VSG_ ga |2 M3
2

—“ A7,

> Tito(i)- o(DI$%mx;)+S;1 2%m,xi)}, (12)

i#]

whereS;; is the usual tensor operator. In Feynman gauge we obf&’mo and

Ei(— z) e 4(1+2)

|§G<z>_2 . . (133
whereas in Coulomb gauge one has
Ei(-2) e *1+z)
SG_
I3 3 z + = (13b
and
z? e’
156=— 1+ 5 |E(—2+Ko(2)— 5 (5-2) . (130

The factor of(3) in going from(lB@ to (13b) reflects the loss of the longitudinal photon direction in Coulomb gauge. This
result is quite singulaf~1/z %) and requires regularization.
The retarded pion-exchange contribution in IEZ) can be easily evaluated to give

da
47f

AV,,RW:—CY( ) - 2 T|]{0'(|) o(j)l (m X|J)+Sijlt(m le)} (14)

w

where

1
62 [3Ko(2)—Ky(2)] (15a

R _ 1 " 2 ' _
|c(Z)—§ Ko(z)+EK0(z) =

and
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1 Aage=—-0.35 fm, Aag=+0.18 fm,
=§K2(z). (15b

R 1 " 1 ’
1£(2)= 37 Ko(2)— 7 Ko(2)
AaAmﬂz +2.62 fm,

The factor of 12 in front of the square brackets arises from where the potential due to the pion mass differeace, is

the Coulomb potential, while the modified Bessel functions : i

arise from thepintegral in Eq2). This completes the deriva- tEat of Re];':[%z]' The tﬁtal effect on _thledsc_a ttzna g lengths of

tion of the staticw-vy exchange potential in the Coulomb the static -y exchange potential derived here,

gauge. Note that both forces are two body in nature. To the Aa, ,=~-0.18 fm,

best of our knowledge, these explicit results are new.
Ignoring the dimensionless radial factors in Egs.

(12 and (14), the potentials have a “size” of

a(gpldmt )?m3=(am,)(gam, /4=t )2 This result could

have been anticipated using the fact that a potential carri

is largely unchanged by changing to the Reid hard core po-
tential or by regularizing the singularities at smallby
Gaussian cutoffs of the pion exchange and by the expression
eFC of Ref. [4], which represents the the finite size of the
mucleon charge distribution. That is, a variety of permuta-

with it a factor Of(l./ 4m) (which allowede to b‘? converted tions of short-range cutoffs and model charge-independent
to @), and a loop integralsuch as those in Figs.(d) and interactions yield a range oAa, ~-0.15-0.03 fm, al-

1(c)] produces a factor offL/4m)>. Numerically, the size fac- though the individual terma age and Aag are more sensi-
tor is 23 keV. If one also renders the OPEP into the productiye to these short-range effects. In any event, the total static
of a dimensionful parametergfm,/2 f ;)“m./4m, and a di-  c|B 7.y exchange potential makes a very small contribution
mensionless radial factor, the ratio of dimensionful paramyq, the empiricalAa=|a,,|—|a,,|, which is about+5 fm.
eters for the two potentials is just/m, a not unexpected Tpe leading-order CSBpterms from-y exchange are ex-
result from an electromagnetic loop integral. We can alscbected to be~(m,/M) smaller than the results above, and

compare the size of the-y force to the Breit(relativistic- s is the order where contributions to thp interaction and
correction) terms in one-photon exchanf#31]. These have {4 three-nucleon forced9—24 will arise.

a size~(am3/M?), a factor of n,/M)? times the Coulomb  Finally, we remark that the quantitative role of isobars in
potential, implying a ratio of strengths(gaM/4mf)"~1.  this process must be clarified. Although tteingle isobar

We expect[1,32] a dominant(or extremely important  contributions can be expected to vanish in the staticleon
contribution to CIB to be given by the pion-mass differencejimit (the isobar excitation is predominantly magnetic and
Am_ in the OPEP. This scales agim./2 f)"(Am./4m),  coyples to a nucleon through the vector potentigheir
and the m-y force is a fraction of this force, gmg| excitation energy nevertheless suggests an important
am,/wAm,~1/15, which we characterize as small, but notyje [15 17, Processes where the energy denominator that
entwely negligible. Ex?hcn calcula.tlon of the effec.t of these characterizegvirtual) A propagation in a nucleus is small
potentials on the °S, scattering length difference \oyig compete very favorably with the processes that we
Aa=|a,p| —|ay,| is consistent with this dimensional argu- haye calculated herein. Conversely, those with a large de-
ment. The value oda from each CIB potential was obtained nominator would only be corrections. Recent work on isobar
in two ways: (i) Add AV=V,,—V,, from Egs.(12) and  coniriputions to binding energid85] and meson-exchange
(14) to a model for the charge-independent interaction angrrents[36] suggests that the “effective” energy needed to
interpret the change in the scattering length asAlaede-  eycite the isobar in those cases is at least twice the nominal

sired, or(ii) use the familiar per_turbative formul@3] that 1,555 difference and that the isobars may therefore play a
has been shown to be essentially exg@4]. The second mingr role. Whether this speculation is valid fary ex-
method isolates an integral over the dimensionless radial faGhange should be studied in detalil.

tors in Egs.(12) and (14), closer to the spirit of the dimen-

sional estimates above, and agrees quite well numerically The work of J. L. Friar was performed under the auspices
with the first method. Because we need only a rough estief the U.S. Department of Energy, while that of S. A. Coon
mate, we choose the Reid soft core potential as the dominamtas supported in part by NSF Grant No. PHY-9408137. One
charge-independent interaction. Our resufigithout any  of us would(J.L.F) like to thank T. Goldman for an enlight-

regularization are ening tutorial on infrared divergences.
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