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The hadronization process for quarks combining into two mesons,qq̄→MM 8 at temperatureT is described
within the SU~3! Nambu–Jona-Lasinio model with finite current quark masses. Invariant matrix elem
cross sections, and transition rates are calculated to leading order in a 1/Nc expansion. Four independen
classes,ud̄, us̄, uū, andss̄→hadrons are analyzed and the yield is found to be dominated by pion produc
Threshold behavior is determined by the exothermic or endothermic nature of the processes constitut
hadronization class. A strong suppression of transition rates is found at the pionic Mott tempe
TMp5212 MeV, at which the pion becomes a resonant state. The mean time for hadronization is calcula
be 2–4 fm/c near the Mott temperature. The calculation of strangeness changing processes indicat
hadronization accounts for a 1% increase in the absolute value of the kaon to pion ratio atT5150 MeV.

PACS number~s!: 24.85.1p, 11.30.Rd, 12.39.Fe, 13.60.Le
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I. INTRODUCTION

One of the current outstanding problems facing nucle
and particle theoreticians today lies in understanding
phase transition from a constituent quark and gluonic ma
to that of observed hadronic matter. Since it is expected fi
that such a deconfined state of quarks and gluons exists,
second that it may be observed via Pb1Pb and other heavy
ion collisions already and also to be undertaken at CERN,
adequate description of the hadronization process that le
one from the quark and gluon degrees of freedom inheren
QCD to the observed hadron spectrum is really required. T
present state of the art~for an overview over the field see
Refs.@1–3#! is characterized either by phenomenological a
proaches for the parton to hadron transition@4,5# or com-
puter codes based on string phenomenology@6#.

In this paper, we place our emphasis on describing
hadronization process of quarks and antiquarks into two m
sons, within a microscopic, field theoretical, and nonpert
bative framework, which is carried through at finite temper
tures. In itself this is a demanding project that cannot yet
performed directly starting from the QCD Lagrangian, a
thus the price that we have to pay is in making a choice o
modelLagrangian. To this end, we invoke the Nambu–Jon
Lasinio~NJL! model@7–9# in its SUL(3)3 SUR(3) version,
which has been constructed to display the same internal s
metries as QCD itself. This model is known to provide
good description of the static properties pertaining to bo
the nonstrange and strange meson sector at zero tempera
and it allows for a transparent description at finite tempe
tures, explicitly displaying the chiral symmetry restoratio
phase transition at a critical temperature of about 200 M
in the chiral limit. Although we are aware of the deficiencie
of the model — lack of confinement as well as nonrenorm
izability in a strict field theoretic sense — it nevertheless
possible to construct a comprehensive physical picture fr
the calculations performed to date both atT50 and at finite
temperatures and densities. For definiteness, it is usefu
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argue from the chiral limit. Assuming that the chiral an
deconfinement phase transitions occur at the same temp
ture — an assumption supported by lattice gauge simulati
@10# — one can build a heuristic picture on the basis of t
NJL model. AtT>Tc , hadronic states are unstable, and t
system is dominated by interacting quarks with constitue
massm50. For T<Tc , where chiral symmetry is broken
mÞ0,mp50,ms52m, and aplasmaof quarks and mesons
is formed. While the appearance of quarks for temperatu
T<Tc is an artifact of the model due to the absence of co
finement, the situation forT>Tc is realistic, except for the
lack of explicit gluonic degrees of freedom. As such, how
ever, the process of hadronization may be reliable around
critical temperature, where the shortcomings of the mo
may not be too severe. These arguments can be extende
the physical case of nonzero current quark masses, which
in fact study here.

The purpose of this paper is thus to investigate all ha
ronization processes of the typeqq̄→MM 8, whereM rep-
resents a meson in the nonstrange or strange sector, and
q5u,d,s. In particular, we evaluate scattering amplitude
and cross sections, and study the hadronization rates fo
these processes, which in turn are necessary elements
constructing a dynamical nonequilibrium transport theory f
this model Lagrangian@11#. This should aid us in under-
standing the role that chiral symmetry plays in dynamic
processes. Our approach follows in part, and develops furt
the calculation performed in SU~2! in the chiral limit de-
scribed in Ref.@12#.

In our study of the SU~3! sector, we classify hadronization
processes according to the incoming quark and antiqua
finding a total of four independent classes under the ad
tional assumption of SU~2! isospin symmetry, where
mu5md . We thus consider the processes withud̄, us̄, uū,
andss̄as incoming pairs, which we also list. The mesonsM
andM 8 considered in the process arep, K, andh, which
are the stable ones with respect to the strong interact
Feynman diagrams for the scattering amplitudes pertain
to these reactions have a generic form which describes
qq̄→MM 8. We select the diagrams according to an expa
410 © 1996 The American Physical Society
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53 411HADRONIZATION IN THE SU~3! NAMBU–JONA-LASINIO MODEL
sion in the inverse number of colors in the model, 1/Nc ,
which is commensurate with the Hartree approximation f
the self–energy and the random phase approximation for
scattering amplitude@13–15#. The variations in applying
each of the Feynman diagrams to the different scatter
channels arise from differing exchanged mesons, qua
masses, and flavor factors. We choose to illustrate our cal
lation by analytically constructing the formulas for the cros
sections of the processesud̄→p1p0, us̄→p1K0, and
uū→p1p2. The first of these explicitly includes au chan-
nel exchange, while the second has unequal masses fo
incoming and outgoing particles. The final process illustrat
the role of the mixing of the scalar mesons in the SU~3!
Lagrangian due to the ’t Hooft term and the differing up
down, and strange quark masses.

All quantities are calculated as a function of temperatu
and baryonic chemical potential. It turns out that a cardin
role is played by the Mott temperaturesTMp , TMs , TMK ,
TMh , which are defined to be the temperatures at which t
masses of the respective mesonsp, s, K, h are equal to the
sum of the masses of their constituents. Note that these f
mesons are bound states atT50. At the Mott temperatures,
the respective meson-quark couplings go to zero, and this
turn influences the transition amplitudes and transition ra
in that they are suppressed. In particular the pionic Mo
temperature plays the dominant role, driving the total tran
tion rates~almost! to zero at this point. We comment that th
use of a finite temperature explicitly breaks Lorentz invar
ance in our calculation. Quantities are calculated with resp
to the rest frame of the medium.

In order to make a connection with transport theory, w
calculate transition rates, which are constructed by multip
ing the total cross section of a particular process with t
relative velocity. Our numerical results indicate that in a pe
channel calculation, thet and u channel exchanges of any
one process dominate over thes channel exchange, excep
perhaps in an energy range where a resonance is present.
t andu channel graphs, if present in a process, give canc
ing contributions at the threshold when the flavor factors a
equal. In dealing with the four independent hadronizatio
classes, we are directly able to identify the leading contrib
tions at all energies. These, with the exception of thess̄
hadronization class, are dominated by pion production. T
ss̄processes on the other hand are found to be dominated
kaon production. In all these calculations we can confir
that theexothermicreactions~i.e., those reactions in which
energy is released! are always dominant over theendother-
mic ones~i.e., those reactions in which energy is absorbed!,
as far as they are present.

We also examine the energy-averaged transition rat
These quantities, multiplied by the density of incomin
quarks, can be interpreted as the inverse of the hadroniza
time. We find this to be of the order oft5224 fm/c in the
temperature range 160–200 MeV, rising rapidly as o
moves towards the pion Mott temperatureTMp , or to lower
temperatures. This indicates that hadronization occurs pr
erentially over this given range of temperatures within o
model.

Finally we have also examined processes that change
number ofs plus s̄ quarks, like, e.g.,ud̄→K1K0. We find
that the hadronization process generates an enhanceme
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1% in the absolute value of the ratio of kaons to pions
T5150 MeV. This is to be compared with the experiment
value of (15.460.8)% for theK/p ratio found forS1S
collisions, which itself constitutes an enhancement of 9
over theN1N value of (6.561.1)% @16#.

In order to facilitate the technical evaluation, we decom
pose all quantities into fundamental integrals containing o
two, or three denominators, and which arise for instan
from the self-energy, polarization, and the three-meson v
tex. In principle, these functions can be calculated for ar
trary values of the differing quark masses and associa
differing chemical potentials. In this way, general expre
sions can be constructed if one utilizes the modular form
For actual calculational purposes, however, we will set
chemical potentials to zero, and study temperature and
ergy dependences here, giving some relevant analytical
sults for these integrals in an appendix.

This paper is structured as follows: In Sec. II, we discu
the general SUL(3)3 SUR(3) Lagrangian that we use, an
give the relevant functions associated with the mass sp
trum evaluation that we require. In particular theh-h8 mix-
ing is detailed, and the scalar resonance sector, which p
the role of intermediate states in the hadronization. In S
III, the possible hadronization processes are classified,
the explicit examples ud̄→p1p0, us̄→p1K0, and
uū→p1p2 are discussed. Numerical results for the tran
tion rates for each hadronization class are given in Sec.
Strangeness-changing processes are also analyzed here
summarize and conclude in Sec. V.

II. PROPERTIES OF MESONS IN SU„3…

A. General considerations

This section serves to introduce our Lagrange density a
notation, commencing with the three-flavor Lagrangian

L5(
f51

3

c̄ f~ i ]”2m0 f !c f1G(
a50

8

@~ c̄lac!21~ c̄ ig5l
ac!2#

2K@detc̄~11g5!c1detc̄~12g5!c#, ~1!

whereG and K are dimensionful coupling strengths. Th
term containingG displays U~3!3 U~3! symmetry, while the
determinantal term controlled byK breaks this down to
SU~3!3 SU~3!. Flavor and color indices have been su
pressed for convenience in the interaction terms. Howev
the flavor indices have beenexplicitly included in the first
term, since the current quark massesm0 f , which themselves
explicitly break the SU~3!3 SU~3! symmetry, are regarded
as distinct. For general reviews on the three-flavor version
the NJL model, the reader is referred to Refs.@7–9#.

It is useful to convert the determinantal term in Eq.~1!
into an effective two-body term in the mean field approxim
tion. This follows on contracting out one pair of quark an
antiquark fields and dividing this result by 2. One may r
combine the result with the existing two-body term that
controlled byG to find the effective Lagrangian to be
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L5(
f51

3

c̄ f~ i ]”2m0 f !c f1 (
a50

8

@Ka
2~ c̄lac!21Ka

1~ c̄ ig5l
ac!2#1K30

2 ~ c̄l3c!~c̄l0c!1K30
1 ~ c̄ ig5l

3c!~c̄ ig5l
0c!

1K03
2 ~ c̄l0c!~c̄l3c!1K03

1 ~ c̄ ig5l
0c!~c̄ ig5l

3c!1K80
2 ~ c̄l8c!~c̄l0c!1K80

1 ~ c̄ ig5l
8c!~c̄ ig5l

0c!

1K08
2 ~ c̄l0c!~c̄l8c!1K08

1 ~ c̄ ig5l
0c!~c̄ ig5l

8c!1K83
2 ~ c̄l8c!~c̄l3c!1K83

1 ~ c̄ ig5l
8c!~c̄ ig5l

3c!

1K38
2 ~ c̄l3c!~c̄l8c!1K38

1 ~ c̄ ig5l
3c!~c̄ ig5l

8c!, ~2!
s

-

o

with the effective coupling constants

K0
65G7

1

3
~G u1G d1G s!,

K1
65K2

65K3
65G6

1

2
G s,

K4
65K5

65G6
1

2
G d,

K6
65K7

65G6
1

2
G u,

~3!

K8
65G6

1

6
~2G u12G d2G s!,

K03
6 5K30

6 57
1

2A6
~G u2G d!,

K08
6 5K80

6 56
A2
12

~G u1G d22G s!,

K38
6 5K83

6 56
1

2A3
~G u2G d!

expressed in terms ofG and

G f5NcKi trgS
f~x,x!. ~4!

In Eq. ~4!, trg refers to the spinor trace alone, whileS
f is the

diagonal quark propagator for a given flavorf , which, in the
imaginary time formalism for finite temperatures, can
written as

Sf~xW2xW8,t2t8!5
i

b(
n

e2 ivn~t2t8!

3E d3p

~2p!3
eip

W ~xW2xW8!

g0~ ivn1m f !2gW pW 2mf

.

~5!

Here the Matsubara frequencies are fermion
vn5(2n11)p/b, with n50,61,62,63, . . . , andm f is the
chemical potential for a quark of flavorf .
be

ic,

As can be seen from Eqs.~2!, ~3!, the nondiagonal cou-
pling constantsK03

1 , K08
1 , andK38

1 give rise to thep0-h-
h8 mixing. If one assumes SU~2! isospin symmetry, i.e.,
mu5md , thenK03

1 andK38
1 vanish identically, with the con-

sequence that thep0 decouples from theh andh8. We make
this assumption in what follows, using the generic labelq for
u, d, and always writings explicitly.

Writing

G f52
NcK

4p2mfA~mf ,m f !, ~6!

where

A~mf ,m f !5
16p2

b (
n

eivnhE
upW u,L

d3p

~2p!3
1

~ ivn1m f !
22Ef

2

~7!

~with Ef
25p21mf

2) denotes the first loop integral~cf. Ap-
pendix A!, one can easily derive the coupled gap equation

mu5m0u2
GNc

p2 muA~mu ,mu!

1
KNc

2

8p4 mdmsA~md ,md!A~ms ,ms!, ~8a!

md5m0d2
GNc

p2 mdA~md ,md!

1
KNc

2

8p4 msmuA~ms ,ms!A~mu ,mu!, ~8b!

ms5m0s2
GNc

p2 msA~ms ,ms!

1
KNc

2

8p4 mumdA~mu ,mu!A~md ,md!, ~8c!

from the mean field or Hartree approximation to the self
energy, and which determine the physical quark masses.

B. Pions and kaons

Imposing the degeneracy conditionmu5md , the determi-
nation of both the pion and kaon masses follows similarly t
the standard approach taken in the two-flavor model@8#. This
comes about, since the off-diagonal coupling strengthsK03

6
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andK38
6 are identically zero, and thep0 is decoupled from

theh andh8. In this limit, thep6, p0 become degenerate
Concomitantly,K4

65K6
6 , which means physically that neu

tral and charged kaons have the same mass.
The quark-quark scattering amplitude is calculated in t

random phase approximation~RPA; see Fig. 1!, which yields
the result

Mp~k0 ,kW !5
2K1

1

124K1
1Pqq̄

P ~k0 ,kW !
~9!

for the pion scattering amplitude and

FIG. 1. Theqq̄ scattering amplitude in the random phase a
proximation.
.
-

he
MK~k0 ,kW !5

2K4
1

124K4
1Pqs̄

P ~k0 ,kW !
~10!

for the kaon one. HerePP(k0 ,kW ) represents the irreducible
pseudoscalar polarization~see Fig. 2!, which, in the finite
temperature Matsubara formalism, depends onk0 and kW
separately, because the medium breaks Lorentz invaria
For arbitrary flavors, the irreducible polarization is given b
the analytic continuation of the imaginary time form

p-

FIG. 2. Feynman diagram for the irreducible pseudoscalar
larization function.
the

al
2 iP f1f2
P ~ inm ,kW !52Nc

i

b (
n
E d3p

~2p!3
trg@ iSf1~ ivn ,pW !ig5iS

f2~ ivn2 inm ,pW 2kW !ig5#

54iNc

1

b (
n
E d3p

~2p!3
~ ivn1m1!~ ivn2 inm1m2!2pW ~pW 2kW !2m1m2

@~ ivn1m1!
22E1

2#@~ ivn2 inm1m2!
22E2

2#
, ~11!

where E15ApW 21m1
2, E25A(pW 2kW )22m2

2, and the mesonic Matsubara frequenciesnm52mp/b are even,
m50,61,62, . . . . Note that the irreducible polarization in this definition does not contain any flavor factors from
Gell-Mannl matrices. These factors are incorporated explicitly in Eqs.~9!, ~10! as multiplicative cofactors of the coupling and
polarization.

We may decomposePP(k0 ,kW ) in terms of the functionA(m,m) already defined in Eq.~7! as

PP~k0 ,kW !52
Nc

8p2 $A~m1 ,m1!1A~m2 ,m2!1@~m12m2!
22~k01m12m2!

21kW2#B0~kW ,m1 ,m1 ,m2 ,m2 ,k0!%, ~12!

introducing the second loop integral~cf. Appendix A!

B0~kW ,m1 ,m1 ,m2 ,m2 ,inm!5
16p2

b (
n

eivnhE
upW u,L

d3p

~2p!3
1

~ ivn1m1!
22E1

2

1

~ ivn2 inm1m2!
22E2

2 . ~13!

@Note that in Eq.~12!, an analytic continuation has been performed.# We comment that, due to rotational invariance,B0 does
not fully depend onkW , but only onukW u.

In terms of the modular integralsA andB0 , polarizations required can then be explicitly given for arbitrary chemic
potential and temperature as

Pqq̄
P ~k0 ,kW !52

Nc

8p2 @2A~mq ,mq!2k2B0~kW ,mq ,mq ,mq ,mq ,k0!#, ~14!

Pss̄
P ~k0 ,kW !52

Nc

8p2 @2A~ms ,ms!2k2B0~kW ,ms ,ms ,ms ,ms ,k0!#, ~15!

Pqs̄
P ~k0 ,kW !52

Nc

8p2 $A~mq ,mq!1A~ms ,ms!1@~mq2ms!
22~k01mq2ms!

21kW2#B0~kW ,mq ,mq ,ms ,ms ,k0!%. ~16!
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The pion and kaon masses are determined according to
dispersion relations@8#

124K1
1Pqq̄

P ~mp ,0W !50, ~17!

124K4
1Pqs̄

P ~mK ,0W !50, ~18!

while effective couplings can be identified from the pole a
proximation forms

Mp~k0 ,kW !'
2gpqq̄

2

k22mp
2 , ~19!

MK~k0 ,kW !'
2gKqs̄

2

k22mK
2 ~20!

to be

gpqq̄
22

5
1

mp

]Pqq̄
P ~k0 ,0W !

]k0
U
k05mp

, ~21!

gKqs̄
22

5
1

mK

]Pqs̄
P ~k0 ,0W !

]k0
U
k05mK

. ~22!

At low temperatures, Eqs.~17!, ~18! have bound state solu-
tions with mp,2mq andmK,mq1ms . In this case, Eqs.
~17!, ~18! are real equations. At higher temperatures, the p
larization functions become complex functions with comple
solutions for the meson masses, which we may write as@17#

mp→mp2
i

2
Gp , ~23!

mK→mK2
i

2
GK . ~24!

Denoting the Mott transition temperaturesTMp andTMK as
the temperatures at whichmp52mq andmK5mq1ms , re-
spectively, one thus has the physical circumstance tha
temperatures larger thanTMp or TMK , respectively, pions or
kaons become resonances with finite widths due to the av
able decay channels into two quarks. From Eqs.~21!, ~22!, it
follows that the quark-meson couplings also become co
plex in this case.

C. h and h8

Because of the mixing terms occurring in Eq.~2!, the
calculation of theh andh8 masses and couplings is some
what more involved. The scattering amplitude is nondiagon
in this sector with entriesM00, M88, andM085M80. Within
the RPA, which is still expressed diagrammatically in Fig.
it can be calculated in matrix form to be@8#

M52K1~122PPK1!21, ~25!

where nowK1 andPP are the 232 matrices

K15S K0
1 K08

1

K80
1 K8

1 D , ~26!
the

p-

o-
x

t at

ail-

m-

-
al

1,

PP5S P0
P P08

P

P80
P P8

P D . ~27!

TheKi
1 on the right hand side of Eq.~26! are as defined in

Eqs. ~3!, while the pseudoscalar polarization functions a
the linear combinations

P0
P5

2

3
~2Pqq̄

P
1Pss̄

P !, ~28a!

P8
P5

2

3
~Pqq̄

P
12Pss̄

P !, ~28b!

P08
P 5P80

P 5
2A2
3

~Pqq̄
P

2Pss̄
P ! ~28c!

of the functionsPqq̄
P andPss̄

P , which can be evaluated via
Eqs. ~14!, ~15!. In Eqs.~25!–~28!, we have dropped the ar
gument (k0 ,kW ) for convenience. A determination of th
masses and coupling strengths can be made on forming
inverse of the matrixM . We abbreviate this as

M215
1

2 detK1 SA B

B C
D , ~29!

with

A5K8
122P0

P detK1, ~30a!

2B5K08
1 12P08

P detK1, ~30b!

C5K0
122P8

P detK1. ~30c!

Following @9#, we introduce the diagonal formsMh and
Mh8 via

M215
1

4 detK1 S c 2s

s c D SMh
21 0

0 Mh8
21D S c s

2s cD ,
~31!

where it is a simple matter to verify that

Mh
215A1C2A~A2C !214B 2, ~32a!

Mh8
21

5A1C1A~A2C !214B 2, ~32b!

c21s251, ~33a!

c22s25
C2A

A~A2C !214B 2
, ~33b!

2cs5
22B

A~A2C !214B 2
. ~33c!
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The masses of theh andh8 mesons can now be determine
via the condition

Mh
21~mh ,0W !50, ~34!

Mh8
21

~mh8,0
W !50. ~35!

For meson masses that lie below the quark-antiquark m
threshold, these equations are again real. In practice, ac
numerical determinations place theh mass below this
threshold atT50, and at a specific Mott transition tempera
tureTMh , this becomes a resonance, in much the same w
as occurs for the pions and kaons. Theh8 meson, however, is
distinguished by the fact that italwayslies above the quark-
antiquark threshold, and it therefore is a resonant state a
temperatures. Since this is an artifact due to the lack of c
finement, we regard this feature with some skepticism. W
nevertheless calculate its contribution to the relevant h
ronization cross sections and transition rates, and find tha
is negligible, so that it can be safely discarded.

To calculate the coupling constants from Eq.~29!, we
expressM directly as

M5
2

D
S C 2B

2B A
D , ~36!

with

D5~AC2B 2!/detK15122 tr~PK1!14 detP detK1.
~37!

At (k0 ,kW )5(mh ,0W ), D50, and in the usual fashion, we
make a pole approximation giving the form

M5
4mh

]D

]k0
U
k05mh

1

k22mh
2 S C 2B

2B A
D . ~38!

From this, one obtains

Mab52
gahgbh

k22mh
2 , ~39!

with

g0h
2 52

4mhC

]D

]k0
U
k05mh

, ~40!

g8h
2 52

4mhA

]D

]k0
U
k05mh

, ~41!

g0hg8h5
4mhB

]D

]k0
U
k05mh

. ~42!

From these coupling constants we may calculate@9#
d

ass
tual

-
ay

t all
on-
e

ad-
t it

ghqq̄5A2

3
g0h1

1

A3
g8h , ~43!

ghss̄5A2

3
g0h2

2

A3
g8h . ~44!

The coupling strengthsgh8qq̄ andgh8ss̄may be evaluated in
the same fashion. The set of couplingsghqq̄ , ghss̄ and
gh8qq̄, gh8ss̄enter directly into the cross section calculation

D. Scalar resonances

Since scalar mesons may occur as possible intermed
resonance structures in the hadronization cross sections,
are also interested in obtaining their masses. In contrast
the two-flavor model, in which only thes is present, we deal
here with nine scalar resonances: threesp’s, which are the
scalar partners of the pions, foursK’s, being the scalar part-
ners of the kaons, and thes ands8, which are associated
similarly with theh andh8. As occurs in the pseudoscala
case, formuÞmdÞms we have mixing between thes, s8,
and the neutralsp , the latter decoupling from the former if
SU~2! isospin degeneracymu5md is imposed.

The same techniques applied in Secs. II B and II C c
now be directly applied to the scalar resonances, with tw
changes:~i! One has to replace the coupling constantsKi

1 of
the previous section byKi

2 given in Eq. ~3! and ~ii ! the
pseudoscalar polarizations are replaced by their scalar co
terparts:

Pqq̄
S ~k0 ,kW !52

Nc

8p2 @2A~mq ,mq!1~4mq
22k2!

3B0~kW ,mq ,mq ,mq ,mq ,k0!#, ~45!

Pss̄
S ~k0 ,kW !52

Nc

8p2 @2A~ms ,ms!1~4ms
22k2!

3B0~kW ,ms ,ms ,ms ,ms ,k0!#, ~46!

Pqs̄
S ~k0 ,kW !52

Nc

8p2 $A~mq ,mq!1A~ms ,ms!

1@~mq1ms!
22~k01mq2ms!

21kW2#

3B0~kW ,mq ,mq ,ms ,ms ,k0!%, ~47!

which are derived from the same graph as in Fig. 2, droppi
the ig5 factors at the vertices.

E. Numerical results

For our numerical calculations, we employ the paramet
set m0q55.5 MeV, m0s5140.7 MeV, GL251.835,
KL5512.36, andL5602.3 MeV, which has been deter-
mined on fixing the conditions mp5135.0 MeV,
mK5497.7 MeV, mh85957.8 MeV, andfp592.4 MeV,
while m0q is fixed at 5.5 MeV. The reason why we fitted th
mass of theh8 instead of theh has a purely technical origin.
This parameter set gives anh mass ofmh5514.8 MeV,
which compares reasonably well with the physical valu
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mh5548.8 MeV. Although we have developed the gene
formalism to include the case of finite chemical potentia
we confine ourselves tomq5ms50 in what follows.

Figure 3 shows the temperature dependence of the c
stituent quark masses. AtT50, we findmq5367.7 MeV
andms5549.5 MeV. At temperatures around 200 MeV th
mass of the light quarks drops to the current quark ma
indicating a washed-out crossover from the chirally brok
to approximately chirally symmetric phase. The stran
quark mass starts to decrease significantly in this tempera
range, but even atT5300 MeV it is still a factor of 2 away
from the strange current quark mass.

Figure 4 shows the temperature dependence of the ps
doscalar meson masses atm50. For comparison, the curves
of 2mq andmq1ms are also indicated. At low temperatures
the meson masses are approximately constant. The cros
of thep andh lines with the 2mq line indicates the respec-
tive Mott transition temperatures for these particles,TMp and
TMh . One observes thatTMh,TMp , and the absolute values
areTMh5180 MeV andTMp5212 MeV. For temperatures
higher thanTMp , TMh , respectively, thep andh become
resonances and their masses increase. Similarly a Mott t
sition temperatureTMK for the kaon modes can be defined a
the point wheremK meetsmq1ms . This is also indicated in
the figure. One can also see from this plot thatTMp and
TMK are approximately equal, withTMK5210 MeV.

FIG. 3. Temperature dependence of the constituent qu
masses. The solid line refers to the light quarks up and down,
dashed line to the strange quark.

FIG. 4. Temperature dependence of the pseudoscalar me
masses, as well as that of 2mq andmq1ms . Respective Mott tem-
peratures are indicated by the solid points.
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Figure 5 shows the absolute values of the pion and ka
coupling constants. A striking behavior is observed at
Mott temperature. There the polarization displays a kink s
gularity, which can also be seen in the meson masses. T
nically this results in the coupling strengths approaching z
for T→TM from below. This behavior differs markedly from
the behavior of the couplings when evaluated in the ch
limit. In that case, the coupling strength isalwaysdifferent
from zero as one approaches the transition temperature f
below. Note that this strong deviation from the chiral lim
behavior may have extreme consequences for results tha
pend strongly on this function, such as the cross sectio
Since we regard the physical situation as being nonchiral,
investigate this situation only, and draw conclusions acco
ingly. The h-quark couplings have not been explicitl
shown; they display a qualitatively similar behavior.

The numerical calculations of the scalar mass spectr
are shown in Fig. 6. AtT50, we findms5728.9 MeV,
ms851198.3 MeV, msp

5880.2 MeV, and msK

51050.5 MeV. For comparison, the double constitue
quark mass is also shown in the figure. All these mesons
unstable over the entire temperature range, except for
s, for which the mixing results in a mass slightly belo
2mq at T50. Although the difference is small compared
the standard two-flavor model, it has the qualitative effect
making thes a stable particle for temperatures up to its Mo
temperatureTMs5165 MeV. As in the two-flavor model, we

ark
the

son

FIG. 5. Temperature dependence of the pion~solid line! and
kaon ~dashed line! coupling strengths.

FIG. 6. Temperature dependence of the scalar meson masse
2mq .
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53 417HADRONIZATION IN THE SU~3! NAMBU–JONA-LASINIO MODEL
obtainms'mp above the pion Mott temperature, as is e
pected from symmetry requirements.

The results presented in this section compare well w
those of Ref.@9#.

III. HADRONIZATION CROSS SECTIONS

A. Classification of hadronization processes

Since a large number of hadronization processes is av
able to the light and strange sector quarks, it is useful
introduce a classification scheme to simplify the task
bookkeeping. The cross sections are classified according
the incoming quarks and include all exit channels@12#. Since
we work in the approximationmu5md , we have isospin
symmetry and charge conjugation, leading to the relation

sud̄5sdū , ~48a!

sus̄5sds̄5ssū5ssd̄ , ~48b!

suū5sdd̄ , ~48c!

using an obvious notation. Together withsss̄, we thus have
four independent classes of hadronization cross sectio
sud̄ , sus̄ , suū , andsss̄. For these four classes, we dete
mine the hadronization processes that are not forbidden
charge, strangeness, or isospin conservation. These cons
tion laws lead to the processes that are listed in Table I.

For the outgoing channels in Table I, further symmet
relations hold:

sus̄→p1K052sus̄→p0K1, ~49a!

sud̄→p1h52suū→p0h , ~49b!

sud̄→p1h852suū→p0h8, ~49c!

sss̄→K1K25sss̄→K0K0, ~49d!

sss̄→p1p252sss̄→p0p0, ~49e!

as a consequence of flavor algebra. In total, there are
independent cross sections that we calculate.

TABLE I. The four independent incomingqq̄ states and their
associated outgoing two meson states.

Incoming ud̄ us̄ uū ss̄

Outgoing p1p0 p1K0 p1p2 p1p2

K1K0 p0K1 p0p0 p0p0

p1h hK1 K1K2 K1K2

p1h8 h8K1 K0K0 K0K0

p0h hh8
p0h8 hh
hh8 h8h8
hh

h8h8
x-

ith
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to
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s
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B. Feynman graphs

The Feynman graphs that we consider have the gene
forms shown in Fig. 7. This choice of diagrams is in keepin
with the evaluation of the Hartree diagram to determine th
gap equation and the random phase approximation for t
polarization. Together this selection constitutes a consiste
expansion in the inverse number of colors, 1/Nc @13–15#. We
stress that this is not an expansion in the coupling streng
but is rather a nonperturbative expansion. Note that the c
culation of the transition amplitudes is complicated with re
spect to the SU~2! isospin-symmetric case by the fact tha
here each fermion line carries a flavor-dependent mass, wh
the meson lines in turn carry differing masses also. We ther
fore attempt to retain as general a formalism as possible
what follows for the transition amplitudes and we specify th
parameters later.

1. s channel

The s channel exchange diagrams have the form

2 iMs5 v̄~p2!u~p1!dc1c2f siD~p11p2!

3G~p11p2 ;p3!ig1ig2 , ~50!

where g1 , g2 are meson-quark coupling strengths for th
outgoing mesons andf s is a flavor factor. The momenta of
the incoming particles arep1 andp2 . For the outgoing par-
ticles, we assign momentap3 andp4 . D stands for the scat-
tering amplitude of the virtual scalar meson. It can eithe
take the form appropriate for a scalar meson that correspon

FIG. 8. Three-meson vertexG( inm ,kW ; ia l ,pW ).

FIG. 7. Generic form of Feynman graphs for the hadronizatio
amplitudes to leading order in 1/Nc . Quarks are denoted by single
lines, mesons by double ones. The three diagrams represents chan-
nel, t channel, andu channel exchanges, respectively.
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to Eqs.~9!, ~10!, if the incoming quarks have different flavor
or it can be constructed as the sum over mixing terms
cording to Eq.~25!, in all cases withKi

1 replaced byKi
2 ,
,
ac-
and PP by PS. The symbolG describes the three-meson
vertex contribution to the diagram. Its general form in th
imaginary time formalism is~cf. Fig. 8!
d of the

entary
G~ inm ,kW ; ia l ,pW !52Nc

i

b (
n
E d3q

~2p!3
trg@ iSf1~ ivn ,qW !ig5iS

f2~ ivn2 ia l ,qW 2pW !ig5iS
f3~ ivn2 inm ,qW 2kW !#, ~51!

where (inm ,kW ) is the four-momentum of the incoming scalar meson and (ia l ,pW ) the four-momentum of one of the outgoing
mesons. It is once again understood that the complex meson frequencies are to be analytically continued at the en
calculation. Taking the spinor trace in Eq.~51! leads to the form

G~ inm ,kW ; ia l ,pW !5
4Nc

b (
n
E d3q

~2p!3
A2B

@~ ivn1m1!
22E1

2#@~ ivn2 ia l1m2!
22E2

2#@~ ivn2 inm1m3!
22E3

2#
, ~52!

with

A5m3qW ~qW 2pW !2m2qW ~qW 2kW !1m1~qW 2pW !~qW 2kW !1m1m2m3 , ~53!

B5m3~ ivn1m1!~ ivn2 ia l1m2!2m2~ ivn1m1!~ ivn2 inm1m3!1m1~ ivn2 ia l1m2!~ ivn2 inm1m3!, ~54!

and for which the abbreviationsE15AqW 21m1
2, E25A(qW 2pW )21m2

2, andE35A(qW 2kW )21m3
2 have been introduced.

As was done in the case of the polarization, it is useful to make a decomposition of this function in terms of elem
integrals

G~ inm ,kW ; ia l ,pW !52
Nc

8p2 „~m32m2!B0~kW2pW ,m2 ,m2 ,m3 ,m3 ,inm2 ia l !1~m12m2!B0~pW ,m1 ,m1 ,m2 ,m2 ,ia l !

1~m11m3!B0~kW ,m1 ,m1 ,m3 ,m3 ,inm!1$m1
2~m32m2!1m2

2~m11m3!1m3
2~m12m2!22m1m2m3

1m3@pW
22~ ia l2m21m1!

2#2m2@kW
22~ inm2m31m1!

2#1m1@~pW 2kW !22~ ia l2 inm2m21m3!
2#%

3C0~pW ,kW ,m1 ,m1 ,m2 ,m2 ,ia l ,m3 ,m3 ,inm!…. ~55!

The functionB0 has already been given in Eq.~13!. It is necessary to introduce a third loop integralC0 ~cf. Appendix A!,
which is explicitly given as

C0~pW ,kW ,m1 ,m1 ,m2 ,m2 ,ia l ,m3 ,m3 ,inm!5
16p2

b (
n

eivnhE
uqW u,L

d3q

~2p!3

3
1

~ ivn1m1!
22E1

2

1

~ ivn2 ia l1m2!
22E2

2

1

~ ivn2 inm1m3!
22E3

2 . ~56!

As with the polarization function that was given in Eq.~12!, Eqs. ~51!–~55! are defined intentionally without any flavor
factors.

2. t and u channels

The t andu channel exchange diagrams shown in Fig. 7 have the general form

2 iM t5 f tdc1c2v̄~p2!ig5~ ig1!
i

p” 12p” 32m~ t ! ig5~ ig2!u~p1!5 i
g1g2f t
t2m~ t !2 dc1c2v̄~p2!g5~p” 12p” 31m~ t !!g5u~p1! ~57!

2 iMu5 i
g1g2f u
u2m~u!2 dc1c2v̄~p2!g5~p” 12p” 41m~u!!g5u~p1!, ~58!
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where, once again,g1 , g2 are the quark-meson couplings fo
the outgoing mesons, andf t , f u account for flavor factors
from the Gell-Mann matrices. The momenta of the incomin
quark and antiquark arep1 and p2 , those of the outgoing
mesonsp3 and p4 . The mass of the exchanged fermion
denoted bym(t) and m(u), respectively. Note that these
masses are not necessarily equal.

For any actual calculation of cross sections and transit
rates, one needs to sum the relevant amplitudes, take
absolute value squared, and to sum over final and to aver
over initial states. Our results are listed in Appendix B.

C. Calculation of cross sections

Having provided the prerequisites for calculation, we
lustrate the main features via examples.~i! The process
ud̄→p1p0 provides an example in which au channel dia-
gram is required. Such a diagram occurs not only when
outgoing mesons are identical.~ii ! The processus̄→p1K0 is
chosen because it has unequal masses for the incom
quarks, the virtual quarks of the vertex part, and the outgo
mesons.~iii ! The processuū→p1p2 demonstrates the us-
age of mixing propagators for the virtual scalar mesons
the s channel. Together, these three examples indicate h
the calculation is performed in general.

We assume that the center of mass system of the incom
quarks is at rest relative to the medium. All quantities, su
as couplingsgpqq̄ , are calculated within this framework, and
this is used in all processes calculated, e.g., in triangle d
grams. Since this implies thatkW50W in Eqs. ~51!–~56!, the
vertex functionG then depends only on the absolute value
the meson momentum. This leads to the fact that the to
cross section depends only on the invariant energys and the
temperatureT @12#.

In what follows, we drop the momentum arguments of th
scalar meson propagatorD and the three-meson vertexG for
simplicity.

1. Calculation ofsud̄˜p1p0

Explicit graphs for this process are shown in Fig. 9. W
have two graphs of thes channel type, which we labels and
s8, respectively. The flavor factors for these graphs are fou
to be

f s52 f s8522A2, f t52 f u52A2. ~59!

The relative sign off s , f s8 and f t , f u arises from the flavor
matrix l3 that occurs at thep0 vertex, whoseuu and dd
components have opposite sign.
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The virtual meson exchanged in this case is a charg
sp , so that one may identify

Ds5Ds85
2K1

2

124K1
2Pqq̄

S ~As,0W !
. ~60!

The contribution of the vertex graph in the center of ma
system turns out in this case to be the same for boths chan-
nel type graphs. From our general formula Eq.~55!, one has

Gs5Gs852
Ncmq

8p2 @2B0~0W ,mq ,mq ,mq ,mq ,As!1~s22mp
2 !

3C0~pW 3 ,0W ,mq ,mq ,mq ,mq ,
1
2As,mq ,mq ,As!#, ~61!

where upW 3u5
1
2As24mp

2 is the momentum of the outgoing
p1. The total contribution of thes channel type graphs is
thus

2 i ~Ms1Ms8!52 i v̄~p2!u~p1!dc1c2gpqq̄
2

3~ f sDsGs1 f s8Ds8Gs8!

50, ~62!

which resembles the result for the two-flavor model@12#,
where this process has nos channel due to the lack of
charged scalar resonances.

The squared invariant amplitude thus arises from thet and
u channels alone. From Eqs.~B2!, ~B3!, and~B6!, this takes
the form

FIG. 9. Feynman graphs for the processud̄→p1p0.
1

4Nc
2(
s,c

uM t1Muu25
ugpqq̄u4

Nc
Fs~mq

22t !2~ t2mp
22mq

2!2

~ t2mq
2!2

1
s~mq

22u!2~u2mp
22mq

2!2

~u2mq
2!2

22
~ t2mp

22mq
2!~mp

21mq
22u!1smp

2

~ t2mq
2!~u2mq

2! G . ~63!
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In the limit mp→0, this reduces to an extremely simple ex
pression. This differs from that given in Ref.@12#, in which
theu channel has been omitted.

We obtain the differential cross section for this process
be

dsud̄→p1p0

dt
5

1

16ps~s24mq
2!

1

4Nc
2 (

s,c
uM t1Muu2.

~64!

The total cross section is now constructed from the in
gration over the exchanged momentumt as @12#

sud̄→p1p0~s,T!5E dt
dsud̄→p1p0

dt
@11 f B~ 1

2As!#2.

~65!

The Bose distribution functionf B(x)51/@exp(bx)21# is in-
troduced, since the presence of mesons in the heat bath l
to an enhancement of the meson creation process in the
dium.

2. Calculation ofsu s̄˜p1K0

The Feynman graphs for this process are shown in F
10. Here only ones channel diagram is possible. From th
graphs, we find the flavor factors

f s54, f t52. ~66!

The virtual scalar meson exchanged in thes channel is a
sK , so that we have

D5
2K4

2

124K4
2Pqs̄

S ~As,0W !
. ~67!
-
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The contribution of the vertex part can be derived from o
general formula, Eq.~55!, to be

G52
Nc

8p2 „~ms2mq!B0~pW 4 ,mq ,mq ,ms ,ms ,E4!

1~ms1mq!B0~0W ,mq ,mq ,ms ,ms ,As!

2$msmp
21mq@mK

22s12E3~ms2mq!#%

3C0~pW 3 ,0W ,mq ,mq ,mq ,mq ,E3 ,ms ,ms ,As!…, ~68!

where (E3 ,pW 3) and (E4 ,pW 4) denote the four-momenta of the
p1 and theK0, respectively. Because the masses of the o
going particles are different, the momentum of thep1, say,
now has to be determined via

upW 3u5
1

2As
A@s2~mp1mK!2#@s2~mp2mK!2#. ~69!

From the formulas in Appendix B, one obtains th
squared transition amplitude as

FIG. 10. Feynman graphs for the processus̄→p1K0.
1

4Nc
2 (

s,c
uMs1M tu25

8ugpqq̄gKqs̄u2

Nc
S uDGu2@s2~mq1ms!

2#2
Re~DG!

t2mq
2 @mq~s2mK

21mp
2 !1~ t2mq

22mp
2 !~mq1ms!#

1
1

4~ t2mq
2!2

@~mp
21mq

22t !~ t2mK
21ms

2!1~mq
22t !~s2mq

22ms
2!22msmqmp

2 # D , ~70!
ig.

er
with Re denoting the real part of the function following.
Because of the different masses of theu ands quarks, the

differential cross section is now given as

dsus̄→p1K0

dt
5

1

64pspW 1
2

1

4Nc
2 (

s,c
uMs1M tu2. ~71!

Again, the momentumupW 1u has to be calculated using Eq
~69!, wheremp , mK have to be replaced bymq , ms , respec-
tively.

The total cross section is defined to be
.

sus̄→p1K0~s,T!5E dt
dsus̄→p1K0

dt
@11 f B~E3!#

3@11 f B~E4!# ~72!

in this case.

3. Calculation ofsuū˜p1p2

The Feynman graphs for this process are shown in F
11. Once again, we haves ands8 channel graphs. Since the
incoming quarks have the same flavor, we have to consid
mixing for the virtual mesons. The propagator for thes graph
reads
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Ds5Msp
1
1

3
~2M0012A2M081M88!, ~73!

while the propagator for thes8 graph is

Ds852Msp
1
1

3
~2M0012A2M081M88!. ~74!

Here the flavor factors for the virtual meson vertices ha
already been taken into account, so that we only have
consider the flavor factors from the outgoing mesons, wh
contribute a factorA2 at every vertex:

f s5 f s85 f t52. ~75!

The meson vertex part of thes ands8 graphs is the same as
for ud̄→p1p0, as was given in Eq.~61!. Since we need the
sumMs1Ms8, we find that the contribution of thesp in
this combination cancels and we obtain

2 i ~Ms1Ms8!52 i v̄~p2!u~p1!dc1c2gpqq̄
2

3
4

3
~2M0012A2M081M88!G. ~76!

The rest of the calculation proceeds as in the previous t
cases discussed.

IV. NUMERICAL RESULTS

In this section, we present our numerical results. Since
are interested in the cross sections as an input to trans
equations, we choose to give the transition ratesw(s,T) in-
stead of the integrated cross sectionss(s,T). These two
quantities are related by@18#

w~s,T!5uvW relus~s,T!, ~77!

where the relative velocity of the incoming particles in th
center of mass system is

uvW relu5
A~p1p2!

22~m1m2!
2

E1E2
. ~78!

FIG. 11. Feynman graphs for the processuū→p1p2.
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For equal masses of the incoming quarks,m15m25m, this
can be expressed in terms of the center of mass energys as

uv relu52A12
4m2

s
. ~79!

The introduction of the transition rate as opposed to the cro
sections has a further advantage in that it suppresses the
nematic singularity which appears at the threshold for t
exothermic reactionsqq̄→M1M2 where 2mq.mM1

1mM2
.

To commence, we choose to discuss one simple proce
and decompose the calculation into its constituents, t, andu
channel graphs, in order to indicate the relative magnitude
these contributions. We pick the processud̄→p1h, which
by Eq. ~49b! can also be regarded as a component of t
suū calculation. The appropriate Feynman diagrams can
obtained from Fig. 9 on replacing thep0 by h in this figure.
There are twos channel, onet channel, and oneu channel
exchanges possible. In this case, we findf s5 f s8 and
f t5 f u , and so thes channels do not cancel. We display thes
contributions explicitly in Fig. 12. Here we plot the transition
rate that originates fromuM tu2 ~which is equal to the con-
tribution from uMuu2), uMsu2, uMs8u

2, the sum
uM t1Muu2, and the sum of all four graphs,
uMs1Ms81M t1Muu2. From this figure, one can see tha
the t and u channels give the dominant contributions. Al
though the velocity factor in Eq.~77! goes to zero at thresh-
old, the t channel contribution stays finite. However, it can
cels against theu channel contribution, thus yielding a zero
total rate here. This is a rather general feature that we wish
point out. Such a cancellation occurs for all processes wh
the flavor factors of thet and u channel graphs are equal
f t5 f u . We notice also that thes channel contributions are
comparatively small, except in the regionAs'0.521 GeV,
where they exhibit a resonance structure due to thesp ex-
change. At threshold, their contributions go to zero, sin
they are proportional tos24mq

2 , as can be seen explicitly
from Eq. ~B1!. This demonstrates the generic features th
are empirically observed in all of our calculations: In gener
the t and u channels dominate, while thes channel only
plays a role over a small region if a resonance is excited.

FIG. 12. Decomposition of the rate forud̄→p1h at T50 into
its individual contributions. At the threshold, thet channel contri-
bution is finite, the vertical line indicating the position of the thresh
old.
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We turn now to a discussion of the four possible hadro
zation rates, which stem from the four independent cro
section classessud̄ , sus̄ , suū , andsss̄ that were listed in
Table I.

A. ud̄˜hadrons

Figure 13 shows the hadronization rate ofud̄→ hadrons
at T50 as a function ofAs. Here we have shown the con
tributions from individual processes, in this case bein
ud̄→p1p0, K1K0, andp1h. The contribution from the
processud̄→p1h8 is negligible and has thus not bee
shown. One recognizes from this figure that the transiti
rate is dominated by the processud̄→p1p0, as is expected
physically. A further physical feature that is common to a
the calculations is also illustrated here, and we thus comm
at this point: that is, that anexothermicprocess displays a
finite rate at threshold. An exception to this rule follows fo
processes such asud̄→p1h ~which are also exothermic!,
where equal flavor factors occur in both thet andu channel
exchanges and the amplitudes cancel, as was discu
above. By contrast, the processud̄→K1K0 is endothermic,
which means that the threshold shifts fromAs52mq to
As52mK , where it yields a zero rate. Finally we commen
that the relative magnitude of the three rates contributing
the total rate essentially reflects the available phase spac

In Fig. 14, we show the hadronization rate at various va
ues of the temperature,T50, T5150 MeV, T5190 MeV,
andT5250 MeV as a function ofAs. The threshold value of
As at which hadronization sets in is different for the fou
cases due to the temperature dependence of the quark
meson masses. AtT50 andT5150 MeV the dominant pro-
cessud̄→p1p0 is exothermic, thus giving rise to a finite
rate at the thresholdAs52mq . At T5190 MeV and
T5250 MeV, on the other hand, the pions are more mass
than the quarks, so that this process becomes endothe
and the threshold is given in this case asAs52mp . Thus the
finite values at thresholds observed in the rates at lower te
peratures change to become maxima slightly above thre
old, and a zero rate is obtained at these thresholds.

In Fig. 15, we show an example for the differential cros
section ds/dcosu at zero temperature and a

FIG. 13. Contributions of individual hadronization processes f
ud̄→hadrons atT50. The contribution of the processud̄→p1h8 is
negligible and is thus not shown. The rate forud̄→p1p0 is finite at
threshold, which is indicated by the vertical line.
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As51.5 GeV. Again the contribution ofud̄→p1h8 is neg-
ligible and is thus not shown. One notices a forward
backward asymmetry in this plot, which is solely due to kao
production. Physically one can understand this as follow
After the reactionud̄→K1K0 has occurred, the incomingu
quark has become a constituent of theK1, so that the pro-
ducedK1 preferentially takes the direction of the incoming
u. In the other reactions,ud̄→p1p0, p1h, and p1h8,
however, theu can become a constituent of any one of th
produced particles, which makes these reactions forwa
backward symmetric.

B. us̄˜hadrons

Figure 16 gives the transition rate forus̄→ hadrons at
T50 as a function ofAs, decomposed into its constituen
processes. The dominant contributions to the transition r
come from the processesus̄→p1K0 andus̄→p0K1, which
give the same up to a factor of 2. We again note that these
exothermic processes, thus leading to a finite transition r
at the thresholdAs5mq1ms . ForAs slightly above thresh-
old, a maximum appears in the transition rate o
us̄→p1K0, p0K1, which corresponds to an excitation o
thesK resonance. This maximum is not visible in the overa
summed rate at this temperature, since it is dominated rat
by us̄→K1h production.

or FIG. 14. Transition rates forud̄→hadrons at various tempera-
tures. Solid line,T50; dashed line,T5150 MeV; dotted line,
T5190 MeV; dot-dashed line,T5250 MeV. At T50 and
T5150 MeV, the vertical line indicates a finite rate at threshold

FIG. 15. Differential hadronization cross section fo
ud̄→hadrons atT50, As51.5 GeV.
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53 423HADRONIZATION IN THE SU~3! NAMBU–JONA-LASINIO MODEL
Figure 17 shows the transition rates at the temperatu
T50, T5150 MeV, T5190 MeV, T5250 MeV as a func-
tion ofAs. ThesK excitation, which is not visible atT50, is
now clearly seen atT5150 MeV andT5190 MeV. At
T50 and T5150 MeV, the threshold is determined a
As5mq1ms , and the reaction is exothermic, while fo
T5190 MeV andT5250 MeV, the reactions are endothe
mic, with threshold valueAs5mp1mK . Correspondingly,
in the exothermic regime, the transition rate is finite
threshold, while at higher temperatures, where the outgo
mesons have become more massive than the incoming qu
and antiquark, the transition rate vanishes at the thresh
value.

C. uū˜hadrons

The contributions of the various processes f
uū→ hadrons atT50 are shown in Fig. 18 as a function o
As. Here we plot only the transition rates for the productio
of p1p2, p0p0, K1K2, andp0h. All other channels are
negligible. One notices that the transition rate is dominat
by p1p2 production. ForAs.1 GeV, theK1K2 produc-
tion appears to be the next most important process, follow

FIG. 16. Contributions of individual hadronization processes f
us̄→hadrons atT50. The contribution of the processus̄→K1h8 is
negligible and is thus not shown. The contributions of the proces
us̄→p1K0 andus̄→p0K1 are finite at threshold.

FIG. 17. Transition rates forus̄→hadrons at various tempera
tures. Solid line,T50; dashed line,T5150 MeV; dotted line,
T5190 MeV; dot-dashed line,T5250 MeV. At T50 and
T5150 MeV, the vertical line indicates a finite rate at threshold
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by p0p0 and p0h. We observe that the contribution of
uū→p0p0 is rather small in comparison with
uū→p1p2. We can trace this back to the allowed Feynma
diagrams and the associated flavor algebra. It turns out t
the s channel exchanges for both processes give the sa
contribution in total, although they have differing flavor fac
tors associated with them. On the other hand, thet channel
exchange forp0p0 contributes one-half that obtained for
p1p2 hadronization, due to the associated flavor facto
( f t51 for uū→p0p0, f t52 for uū→p1p2). In addition,
theuū→p0p0 also has au channel exchange available. This
tends to cancel thet channel exchange. Finally, thet integra-
tion runs only over half of the available phase space for t
processuū→p0p0 @12#. These features result in a consider
able reduction in the production ofp0p0 over p1p2. We
also point out that the production ofK0K0 is negligible in
contrast to the production ofK1K2. This is due to the fact
thatuū→K0K0 proceeds only via ans channel graph, which
gives small contributions compared to thet andu channels,
as has already been discussed. This is a direct simulation
the Zweig rule in the NJL model.

One final comment to the structures observed in Fig. 18
with regard to the cusp seen at threshold. This is due to
excitation of the s mode with ms'2mq . At
As'1.2 GeV, one notices a very weak second maximum
This comes from thes8, appearing in the processes
uū→K1K2 anduū→K0K0.

Figure 19 gives the rate foruū→ hadrons atT50,
T5150 MeV, T5190 MeV, andT5250 MeV as a function
of As. The cusp at the threshold value ofAs at T50 and
T5150 MeV develops to become a sharply pronounc
peak. This is a reflection of the exothermic nature of th
lower temperature processes, which have thresho
As52mq , as opposed to the endothermic processes, w
thresholdAs52mp . In this figure, one can see thes and
s8 maxima and the shifting of the threshold due to the tem
perature dependence of the masses.

D. ss̄̃ hadrons

Finally we show the results forss̄→hadrons for different
temperatures as a function ofAs in Figs. 20 and 21. Here the
dominant contribution comes from the processesss̄→K0K0

r

es

FIG. 18. Contributions of individual hadronization processes f
uū→hadrons atT50. Only the four dominant processes are show
The contribution of the processuū→p1p2 is finite at threshold.



t

y

s
e

e

,

fi-

424 53P. REHBERG, S. P. KLEVANSKY, AND J. HU¨ FNER
and ss̄→K1K2, which have identical cross sections, an
ss̄→hh. The pion production rate is very small, since the
processes do not havet and u channels available, again
simulating their suppression by the Zweig rule. One notice
sharp resonance in these curves near threshold. This is du
the s8 intermediate state. The threshold values ofAs are
determined atT50 andT5150 MeV byAs52ms , where
the reaction is exothermic. At T5190 MeV and
T5250 MeV, this is rather given byAs52mK , since the
reaction is endothermic.

E. Averaged transition rates and hadronization times

In order to make a connection with transport theory, w
introduce the energy averaged transition rate@18#

w̄~T!5
1

r1~T!r2~T!
E d3p1

~2p!3
d3p2

~2p!3
@2Ncf F~E1!#

3@2Ncf F~E2!#w~s,T!, ~80!

which is the average transition rate for quarks and antiqua
coming from a thermal medium, their distribution bein
given by the Fermi functionf F(x)51/@exp(bx)11#. The
quark density is given as an integral over this function

FIG. 20. Contributions of the dominant individual hadronizatio
processes forss̄→hadrons atT50. The contributions of the pro-
cessesss̄→K1K2 andss̄→K1K2 are finite at threshold, as indi-
cated by the vertical line.

FIG. 19. Transition rates foruū→hadrons at various tempera
tures. Solid line,T50; dashed line,T5150 MeV; dotted line,
T5190 MeV; dot-dashed line,T5250 MeV. At T50 and
T5150 MeV, the vertical line indicates a finite rate at threshold
d
se

s a
e to

e

rks
g

r i~T!5E d3p

~2p!3
2Ncf F~ApW 21mi

2! ~81!

for a given quark species. In Eqs.~80!, ~81!, the factor 2Nc
accounts for the number of degrees of freedom. To perform
the integration, we have made the approximation tha
s(s,T) depends only ons, even when we are not in the
center of mass system. With this assumption,w̄(T) can be
cast into the form

w̄~T!5E
~m11m2!2

`

dsA~p1p2!
22~m1m2!

2s~s,T!P~s,T!,

~82!

where the weight functionP(s,T) is given as

P~s,T!5
1

r1~T!r2~T!

1

8p4E
m1

`

dE1@2Ncf F~E1!#

3E
m2

`

dE2@2Ncf F~E2!#Q„4upW 1u2upW 2u2

2@s2~m1
21m2

2!22E1E2#
2
…. ~83!

We show the results of the average ratew̄(T) for the four
hadronization classesud̄, us̄, uū, and ss̄ as a function of
temperature in Fig. 22. One observes that the quantit
w̄(T) stays fairly constant in the region fromT'50 MeV up
to the pion Mott temperatureTMp . At TMp , it displays a
minimum. This behavior differs strikingly from the curves
shown in Ref.@12#: Whereas the cross sections shown there
decrease towards the critical temperature and thendiverge
sharply, we obtain aminimumat the pion Mott temperature
with no divergence at all. There are two reasons for thi
behavior:~i! The reason for the occurrence of the divergenc
has been explained in Ref.@12# as originating from the term
ds/dt;1/(t2mq

2) that arises from thet channel amplitude.
These authors have worked in the chiral limit, so that at th
critical temperaturemq50, and thet integration required for
the total cross section, yields a logarithmic divergence. Here
on the other hand we consider the physical situation offinite
current quark masses, so that the quark propagators stay

n

FIG. 21. Transition rates forss̄→hadrons at various tempera-
tures. Solid line,T50; dashed line,T5150 MeV; dotted line,
T5190 MeV; dot-dashed line,T5250 MeV. At T50 and
T5150 MeV, the vertical line indicates a finite rate at threshold.
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53 425HADRONIZATION IN THE SU~3! NAMBU–JONA-LASINIO MODEL
nite for all temperatures, and no divergence may occur.~ii !
The behavior of the cross sections is also determined by
quark-meson couplings, which multiply the transition amp
tude squared. In the chiral limit, as calculated in Ref.@12#,
these tend to a constant value at the transition temperat
so that the overall behavior is given by the mechanism d
scribed in~i!. On the other hand, in our case, whenm0Þ0,
the quark-meson couplings strictly approach zero at the M
temperatures, and are thus responsible for the observed
havior.

The little dip observed in the curves atT5180 MeV cor-
responds to the Mott temperature of theh, TMh . One also
notes a discontinuity in the production rate for the cla
uū→ hadrons atT5165 MeV. This occurs in the mode
since thes in the SU~3!3 SU~3! case is weaklyboundat
T50, and becomes a resonance at the Mott tempera
TMs5165 MeV. This leads to a transition rate
;1/As24mq

2 and thus to a discontinuous averaged tran
tion rate. Because of kinematic reasons, this is only visible
the processesuū→p1p2 anduū→p0p0 that contribute to
uū→ hadrons. Note that this structure would not appear
the SU~2!3 SU~2! NJL model, where thes is a resonant
state for all temperatures. This is thus a model depend
feature.

From w̄(T) we compute the hadronization times

FIG. 22. Temperature dependence of the averaged transi
rates w̄(T). Solid line, ud̄→hadrons; dashed line,us̄→hadrons;
dotted line,uū→ hadrons; dot-dashed line,ss̄→hadrons.

FIG. 23. Temperature dependence of hadronization times
light quarks~solid line! and strange quarks~dashed line!. Note the
broken scale on the abscissa.
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21~T!5w̄uū~T!r ū1w̄ud̄~T!r d̄1w̄us̄~T!r s̄ , ~84!

ts
21~T!5w̄sū~T!r ū1w̄sd̄~T!r d̄1w̄ss̄~T!r s̄ . ~85!

The quantitytu(T) represents the mean lifetime of au quark
in a plasma before it hadronizes into a meson. Analogou
ts(T) is the mean lifetime of as quark. The numerical re-
sults are shown in Fig. 23. In the temperature region of i
terest, 150 MeV<T<250 MeV, the hadronization times are
223 fm/c for a u ~or d! quark, and 324 fm/c for an s
quark. As expected, the hadronization time becomes infin
at the Mott temperature, since all hadronization cross se
tions go to zero here.

F. Strangeness production

In this section, we discuss the production rates for th
processes that change the total number ofs plus s̄ quarks.
The enhancement of this quantity observed in theK/p ratio
in nucleus-nucleus collisions overN1N collisions is one of
the observables which indicates new physics@1,19,20#. The
processes of interest are~i! ud̄→K1K0, ~ii ! uū→K1K2,
K0K0, and~iii ! ss̄→p1p2, p0p0, hh, hh8, h8h8. While
the first two reactionsincreasethe total number ofs1 s̄, the
third one decreasesthis number. The production/reduction
ratesw̄(T) are shown in Fig. 24, respectively, as a functio

tion

for

FIG. 24. Temperature dependence of the averaged strange
production/destruction rates. Solid line,ud̄→ strange hadrons;
dashed line, uū→ strange hadrons; dot-dashed line,ss̄→
nonstrange hadrons.

FIG. 25. Temperature dependence of the strangeness enha
ment factor (DK)gain/p ~solid line! and the strangeness reduction
factor (DK) loss/p ~dashed line!.
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of temperature. Both increasing and decreasing proces
show qualitatively the same behavior. The strangene
increasing processes are endothermic and thus occur pre
entially at higher temperatures, whereas the strangen
decreasing processes~at least the dominant ones! are
ses
ss-
fer-
ess-

exothermic and thus can also happen at low temperatur
Since the processes in these three cases do not dominate
respective hadronization class, the overall magnitude of t
rates is rather small compared to that shown in Fig. 22.

It is useful to define the ratio
ization.

en

red
n

~DK !gain
p

5
w̄ud̄→K1K21w̄uū→K1K21w̄uū→K0K0

w̄ud̄→p1p012w̄ud̄→p1h1w̄uū→p1p21w̄uū→p0p012w̄uū→p0h13w̄uū→hh

, ~86!

measuring the total hadronization from up and down quarks into kaons relative to the pion production due to hadron
Here we have assumed that theh decays into three pions and we have neglected the contribution of theh8. The temperature
dependence of this quantity is depicted in Fig. 25. The discontinuity atT5165 MeV is due to pion production, as has be
discussed previously. Kinks occur at the respective Mott temperaturesTMs , TMh , TMK , and TMp . Numerically at
T5150 MeV, the strangeness enhancement ratio rises to (DK)gain/p50.01. This enhancement of about 1% is to be compa
with the enhancement of 9% forS1S collisions at 200 GeV/A overN1N collisions, as found by the NA35 collaboratio
@16#. The loss term, defined as

~DK ! loss
p

5
rsr s̄~w̄ss̄→p1p21w̄ss̄→p0p01w̄ss̄→hh81w̄ss̄→hh1w̄ss̄→h8h8!

2rur ū~w̄ud̄→p1p012w̄ud̄→p1h1w̄uū→p1p21w̄uū→p0p012w̄uū→p0h13w̄uū→hh!
~87!
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is also indicated in Fig. 25. The maximal loss is an order
magnitude less than the gain in strangeness due to hadr
zation. Note that the back reactionss̄→ nonstrange hadrons
has been calculated under the assumption of thermal equ
rium values forrs and r s̄ . Should thermal equilibrium for
strange quarks, however, not be reached, one would exp
this loss term to be even more strongly suppressed.

V. SUMMARY AND CONCLUSIONS

In this paper, we have used the SU~3!3 SU~3! NJL model
to calculate temperature-dependent cross sections and tra
tion rates in a scheme ordered in the inverse number of c
ors, 1/Nc . To this end, we have included an exact calculatio
of the pseudoscalar and scalar meson masses, treating t
particles as resonances at temperatures beyond their res
tive Mott temperatures, when they may dissociate into th
constituent quark and antiquark. Our calculation has be
performed for finite values of the current quark masse
which is regarded as the physical situation.

In describing the hadronization procedure, we have ide
tified four classesud̄, us̄, uū, and ss̄, determined by the
initial incoming quark and antiquark and final statespp,
pK, KK̄, Kh, andhh. The individual processes contribut
ing to each class have been listed and calculated, and t
contributions to the cross sections have been studied a
function of temperature and center of mass energy. We
able to account for all the observed structures that result a
function of ~i! threshold effects,~ii ! an intermediate reso-
nance being excited, or via the~iii ! summation of several
processes. The relevance of each process is discussed
we observe, for example, a forward-backward asymmetry
the class ud̄→ hadrons, which is due to the proces
ud̄→K1K0. Averaged and total production rates are calc
lated for each class.
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What can be learned from this calculation? From the me
sured spectra of the hadrons produced in high energy he
ion collisions, one derives temperatures in the range
1502200 MeV@16#. This temperature range is also found fo
the location of the phase transition in lattice gauge calcu
tions. In our calculation, the pion Mott temperatur
TMp5212 MeV plays the role of separating the region
where pions are stable (T,TMp) and where they exist as
resonances. The unphysical aspect of our model is the
pearance of constituent quarks forT,TMp . Thus all had-
ronization cross sections forT!TMp are only of academic
interest. If we focus on the temperature region betwe
150 MeV and 250 MeV, two~in our opinion! physically rel-
evant numbers can be extracted.

~i! The hadronization time. The quark-gluon plasma~if it
is reached at all! is a transient state because of the rap
expansion of the system. Therefore it is of great interest
know the times for the various stages of the system: therm
ization of the quark-gluon plasma, hadronization, and fin
state interaction time. In our calculation we find an avera
time for the hadronization of a quark of

thad5224 fm/c. ~88!

This value may be considered not unrealistic in view of e
pansion scenarios.

~ii ! Strangeness enhancement. In experiments, a sizable
value of strangeness enhancementDK/p has been observed
in heavy ion collisions overN1N ones. This value is
DK/p59%. Our calculation yields an enhancement o
about 1% as coming from the hadronization stage. This res
indicates that the dominant contribution to strangeness
hancement must occurbeforeor after hadronization.

On the theoretical side, the present paper shows that h
ronization cross sections~as other quantities too! are nonper-
turbative in nature and have a rather strong temperature
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pendence. Thus calculations~cascade or other ones! have to
take these aspects into consideration, if they want to be
alistic.
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APPENDIX A: LOOP INTEGRALS

The decomposition of Feynman diagrams into elementa
integrals is a well known technique for zero temperatu
@21#. At finite temperature, however, no general theory has
date been given. Large SU~3! calculations are difficult with-
out implementing a technique that enables one to decomp
all expressions into a few integrals only, the calculation
each of which can be done once. The evaluation of the
integrals for the general case is a tedious task, which w
form the subject of a separate publication@22#. To be con-
cise, we simply illustrate the calculation of the elementa
integrals for some special cases here, confining ourselve
the situation of zero chemical potentials and equal masses
all fermions. This is already a sufficient basis for most of th
calculations within the two-flavor sector. A full calculation
re-
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including differing chemical potentials, quark masses, a
arbitrary kinematics~applicable inC0), can be found in a
forthcoming publication@22#. Since the NJL model is non-
renormalizable, we choose a three-momentum cutoffL as
defining our regularization scheme.

1. Computation of A

The first loop integral has been defined in Eq.~7! as

A~m,m!5
16p2

b (
n

eivnhE
upW u,L

d3p

~2p!3
1

~ ivn1m!22E2 ,

~A1!

whereE5Ap21m2 and the limith→0 has to be taken after
the Matsubara summation. In the casem50 this is easily
evaluated to be

A~m,0!524E
0

L

dp
p2

E
tanhS bE

2 D . ~A2!

In the limit b→`, this can be evaluated analytically. Fo
finite temperatures, the integral has to be performed nume
cally.

2. Computation of B0

The second loop integralB0 is defined as the analytic
continuation of
n

variant
B0~kW ,m1 ,m1 ,m2 ,m2 ,inm!5
16p2

b (
n

eivnhE
upW u,L

d3p

~2p!3
1

~ ivn1m1!
22E1

2

1

~ ivn2 inm1m2!
22E2

2 ~A3!

@E15ApW 21m1
2, E25A(pW 2kW )21m2

2# to the real axis. The casekW50W , which we require for the determination of the meso
masses, is singular and has to be treated separately. For this case, one obtains

B0~0W ,m,0,m,0,k0!58P E
0

L

dp

p2 tanhS bE

2 D
E~4E22k0

2!
1 ipQ~2L2k0!Q~k022m!tanhS bk0

4 DA12S 2mk0 D 2. ~A4!

HereP denotes the Cauchy principal value of the integral.
For finite values ofukW u, B0 takes the form

B0~kW ,m,0,m,0,k0!52
1

ukW u
E
0

L

dp

p tanhS bE

2 D
E S logU~k212pukW u!224k0

2E2

~k222pukW u!224k0
2E2U1 ip[Q(2pukW u2uk212k0Eu)

2Q(2pukW u2uk222k0Eu)] D . ~A5!

The imaginary part of this integral can be easily evaluated analytically. Note that this is not covariant due to our nonco
regularization scheme.
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3. Computation of C0

C0 has been defined to be the analytic continuation of

C0~pW ,kW ,m1 ,m1 ,m2 ,m2 ,inm ,m3 ,m3 ,ia l !5
16p2

b (
n

eivnhE
uqW u,L

d3q

~2p!3
1

~ ivn1m1!
22E1

2

1

~ ivn2 ia l1m2!
22E2

2

3
1

~ ivn2 inm1m3!
22E3

2 . ~A6!

In the example presented here, we not only setm50 and consider equal masses, but also setkW50, uqW u5 1
2As24mp

2 , ia l5
1
2As, and inm5As. The result can be directly applied to pion production. One finds

C0~0W ,qW ,m,0,m,0,As,m,0,12As!52
1

As~s24mp
2 !
P E

0

L

dp

p tanhS bE

2 D
E

3F 1E S logUmp
42z2

2

mp
42z1

2 U2 ip@Q~puqW u2uj1u!1Q~puqW u2uj2u!# D
1

2

As22E
S logUmp

22z2

mp
22z1

U2 ipQ~puqW u2uj2u!D
1

2

As12E
S logUmp

21z1

mp
21z2

U1 ipQ~puqW u2uj1u!D G
1 ip

tanhS bAs
4 D

As~s24mp
2 !

S logU2mp
22~s2uqW uAs24m2!

2mp
22~s1uqW uAs24m2!

U2 ipQ~ uqW uAs24m22u2mp
22su!D

~A7!

(z65EAs6pAs24mp
2 , j65EAs6mp

2 ). In the limitmp→0, theQ functions vanish identically and Eq.~A7! can be greatly
simplified to yield the result of Ref.@12# for the three-meson vertex.

For a full calculation ofB0 for arbitrary values of the quark masses and chemical potentials, as well asC0 for the same and
arbitrary kinematics, the reader is referred to Ref.@22#.

APPENDIX B: SQUARED MATRIX ELEMENTS

In this appendix, we give the technical details required for calculating the squared transition amplitude with unsp
general masses. One is required to average over initial states and sum over final states. From the former, one obtain
1/4Nc

2 . The color trace gives a factorNc . The flavor trace is accounted for explicitly by the factorsf s , f t , and f u . Our final
expressions for these functions, after taking the spinor trace, are

1

4Nc
2 (

s,c
uMsu25

f s
2ug1g2u2

2Nc
uDGu2@s2~m11m2!

2#, ~B1!

1

4Nc
2 (

s,c
uM tu25

f t
2ug1g2u2

2Nc

1

~ t2m~ t !2!2
@~m3

22m1
22t !~ t2m4

21m2
2!1~m~ t !22t !~s2m1

22m2
2!12m1m

~ t !~ t2m4
21m2

2!

22m2m
~ t !~m3

22m1
22t !22m1m2~ t1m~ t !2!#, ~B2!

1

4Nc
2 (

s,c
uMuu25

f u
2ug1g2u2

2Nc

1

~u2m~u!2!2
@~m4

22m1
22u!~u2m3

21m2
2!1~m~u!22u!~s2m1

22m2
2!12m1m

~u!~u2m3
21m2

2!

22m2m
~u!~m4

22m1
22u!22m1m2~u1m~u!2!#, ~B3!

for the squares of the individual channels. Here we denote the masses of the incoming quarks bym1 , m2 , the masses of the
outgoing mesons bym3 , m4 , and the mass of the virtual fermion in thet andu channels bym(t) andm(u), respectively.

The results for the mixed terms are
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1

4Nc
2 (

s,c
MsM t*52

f sf tug1g2u2

2Nc

DG

t2m~ t !2 @m1~m2
22m4

21t !2m2~m3
22m1

22t !1m~ t !~s2~m11m2!
2!#, ~B4!

1

4Nc
2 (

s,c
MsMu*52

f sf uug1g2u2

2Nc

DG

u2m~u!2 @m2~m1
22m4

21u!2m1~m3
22m2

22u!1m~u!~s2~m11m2!
2!#, ~B5!

1

4Nc
2 (

s,c
M tMu*5

f t f uug1g2u2

4Nc

1

~ t2m~ t !2!~u2m~u!2!
@~m2

21m3
22u!~m4

22m1
212m1m

~u!2u!1~s2~m12m2!
2!

3~m3
21m4

22s!1~m2
21m4

22t !~m3
22m1

212m1m
~ t !2t !12m2~m12m~u!!~m1

21m3
22t !12m2~m12m~ t !!

3~m1
21m4

22u!12~m12m~u!!~m12m~ t !!~s2~m11m2!
2!#. ~B6!

From these formulas, it is straightforward to derive the results of Ref.@12# for the casem15m25m(t)5m(u) and
m35m450.
,
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