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Hadronization in the SU(3) Nambu—-Jona-Lasinio model
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The hadronization process for quarks combining into two mesges; MM’ at temperaturd is described
within the SU3) Nambu-Jona-Lasinio model with finite current quark masses. Invariant matrix elements,
cross sections, and transition rates are calculated to leading order M. aedpansion. Four independent
classesud, us, uu, andss— hadrons are analyzed and the yield is found to be dominated by pion production.
Threshold behavior is determined by the exothermic or endothermic nature of the processes constituting the
hadronization class. A strong suppression of transition rates is found at the pionic Mott temperature
Tu-=212 MeV, at which the pion becomes a resonant state. The mean time for hadronization is calculated to
be 2—-4 fm¢ near the Mott temperature. The calculation of strangeness changing processes indicates that
hadronization accounts for a 1% increase in the absolute value of the kaon to pion fatidad MeV.

PACS numbds): 24.85+p, 11.30.Rd, 12.39.Fe, 13.60.Le

[. INTRODUCTION argue from the chiral limit. Assuming that the chiral and
deconfinement phase transitions occur at the same tempera-
One of the current outstanding problems facing nucleature — an assumption supported by lattice gauge simulations
and particle theoreticians today lies in understanding th¢10] — one can build a heuristic picture on the basis of the
phase transition from a constituent quark and gluonic matteNJL model. AtT=T,, hadronic states are unstable, and the
to that of observed hadronic matter. Since it is expected firs¢ystem is dominated by interacting quarks with constituent
that such a deconfined state of quarks and gluons exists, amgassm=0. For T<T,, where chiral symmetry is broken,
second that it may be observed viaHBb and other heaVy m=#£ O, mﬂ_: 0, ma_: 2m, and ap'asmaof quarks and mesons
ion collisions already and also to be undertaken at CERN, afy formed. While the appearance of quarks for temperatures
adequate description of the hadronization process that Iea<-:|s$TC is an artifact of the model due to the absence of con-
one from the quark and gluon degrees of freedom inherent g, yont the situation fof =T, is realistic, except for the
QCD to the observed hadron spectrum is really required. ThFack of explicit gluonic degrees of freedom. As such, how-

present state of the a(f_or an overview over the f'elq see ever, the process of hadronization may be reliable around the
Refs.[1-3)) is characterized either by phenomenological ap-

. critical temperature, where the shortcomings of the model
proaches for the parton to hadron transitjeh5] or com- may not be too severe. These arguments can be extended to
puter codes based on string phenomenoldly y ) 9

In this paper, we place our emphasis on describing théhe physical case of nonzero current quark masses, which we

hadronization process of quarks and antiquarks into two mel fact study here. _ , .
sons, within a microscopic, field theoretical, and nonpertur- 1he purpose of this paper is thus to investigate all had-
bative framework, which is carried through at finite tempera-onization processes of the typg—MM’, whereM rep-
tures. In itself this is a demanding project that cannot yet béesents a meson in the nonstrange or strange sector, and here
performed directly starting from the QCD Lagrangian, andd=U,d,s. In particular, we evaluate scattering amplitudes
thus the price that we have to pay is in making a choice of &nd cross sections, and study the hadronization rates for all
modelLagrangian. To this end, we invoke the Nambu—Jonathese processes, which in turn are necessary elements for
Lasinio(NJL) model[7-9] in its SU, (3) X SUR(3) version, constructing a dynamical nonequilibrium transport theory for
which has been constructed to display the same internal synthis model Lagrangianl1]. This should aid us in under-
metries as QCD itself. This model is known to provide astanding the role that chiral symmetry plays in dynamical
good description of the static properties pertaining to botHprocesses. Our approach follows in part, and develops further
the nonstrange and strange meson sector at zero temperatufg calculation performed in SB) in the chiral limit de-
and it allows for a transparent description at finite temperascribed in Ref[12].
tures, explicitly displaying the chiral symmetry restoration In our study of the S(B) sector, we classify hadronization
phase transition at a critical temperature of about 200 Me\processes according to the incoming quark and antiquark,
in the chiral limit. Although we are aware of the deficienciesfinding a total of four independent classes under the addi-
of the model — lack of confinement as well as nonrenormaltional assumption of S(2) isospin symmetry, where
izability in a strict field theoretic sense — it nevertheless ism,=my. We thus consider the processes witt, us, uu,
possible to construct a comprehensive physical picture frorandss as incoming pairs, which we also list. The mesdhs
the calculations performed to date bothTat O and at finite and M’ considered in the process are K, and », which
temperatures and densities. For definiteness, it is useful tare the stable ones with respect to the strong interaction.
Feynman diagrams for the scattering amplitudes pertaining
to these reactions have a generic form which describes all
*Electronic address: Peter@Frodo.TPhys.Uni-Heidelberg.DE  qq—MM’. We select the diagrams according to an expan-
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sion in the inverse number of colors in the modelNd/ 1% in the absolute value of the ratio of kaons to pions at
which is commensurate with the Hartree approximation forT=150 MeV. This is to be compared with the experimental
the self-energy and the random phase approximation for thealue of (15.4-0.8)% for theK/# ratio found for S+S
scattering amplitudg13-15. The variations in applying collisions, which itself constitutes an enhancement of 9%
each of the Feynman diagrams to the different scatteringver theN+ N value of (6.5-1.1)% [16].
channels arise from differing exchanged mesons, quark In order to facilitate the technical evaluation, we decom-
masses, and flavor factors. We choose to illustrate our calcypose all quantities into fundamental integrals containing one,
lation by analytically constructing the formulas for the crosstwo, or three denominators, and which arise for instance
sections of the processesd— 7" 7% us—7"K® and from the self-energy, polarization, and the three-meson ver-
uu— 7t 7. The first of these explicitly includeswachan-  tex. In principle, these functions can be calculated for arbi-
nel exchange, while the second has unequal masses for &ary values of the differing quark masses and associated
incoming and outgoing particles. The final process illustrategliffering chemical potentials. In this way, general expres-
the role of the mixing of the scalar mesons in the($U sions can be constructed if one utilizes the modular forms.
Lagrangian due to the 't Hooft term and the differing up, For actual calculational purposes, however, we will set all
down, and strange quark masses. chemical potentials to zero, and study temperature and en-
All quantities are calculated as a function of temperatureergy dependences here, giving some relevant analytical re-
and baryonic chemical potential. It turns out that a cardinabults for these integrals in an appendix.
role is played by the Mott temperatur@s;,., Tyo, Tmk s This paper is structured as follows: In Sec. II, we discuss
Twm,, Which are defined to be the temperatures at which théhe general SY(3)x SUg(3) Lagrangian that we use, and
masses of the respective mesenso, K, 7 are equal to the give the relevant functions associated with the mass spec-
sum of the masses of their constituents. Note that these fodifum evaluation that we require. In particular then’ mix-
mesons are bound statesTat 0. At the Mott temperatures, ing is detailed, and the scalar resonance sector, which plays
the respective meson-quark couplings go to zero, and this ithe role of intermediate states in the hadronization. In Sec.
turn influences the transition amplitudes and transition rate8!, the possible hadronization processes are classified, and
in that they are suppressed. In particular the pionic Motthe explicit examples ud—=*#° us—x"K® and
temperature plays the dominant role, driving the total transiuu— 7" 7~ are discussed. Numerical results for the transi-
tion rates(almos} to zero at this point. We comment that the tion rates for each hadronization class are given in Sec. IV.
use of a finite temperature explicitly breaks Lorentz invari-Strangeness-changing processes are also analyzed here. We
ance in our calculation. Quantities are calculated with respectummarize and conclude in Sec. V.
to the rest frame of the medium.
In order to make a connection with transport theory, we
calculate transition rates, which are constructed by multiply-
ing the total cross section of a particular process with the
relative velocity. Our numerical results indicate that in a per- Il. PROPERTIES OF MESONS IN SU(3)
channel calculation, the and u channel exchanges of any
one process dominate over teechannel exchange, except
perhaps in an energy range where a resonance is present. TheThis section serves to introduce our Lagrange density and
t andu channel graphs, if present in a process, give cancelrotation, commencing with the three-flavor Lagrangian
ing contributions at the threshold when the flavor factors are
. . . . . 8
equal. In dealing with the four independent hadronization - — a2
classes, we are directly able to identify the leading contribu-://—;1 ‘ﬂf('ﬂ—mm)lﬂf‘*‘@go LN )+ (i ysh ) 7]
tions at all energies. These, with the exception of $ise B B
hadronization class, are dominated by pion production. The = —K[dety(1+ ys5) ¢+ dety(1— vs) ], 1)
ssprocesses on the other hand are found to be dominated by
kaon production. In all these calculations we can confirm
that theexothermicreactions(i.e., those reactions in which where G and K are dimensionful coupling strengths. The
energy is releasgdre always dominant over thendother-  term containingG displays U3)x U(3) symmetry, while the
mic ones(i.e., those reactions in which energy is absoibed determinantal term controlled bi breaks this down to
as far as they are present. SU3)X SU(3). Flavor and color indices have been sup-
We also examine the energy-averaged transition ratepressed for convenience in the interaction terms. However,
These quantities, multiplied by the density of incomingthe flavor indices have beesxplicitly included in the first
quarks, can be interpreted as the inverse of the hadronizatiagrm, since the current quark masseg , which themselves
time. We find this to be of the order e=2—4 fm/c inthe  explicitly break the S(B)x SU(3) symmetry, are regarded
temperature range 160-200 MeV, rising rapidly as oneas distinct. For general reviews on the three-flavor version of
moves towards the pion Mott temperatdrg ., or to lower  the NJL model, the reader is referred to R¢#%-9).
temperatures. This indicates that hadronization occurs pref- |t is useful to convert the determinantal term in Ei)
erentially over this given range of temperatures within ourinto an effective two-body term in the mean field approxima-
model. tion. This follows on contracting out one pair of quark and
Finally we have also examined processes that change thgntiquark fields and dividing this result by 2. One may re-
number ofs plus s quarks, like, e.g.ud—K*"K® We find combine the result with the existing two-body term that is
that the hadronization process generates an enhancementaoftrolled byG to find the effective Lagrangian to be

A. General considerations
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=2 Jf(iﬂ—m0f>wf+go [K o (9N2) 2+ K3 (4 ysh 2 2]+ K A 39) (9N C4h) + K 3o i ysh 34h) (i ysh i)

+ K o N (N30 + K o i ysh ) (i ysh3h) + K o N i) (NOh) + K 3o i yshBeh) (i ysA\Oih)
+ K gl N) (NBh) + K ol i ysh ) (i yshB) + K g N (N3h) + K o i yshBeh) (i ysA3eh)

+ K 3g( N30 (WNB) + K 3o 4 ys)30) (4 ysMBop),

with the effective coupling constants

. 1 , _
K5:615(5¢‘J+:ﬂ+5¢3),
=+ + =+ 1
KI=K§=K§=Gi§f§’S,

=+ -+ 1
Ki=Ks=G=571,

=+ -+ l -
Ke=K7=Gxz2"Y,
2
3
. 1 :
Kg=G*5(27 "+27 -1,
Kii=Kiom ¥~ (5429
03 30 2\/6 ’
+ + \/E )
Kog=Kgo= =5 (4 1+ 7 9=2.59),
KamKiym - (7429
38 83 2\/§
expressed in terms @& and
& T=NKi tr,S'(x,x). (4)

In Eq. (4), tr, refers to the spinor trace alone, whgéis the
diagonal quark propagator for a given flafgrwhich, in the

imaginary time formalism for finite temperatures, can be

written as
I i . ,
Sf(X_XI,T_ ’T’): _E e*lwn(T*T )
BA
d°p eiﬁ(%—;’)

3 . > o .

(27)” yo(i wg+ pg) — yp—my
5

Here the Matsubara frequencies are
w,=(2n+1)7/B, withn=0,-1,+2,+3,..., andu is the
chemical potential for a quark of flavdr

(2

As can be seen from Eq&2), (3), the nondiagonal cou-
pling constantsKg;, Kgg, and K3 give rise to thew?-»-
7' mixing. If one assumes SB) isospin symmetry, i.e.,
m,=my, thenKJ; andK ;5 vanish identically, with the con-
sequence that the® decouples from they and 5’. We make
this assumption in what follows, using the generic |ladp&br
u, d, and always writings explicitly.

Writing
7= = o MAM ), ©)
where
162, d*p 1
A(my, wg) = e'w"nf i
(Mg, pt) B En: ‘5|<A(27T)3(Iwn+,uf)2_E$

0
(with E?=p?+m?) denotes the first loop integrétf. Ap-
pendix A), one can easily derive the coupled gap equations
GN,
my= Mg, — ?muA( My, ty)

2

+ 58 MaMAMy, g A(Ms, 1), (89
GN,
My=Mog— ——2~ MgA(My, 1q)
2
(o3
+ W msmuA( Mg wU«s)A( my ,/Lu), (Bb)
N¢
Ms=Mps— 2 MA( Mg, tLs)
KN?2
+ WmumdA( mu wu'u)A( md 1/~Ld)1 (8C)

from the mean field or Hartree approximation to the self-
energy, and which determine the physical quark masses.

B. Pions and kaons

Imposing the degeneracy condition,=my, the determi-

fermionic,nation of both the pion and kaon masses follows similarly to

the standard approach taken in the two-flavor m@8EIThis
comes about, since the off-diagonal coupling strendgths
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. mi, 41
= >+ SO+ (i)
OO+ TP (i, ) =

F_IG. 1 Theqq scattering amplitude in the random phase ap- P
prOX|mat|0n. -
(twp — twm, D — k)
and K 35 are identically zero, and the® is decoupled from
the » and »’. In this limit, the 7=, 7% become degenerate. FIG. 2. Feynman diagram for the irreducible pseudoscalar po-
ConcomitantlyK; =Kg , which means physically that neu- larization function.
tral and charged kaons have the same mass. M (koK)=
The quark-quark scattering amplitude is calculated in the Koo
random phase approximatidoRPA; see Fig. 1, which yields .
the result for the kaon one. Her&lP(ky,k) represents the irreducible
pseudoscalar polarizatiofsee Fig. 2, which, in the finite

2Ky,
14K Tk K)

(10

+ i~
o 2Ky temperature Matsubara formalism, depends kgnand k
M (koK)= = 9 . L
1—4KIHP{kO,k) separately, because the medium breaks Lorentz invariance.
a9 For arbitrary flavors, the irreducible polarization is given by
for the pion scattering amplitude and the analytic continuation of the imaginary time form

. . i d°p s o
—|prlf2(|vm,k)=—N0E ; JW tr,[iS" (i w,,p)i vsiS™2(i wn—i v, p—K)i ¥s]

_ants d*p (iwnt pa) (i —ivmt po) —p(p—k)—mm,
B F ) @2 [(iogtp) - Ef[(ioq—ivet up)?—E5]

(11)

where E;=\p?+m?, E,=\(p—k)?>-m3, and the mesonic Matsubara frequencies,=2m=/B8 are even,
m=0,£1,£2,... . Note that the irreducible polarization in this definition does not contain any flavor factors from the
Gell-Mann\ matrices. These factors are incorporated explicitly in Eg)s.(10) as multiplicative cofactors of the coupling and
polarization.

We may decomposHP(kO,IZ) in terms of the functio’A(m, ) already defined in Eq.7) as

. N . N
1P (kg k) = — 8_7:2{A(m11M1)+A(m2aﬂz)+[(m1_mz)z_(ko"' w1~ o)+ K2Bo(K,my, 1,My, 2 ,Ko)}, (12

introducing the second loop integraf. Appendix A

1672 dp 1 1
J| 13

Bo(K,My, by, Mo, i vp) = ——— glon? . . . )
ol KMy 1, Mz 2.1 vm) = =5 ; 51<A(2m)° (iwp+ p1)?—E2 (iwp—ivpm+ o)’ —E2

[Note that in Eq(12), an analytic continuation has been perfornjétie comment that, due to rotational invarianBg,does

not fully depend ork, but only on|K].
In terms of the modular integrald and B,, polarizations required can then be explicitly given for arbitrary chemical
potential and temperature as

. N .
Mg5(ko K) = = g—5[2A(Mg ) — KBo(K.Mg My 1 ko) . (14
P by N -
Hsék01k):_W[ZA(msvﬂs)_k BO(kvaI/’l‘Sim31/L51k0)]v (15)

- N _ -
M5 Ko K) = = g2 {A(Mg, p1q) + AlMs, ) + [(Mg = Me)*= (Ko+ paq = us) >+ K IBo(KeMy s M as ko). (16)
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The pion and kaon masses are determined according to the g I,
dispersion relation§3] P=( p p) (27)
I—[80 HB
1-4K;Tg(m,,0)=0, (17)

TheK;" on the right hand side of E¢26) are as defined in
1—4KIHZ§(mK-6)=0, (18)  Egs.(3), while the pseudoscalar polarization functions are
the linear combinations
while effective couplings can be identified from the pole ap-

proximation forms p 2 P P
H0=§(2an+HS§), (283
_gw
Ma(ko K)~ 17— 5. (19)
—Ma 2 _p P
P_
g Hg—g(anJr 211, (28b
K
My (ko,K)~ —“2 (20
Mk
P _ 1P 2‘/—
to be T gg=TT5=—— (Mgg—TTgy (289
P -
—, 1 dlggko,0) (o Ofthe functionsllg; andIT{;, which can be evaluated via
g”‘W_mw Kg kp=m ' Egs.(14), (15). In Egs.(25—(28), we have dropped the ar-
i gument (<O,IZ) for convenience. A determination of the
1 9l1"<(k,,0) masses and coupling strengths can be made on forming the
Oplm— — (220 inverse of the matriM. We abbreviate this as
s my Ko ky="y
1 A7
At low temperatures, Eq$17), (18) have bound state solu- Ml=— " | |, (29)
tions with m_<2m, and my<mgy+ms. In this case, Egs. 2deK™ |7 7
(17), (18) are real equations. At higher temperatures, the po-
larization functions become complex functions with complexwith
solutions for the meson masses, which we may writEl@
_ A=Kg — 2117 deK ™, (308
i
m,—m,_— EF”’ (23
— B=Kgg+ 2l g deK ™, (30b)
i
mg—my— 5T (24) 7=Kg —2I1g deK ™. (309

Denoting the Mott transition temperatur€g ., and Ty as  Following [9], we introduce the diagonal formst, and
the temperatures at whiah,=2m, andmy=my+ms, re- M, via
spectively, one thus has the physical circumstance that at

temperatures larger than, , or Ty, respectively, pions or 1 c -s ”
kaons become resonances with finite widths due to the avail- M~ LW c 0 vl —s ¢l
able decay channels into two quarks. From Eg%), (22), it 7’

follows that the quark-meson couplings also become com- (31)
plex in this case. . . .
where it is a simple matter to verify that
C. pand ' , - -
L o =2+ = \(A—)°+4.757, (323
Because of the mixing terms occurring in E@), the
calculation of they and ' masses and couplings is some- 1 o — —
what more involved. The scattering amplitude is nondiagonal M, =A2+C+(2=7)+4.7°, (32b
in this sector with entrieM op, Mgg, andM gg=Mgg. Within
the RPA, which is still expressed diagrammatically in Fig. 1, c2+s2=1, (333
it can be calculated in matrix form to B8]
M=2K*(1-2I1PK*")" 1, 25 - A
( ) (25 S aa
where nowK* andII” are the 22 matrices (A=E)+4s
(% Kgg) 26) 2 27 (339
; cs= . C
Keo Kg (4= 7)2+4.52
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The masses of the and " mesons can now be determined
via the condition
-1 > _
My] (mﬂlo)_ol (34)

-1 >
M }(m,,0)=0. (35)
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2 1

gr]qaz §QO77+ ﬁan' (43)
2 2

gnsgz 5907]_ EQSn' (44)

For meson masses that lie below the quark-antiquark masEhe coupling strengthg, ;g andg, ssmay be evaluated in
threshold, these equations are again real. In practice, actutile same fashion. The set of couplingsqg, 9,ss and

numerical determinations place the mass below this
threshold aff=0, and at a specific Mott transition tempera-

tureTy,, this becomes a resonance, in much the same way

as occurs for the pions and kaons. Tflfemeson, however, is
distinguished by the fact that #lwayslies above the quark-

antiquark threshold, and it therefore is a resonant state at a‘,L
temperatures. Since this is an artifact due to the lack of cory
W

nevertheless calculate its contribution to the relevant ha;fjere with nine scalar resonances: theegs, which are the

finement, we regard this feature with some skepticism.

ronization cross sections and transition rates, and find that
is negligible, so that it can be safely discarded.

To calculate the coupling constants from HG9), we
expressV directly as

G=(A4%—5?)]deK"=1-2 tr(IIK")+4 defl deK .
(37

At (ko,K)=(m,,0), =0, and in the usual fashion, we
make a pole approximation giving the form

-7

-7
A

2

: (36)

with

M= 4m, 1 sz =75 28
97 K-mi\ -7 2| 38
Ko —
From this, one obtains
gangbn
Mab__z—fi (39
k —m;,
with
am, 7
95,= 5 T, (40)
8_ko kg=m
am, . 7
98y~ 5T (42)
[?_ko ka=m
am, 7 42
gOnQSn EY
(9_k0 kn=m

From these coupling constants we may calcul8ie

9,7qq: 9, ss€nter directly into the cross section calculations.

D. Scalar resonances

Since scalar mesons may occur as possible intermediate

resonance structures in the hadronization cross sections, we

re also interested in obtaining their masses. In contrast to
he two-flavor model, in which only the is present, we deal

Istcalar partners of the pions, foai’s, being the scalar part-
ners of the kaons, and the and o’, which are associated
similarly with the » and ’. As occurs in the pseudoscalar
case, form,# my# mg we have mixing between the, o',
and the neutratr ., the latter decoupling from the former if
SU(2) isospin degeneraay,=my is imposed.

The same techniques applied in Secs. II B and Il C can
now be directly applied to the scalar resonances, with two
changes(i) One has to replace the coupling constadfitsof
the previous section b¥; given in Eq.(3) and (i) the
pseudoscalar polarizations are replaced by their scalar coun-
terparts:

S " NC 2 2
Mgg(ko.K) = = g—3[2A(Mg, q) + (4G —k?)
XBO(IZ,mq,,qu,mq,,qu,kO)], (45)
S " NC 2 2
M3{ko K) =~ g2 [2A(Ms, 1) +(4me—K?)

X Bo(K,Mg, s, Mg, s, Ko) 1, (46)

a N
Mgi(ko.K) = = g5 {A(My, q) + A(M, 1)

+[(Mg+mMg)?— (Ko+ paq— pe) 2+ k]
(47)

which are derived from the same graph as in Fig. 2, dropping
thei ys factors at the vertices.

XBo(IZ,mq ,/qu ,mS,,LLS,kO)},

E. Numerical results

For our numerical calculations, we employ the parameter
set myy=5.5 MeV, my=140.7 MeV, GA?=1.835,
KA®=12.36, andA=602.3 MeV, which has been deter-
mined on fixing the conditions m,=135.0 MeV,
my,=497.7 MeV, m,,=957.8 MeV, andf_ =92.4 MeV,
while my, is fixed at 5.5 MeV. The reason why we fitted the
mass of thep’ instead of thep has a purely technical origin.
This parameter set gives am mass ofm,=514.8 MeV,
which compares reasonably well with the physical value
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FIG. 3. Temperature dependence of the constituent quark FIG. 5. Temperature dependence of the pisolid line) and
masses. The solid line refers to the light quarks up and down, thkaon (dashed ling coupling strengths.
dashed line to the strange quark.

Figure 5 shows the absolute values of the pion and kaon
m,=548.8 MeV. Although we have developed the generalcoupling constants. A striking behavior is observed at the
formalism to include the case of _finite chemical potentials,\jott temperature. There the polarization displays a kink sin-
we confine ourselves tpq=us=0 in what follows. gularity, which can also be seen in the meson masses. Tech-

_Figure 3 shows the temperature dependence of the cofyica|ly this results in the coupling strengths approaching zero
stituent quark masses. At=0, we findm,=367.7 MeV ¢, 1”1 rom below. This behavior differs markedly from
andmy=>549.5 MeV. At temperatures around 200 MeV the the behavior of the couplings when evaluated in the chiral

mass of the light quarks drops to the current quark MaSYimit. In that case, the coupling strength atways different

indicating a washed-out crossover from the chirally IorOkenfrom zero as one approaches the transition temperature from

to approximately chirally symmetric phase. The strang : e o
guark mass starts to decrease significantly in this temperatueﬁeelow' Note that this strong deviation from the chiral limit

range, but even aF=300 MeV it is still a factor of 2 away ehavior may have extreme consequences for results thgt de-
from the strange current quark mass. pend strongly on this function, such as the cross sections.

Figure 4 shows the temperature dependence of the pse§jnce we regard the physical situation as being nonchiral, we

. Investigate this situation only, and draw conclusion rd-
doscalar meson massesgat 0. For comparison, the curves . estigate this situation only, and draw conclusions accord

of 2my andmg+m; are also indicated. At low temperatures, mgcl)x\:\'m-Tthhee ”é?su?;k ;O%F;;Qgﬁver;a\gmﬁg: b%ii?/iotarXpl'c'tly

the meson masses are approximately constant. The crossiﬁB » they display a qua y :

of the = and 7 lines with the 2n, line indicates the respec- The numgrlca}l calculations of the scalar mass spectrum

tive Mott transition temperatures for these particlgg,, and z;re jqci\g’g :l,nMFelg\;/. 6. fnﬂ_zoé8vg(92 f;\;g\r/‘ng— 7533&9 Mn(?V'

Tnm,- One observes that, ,<Ty,, and the absolute values o' : ’ Tg ' 7K

are Ty,, =180 MeV andT,,.=212 MeV. For temperatures —1050.5MeV. For comparison, the double constituent

higher 7'][hanTM Ty res}T)ectiver ther and » become guark mass is also shown in the figure. All these mesons are
m TMps : X

resonances and their masses increase. Similarly a Mott transtable over the entire temperature range, except for the

sition temperaturd  for the kaon modes can be defined at¢» for which the mixing results in a mass slightly below

the point wherem, meetsm,+m;. This is also indicated in 2Mg &t T=0. Although the difference is small compared to

the figure. One can also see from this plot tfat, and the standard two-flavor model, it has the qualitative effect of

Tuk are approximately equal, witliy =210 MeV. making theo a stable particle for temperatures up to its Mott
temperatur@ ;.= 165 MeV. As in the two-flavor model, we

1000 -

m (MeV)

0 100 300

300

200 . .

T (MeV) 0 100 200

T (MeV)
FIG. 4. Temperature dependence of the pseudoscalar meson

masses, as well as that ofrig andmg+m;. Respective Mott tem- FIG. 6. Temperature dependence of the scalar meson masses and

peratures are indicated by the solid points. 2mg.
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TABLE |. The four independent incomingq states and their

iated outgoing t tat h bs
associated outgoing two meson states. p1+po
Incoming ud us uu ss
P2 P4
Outgoing a0 KO ata” Tt
KKO moK* w070 mO0m® P1 D3 P »
'y nK* KYK~ KYK™ 3
+ 7 T+ e O e O
7'y 7'K KK KOKO p1— D3 P1— P4
9 '
=y’ 7 P2 Py P b
nn' n'n’'
nn FIG. 7. Generic form of Feynman graphs for the hadronization
n'n' amplitudes to leading order inN/. Quarks are denoted by single

lines, mesons by double ones. The three diagrams represéan-
nel, t channel, andi channel exchanges, respectively.

obtainm,~m_ above the pion Mott temperature, as is ex-
pected from symmetry requirements.
The results presented in this section compare well with The Feynman graphs that we consider have the generic

B. Feynman graphs

those of Ref[9]. forms shown in Fig. 7. This choice of diagrams is in keeping
with the evaluation of the Hartree diagram to determine the
[1l. HADRONIZATION CROSS SECTIONS gap equation and the random phase approximation for the

polarization. Together this selection constitutes a consistent
expansion in the inverse number of colordy1[13—-15. We
Since a large number of hadronization processes is avaibtress that this is not an expansion in the coupling strength,
able to the light and strange sector quarks, it is useful tdut is rather a nonperturbative expansion. Note that the cal-
introduce a classification scheme to simplify the task ofculation of the transition amplitudes is complicated with re-
bookkeeping. The cross sections are classified according &pect to the S(2) isospin-symmetric case by the fact that
the incoming quarks and include all exit chanrjdlg]. Since  here each fermion line carries a flavor-dependent mass, while
we work in the approximatioom,=my, we have isospin the meson lines in turn carry differing masses also. We there-
symmetry and charge conjugation, leading to the relations fore attempt to retain as general a formalism as possible in
what follows for the transition amplitudes and we specify the
Oud= Tdus (483  parameters later.

A. Classification of hadronization processes

Oys= 04s= 0si=Osq» (48h) 1. s channel
The s channel exchange diagrams have the form

Oui=0dd> (4809 : _ _,
—i.Zs=v(p2)u(py) é\clczfsl A(Pp1+P2)

using an obvious notation. Together wiifs, we thus have XT(Py+ Py Pa)igiig (50)
1 2:M3 1'Y2,

four independent classes of hadronization cross sections,
ouds Ous, Oun, andogs. For these four classes, we deter- :

) o . re meson-quark lin rengths for th
mine the hadronization processes that are not forbidden bwhere 91, 9, are meson-quark coupling strengths for the

! . ) gutgoing mesons antj, is a flavor factor. The momenta of
qharge, strangeness, or isospin conservation. T_hese conseryd, incoming particles arp, andp,. For the outgoing par-
tion laws lead to the processes that are listed in Table I. L 2

i i o -
For the outgoing channels in Table |, further symmetryt'd.es’ we assign momen(z, andp,. & stands for the scat
relations hold: tering amplitude of the virtual scalar meson. It can either

take the form appropriate for a scalar meson that corresponds

Ous—7+tKO= 20—u§—> 0K+ (493 )
(Zal’ﬁ)

Oudont =20 4570y, (49b)

Oud— 7= 20—ua—> w0y’ (49C) N ma, o

. ?
(@m, §)  (iwon ~ ic, 7~ )

Os5-KTK~= Os5-KOKO (499

Ossmtm =205 7070, (499 (iwn — tvm, ¢ — k)

as a consequence of flavor algebra. In total, there are 19
independent cross sections that we calculate. FIG. 8. Three-meson vertdX(i v, ,K;ia; ,p).
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to Egs.(9), (10), if the incoming quarks have different flavor, and ITI” by I1S. The symboll" describes the three-meson
or it can be constructed as the sum over mixing terms acvertex contribution to the diagram. Its general form in the
cording to Eq.(25), in all cases withK;" replaced byK;, imaginary time formalism igcf. Fig. 8

s d3q e e w s e s o
F(IVm,k;la|,p)=—NCE ; IW tr [iS" (i w,,0)i y5iS2(iwa—ia,q—p)iysiSB(iw,—ivy,q—k)], (51

where Qum,IZ) is the four-momentum of the incoming scalar meson &g ,6) the four-momentum of one of the outgoing
mesons. It is once again understood that the complex meson frequencies are to be analytically continued at the end of the
calculation. Taking the spinor trace in E&l) leads to the form

i oo §)= e 5 [ 9 ATB (52
| LKL , = — - - - - - s
m L@ PI= T 0 | 2w [iwnt pa)2— BN (1wn—i + ) — E21[ (i wn—i vt pr3)2— E2]
with
A=mgq(q—p)—myq(q—K) +my(q—p)(q—K)+mymymy, (53
B=ma(i wn+ 1) (ion—i g+ pp) — My(i 0+ ) (i n— i v prg) + My(iop—iay+ o) o= ivpm+pz), (54

and for which the abbreviatiors; = \/q?+mZ, E,=\/(q— p)?+m3, andE;=/(q—k)?+m3 have been introduced.
As was done in the case of the polarization, it is useful to make a decomposition of this function in terms of elementary
integrals

. S N S . . > .
F(|Vm,k;|a|,p):_8—7:2((m3_m2)80(k_p,mz,Mz,mg,M3,|Vm_la/|)+(m1_mz)Bo(p,ml,Ml,mz,MzJa|)

+(mMy+mg)Bo(K,My, 1, Mg, 3, vm) +{M2(Mg—m,) +m3(my + mg) +m3(m; — my,) — 2m; m,ms
+ Mg p?— (g — pup+ 1)) = My K2 = (i v = pra+ 1) 2]+ [ (p— K) 2= (i @ = i v — ot 3) ]}
XCO(ﬁvlziml!MlimeuZiial1m311u3=ivm))' (55)

The functionB, has already been given in E(L3). It is necessary to introduce a third loop integ@ (cf. Appendix A),
which is explicitly given as

Colpik | PRREL ] e
JKomy, g, My, o ey Mg, g, ivy) = eenm |
olp 1, M1,Mp, o, e, Mg, g, 1 vy 3 - dlen(2m)
1 1 1

X — - - . - . (56)
('wn"'l’vl)z_Ei ('wn_lal+/~L2)2_E§ ('wn_|Vm+M3)2_E§

As with the polarization function that was given in Eq.2), Egs. (51)—(55) are defined intentionally without any flavor
factors.

2.t and u channels

Thet andu channel exchange diagrams shown in Fig. 7 have the general form

o — i o _ 010,f _
~1 = T18e,c,v (P2 7’5('91)W| ys(ig2)u(py) =i t_th)tz Oc,c,U(P2) ys(b1—pa+ mY)ysu(py) (57

. - 910f —
— =1 Be,,0 (P2) vs(B1— Pat M) ysu(py), (58)
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where, once agaimg,, g, are the quark-meson couplings for

: u aT
the outgoing mesons, anfg, f, account for flavor factors oxr Y
from the Gell-Mann matrices. The momenta of the incoming d s
guark and antiquark arp; and p,, those of the outgoing d d 0

mesonsp; and p,. The mass of the exchanged fermion is

denoted bym® and m), respectively. Note that these

masses are not necessarily equal. Iz ’
For any actual calculation of cross sections and transition

rates, one needs to sum the relevant amplitudes, take the d ™

absolute value squared, and to sum over final and to average

over initial states. Our results are listed in Appendix B. u ™

IS4
B

C. Calculation of cross sections d a0 d @

Having provided the prerequisites for calculation, we il- —
lustrate the main features via examplés. The process FIG. 9. Feynman graphs for the process—m* m°.
ud— 7+ 7% provides an example in which @ channel dia-
gram is required. Such a diagram occurs not only when the The virtual meson exchanged in this case is a charged
outgoing mesons are identicéil) The processis—w*K%is 0, SO that one may identify
chosen because it has unequal masses for the incoming

quarks, the virtual quarks of the vertex part, and the outgoing 2K

mesonsiii) The processiu— 7" 7~ demonstrates the us- D= Dy = —= (60)
age of mixing propagators for the virtual scalar mesons in 1-4K, an( \/5,0)

the s channel. Together, these three examples indicate how

the calculation is performed in general. The contribution of the vertex graph in the center of mass

We assume that the center of mass system of the incomingystem turns out in this case to be the same for bathan-
quarks is at rest relative to the medium. All quantities, suchel type graphs. From our general formula Esp), one has
as couplingg 44, are calculated within this framework, and
this is used in all processes calculated, e.g., in triangle dia- Nemy . ,
grams. Since this implies that=0 in Egs. (51)—(56), the 1's=I's=-— W[ZBO(O,quq*mq’/’“q’\/g)Jr(S_zmw)
vertex functionl” then depends only on the absolute value of
the meson momentum. This leads to the fact that the total  x Cy(ps,0,mq,pq,My.itq.3 VS My g, V9], (6D)
cross section depends only on the invariant ensrgpd the
temperaturel [12]. - i )

In what follows, we drop the momentum arguments of thvelere 3l =3 VS_4'”_”37 is the momentum of the outgoing
scalar meson propagatar and the three-meson vertéxfor 7 - The total contribution of thes channel type graphs is
simplicity. thus

_ B —i( M+ M) = =10(P)U(P1) 8 0, 0205
1. Calculation of oy g_, 5+ 50
Explicit graphs for this process are shown in Fig. 9. We X(fsZls+1s e Ts)
have two graphs of the channel type, which we labsland _
h 0, (62
s’, respectively. The flavor factors for these graphs are found

to b
o be which resembles the result for the two-flavor modl&g],

fe=—fg=—2y2, f=—f,=—2. (590  Where this process has r® channel due to the lack of
charged scalar resonances.
The relative sign of ¢, fg, andf,, f, arises from the flavor The squared invariant amplitude thus arises fromnt thed
matrix A5 that occurs at ther® vertex, whoseuu and dd u channels alone. From Eq82), (B3), and(B6), this takes
components have opposite sign. the form

1 |9l [ S(MG— 1) — (t—m2 —m3)?
5> | M+ M= s 3
4N§§ AR v (t—-mj)?

s(mi—u)—(u—m2—mj?  (t—=mZ—m)(m>+mi—u)+snt
(uU—m3)? - (t—m2)(u—md)

(63
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In the limit m_— 0, this reduces to an extremely simple ex- U

pression. This differs from that given in R¢f.2], in which 0K

the u channel has been omitted. d
We obtain the differential cross section for this process to s — K0

be

doyg 7+ 0 1 1
= — M+ |2
dt 16ms(s—4m;) 4N; SE;‘ |-t 2 d

(64)

The total cross section is now constructed from the inte- s K

gration over the exchanged momenttiras[12] _
FIG. 10. Feynman graphs for the process— m*K°.

do—UaHW+7TO 1 . . .
U'ua*}ﬂ.-#ﬂ.O(S,T):J’ dtd—[1+ fB(g\/E)]Z. The contribution of the vertex part can be derived from our
t 65 general formula, Eq55), to be
N -
The Bose distribution functiofig(x) =1/[exp(Bx)—1] is in- r=- 8—7_:2((m5— Mg)Bo(Pa, Mg, pq,Ms, us,Eq)

troduced, since the presence of mesons in the heat bath leads
n enhancement of the meson creation pr in the me- A

':j(?uar\n.e ancement of the meson creation process in the me +(ms+mq)Bo(0,mq,,uq,ms,,us,\/g)

, —{mgm? +mg[ mg —s+2E5(ps— )1}

2. Calculation of o 5=, z+x0

The Feynman graphs for this process are shown in Fig. X Co(P3,0,Mq. g, Mg  t4q,EsMs, p15,1/9)), (68)

10. Here only ones channel diagram is possible. From the where 53,53) and (E4,54) denote the four-momenta of the
graphs, we find the flavor factors " and theK®, respectively. Because the masses of the out-
f— f.=2 going particles are different, the momentum of thé, say,
=4, f=2. (66) . .
now has to be determined via

The virtual scalar meson exchanged in thehannel is a

- 1

ok, So that we have e 2_\/5\/[5_(m”+m'<)2][5_(m”_mK)Z]' (69)

2K,
Y= — g —, (67) From the formulas in Appendix B, one obtains the
1- 4K TIgy(\s,0) squared transition amplitude as
! Wt W 2_819raaOkad” aT|? +m)? ) 2+ m2)+ (t—m2—m? +
mg < |',,///S .,//yt| _N—c |x/ |[S—(mq ms) 1- t—mq [mq(s—mK mﬂ—) (_mq_mw)(mq ms)]
1
+m[(mi—l—mé—t)(t—mi+m§)+(mé—t)(s—mg—mg)—zmsmqmi])7 (70
q

with Re denoting the real part of the function following. doys. ,+Ko
Because of the different masses of thands quarks, the Ous-mrko(S,T)= j dt—;— [1+fs(Es)]

differential cross section is now given as
X[1+fg(E4)] (72)

in this case.
doys. - +KO 1

dt  amwsp?

1 p
g 2 A 1
c ,

3. Calculation of oy, + -

_ - ) The Feynman graphs for this process are shown in Fig.
Again, the momentunip,| has to be calculated using EQ. 11. Once again, we haweands’ channel graphs. Since the
(69), wherem,, my have to be replaced by,, ms, respec- incoming quarks have the same flavor, we have to consider
tively. mixing for the virtual mesons. The propagator for thgraph

The total cross section is defined to be reads
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0.4
S
0.3
n =y
u r d 7 &
0,0 , 302
Or 3 s
(9 T 0.1
u 7(+ 0
] 0
d V5 (GeV)
w - FIG. 12. Decomposition of the rate fua—mr*n at T=0 into

its individual contributions. At the threshold, thechannel contri-

FIG. 11. Feynman graphs for the process— 7. bution is finite, the vertical line indicating the position of the thresh-

old.
T=M, + %(2M00+2\/§M os+ Mg, (73) For equal masses of the incoming quankg=m,=m, this

can be expressed in terms of the center of mass erseagy

while the propagator for the’ graph is Az
1 |Urel|:2 \Y} 1- s (79
Tyg==M, + 5(2MOO+2\/§M08+M88). (74)

The introduction of the transition rate as opposed to the cross
Here the flavor factors for the virtual meson vertices havesections has a further advantage in that it suppresses the ki-
already been taken into account, so that we only have t@ematic singularity which appears at the threshold for the
consider the flavor factors from the outgoing mesons, whictexothermic reactiongg— MM, where mg>my_+my,.

contribute a facton/2 at every vertex: To commence, we choose to discuss one simple process,
f—f,—f—D (75 and decompose Fhe caIcuIaFior? into its const_ituxemt andu
sosh e channel graphs, in order to indicate the relative magnitude of
The meson vertex part of teands’ graphs is the same as these contributions. We pick the procass— " », which
for ud—+7°, as was given in Eq61). Since we need the by Eaq. (49b). can also be regarded as a component of the
sum.Z+. %, we find that the contribution of the, in  “uu calculation. The appropriate Feynman diagrams can be

this combination cancels and we obtain obtained from Fig. 9 on replacing the? by 7 in this figure.
There are twas channel, onég channel, and ona channel
— (Mt M) = _i;(pZ)u(pl)éclczgiqa exchanges possible. In this case, we fihg=f, and

f,=f,, and so thes channels do not cancel. We display these

4 contributions explicitly in Fig. 12. Here we plot the transition
X3 (2Mgot 2V2Mog+MggT'. (76)  rate that originates frorh 7|2 (which is equal to the con-

tribution from |.#,|?), | #4? | #<|?, the sum
The rest of the calculation proceeds as in the previous twb#i+.7,|°>, and the sum of all four graphs,

cases discussed. | s+ Mg+ 7+ 7,]?. From this figure, one can see that
thet andu channels give the dominant contributions. Al-
IV. NUMERICAL RESULTS though the velocity factor in Eq77) goes to zero at thresh-

old, thet channel contribution stays finite. However, it can-

In this section, we present our numerical results. Since weels against the channel contribution, thus yielding a zero
are interested in the cross sections as an input to transpaudtal rate here. This is a rather general feature that we wish to
equations, we choose to give the transition raw€s, T) in- point out. Such a cancellation occurs for all processes where

stead of the integrated cross sectianés,T). These two the flavor factors of thé and u channel graphs are equal,

quantities are related HyL. 8] fi="f,. We notice also that the channel contributions are
R comparatively small, except in the regiaﬁ~0.5—l GeV,
W(s,T)=[vrelo(s,T), (77 where they exhibit a resonance structure due toctheex-

, . . ) . ) change. At threshold, their contributions go to zero, since
where the relative veloc_:lty of the incoming particles in thethey are proportional ts—4m?2, as can be seen explicitly
center of mass system is from Eq. (B1). This demonstrates the generic features that
D1, 2= (mamy) 2 are empirically observed in all of our calculations: In general
100l = 12 A (79  thet andu channels dominate, while the channel only
E:E plays a role over a small region if a resonance is excited.
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ud — a0 — | fy - J
8t ud — K+?g 4 \\ ud — hadrons
ud — w9 - \
sum 10} 1\1 :
6 1
s4r 3
5F
2 5
0 0
0 1 2 3 0 1 2 3
V3 (GeV) V3 (GeV)

_FIG. 13. Contributions of individual hadronization processes for ~ FIG. 14. Transition rates fond— hadrons at various tempera-
ud— hadrons af = 0. The contribution of the processl— 7™’ is tures. Solid line, T=0; dashed line,T=150 MeV; dotted line,
negligible and is thus not shown. The rate fat— 7" 7% is finite at ~ T=190 MeV; dot-dashed line,T=250 MeV. At T=0 and
threshold, which is indicated by the vertical line. T=150 MeV, the vertical line indicates a finite rate at threshold.

We turn now to a discussion of the four_ possible hadroni- s_ 1 5 Gev. Again the contribution afd— ' is neg-
zathn rates, Whli:h stem from the four mdepen_dent CrOSfigible and is thus not shown. One notices a forward-
section classesug, oys, ouu, andogs that were listed in - packward asymmetry in this plot, which is solely due to kaon
Table . production. Physically one can understand this as follows:

After the reactiorud— K "K° has occurred, the incoming

— quark has become a constituent of #é, so that the pro-
Figure 13 shows the hadronization rateuaf— hadrons  ducedK™ preferentially takes the direction of the incoming

at T=0 as a function of/s. Here we have shown the con- u. In the other reactionsyd— 7" #° =*7, and =" 7,

tributions from individual processes, in this case beinghowever, theu can become a constituent of any one of the

ud— 7t a0, K*K®, and 7" 7. The contribution from the produced particles, which makes these reactions forward-

processud—m* 5’ is negligible and has thus not been backward symmetric.

shown. One recognizes from this figure that the transition

rate is dominated by the procesd— 7+ 7, as is expected B. us—hadrons

physically. A further physical feature that is common to all Figure 16 gives the transition rate fors— hadrons at

the cglculgtions Is glso lllustrated he“?' and we th.us commeRt_q a5 a function ofy/s, decomposed into its constituent
at this point: that is, that amxothermicprocess displays & qcesses. The dominant contributions to the transition rate
finite rate at threshold. AJr: exce_phon to this rule followg for come from the processes— 7+ K° andus— 7°K *, which
processes such asd— 77 (which are also exothermic  giye the same up to a factor of 2. We again note that these are
where equal flavor factors occur in both thandu channel gy qthermic processes, thus leading to a finite transition rate
exchanges and the amplitudes ca?c_%l,. as was d's,cussﬁfjthe threshold/s= Mg+ Mms. For /s slightly above thresh-
above. By contrast, the process—K™K" is endothermic  g|g. a maximum appears in the transition rate of
which means that the threshold shifts frod§=2mq to U§—>7T+KO, WOKJr, which corresponds to an excitation of
\/§=2mK, where it yields a zero rate. Finally we comment the o« resonance. This maximum is not visible in the overall
that the relative magnitude of the three rates contributing tgummed rate at this temperature, since it is dominated rather
the total rate essentially reflects the available phase spaceby us—K ™ production.

In Fig. 14, we show the hadronization rate at various val-
ues of the temperaturd,=0, T=150 MeV, T=190 MeV,
andT=250 MeV as a function o{/§. The threshold value of
\/§ at which hadronization sets in is different for the four
cases due to the temperature dependence of the quark and
meson masses. At=0 andT= 150 MeV the dominant pro-
cessud— 7" 7% is exothermic, thus giving rise to a finite
rate at the threshold\/§=2mq. At T=190 MeV and
T=250 MeV, on the other hand, the pions are more massive
than the quarks, so that this process becomes endothermic
and the threshold is given in this case\&s=2m.,. Thus the
finite values at thresholds observed in the rates at lower tem-
peratures change to become maxima slightly above thresh-
old, and a zero rate is obtained at these thresholds.

In Fig. 15, we show an example for the differential cross _FIG. 15. Differential hadronization cross section for
section do/dcosy at zero temperature and at ud—hadrons aff=0, Js=1.5 GeV.

A. ud— hadrons

-1 -0.5 0 0.5 1

cos @
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| I L ‘g a— uld — 7r+07r5 e
u3 — KTalw 10 F wg - T
4 ¢ u§ — nK - E uﬂ_>K+}g_ .
sum —— ulhk —= T -
1 sum
~3r =
E E
5, |
1 L
0 L 1 0
0 1 2 3 0
V3 (GeV) Vs (GeV)

FIG. 16. Contributions of individual hadronization processes for _FIG. 18. Contributions of individual hadronization processes for
us—hadrons aff =0. The contribution of the process— K™%’ is uu— hadrons aff = 0. Only the four dominant processes are shown.
negligible and is thus not shown. The contributions of the processe$he contribution of the processu— " ™~ is finite at threshold.

us—7"K® andus— #°K* are finite at threshold. o
by #°7° and #%7. We observe that the contribution of

uu—7°7% is rather small in comparison with

Figure 17 shows the transition rates at the tempera’rure&aﬂw+ 7~ We can trace this back to the allowed Feynman
T=0, T=150 MeV, T=190 MeV, T=250 MeV as a func- ' .
. . o " : diagrams and the associated flavor algebra. It turns out that
tion of Vs. Thea excitation, which is not visible &l =0, is the s channel exchanges for both processes give the same
now clearly seen aff =150 MeV andT=190 MeV. At cqqyibytion in total, although they have differing flavor fac-
T=0 and T=150 MeV, the threshold is determined as y, 5 associated with them. On the other hand,ttichannel
Vs=mg+m, and the reaction is exothermic, while for exchange form®#° contributes one-half that obtained for
T=190 MeV andT =250 MeV, the reactions are endother- .+ - hadronization, due to the associated flavor factors
mic, with threshold value/s=m,+my. Correspondingly, (f,=1 for uu— 727, f,=2 for uu—="*"). In addition,
in the exothermic regime, the transition rate is finite attheuu— #%#° also has ai channel exchange available. This
threshold, while at higher temperatures, where the outgoingends to cancel thechannel exchange. Finally, théntegra-
mesons have become more massive than the incoming quagikn runs only over half of the available phase space for the
and antiquark, the transition rate vanishes at the thresholgrocessiu— #%#° [12]. These features result in a consider-
value. able reduction in the production of°7° over 7" 7=, We
_ also point out that the production &°K° is negligible in
C. uu—hadrons contrast to the production &€ *K ™. This is due to the fact
The contributions of the various processes forthatuu—K°K® proceeds only via as channel graph, which
uu— hadrons aff =0 are shown in Fig. 18 as a function of gives small contributions compared to thandu channels,
Js. Here we plot only the transition rates for the productionas has already been discussed. This is a direct simulation of
of w* 7™, 7% K*K~, and#%%. All other channels are the Zweig rule in the NJL model.
negligible. One notices that the transition rate is dominated One final comment to the structures observed in Fig. 18 is
by 7" @ production. Forys>1 GeV, theK*K~ produc-  With regard to the cusp seen at threshold. This is due to the
tion appears to be the next most important process, followegXcitation —of the o mode with m,~2m,. At
s~1.2 GeV, one notices a very weak second maximum:
This comes from theos’, appearing in the processes
uu—K*K~ anduu—K°K°,
Figure 19 gives the rate fouu— hadrons atT=0,
T=150 MeV, T=190 MeV, andT =250 MeV as a function
of \/s. The cusp at the threshold value ¢6 at T=0 and
T=150 MeV develops to become a sharply pronounced
peak. This is a reflection of the exothermic nature of the
lower temperature processes, which have threshold
\/§=2mq, as opposed to the endothermic processes, with
threshold\'s=2m_ . In this figure, one can see the and
i . . o' maxima and the shifting of the threshold due to the tem-
0 1 2 3 perature dependence of the masses.

V3 (GeV)

us — hadrons

w (mb)

3 D. ss—hadrons
FIG. 17. Transition rates fous— hadrons at various tempera- . _ .
tures. Solid line, T=0; dashed line,T=150 MeV; dotted line, Finally we show the results fgs— hadrons for different

T=190 MeV; dot-dashed line,T=250MeV. At T=0 and temperatures as a function @6 in Figs. 20 and 21. Here the
T=150 MeV, the vertical line indicates a finite rate at threshold. dominant contribution comes from the processes>K°K°
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T 8
% ui — hadrons s — hadrons |
or i
| 6
35t 3
i
!
H
P
0 0 il
0 1 2 3 0 i 2 3
V3 (GeV) Vs (GeV)
FIG. 19. Transition rates fonu— hadrons at various tempera-  FIG. 21. Transition rates foss— hadrons at various tempera-

tures. Solid line, T=0; dashed line,T=150 MeV; dotted line, tures. Solid line,T=0: dashed line,T=150 MeV: dotted line,
T=190 MeV; dot-dashed line,T=250MeV. At T=0 and T=190MeV; dot-dashed line,T=250MeV. At T=0 and
T=150 MeV, the vertical line indicates a finite rate at threshold. T=150 MeV, the vertical line indicates a finite rate at threshold.

and ss—K*K™, which have identical cross sections, and d3p
ss— 7. The pion production rate is very small, since these pi(T)= f —\;ZNCfF(\/ﬁer miz) (81
processes do not have and u channels available, again (2m)

simulating their suppression by the Zweig rule. One notices a

sharp resonance in these curves near threshold. This is due g a given quark species. In EG®0), (81), the factor N,
L. . accounts for the number of degrees of freedom. To perform
the ¢’ intermediate state. The threshold values\&‘ are

. the integration, we have made the approximation that
determined aff=0 and T=150 MeV by \/s=2mg, where

. . . o(s,T) depends only ors, even when we are not in the
the reaction is exothermic. AtT=190MeV and

~ k _ center of mass system. With this assumptimiT) can be
T=250 MeV, this is rather given by/s=2my, since the cast into the form

reaction is endothermic.

E. Averaged transition rates and hadronization times w(T)= f(m . )2ds\/(p1p2)2—(mlmz)zo(s,T)P(s,T),
1 2
In order to make a connection with transport theory, we (82
introduce the energy averaged transition fAig)] ) ) o
where the weight functio(s,T) is given as
W= [ 901 0P N f(Ey)
W = ©
p1(Mpa(T)) (2m)? (2m)3 7 P PisT=——— 2 (" dEr2Nfo(E
(Sv ) p (T)p (T) 8774 1[ c F( l)]
X[2Nfr(E2) Iw(s, T), (80) b M
which is the average transition rate for quarks and antiquarks Xj dE,[ 2N fr(E,) 10 (4]p,|?|po|?
coming from a thermal medium, their distribution being M2
given by the Fermi functionfr(x)=1[exp(Bx)+1]. The —[s—(m§+m§)—2ElEz]2). (83

qguark density is given as an integral over this function

We show the results of the average ratéT) for the four
hadronization classesd, us, uu, andss as a function of
temperature in Fig. 22. One observes that the quantity
w(T) stays fairly constant in the region frofi=50 MeV up
to the pion Mott temperaturé), .. At T, it displays a
minimum. This behavior differs strikingly from the curves
shown in Ref[12]: Whereas the cross sections shown there
decrease towards the critical temperature and tigarge
sharply, we obtain aninimumat the pion Mott temperature
with no divergence at all. There are two reasons for this
behavior:(i) The reason for the occurrence of the divergence
has been explained in Réfl2] as originating from the term
: V3 (GeV) g do/dt~ 1/(t—m§) that arises _from the_char_wngl amplitude.
These authors have worked in the chiral limit, so that at the
FIG. 20. Contributions of the dominant individual hadronization Critical temperaturen,=0, and thet integration required for
processes foss—hadrons aff =0. The contributions of the pro- the total cross section, yields a logarithmic divergence. Here,
cessess—K*K™ andss—K*K™ are finite at threshold, as indi- on the other hand we consider the physical situatiofinite
cated by the vertical line. current quark masses, so that the quark propagators stay fi-

33 = KY K~ (KR0)nn
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15

02t 7T el

0 100 200
T (MeV)

0 100 200
T (MeV)
FIG. 22. Temperature dependence of the averaged transition F/G- 24. Temperature dependence of the averaged strangeness

ratesw(T). Solid line, ud—hadrons: dashed linajs—hadrons; ~ Production/destruction rates. Solid linejd— strange hadrons;

dotted line,uu— hadrons; dot-dashed lines— hadrons. dashed line, uu— strange hadrons; dot-dashed liness—
nonstrange hadrons.

nite for all temperatures, and no divergence may odgur. o T =W,y pa+t Wei(T)pg+Wux(Tps,  (84)
The behavior of the cross sections is also determined by the !
quark-meson couplings, which multiply the transition ampli- 7o HT)=Wei(T)pg+Wed( T pg+WsdT)ps.  (85)

tude squared. In the chiral limit, as calculated in R&g],

these tend to a constant value at the transition temperatur&éhe quantityr,(T) represents the mean lifetime otiaquark

so that the overall behavior is given by the mechanism dein a plasma before it hadronizes into a meson. Analogously

scribed in(i). On the other hand, in our case, wheg+ 0, 74(T) is the mean lifetime of & quark. The numerical re-

the quark-meson couplings strictly approach zero at the Motsults are shown in Fig. 23. In the temperature region of in-

temperatures, and are thus responsible for the observed bierest, 150 MeW¥T=<250 MeV, the hadronization times are

havior. 2—-3fm/c for a u (or d) quark, and 3-4 fm/c for an s
The little dip observed in the curves &t=180 MeV cor-  quark. As expected, the hadronization time becomes infinite

responds to the Mott temperature of the Ty,,,. One also  at the Mott temperature, since all hadronization cross sec-

notes a discontinuity in the production rate for the clasdions go to zero here.

uu— hadrons atT=165 MeV. This occurs in the model

since theo in the SU3)x SU(3) case is weaklhboundat F. Strangeness production

T=0, and becomes a resonance at the Mott temperature |n this section, we discuss the production rates for the

Tuw,=165MeV. This leads to a transition rate processes that change the total numbes @lus s quarks.
~1/\'s—4m; and thus to a discontinuous averaged transi-The enhancement of this quantity observed inKHer ratio
tion rate. Because of kinematic reasons, this is only visible inn nucleus-nucleus collisions ovér+ N collisions is one of
the processesu— 7" 7~ anduu— w%7° that contribute to  the observables which indicates new phygit49,24. The
uu— hadrons. Note that this structure Woulld not appear foprocesses of interest af® ud—K*K?, (i) uu—K* K™,
the SU2)X SU(2) NJL model, where ther is a resonant KOK®, and(iii) ss— a7, 7°7°, n7, 7', 7' 7'. While

state for all temperatures. This is thus a model dependen,q first two reactionincreasethe total number o§+s, the

feature. o third one decreaseshis number. The production/reduction
Fromw(T) we compute the hadronization times ratesw(T) are shown in Fig. 24, respectively, as a function

10 0.015
8t (AK)gain
s
0.010 |
2 ak
E o ==
= = m
-4t / J
7 0.005 |
2 L
0 . . . . . 0 ——
100 150 200 250 0 100 200
T (MeV) T (MeV)

FIG. 23. Temperature dependence of hadronization times for FIG. 25. Temperature dependence of the strangeness enhance-
light quarks(solid line) and strange quark@ashed ling Note the  ment factor QK) g0/ (solid line) and the strangeness reduction
broken scale on the abscissa. factor (AK).ss/ 7 (dashed ling
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of temperature. Both increasing and decreasing processegothermic and thus can also happen at low temperatures.
show qualitatively the same behavior. The strangenessSince the processes in these three cases do not dominate their
increasing processes are endothermic and thus occur prefeespective hadronization class, the overall magnitude of the
entially at higher temperatures, whereas the strangenessates is rather small compared to that shown in Fig. 22.
decreasing processe@t least the dominant onesare It is useful to define the ratio

(AK) gain Wygo kK- T Wy k k= Wy KoKo

— = = = = — : (86)
m Wydo mt 70T 2Wy g 7+ 2T Wyt mt m— T Wy, 70,0+ 2Wua*>ﬂ.07]+ 3Wuaﬂ,m

measuring the total hadronization from up and down quarks into kaons relative to the pion production due to hadronization.
Here we have assumed that thedecays into three pions and we have neglected the contribution of thEhe temperature
dependence of this quantity is depicted in Fig. 25. The discontinuiy=at65 MeV is due to pion production, as has been
discussed previously. Kinks occur at the respective Mott temperafliggs Tm,, Twmk, and Ty,. Numerically at

T=150 MeV, the strangeness enhancement ratio riseAK9J i,/ == 0.01. This enhancement of about 1% is to be compared
with the enhancement of 9% f@&+ S collisions at 200 Ge\VAA over N+ N collisions, as found by the NA35 collaboration

[16]. The loss term, defined as

(AK)Ioss_ pSpS%WSg—MTJr T +WS§—>770770+WS§—> nn' +WS§—> 7]7;+WS§—> n' 7]’)

77 2p,pa(Wyds 7+ 70+ 2Wy g, 1+ 2t Wote 7t 7= T Wy 700+ 2WUU*>7T077+ 3Wyg_ 777/)

(87)

is also indicated in Fig. 25. The maximal loss is an order of What can be learned from this calculation? From the mea-
magnitude less than the gain in strangeness due to hadrorsured spectra of the hadrons produced in high energy heavy
zation. Note that the back reactiss— nonstrange hadrons ion collisions, one derives temperatures in the range of
has been calculated under the assumption of thermal equilii-50—200 MeV[16]. This temperature range is also found for
rium values forpg and ps. Should thermal equilibrium for the location of the phase transition in lattice gauge calcula-
strange quarks, however, not be reached, one would expettons. In our calculation, the pion Mott temperature
this loss term to be even more strongly suppressed. Tu-=212 MeV plays the role of separating the regions

where pions are stableTKT,,,) and where they exist as

resonances. The unphysical aspect of our model is the ap-

V. SUMMARY AND CONCLUSIONS pearance of constituent quarks foKT,,,. Thus all had-

. ronization cross sections far<T,,, are only of academic
In this paper, we have used the U< SU3) NJL model a5t I we focus on the temperature region between

to calculate temperature-dependent cross sections and tranggo MeV and 250 MeV, twdin our opinion physically rel-
tion rates in a scheme ordered in the inverse number of co svant numbers can be extracted.

ors, 1N, . To this end, we have included an exact calculation (i) The hadronization timeThe quark-gluon plasméf it

of the pseudoscalar and scalar meson masses, treating th(’?sc‘ereached at gllis a transient state because of the rapid
particles as resonances at temperatures beyond their respecs

. ) S pansion of the system. Therefore it is of great interest to
tive Mott temperatures, when they may dissociate into theni(n

. : . ow the times for the various stages of the system: thermal-
constituent quar'k.and antiquark. Our calculation has beef}ation of the quark-gluon plasma, hadronization, and final
performed for finite values of the current quark masses

S . L state interaction time. In our calculation we find an average
which is regarded as the physical situation.

ime for the h izati f k of
In describing the hadronization procedure, we have idenElme or the hadronization of a quark o

tified four classesid, us, uu, andss determined by the Toa=2—4 fmlc. (88)
initial incoming quark and antiquark and final statesr,

wK, KK, K7, andn#. The individual processes contribut- Thijs value may be considered not unrealistic in view of ex-
ing to each class have been listed and calculated, and thedansion scenarios.

contributions to the cross sections have been studied as a (ji) Strangeness enhancemeht experiments, a sizable
function of temperature and center of mass energy. We argajue of strangeness enhanceméht/ = has been observed
able to account for all the observed structures that result asig heavy ion collisions ovemN+N ones. This value is
function of (i) threshold effects(ii) an intermediate reso- AK/7=9%. Our calculation yields an enhancement of
nance being excited, or via th@i) summation of several apout 1% as coming from the hadronization stage. This result
processes. The relevance of each process is discussed, gAglicates that the dominant contribution to strangeness en-
we observe, for example, a forward-backward asymmetry ithancement must occineforeor after hadronization.

the class ud— hadrons, which is due to the process On the theoretical side, the present paper shows that had-
ud—K*K°. Averaged and total production rates are calcu-ronization cross sectior{as other quantities to@re nonper-
lated for each class. turbative in nature and have a rather strong temperature de-
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pendence. Thus calculatiofsascade or other onebave to  including differing chemical potentials, quark masses, and
take these aspects into consideration, if they want to be rearbitrary kinematicqapplicable inC,), can be found in a
alistic. forthcoming publicatior{22]. Since the NJL model is non-
renormalizable, we choose a three-momentum cutoffs
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(A1)

1. Computation of A

APPENDIX A: LOOP INTEGRALS
whereE = /p?+ m? and the limity— 0 has to be taken after

The decomposition of Feynman diagrams into elementaryhe Matsubara summation. In the cage=0 this is easily
integrals is a well known technique for zero temperaturesyvaluated to be
[21]. At finite temperature, however, no general theory has to
date been given. Large $8) calculations are difficult with- A p? B
out implementing a technique that enables one to decompose A(m,0)= _4JO dpe ta”"(?)- (A2)
all expressions into a few integrals only, the calculation of
each of which can be done once. The evaluation of thesg, the |imit B— =, this can be evaluated analytically. For
integrals for the general case is a tedious task, which wilfinjte temperatures, the integral has to be performed numeri-
form the subject of a separate publicati@®?]. To be con- cally.
cise, we simply illustrate the calculation of the elementary
integrals for some special cases here, confining ourselves to
the situation of zero chemical potentials and equal masses for
all fermions. This is already a sufficient basis for most of the The second loop integrdB, is defined as the analytic
calculations within the two-flavor sector. A full calculation, continuation of

2. Computation of B

By(K v 1672 i ”J dp 1 1
lm 1 lm ] 1|V = ewn N . . .
O 51<A(2m)% (fwn+ u1)2=EZ (ion—i v+ ug)?— E3

(A3)

[E;=Vp2+m2, E,=(p—k)2+m?] to the real axis. The cade=0, which we require for the determination of the meson
masses, is singular and has to be treated separately. For this case, one obtains

2 tan pE
Bo(0,m,0,m, 0k —87JAd i 2 L i m® (27 ko) O(ko— 2m)t r(BkO) 1 (2m)2 A4
0(0,m,0,m,0ky) = 8: . pm iTO( 0)O(ko—2m)tan 4 %o | (Ad)

Here 7 denotes the Cauchy principal value of the integral.
For finite values ofk|, B, takes the form

i,

E

(k2+2p|K|)?— 4K3E?|

= +im[O(2p|K|—|k2+ 2k, E
(k2—2p|k|)2—4kSE2‘ [ (2p[k| | oEl)

- 1 (A
Bo(k,m,O,m,O,ko)=—TJ dp
k| Jo

—@(2p||2|—|k2—zkoe|)]). (A5)

The imaginary part of this integral can be easily evaluated analytically. Note that this is not covariant due to our noncovariant
regularization scheme.
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3. Computation of C
Cy has been defined to be the analytic continuation of

167° . ”f d’q 1 1
@n
161<A(27)3 (iwp+ u1)2—E2 (lop—ia+ wp)?— E3

Co(P KMy, 1, My, php,i v, Mg, g, @) =

1
X— - .
('wn_|Vm+:U~3)2_E§

(A6)

In the example presented here, we not onlyset0 and consider equal masses, but alsokse®, |ﬁ|=%\/s—4mi, i =
3Vs, andivy,= \s. The result can be directly applied to pion production. One finds

p tan%( 'BE)

Co(0,g,m,0m,0,y/s,m,02/s)=— Jf f p————

1 m*— 2 . R
x E(mgh —iw[®(pIQI—|§+|)+®(p|q|—|§I)])

+ 2 log 727 &
\/E—ZE 727_§+

—iw@(plﬁ|—|§_|>)

2 | mi+§+ . >
+\/§+2E og e +im@(pla|—|£4])

wl2

| 4 2m2 —(s—|d|\s—4m?)|
+im —| log —1
Vs(s—4m?)

2mf,—(s+|ﬁ|\/s—4m2)‘

70 (|q|s—4m?—|2m3—s))

(A7)

({«<= Eys* p\/s—4mf,, £ =E\s+ mf,). In the limit m_—0, the® functions vanish identically and EGA7) can be greatly
simplified to yield the result of Ref12] for the three-meson vertex.

For a full calculation oB,, for arbitrary values of the quark masses and chemical potentials, as vi&jlfas the same and
arbitrary kinematics, the reader is referred to R2g].

APPENDIX B: SQUARED MATRIX ELEMENTS

In this appendix, we give the technical details required for calculating the squared transition amplitude with unspecified
general masses. One is required to average over initial states and sum over final states. From the former, one obtains a factol
1/4NZ . The color trace gives a factdt,. The flavor trace is accounted for explicitly by the factéys f,, andf,. Our final
expressions for these functions, after taking the spinor trace, are

g§|///s|2 2|9192| S T | s— (my+my)?], (B1)
1 . flogl® 1
ang & A= TR ooy (M M= (= mi mg) -+ (92— t) (s mi— m) + 2mymi(t— mg+ mp)
—2m,m(mi—m2—t)—2m;my,(t+ m?)], (B2)
415 S L= z'gﬁiZ'z (u_;u)z)z[(mi—mi—u)(u—m§+m§>+<m<“>2—u)(s—mi—m§>+2m1m<“>(u—m§+m§>
—2m,m“Y(m3—m3—u)—2m;m,(u+mW?)y], (B3)

for the squares of the individual channels. Here we denote the masses of the incoming quagkaiyy, the masses of the
outgoing mesons byng, m,, and the mass of the virtual fermion in th@ndu channels bym® andm("), respectively.
The results for the mixed terms are
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1 o fsfilgigel*  or
e S}; ) el mumi—mi+ ) —my(mi—mi-t) +mV(s—(m+my)?)], (B4
1 fof 2 gr
LS = GG 0 my(mE- -+ (- (gD, (85)
ANZ £ 2N,  u-m
1 fiful9192l° 2, 2 2_ .2
I . * = _ — ) _ — 2
N ; M, = AN, (t_m(t)z)(u_m(u)z)[(m2+m3 u)(mz—mi+2mm —u) +(s—(my—m,)?)

X (M5+m3—s)+(m3+mi—t)(m5—m2+2m;m® —t) + 2m,(m; — mW)(m2+ m3—t) + 2my(m; —m¥)
X (MZ+mj—u) +2(my—m™)(m;—mY)(s—(my+my)?)]. (B6)

From these formulas, it is straightforward to derive the results of REZ] for the casem;=m,=m®=m and
m3:m4:0.
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