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A one parameter, model confined-gluon propagator is employed in a phenomenological application o
Dyson-Schwinger and Bethe-Salpeter equations to the calculation of a range ofp- andr-meson observables.
Good agreement is obtained with the data. The calculated quark propagator does not have a singularity o
real-p2 axis. A mass formula for the pion, involving only the vacuum, dressed quark propagator, is presen
and shown to provide an accurate estimate of the mass obtained via a direct solution of the Bethe-Sa
equation.

PACS number~s!: 14.40.Aq, 12.38.Lg, 12.39.Pn, 12.40.Yx
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I. INTRODUCTION

The Dyson-Schwinger equations~DSE’s! provide a use-
ful, semiphenomenological tool for the study of QCD. The
coupled integral equations relate then-point ~Schwinger!
functions of QCD to each other. They provide a nonpert
bative, Poincare´ invariant framework that enables one to co
relate hadronic observables through the properties of
Schwinger functions of the elementary excitations in QC
i.e., the Schwinger functions of quarks and gluons.@Quark
and gluon propagators~two-point functions! are examples of
such Schwinger functions.# This makes it particularly suit-
able for addressing questions such as confinement and
namical chiral symmetry breaking and also hadronic sp
troscopy and interactions. This approach is reviewed in R
@1# and has recently been applied to the study ofp-p scat-
tering @2#, the electromagnetic pion form factor@3#, r-v
mixing @4#, and the anomalousg*p0→g-transition form
factor @5#.

It is possible to obtain information about such Schwing
functions via a numerical simulation of a lattice-QCD actio
@6–8#. However, in addition to the usual problems associa
with identifying and establishing the existence of the co
tinuum limit, and recovering the global symmetries of QCD
this also requires gauge fixing on the spacetime latti
Gauge fixing eliminates a number of gauge-equivale
gauge-field configurations, thereby leading to poorer sta
tics. It does not eliminate all such configurations, howev
One is left with Gribov copies, i.e., gauge configurations
the gauge-fixed ensemble that are not distinct but are rela
by topologically nontrivial gauge transformations@9–11#.
This entails an overcounting problem in the evaluation
gauge-fixed correlation functions. Present studies are enc
aging, having established that this approach to the calc
tion of gauge-fixed QCD Schwinger functions is feasible@7#.
However, the problems identified above entail that they
currently qualitatively and quantitatively unreliable.

Presently the most reliable estimates of the behavior
quark and gluon Schwinger functions are obtained in D
studies. The DSE’s are a tower of coupled equations an
solution is only tractable if this tower is truncated. Trunc
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tion procedures that preserve the global symmetries of Q
are easy to construct and implement. This has not yet b
accomplished for the local symmetry in QCD; howeve
progress is being made following the realization of the im
portance of the nonperturbative structure of the fermio
gauge-boson vertex@1,12–16#. This introduces an uncer-
tainty in the infrared, i.e., fork2,122 GeV2. However, this
uncertainty is merely quantitative. There is general agr
ment on the qualitative features of the quark and gluon tw
point Schwinger functions, i.e.,~1! that the gluon two-point
function is significantly enhanced at small spacelikek2

@1,17–19# and that this entails an enhancement of t
momentum-dependent quark mass function@1,20–24#, and
~2! that for k2.1–2 GeV2 the two-loop, renormalization
group improved, perturbative results are quantitatively re
able.

Some phenomenological DSE studies have employe
parametrization of the two-point quark Schwinger functio
based on these results, for example, Refs.@2–5#. Such stud-
ies are phenomenologically efficacious. However, they
volve the addition of new parameters when applied to s
tems involving other thanu andd quarks.

The introduction of new parameters is unnecessary wh
the propagator for a quark of a given flavor is obtained d
rectly from a quark DSE whose kernel is determined by t
two-point gluon Schwinger function and the quark-gluo
vertex. This procedure correlates the propagators for qua
of different flavors via the parameters in the gluon two-poi
function. There have been studies that employ this approa
for example, Refs.@21,25,26#. However, it is computation-
ally more intensive and the studies therefore addressed
calculation of a smaller class of observables. The pres
study is a first step in extending this latter approach.

Herein we employ a one parameter model gluon propa
tor ~gluon two-point Schwinger function!, motivated by the
results of Refs.@17–19#, in a calculation of a range ofp- and
r-meson observables. The one parameter is a mass scale
can be interpreted as marking the transition between the
turbative and nonperturbative domains. This model glu
propagator provides the kernel for a quark DSE, which
solved to obtain the quark propagator~quark two-point
390 © 1996 The American Physical Society
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53 391MODEL GLUON PROPAGATOR AND PION ANDr-MESON . . .
Schwinger function! for real p2P(2`,`). These two
Schwinger functions provide the kernel of the meson Beth
Salpeter equation~BSE!, whose solution yields the meson
mass and Bethe-Salpeter amplitude, which is a necessary
ement in the calculation of decay constants and scatter
lengths, for example. The single mass parameter determi
all of these Schwinger functions and is varied to obtain
good fit to a range of calculatedp observables. This illus-
trates the utility and economy of the approach.

In studying the pion BSE we derive a mass formula fo
the pion, which involves only the vacuum, dressed qua
propagator, valid to all orders inmR , the renormalized cur-
rent quark mass. Our numerical studies show that this f
mula provides an excellent estimate of the mass that is
tained by actually solving the BSE.

The model gluon propagator is discussed in Sec. II a
the quark DSE in Sec. III. The pion mass formula is pr
sented in Sec. IV. Our numerical results are discussed in S
V and we summarize and conclude in Sec. VI.

II. MODEL GLUON PROPAGATOR

In Euclidean metric@27# the Landau gauge gluon propa
gator is

g2Dmn~k!5S dmn2
kmkn

k2 D g2

k2@11P~k2!#
, ~1!

where P(k2) is the gluon vacuum polarization. Setting
Z1

gh5Z3
gh, whereZ1

gh is the renormalization constant for
the ghost-gluon vertex andZ3

gh that for the ghost wave func-
tion,

D~k2![
g2

k2@11P~k2!#
~2!

satisfies the same renormalization group equation as
QCD running coupling constanta(k2) @28# and hence

@g2Dmn~k!#R5S dmn2
kmkn

k2 D 4pa~k2!

k2
. ~3!

This is sometimes described as the ‘‘Abelian approximatio
because it entails the QED-like Ward identityZ15Z2 , where
Z1 is the quark-gluon vertex renormalization constant a
Z2 is the quark wave function renormalization constant@1#.

The two-loop renormalization group expression for th
running coupling constant only receives small (;10%! cor-
rections from higher orders for spacelikek2.1 GeV2 and
hence can be said to provide an accurate representation
this domain. Fork2,1 GeV2, however,a(k2) is not known
and can only be calculated nonperturbatively. The curre
status of such studies is summarized in Ref.@1# and, as re-
marked in Sec. I, gluon-DSE studies agree on the qualitat
behavior ofa(k2) at small k2. Present phenomenologica
quark-DSE studies rely on anAnsatzfor a(k2,1GeV2) mo-
tivated by these gluon-DSE studies.

Herein we consider a parametrization suggested by
Landau gauge studies of Ref.@19#, which revealed a strong
enhancement in the gluon propagator at small spacelikek2
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(,1 GeV2) that could be described by an integrable sing
larity. We employ the one parameter form

D~k2!54p2dF4p2mt
2d4~k!1

12e~2k2/@4mt
2
# !

k2
G , ~4!

where d512/(3322Nf), with Nf53 the number of light
flavors. The first term in Eq.~4! provides an integrable, in-
frared singularity@20#, which generates long-range effec
associated with confinement, and the second ensures tha
propagator has the correct large spacelike-k2 behavior, up to
ln@k2# corrections. A form similar to this has been used b
other authors@21–24# with one-loop logarithmic corrections
included in the second term. We neglect these terms a
simple expedient to ensure that our gluon propagator d
not have a Lehmann representation and may therefore
interpreted as describing a confined particle, i.e., an elem
tary field with which there is no associated asymptotic sta
@1,29#.

Since ours is a model gluon propagator, there is no rea
why the coefficients of the two terms in Eq.~4! should be
related in the particular fashion we have chosen. Howev
consider

D~x2![E d4k

~2p!4
eik•xD~k2!5dFmt

21
1

x2
e2x2mt

2G . ~5!

It is clear from this that with our choice of the ratio of thes
coefficients the effects ofd4(k) in Eq. ~4! are completely
canceled at smallx2, i.e.,

D~x2! .
mt
2x2,1

d

x2
1O~x2!, ~6!

which is the form expected from QCD~again neglecting
logarithmic corrections!.

One can therefore interpretmt as the mass scale in ou
model that marks the transition from the perturbative to t
nonperturbative regime. Hereinmt is varied to provide a best
fit to a range of calculated pion observables.@See Eq.~52!
and the associated discussion.#

III. QUARK SELF-ENERGY

In Euclidean metric@27# the DSE for the quark propaga
tor is

S21~p!5Z2~ ig•p1m0!1S8~p!, ~7!

where

S8~p![Z1EL d4k

~2p!4
4

3
g2Dmn~p2k!gmS~k!Gn~p,k!, ~8!

with Gm(p,k) the quark-gluon vertex, is the regularized se
energy, which can be decomposed as

S8~p!5 ig•p„A8~p2!21…1B8~p2!. ~9!

The inverse of the renormalized quark propagator is

S21~p!5 ig•p1S~p!5 ig•pA~p2!1B~p2!. ~10!
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Herein the prime denotes regularized quantities a
unprimed quantities are fully renormalized.

We employ a subtractive renormalization scheme, requ
ing that, at a spacelike renormalization pointm2,

S21~p!up25m25 ig•p1mR , ~11!

with mR the renormalizedcurrentquark mass.
In this scheme, the wave function and mass renormali

tion constants are given by

Z2[22A8~m2,L2! and mR[Z2m0~L2!1B8~m2,L2!,
~12!

respectively, and the renormalized self-energies are there
obtained from

A~p2,m2!511A8~p2,L2!2A8~m2,L2!, ~13!

B~p2,m2!5mR~m2!1B8~p2,L2!2B8~m2,L2!. ~14!

In this scheme,A(m2)51 andB(m2)5mR(m
2). @In the fol-

lowing we often writemR(m
2) as simplymR , in which case

them2 dependence is implicit.#
The renormalized axial-vector Ward identity is

~p2q!miGm
5 ~p,q!5S21~p!g51g5S

21~q!22mRG5~p,q!.
~15!

The composite operatorsGm
5 andG5 are renormalized such

that, atp25m25q2, Gm
5 (p,q)5gmg5 andG5(p,q)5g5 .

The chiral limit is identified as the limit in which the
renormalized axial-vector current is conserved, i.e, with t
limit mR(m

2)→0.

A. Analysis of the large-p2 behavior of the quark propagator

At large spacelikek2 and p2 one may replace the gluon
propagator and the quark-gluon vertex by their asympto
forms

D~k2!→
1

k2
and Gm~p,k!→gm . ~16!

In this limit A(p2)[1 andB(p2) is the solution of

B~x!5Z2m01
l

4E0L
2

dy yS 1x u~x2y!1
1

y
u~y2x! D

3
B~y!

y1B2~y!
, ~17!

wherex5p2, y5k2, andl54 Z1d.
For x such thatB(x)2!x, i.e., for x>m2, this integral

equation is equivalent to the differential equation

d

dx S x2 ddxB~x! D1
l

4
B~x!50, ~18!

subject to the boundary condition
nd

ir-
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B~m2!5mR ~19!

or

S ddx @xB~x!# D U
x5L2

5Z2m0 . ~20!

Under the change of variablesx5m2exp(2z), Eq. ~17!
becomes

B̈~z!12Ḃ~z!1lB~z!50, ~21!

which is the equation of motion for a damped harmonic o
cillator. One has critical damping forl5lC51 and this
yields the critical coupling for dynamical chiral symmetr
breaking; i.e., in the absence of the first term in Eq.~4!, the
model would still exhibit dynamical chiral symmetry break
ing for l.1. This behavior has been observed in QED@30#
and phenomenological models of QCD without an infrare
singular model gluon propagator@31–33#.

The solution of Eq.~18! consistent with Eq.~19! is

B~z!5ke2zcos~zAl211f!, ~22!

with

k cosf5mR . ~23!

In the chiral limitmR50 and hencef5p/2. In generalk is
only determined in a complete solution of the integral equ
tion.

The boundary conditions in Eqs.~19! and~20! are equiva-
lent: A given value ofmR entails a given value ofZ2m0 and
vice versa. In fact, for finiteL, mR50 generally entails
Z2m0Þ0. It follows from Eq. ~22!, however, that for any
finite value ofmR

lim
L2→`

Z2~m2,L2!m0~L2!50. ~24!

Equation~22! indicates that the renormalized mass fun
tion will exhibit damped oscillations about zero fo
p2.m2, a feature we observed in our numerical solution
which were well described by Eq.~22! on p2P@m2,L2#.
With the exception of Ref.@34#, other DSE studies implicitly
usem5L and hence the oscillations are not observed. T
oscillations were observed in Ref.@34#, which addresses in
detail the nonperturbative renormalization of the fermio
DSE in QED.

B. Additional remarks

The ‘‘Abelian approximation’’ entails thatZ15Z2 in Eqs.
~7! and ~8!. We make this identification hereafter.

In the numerical studies described below we employ
the rainbow approximation

Gm~p,k!5gm . ~25!

This is a quantitatively reliable approximation in Landa
gauge.~This is not the case in other gauges.! For example, in



d-

53 393MODEL GLUON PROPAGATOR AND PION ANDr-MESON . . .
studies of the critical coupling for dynamical chiral symme
try breaking, a comparison of the results obtained using t
approximation@30# with those obtained using more realistic
vertexAnsätze @1,12,15,16,35# shows this approximation to
be accurate to 5%. The improvements to this approximati
are qualitatively important@1,12,15,16,35#, being crucial to
the restoration of multiplicative renormalizability and gaug
covariance. However, herein a quantitatively reliable calc
-
his

on

e
u-

lation scheme is sufficient and this is provided by Eq.~25! in
the Landau gauge.

IV. PION MASS FORMULA

The unrenormalized BSE for the pion in the generalize
ladder approximation is, with unrenormalizedn-point func-
tions below denoted by a tilde,
ion
G̃p~p;P!1E d4q

~2p!4
4

3
g2D̃mn~p2q!gmS̃~q1 1

2P!G̃p~q;P!S̃~q2 1
2P!gn50, ~26!

whereP5p11p2 is the total momentum andp5(p12p2)/2 the relative momentum of theq̄-q pair.
For the pion it is a good approximation@26,36# to write

G̃p~p;P!5g5F̃~p2,P2!, ~27!

in the sense thatG̃p(p;P) is a general pseudoscalar 434 matrix and the right-hand side is, pointwise, a good approximat
to it and the inclusion of the other allowed Dirac amplitudes alters the mass eigenvalue by,1%. With this approximation Eq.
~26! becomes@C2(R)5(Nc

221)/(2Nc)54/3 for Nc53#

8NcF̃~p2,P2!53C2~R!E d4q

~2p!4
D̃~p2q!H̃~q;P!, ~28!

with

H̃~p;P!58Nc~p1•p2s̃V
1s̃V

21s̃S
1s̃S

2!F̃~p2,P2!, ~29!

where we have definedp65p6P/2,

s̃V
65

Ã~p6
2 !

p6
2 Ã~p6

2 !21B̃~p6
2 !2

and s̃S
65

B̃~p6
2 !

p6
2 Ã~p6

2 !21B̃~p6
2 !2

. ~30!

Equation~28! is a convolution in four dimensions and can be rewritten as

058NcF̃P~x!2C2~R! 3D̃~x!H̃P~x!, ~31!

with H̃P(x) the Fourier transform, with respect top, of H̃(p;P).
Multiplying the right-hand side of Eq.~31! by „F̃P(2x)/@3C2(R)D̃(x)#… one can construct

Pp~P![E d4xS 8Nc

3C2~R!

F̃P~2x!F̃P~x!

D̃~x!
2F̃P~2x!H̃P~x!D . ~32!

In the auxiliary-field bosonization of the global color-symmetry model@1,37# the effective action contains the term

E d4x d4y p i~x!Pp~x2y!p i~y!, ~33!

with p i(x) a local field variable identified with the pion field. One sees from this thatPp(P) plays the role of the inverse
propagator for the composite pion field. Further, at the solution of the BSE,P252mp

2 , Eq. ~31! is satisfied and hence

Pp~P252mp
2 !50. ~34!

It has been shown@38# that form050 the unrenormalized BSE has a massless,P250, solution with

F̃P~x!5F̃P50~x!5B̃m050~x!, ~35!
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which is the manifestation of Goldstone’s theorem in the DSE approach. Using this as an approximation forP252mp
2Þ0, via

the unrenormalized DSE,

B̃m050~x!53C2~R!D̃~x!s̃S
m050

~x!, ~36!

one obtains

Pp~P!'E d4x B̃m050~x!@8Ncs̃S
m050

~x!2H̃P~x!#[P̄p~P!. ~37!

This is manifestly invariant under renormalization and hence one may write

P̄p~P!5E d4x BmR50~x!@8NcsS
mR50

~x!2HP~x;mR!#, ~38!

with every quantity on the right-hand side renormalized (sS andH have the same form but with unrenormalized quantiti
replaced by renormalized ones! and evaluated withmRÞ0 unless otherwise specified.

As remarked above,P(P252mp
2 )50 at the solution of the BSE. Equation~38! therefore allows one to obtain a simple

pion mass formula derived from the generalized-ladder approximation to the BSE and expressed solely in terms
massless and massive renormalized, vacuum, dressed quark propagators.

For the pion~becausemp
2.0) it is a good approximation to write

P̄p~P!'P̄p~0!1P2Np
2 , ~39!

where

Np
25S d

dP2
P̄p~P2! D

P250

5
Nc

8p2E
0

L2

ds sBmR50~s!2~sV
222@sSsS81ssVsV8 #2s@sSsS92~sS8!2#2s2@sVsV92~sV8 !2# !,

~40!

with the primes denoting differentiation with respect tos5p2 andsV andsS evaluated atmR . This is just the conventional,
generalized-ladder approximation Bethe-Salpeter amplitude normalization constant, calculated neglecting small (; 2%!
O(mp

2 ) corrections.
We note that ifA(p2)[1, Np5 f p . In general, the approximationNp' f p is accurate to within 10% and the difference i

a measure of the error introduced by the approximation of Eq.~27! @1#. ~Also see Table I.!
Equation~39! yields the explicit pion mass formula@39#

mp
2Np

25
Nc

2p2E
0

L2

ds s
BmR50~s!

BmRÞ0~s!
@BmRÞ0~s!sS

mR50
~s!2BmR50~s!sS

mRÞ0
~s!#. ~41!
te.
rk
fol-

-
d

by

he
One notes immediately that, for a given value ofmR ,
mp
2→const,` as Nc→` and that, for arbitraryNc ,

mp
2→0 as mR→0. Further, if the DSE is solved with a

quark-gluon vertex that ensures multiplicative renormali
ability, thenmp

2 is a renormalization point invariant and th
result is independent of the cutoffL2. The integral on the
right-hand side of Eq.~41! is convergent in the limit
L2→`.

From Eq.~41! one can recover what is sometimes calle
the Gell-Mann-Oakes-Renner relation in the form

mp
2 f p

252mR
m2

^q̄q&vac
m2
, ~42!

where

2^q̄q&vac
m2

5
Nc

2p2E
0

L2

dsssS
mR50

~s!, ~43!
z-
e

d

which is the customary definition of the vacuum condensa
However, in terms of the nonperturbatively dressed qua
propagator, equality between the integrands requires the
lowing ad hoc and mutually incompatible ‘‘approxima-
tions’’: ;s,

BmR50~s!'BmRÞ0~s!, ~44a!

sS
mR50

~s!'sS
mRÞ0

~s!, ~44b!

BmRÞ0~s!'mR1BmR50~s!, ~44c!

which yields Eq.~42! when one makes the additional ap
proximationNp' f p , discussed above. That these are ba
‘‘approximations’’ is clear; for example, Eq.~44a! has the
effect of replacing a convergence factor in the integrand
unity and it is incompatible with Eq.~44c!. As elucidated in
Ref. @40#, Eq.~42! can only be obtained if the~renormalized!
current quark mass is treated strictly as a perturbation. T



-

e

m-

s

d
t

in

g

ct

53 395MODEL GLUON PROPAGATOR AND PION ANDr-MESON . . .
inadequacy of Eqs.~42! and~43! is only exposed by a care-
ful treatment of the Dyson-Schwinger and Bethe-Salpe
equations.

We emphasize that Eq.~41! is completely consistent with
the general arguments of Ref.@41#. It is derived from the
generalized-ladder BSE and measures the expectation v
of the explicit chiral symmetry breaking term in the pio
state under the approximation that Eq.~35! is valid for P2

Þ0, which is why the right-hand side involves only vacuu
quantities: massless and massive, renormalized, vacuum,
dressed quark propagators.

We demonstrate below that Eq.~41! provides an ex-
tremely accurate estimate of the pion mass obtained by so
ing the pion BSE in generalized-ladder approximation.@See
Eq. ~53! and Table I.#

In our numerical studies we are interested in the subtr
tively renormalized Bethe-Salpeter amplitudeF(p;P). This
is defined in terms of the regularized amplitudeF8(p;P) via

F~p;P![F8~p;P!2F8~m,P!, ~45!

which, in generalized-ladder approximation, is obtained
the solution of

F8~p;P!5Z2 3C2~R!EL d4q

~2p!4
D~p2q!~q1•q2sV

1sV
2

1sS
1sS

2!F~q;P!. ~46!

It is clear that all corrections to free-field behavior vanish
the renormalization point, i.e.,F(p;P)up25m250.

Upon comparison with the DSE forB(p2) in Sec. III, it is
clear that in the chiral limit (mR50) one has

F~p;P!5BmR50~p!, ~47!

i.e., that Goldstone’s theorem is manifest@38#.
One may solve Eq.~46! numerically by introducing an

eigenvaluel(P2) on the right-hand side. This yields an
equation that has a solution at every value ofP2. The equa-
tion can then be solved repeatedly until thatP2 is found for
which l(P2)51.

The eigenvalue and eigenvector are determined by e
ploying the Tschebyshev decomposition

F~p;P!5(
i51

`

Fi~p
2,P2!Ui~cosb! ~48!

and solving for the Tschebyshev moments ofF(p;P), which
are obtained via

Fi~p
2,P2!5

2

pE0
p

db sin2bUi~cosb!F~p,P!. ~49!

In practice we only keep the lowest momentF0(p
2,P2),

neglecting the coupling to the higher moments. This is a ve
good approximation for the pion@26#.

For an on-shell pionP252mp
2 and hence the right-hand

side of Eq.~46! samples the quark propagator at comple
values of its argument. To avoid solving the quark DSE o
the real-p2 axis we expanded (q1•q2sV

1sV
21sS

1sS
2) to
ter

alue
n

m
and

lv-

ac-

as

at

m-

ry

x
ff

O(P2) and solved the resulting equation, which involves de
rivatives of the propagator at realp2>0.

V. NUMERICAL RESULTS AND PHENOMENOLOGY

We have two parameters: the mass scalemt in the gluon
propagator, which marks the transition point between th
perturbative and nonperturbative domains, Eq.~6!, andmR ,
the renormalized current quark mass. We varied these para
eters in order to obtain the bestx2 fit to the pion observables:
mp @calculated using Eq.~41!#, the weak pion decay constant
@1#

f p5
Nc

4p2E
0

L2

ds s
1

Np
F0~s,P

2!

3@sVsS1
1
2s~sV8sS2sVsS8!#, ~50!

rp , and thep-p scattering lengthsa0
0 , a0

2 , a1
1 , a2

0 , expres-
sions for which are given in Ref.@2#.

At each pair of parameter values the quark DSE wa
solved numerically withm548 fm2159.47 GeV, which is
large enough to be in the purely perturbative domain, an
L5218 fm21;5461m. The results were almost independen
of the cutoff, doubling it leading only to a 3% change in

TABLE I. Observables calculated using the parameter values
Eq. ~52!. The experimental values of thep-p scattering lengths are
discussed in Refs.@2,42#. The other experimental values are taken
from Ref.@43#. @B0# indicates that the quantity was calculated usin
the approximation of Eq.~47! while @F0# indicates it was calculated
using the zeroth order Tschebyshev moment obtained in a dire
solution of the BSE, Sec. IV A. The anomalous couplinggp0gg is
discussed in Ref.@3#. See Sec. V A, for a discussion of the
r-meson observables. The difference betweenNp and f p is a mea-
sure of the accuracy of the approximation of Eq.~27!. That between
the calculated and experimental values ofrpNp is a measure of the
importance of final-statep-p interactions and photon-r-meson
mixing @44#. Final-statep-p interactions are also neglected in the
calculation of the scattering lengths@2# andgrpp . Pion-loop cor-
rections tomr are of the order of 5%@45,46#.

Calculated Experiment

mp
mass formula:@B0# 138.7 MeV 138.36 0.5

mp
mass formula:@F0# 137.2

mp
BS equation 139.5

f p@F0# 92.4 MeV 92.46 0.3
f p@B0# 92.3
Np@F0# 102
rp@F0#Np@F0# 0.24 0.316 0.004
a0
0@F0# 0.16 0.216 0.02
a0
2@F0# -0.041 -0.0406 0.003
a1
1@F0# 0.028 0.0386 0.003
a2
0@F0# 0.0022 0.00176 0.0003
a2
2@F0# 0.0013
gp0gg@F0# 0.45 0.506 0.02
mr@F0

r# 0.971 GeV 0.7706 0.001
grpp@F0

r# 4.07 6.076 0.02
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f p , for example. Our results would have been complete
independent ofL if we had employed a vertex that preserve
multiplicative renormalizability. This observation provides
quantitative measure of the violation of multiplicative reno
malizability when the the rainbow approximation is used
Landau gauge. It is significantly worse in other gauges.
remarked above, rainbow approximation entails a loss
gauge covariance. Our experience suggests that our res
would change by no more than 10% if we had used a dres
fermion–gauge-boson vertex that ensured gauge covaria
of the fermion propagator@1,15,16,35#.

The formulas for the observables were then evaluated
ing the solution obtained and the approximation that Eq.~47!
is valid formRÞ0. After obtaining the optimal values of the
parameters we recalculated the observables using the p
Bethe-Salpeter amplitude calculated as described in Sec
A. We found numerically that

F0~p
2;P2!'BmR50~p

2!. ~51!

The bestx2 fit was obtained with

mt50.69 GeV and mR51.1 MeV. ~52!

We also carried out an extendedx2 fit where the ratio of the
coefficients of the two terms in Eq.~4! was allowed to vary.
In this case the bestx2 was obtained with the value ofmt in
Eq. ~52! and a ratio that agreed with that in Eq.~4! to within
2%. The data therefore requires both terms in the propaga
and the cancellation of long-range effects described in E
~6!.

The observables calculated with these parameter val
are presented in Table I. One observes immediately that
one parameter model for the gluon propagator provides
good description of low energy pion observables. This im
proves upon the results of Refs.@2–5#, in which the quark
propagator was parametrized, and illustrates the connect
suggested in these articles, that may be made between
ronic observables and the quark-quark interaction.
ly
s
a
r-
in
As
of
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us-

ion
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tor
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our
a
-

ion,
had-

We have made a direct comparison on the spacelike-p2

axis of the numerical solutions forsV andsS obtained herein
with the parametrized forms used in Ref.@3#. The agreement
in form and magnitude is very good, which suggests that t
one parameter model gluon propagator will also provide
good description of hadronic form factors.

One observes that the mass formula in Eq.~41! yields an
accurate estimate of the mass obtained by solving the p
BSE. We find that, with parameters of Eq.~52!, the right-
hand side of Eq.~41! is well described by

mp
2Np

252 ~0.45!3mR1~2.6!2mR
21150mR

3 ~53!

in the rangemRP@0,0.02# GeV, from which one may infer a
value of^q̄q&m52(0.45 GeV)3. At the value ofmR in Eq.
~52! the term linear inmR contributes almost 96% of the
total. We see, therefore, that Eq.~41! entailsmp

2}mR , for
small mR , but that the constant of proportionality is no
given by the usual definition of the vacuum quark conde
sate, Eq.~43!.

Our one parameter model for the gluon propagator expl
itly excludes the ln@k2# corrections associated with the
anomalous dimensions in QCD. It is therefore inappropria
to directly comparemR(m) in Eq. ~52! with the QCD evolu-
tion of the commonly quoted value ofmm51 GeV
'7.5 MeV @43#. ~This entails that the same is true o
^q̄q&m .) We note that replacing (pd)/k2 by
aS
two loop(k2)/k2 in Eq. ~4! would lead to a suppression of the

tail of the quark mass function, thereby requiring a larg
value ofmR to reproduce the pion mass and a commensur
change inmt . This represents a quantitative improvement o
our model but would not change its qualitative features.

A. r-meson observables

We have employed our model gluon propagator in a pr
liminary study ofr-meson properties.

The regularized, generalized-ladder approximation to t
r-meson BSE is
Fr8~p;P!5Z2 3C2~R!EL dq

~2p!4
g2 Dmn~p2q! 1

12 tr@gaigmS~q1!iTa~P!S~q2!gn#Fr~q;P!, ~54!
is
r
ic,
where@Tm(P)5gm1g•PPm /mr
2#. The subtractively renor-

malized amplitude is given by Fr(p;P)5Fr8(p;P)
2Fr8(m;P). We neglected the other Dirac structures allowe
in the vector-meson Bethe-Salpeter amplitude. For ther me-
son the error introduced by this truncation is approximate
10%@36#. Ther andv mesons are degenerate at this level
approximation. As for the pion, we project this equation on
the lowest Tschebyshev moment and solve forF0(p

2,P2),
neglecting the coupling to the higher moments. This is
good approximation for ther meson@26#.

In this preliminary study we have only solved the qua
DSE at realp2. For an on-shellr mesonP2,0 and hence
Eq. ~54! samples the quark propagator at complex values
d

ly
of
to

a

rk

of

p2. To obtain an approximate solution of Eq.~54!, without
solving the quark DSE at complexp2, we introduced an
eigenvaluel(P2) on the right-hand side of Eq.~54! and
solved this equation at spacelike values ofP2, thereby ob-
tainingl(P2.0). For 0,P2,10 fm22 the results could be
described by the quadratic~in P2)

l~P2!50.4420.021P210.000 076P4, ~55!

with a standard deviation of 0.000 044. We compared th
with both linear and cubic fitting forms: It provides a smalle
standard deviation than the linear form and is monoton
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whereas the cubic is not. The value ofP2 for which this
algebraic form ofl(P2)51 provides the mass estimate pre
sented in Table I.

The calculatedr-meson Bethe-Salpeter amplitude i
much narrower in momentum space than that of the pion,
agreement with the results of Ref.@26#.

The calculation ofgrpp proceeds in a similar manner. In
the generalized impulse approximation therpp coupling
can be expressed in terms of a nonlocal coupling function
Nm(p,q), which is discussed in Ref.@47#. This expression is
used to evaluategrpp(P

2) at 0,P2,10 fm22. The results
were fitted and extrapolated to the calculated mass-sh
point. The best fit was obtained with

grpp~P2!51.1520.076P210.0013P420.000 022P6,
~56!

giving a standard deviation of 0.000 23. This form provides
smaller value of the standard deviation than either a linear
quadratic form and is monotonic whereas the quartic is n
The value obtained at the calculated on-mass-shell poin
given in Table I.

These calculations are only a first step. They serve mer
to indicate that our one parameter model gluon propaga
which was fitted to pion observables, can reasonably be
pected to provide a good description of other observab
too.

B. Confinement

We have also solved the quark DSE for realp2,0. There
is no singularity on the real-p2 axis. The solution therefore
does not have a Lehmann representation and hence ma
interpreted as describing a confined particle.

A plot of 1/@p21M (p2)2#, which for a free particle
would have a pole at the mass-shell point, has a broad re
nance like peak centred atp2'2(0.55) GeV2. This admits
an interpretation as the ‘‘constituent-quark mass’’ in o
model.

The form of our solution is suggestive of a pair of com
plex conjugate poles or branch points with timelike real pa
and large magnitude imaginary parts. We have made no
tempt to confirm this. A thorough study must identif
whether this structure is an artifact of the rainbow approx
mation, which is known to be associated with unexpect
behavior of the fermion propagator in the complex plan
@48–52# that is modified when the vertex is dressed@53#.

VI. SUMMARY AND CONCLUSIONS

Using a confining, one parameter model form for th
gluon propagator, Eq.~4!, which incorporates the essence o
-
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the solution of realistic, approximate gluon Dyson
Schwinger equations~DSE’s!, we solved the renormalized,
rainbow approximation quark DSE and subsequently t
renormalized, generalized-ladder approximationp- and
r-meson Bethe-Salpeter equations~BSE’s!. We varied the
parameter in the gluon propagator,mt , which is a mass scale
that marks the transition between the perturbative and no
perturbative domains, and the renormalized current qua
mass, and obtained a good description of a range ofp- and
r-meson observables. The value ofmt was not knowna
priori . Good agreement with the datarequired mt;700
MeV, which corresponds to a length of;0.3 fm.

In studying the pion BSE we were led to a mass formu
for the pion, Eq.~41!, expressed solely in terms of the mas
sive and massless quark propagators. This formula provid
a very accurate estimate of the pion mass. It is valid to
orders inmR , the renormalized current quark mass, and fo
mR,20 MeV the nonlinear terms provide a contribution o
no more than;10%.

We obtained numerical solutions of the quark DSE on th
timelike-p2 axis, which showed the quark propagator to hav
no singularity on the real-p2 axis in our model. We found
evidence to suggest that, as a function ofp2, the quark
propagator has a pair of complex conjugate poles or bran
points with timelike real parts and large imaginary part
Such a propagator does not have a Lehmann representa
and admits the interpretation of describing a confined pa
ticle.

Our study illustrates the manner in which the DSE’s ca
be used to develop a semiphenomenological approach
QCD that incorporates the perturbative, large spacelike-k2

behavior known from renormalization group studies and, v
an economical parametrization, extrapolates this into t
nonperturbative, small spacelike-k2 domain. This efficacious,
nonperturbative approach allows for the correlation of a lar
range of observables via very few parameters, which it m
be possible to relate to the fundamental parameters of QC
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