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Model gluon propagator and pion and p-meson observables
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A one parameter, model confined-gluon propagator is employed in a phenomenological application of the
Dyson-Schwinger and Bethe-Salpeter equations to the calculation of a ramgeanfl p-meson observables.
Good agreement is obtained with the data. The calculated quark propagator does not have a singularity on the
realp? axis. A mass formula for the pion, involving only the vacuum, dressed quark propagator, is presented
and shown to provide an accurate estimate of the mass obtained via a direct solution of the Bethe-Salpeter
equation.

PACS numbds): 14.40.Aq, 12.38.Lg, 12.39.Pn, 12.40.Yx

[. INTRODUCTION tion procedures that preserve the global symmetries of QCD
are easy to construct and implement. This has not yet been
The Dyson-Schwinger equatiof®SE’s) provide a use- accomplished for the local symmetry in QCD; however,
ful, semiphenomenological tool for the study of QCD. Theseprogress is being made following the realization of the im-
coupled integral equations relate timepoint (Schwingey  portance of the nonperturbative structure of the fermion—
functions of QCD to each other. They provide a nonperturgauge-boson vertek1,12—18. This introduces an uncer-
bative, Poincarénvariant framework that enables one to cor- tainty in the infrared, i.e., fok?<1—2 GeV?. However, this
relate hadronic observables through the properties of thancertainty is merely quantitative. There is general agree-
Schwinger functions of the elementary excitations in QCD,ment on the qualitative features of the quark and gluon two-
i.e., the Schwinger functions of quarks and glud@uark  point Schwinger functions, i.e(1l) that the gluon two-point
and gluon propagator$wo-point function$ are examples of function is significantly enhanced at small spacelike
such Schwinger functionsThis makes it particularly suit- [1,17-19 and that this entails an enhancement of the
able for addressing questions such as confinement and dyomentum-dependent quark mass functi@r?0—24, and
namical chiral symmetry breaking and also hadronic spect2) that for k>>1-2 Ge\? the two-loop, renormalization
troscopy and interactions. This approach is reviewed in Refgroup improved, perturbative results are quantitatively reli-
[1] and has recently been applied to the studyrefr scat- able.

tering [2], the electromagnetic pion form fact¢B], p-w Some phenomenological DSE studies have employed a
mixing [4], and the anomalous* w°— y-transition form parametrization of the two-point quark Schwinger function
factor[5]. based on these results, for example, REfs.5]. Such stud-

It is possible to obtain information about such Schwingeries are phenomenologically efficacious. However, they in-
functions via a numerical simulation of a lattice-QCD actionvolve the addition of new parameters when applied to sys-
[6—8]. However, in addition to the usual problems associatedems involving other tham andd quarks.
with identifying and establishing the existence of the con- The introduction of new parameters is unnecessary when
tinuum limit, and recovering the global symmetries of QCD, the propagator for a quark of a given flavor is obtained di-
this also requires gauge fixing on the spacetime latticetectly from a quark DSE whose kernel is determined by the
Gauge fixing eliminates a number of gauge-equivalentwo-point gluon Schwinger function and the quark-gluon
gauge-field configurations, thereby leading to poorer statisvertex. This procedure correlates the propagators for quarks
tics. It does not eliminate all such configurations, howeverof different flavors via the parameters in the gluon two-point
One is left with Gribov copies, i.e., gauge configurations infunction. There have been studies that employ this approach,
the gauge-fixed ensemble that are not distinct but are relatddr example, Refs[21,25,26. However, it is computation-
by topologically nontrivial gauge transformatiof8—11.  ally more intensive and the studies therefore addressed the
This entails an overcounting problem in the evaluation ofcalculation of a smaller class of observables. The present
gauge-fixed correlation functions. Present studies are encoustudy is a first step in extending this latter approach.
aging, having established that this approach to the calcula- Herein we employ a one parameter model gluon propaga-
tion of gauge-fixed QCD Schwinger functions is feasisle  tor (gluon two-point Schwinger functionmotivated by the
However, the problems identified above entail that they ar@esults of Refs|17—19, in a calculation of a range ef- and
currently qualitatively and quantitatively unreliable. p-meson observables. The one parameter is a mass scale that

Presently the most reliable estimates of the behavior ofan be interpreted as marking the transition between the per-
quark and gluon Schwinger functions are obtained in DSHurbative and nonperturbative domains. This model gluon
studies. The DSE’s are a tower of coupled equations and propagator provides the kernel for a quark DSE, which is
solution is only tractable if this tower is truncated. Trunca-solved to obtain the quark propagat@yuark two-point
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Schwinger functioh for real p?e(—«,»). These two (<1 GeV?) that could be described by an integrable singu-

Schwinger functions provide the kernel of the meson Bethelarity. We employ the one parameter form

Salpeter equatiotiBSE), whose solution yields the meson .

mass and Bethe-Salpeter amplitude, which is a necessary el- ) ) - 1—e(~K/l4mD

ement in the calculation of decay constants and scattering ~ A(K*)=4m*d| 4 w*m¢ %K)+ ——7——|, (4

lengths, for example. The single mass parameter determines

all of these Schwinger functions and is varied to obtain ayhere d=12/(33-2N;), with Ny=3 the number of light

good fit to a range of calculatedt observables. This illus- flavors. The first term in Eq4) provides an integrable, in-

trates the utility and economy of the approach. frared singularity[20], which generates long-range effects
In studying the pion BSE we derive a mass formula forassociated with confinement, and the second ensures that the

the pion, which involves only the vacuum, dressed quarkpropagator has the correct large spacekkésehavior, up to

propagator, valid to all orders img, the renormalized cur- |n[k?] corrections. A form similar to this has been used by

rent quark mass. Our numerical studies show that this forother author§21—24 with one-loop logarithmic corrections

mula provides an excellent estimate of the mass that is olincluded in the second term. We neglect these terms as a

tained by actually solving the BSE. simple expedient to ensure that our gluon propagator does
The model gluon propagator is discussed in Sec. Il anghot have a Lehmann representation and may therefore be

the quark DSE in Sec. Ill. The pion mass formula is pre-interpreted as describing a confined particle, i.e., an elemen-

sented in Sec. IV. Our numerical results are discussed in Segary field with which there is no associated asymptotic state

V and we summarize and conclude in Sec. VI. [1,29.
Since ours is a model gluon propagator, there is no reason
Il. MODEL GLUON PROPAGATOR why the coefficients of the two terms in E() should be

) ) related in the particular fashion we have chosen. However,
In Euclidean metrid27] the Landau gauge gluon propa- consider

gator is

1 2.2
mé+ 2e

. (5

d*k .
5 _ kﬂk,,> g2 W A(xz)Ef (277)4e""XA(k2)=d
w2 1+ (kD))

9°D (k)=
It is clear from this that with our choice of the ratio of these
where TI(k?) is the gluon vacuum polarization. Setting Coefficients the effects of*(k) in Eq. (4) are completely
29= 29 where 29" is the renormalization constant for canceled at smalt?, ie.,
the ghost-gluon vertex anﬂjgh that for the ghost wave func-

fi mt2x2<l
ion,
AKX = +0(x%), ®)
gz
A(k?)= KEEUR) (2 which is the form expected from QCIagain neglecting

logarithmic corrections
satisfies the same renormalization group equation as the One can therefore mterpr.emt as the mass Sca"? in our
QCD running coupling constant(k?) [28] and hence model that marks the transition from the perturbative to the
nonperturbative regime. Hereim, is varied to provide a best
fit to a range of calculated pion observablgSee Eq.(52)
(3y  and the associated discussion.

kK| 4ma(Kk?)
[gZDW<k>]R=(5,W— . )%

. . . . . . Ill. QUARK SELF-ENERGY
This is sometimes described as the “Abelian approximation”

because it entails the QED-like Ward identity=Z,, where In Euclidean metri¢27] the DSE for the quark propaga-
Z, is the quark-gluon vertex renormalization constant andor is
Z, is the quark wave function renormalization constdit 1 _ ,

The two-loop renormalization group expression for the S H(p)=2Zy(iy-p+my)+2'(p), (7)
running coupling constant only receives smaH10%) cor-
rections from higher orders for spaceliké>1 GeV? and
hence can be said to provide an accurate representation on A d%k 4
this domain. Fok?<1 GeV?, however,a(k?) is not known 2’(p)zzlf ——7 39°D,.,(p—K) ¥, S(KT,(p.k), (8
and can only be calculated nonperturbatively. The current (2m)* 3
status of such studies is summarized in R#&f.and, as re-
marked in Sec. |, gluon-DSE studies agree on the qualitativ
behavior of a(k?) at smallk?. Present pzhenomigological
quark-DSE studies rely on afnsatzfor «(k“<1GeV) mo- n)=in~. 1002y — (2
tivated by these gluon-DSE studies. 2'(p)=iy-p(A"(p9)—1)+B'(p). )

Herein we consider a parametrization suggested by thghe inverse of the renormalized quark propagator is
Landau gauge studies of R¢f.9], which revealed a strong
enhancement in the gluon propagator at small spacéfike S Yp)=iy-p+2(p)=iy-pA(p>)+B(p?. (10

where

with I' ,(p,k) the quark-gluon vertex, is the regularized self
%nergy, which can be decomposed as
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Herein the prime denotes regularized quantities and B(u?)=mg (19
unprimed quantities are fully renormalized.

We employ a subtractive renormalization scheme, requiror
ing that, at a spacelike renormalization pojrt,

d
. . (d—X[XB(X)] =Z,Mg. (20
S HP)lp2=2=iy-pt+mg, (11 x=A2
with mg the renormalizecturrent quark mass. Under the change of variables=u’exp(22), Eq. (17)
In this scheme, the wave function and mass renormaliza?€comes
tion constants are given by _
B(z)+2B(z)+\B(2)=0, (22)

Z,=2—-A'(u% A% and mg=Z,mg(A?)+B’'(u?A?),

(12)  which is the equation of motion for a damped harmonic os-
cillator. One has critical damping fox=Ac=1 and this
Sﬁelds the critical coupling for dynamical chiral symmetry
breaking; i.e., in the absence of the first term in &y, the
model would still exhibit dynamical chiral symmetry break-
A(pZ u?)=1+A"(p% A% —A"(u? A?), (13)  ing for A>1. This behavior has been observed in QD]
and phenomenological models of QCD without an infrared-
singular model gluon propagatf31-33.

The solution of Eq(18) consistent with Eq(19) is

respectively, and the renormalized self-energies are therefo
obtained from

B(p? u?)=mg(p?)+B'(p% A% —B' (1% A?). (14

In this schemeA(u?)=1 andB(u?)=mg(u?). [In the fol-

lowing we often writemg(u?) as simplymg, in which case B(z) = ke “co{zy\—1+ @), (22
the x? dependence is implicit. _
The renormalized axial-vector Ward identity is with
(P—a) i T5(p,a)=S"Y(p)ys+ vss’l(q)—ZmRF5(p,?)-) K COSp=Mg. (23
15

In the chiral limitmg=0 and hencep= /2. In generak is
The composite operatois, andI'® are renormalized such only determined in a complete solution of the integral equa-
that, atp?=u?=q?, T'(p,q) =7, ¥s and'3(p,q) = ys. tion.

The chiral limit is identified as the limit in which the The boundary conditions in Eq&l9) and(20) are equiva-
renormalized axial-vector current is conserved, i.e, with thdent: A given value ofmg entails a given value aZ,m, and
limit mg(u?)—0. vice versa. In fact, for finiteA, mg=0 generally entails

Z,my#0. It follows from Eq.(22), however, that for any
A. Analysis of the largep? behavior of the quark propagator finite value ofmg

At large spacelikek? and p? one may replace the gluon ) b o 5
propagator and the quark-gluon vertex by their asymptotic I;m Zy(pu, A% )mMy(A9)=0. (24)
forms Al

Equation(22) indicates that the renormalized mass func-
tion will exhibit damped oscillations about zero for
p2> 2, a feature we observed in our numerical solutions,
which were well described by Eq22) on p?e[u?,A?].

In this limit A(p?)=1 andB(p?) is the solution of With the exception of Ref.34], other DSE studies implicitly
useu=A and hence the oscillations are not observed. The

1
A= 1z and T, (p,K)—,. (16)

N (A2 1 1 oscillations were observed in RdB4], which addresses in
B(X)=2Z;mo+ ZL dy y(;a(x—y)+§0(y—x) detail the nonperturbative renormalization of the fermion
DSE in QED.
B(y) 1
y+B4(y)’ (A7) B. Additional remarks

The “Abelian approximation” entails thaf,=Z, in Egs.
(7) and(8). We make this identification hereafter.

In the numerical studies described below we employed
the rainbow approximation

wherex=p?, y=k? and\=42Z,d.
For x such thatB(x)?<x, i.e., for x=pu?, this integral
equation is equivalent to the differential equation

+%B(x)=0, (19) Lup.K) =7, (25

d( ,d B
ax\ X ax (x)
This is a quantitatively reliable approximation in Landau
subject to the boundary condition gauge(This is not the case in other gaugdsor example, in
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studies of the critical coupling for dynamical chiral symme- lation scheme is sufficient and this is provided by Ex%) in
try breaking, a comparison of the results obtained using thithe Landau gauge.
approximation30] with those obtained using more realistic

vertex Ansdze [1,12,15,1_6,3}Sshows this app_roximatio_n to IV. PION MASS FORMULA
be accurate to 5%. The improvements to this approximation
are qualitatively importanf1,12,15,16,3% being crucial to The unrenormalized BSE for the pion in the generalized-

the restoration of multiplicative renormalizability and gaugeladder approximation is, with unrenormalizeegpoint func-
covariance. However, herein a quantitatively reliable calcutions below denoted by a tilde,

T d4q 4 2R & 1P\ Pe 1

whereP=p,+ p, is the total momentum ang=(p,— p,)/2 the relative momentum of thg-q pair.
For the pion it is a good approximatig26,36 to write

T+(p;P) = ysF (p2,P?), (27)
in the sense thd~f7,(p; P) is a general pseudoscalak4 matrix and the right-hand side is, pointwise, a good approximation

to it and the inclusion of the other allowed Dirac amplitudes alters the mass eigenvatug%y With this approximation Eq.
(26) becomeg C,(R)=(N2—1)/(2N.)=4/3 for N,=3]

P d*q - ~
BNGF(97,P)=3CoR) [ 5 TiA(p-a)A(GiP), 28)
with
H(piP)=8N(p--p-&v vy + 53 75)F(p,P?), (29

where we have defineg. =p=*P/2,

A(p2) - B(p2)
= —= = Oc — ~ ~ .
p2 A(p2)2+B(p2)? > p2A(p2)2+B(p2)?

ay (30)

Equation(28) is a convolution in four dimensions and can be rewritten as
0=8NcFp(x)— Cx(R) BA(X)Hp(X), (31)

with I:|p(x) the Fourier transform, with respect o of |:|(p;P). .
Multiplying the right-hand side of Eq.31) by (Fp(—X)/[3C,(R)A(X)]) one can construct

8N Fp(—Xx)Fp(x)
3C,(R) A(x)

—Fp(—X)Hp(X) |. (32)

I1_(P)= f d*x
In the auxiliary-field bosonization of the global color-symmetry mddeB7] the effective action contains the term

f d* d*y 7 ()T (x—y) 7' (y), (33

with 7'(x) a local field variable identified with the pion field. One sees from this ThatP) plays the role of the inverse
propagator for the composite pion field. Further, at the solution of the B3E,— m,zT, Eq. (31) is satisfied and hence

I1,(P?=—m?2)=0. (34)
It has been showf8] that formy=0 the unrenormalized BSE has a mass|&3s: 0, solution with

Fp(X)=Fp—o(X)=Bmy~o(x), (35
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which is the manifestation of Goldstone’s theorem in the DSE approach. Using this as an approximafon #amfﬁ& 0, via
the unrenormalized DSE,

Brm,-0(X) =3 Co(RIA(X)5¢°~(x), (36)

one obtains

II.(P)~ fd“x Bimy=0(X)[8Ne&® ()~ Hp(x)]=TI(P). 37

This is manifestly invariant under renormalization and hence one may write
IT,(P)= | % By o0 [8Ne 200~ He(xime) ), (39

with every quantity on the right-hand side renormalized @ndH have the same form but with unrenormalized quantities
replaced by renormalized onesnd evaluated wittmg# 0 unless otherwise specified.

As remarked abovd](P?= —mfr)=0 at the solution of the BSE. Equati®88) therefore allows one to obtain a simple
pion mass formula derived from the generalized-ladder approximation to the BSE and expressed solely in terms of the
massless and massive renormalized, vacuum, dressed quark propagators.

For the pion(becausemizO) it is a good approximation to write

11, (P)~I1,(0)+ P?N2, (39)

where

=0(9)(0y—2[rsostsoyoy]—s[osos— (08’ ] - [ oyoy — (ay)?]),
(40)

with the primes denoting differentiation with respectste p?> and o, and o5 evaluated amg. This is just the conventional,
generalized-ladder approximation Bethe-Salpeter amplitude normalization constant, calculated neglecting- s&tajl (
O(m?) corrections.

We note that ifA(p?)=1, N, =f. . In general, the approximatiod,~ f _ is accurate to within 10% and the difference is
a measure of the error introduced by the approximation of(Ed).[1]. (Also see Table ).

Equation(39) yields the explicit pion mass formu[&9]

Bng-o(S)

2012 NC A? R= mg#0
mNz=52), 9s Sm[BmR#O(S)U °(8) ~ Brmg=o(9)7g"(9)]- (49
Mg

d —
N;‘;=(—H (PZ))
dp? b

2=O

One notes immediately that, for a given value g, which is the customary definition of the vacuum condensate.
m ~—conskK® as N.—o and that, for arbitraryN, However, in terms of the nonperturbatively dressed quark
m HO as mg—0. Further if the DSE is solved with a propagator, equality between the integrands requwes the fol-
quark-gluon vertex that ensures multiplicative renormaliz-lowing ad hoc and mutually incompatible “approxima-
ability, thenm? is a renormalization point invariant and the tions™ Vs,

result is independent of the cutaff2. The integral on the

right-hand side of Eq.(41) is convergent in the limit Bmg=0(S)~Bm=0(S), (449
A2—oo0,
0 0
From Eq.(41) one can recover what is sometimes called ooR (s)~ ok (s), (44b)
the Gell-Mann-Oakes-Renner relation in the form
BmR#O(S) ~Mg+ BmR=O(S)v (440
262 2= \u?
m7 2= —mg (aa){ac, (42 \which yields Eq.(42) when one makes the additional ap-
proximationN _~f__, discussed above. That these are bad
where “approximations” is clear; for example, Eq44a has the

effect of replacing a convergence factor in the integrand by

N ) unity and it is incompatible with Eq44c¢). As elucidated in

_<aq>€:C: _CZJ'A dssgg]fo(s)’ (43) Ref.[40], Eq.(42) can only be obta_ined if thérenormali;eal
current quark mass is treated strictly as a perturbation. The
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inadequacy of Eqg42) and(43) is only exposed by a care- O(P?) and solved the resulting equation, which involves de-
ful treatment of the Dyson-Schwinger and Bethe-Salpeterivatives of the propagator at repf=0.
equations.

We emphasize that E¢41) is completely consistent with
the general arguments of Re#1]. It is derived from the V. NUMERICAL RESULTS AND PHENOMENOLOGY
generalized-ladder BSE and measures the expectation value \y,e have two parameters: the mass seajén the gluon
of the explicit chiral symmetry breaking term in the pion ronagator, which marks the transition point between the
state under the approximation that E§5) is valid for pZ perturbative and nonperturbative domains, &), andmg,
#0, which is why the right-hand side involves only vacuum {ne renormalized current quark mass. We varied these param-
quantities: massless and massive, renormalized, vacuum, agtkbrs in order to obtain the begt fit to the pion observables:

dressed quark propagators. _ m,, [calculated using Eq41)], the weak pion decay constant
We demonstrate below that E@41) provides an ex-

tremely accurate estimate of the pion mass obtained by solv-
ing the pion BSE in generalized-ladder approximati@ee
Eq. (53) and Table 1]

In our numerical studies we are interested in the subtrac-
tively renormalized Bethe-Salpeter amplitubBiép;P). This
is defined in terms of the regularized amplitudgp; P) via X[oyost3Ss(ayos—ovog)], (50)

f—NCfAZd L ro(sp?
=42, smo(s, )

F(p:P)=F"(p:P)—F'(n.P), (45) r., and ther- scattering lengthal, a3, al, a3, expres-

§ions for which are given in Ref2].
At each pair of parameter values the quark DSE was
solved numerically withu=48 fm~1=9.47 GeV, which is
A dq large enough to be in the purely perturbative domain, and
F'(p;P)=2Z, 3C2(R)f WA(p—q)(q+ g_oyoy A=28fm ~1~5461u. The results were almost independent
of the cutoff, doubling it leading only to a 3% change in

which, in generalized-ladder approximation, is obtained a
the solution of

+og05)F(a;P). (46)
TABLE |. Observables calculated using the parameter values in
It is clear that all corrections to free-field behavior vanish atEg. (52). The experimental values of the-7 scattering lengths are
the renormalization point, i.eE(p;P)|2- discussed in Ref§2,42]. The other experimental values are taken

2=0.
Upon comparison with the DSE f(ﬁ}(pg) in Sec. Il itis from Ref.[43]. [ B,] indicates that the quantity was calculated using

clear that in the chiral limit fng=0) one has the approximation of Eq47) while [F,] indicates it was calculated
using the zeroth order Tschebyshev moment obtained in a direct
F(p;P)=Bn_—o(p), (47) solution of the BSE, Sec. IV A. The anomalous couplng,, is
o=

discussed in Ref[3]. See Sec. VA, for a discussion of the
p-meson observables. The difference betwlRenandf . is a mea-
sure of the accuracy of the approximation of E2j). That between
the calculated and experimental values N . is a measure of the
importance of final-stater-7 interactions and photop-meson
mixing [44]. Final-staterr-7r interactions are also neglected in the
calculation of the scattering lengthg] andg, .. Pion-loop cor-

i.e., that Goldstone’s theorem is manif¢38].

One may solve Eq(46) numerically by introducing an
eigenvaluex(P?) on the right-hand side. This yields an
equation that has a solution at every valuePéf The equa-
tion can then be solved repeatedly until tiR%tis found for

which )‘(Pz) =1. . . rections tom, are of the order of 5%45,44.
The eigenvalue and eigenvector are determined by em-
ploying the Tschebyshev decomposition Calculated Experiment
* mpnass formuigg 1 138.7 MeV 138.3 0.5
F(p;P)=2, Fi(p?,P?)U;(cosB) (48)  pmass fomug g | 137.2
i=1 mES equation 1395
and solving for the Tschebyshev moments¢p; P), which ~ f[Fol 92.4 MeV 92.4- 0.3
are obtained via f[Bol 92.3
N [Fol 102
2 (= rLFoIlNLFol 0.24 0.3 0.004
Fi(pzypz):;fo dB sin’BU;(cosB)F(p,P). (49 aJ[Fo] 0.16 0.21 0.02
a3[Fo] -0.041 -0.040+ 0.003
In practice we only keep the lowest momeRg(p?,P?),  ailFol 0.028 0.038+ 0.003
neglecting the coupling to the higher moments. This is a verysl Fol 0.0022 0.0017 0.0003
good approximation for the piof26]. a3[Fol 0.0013
For an on-shell pioP?=—m? and hence the right-hand 9.o,,[Fol 0.45 0.50+ 0.02
side of Eq.(46) samples the quark propagator at complexm,[F{] 0.971 GeV 0.770+ 0.001
values of its argument. To avoid solving the quark DSE offg,,..[F{] 4.07 6.07+ 0.02

the realp? axis we expandedq(,-q_oyoy+0odog) to
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f., for example. Our results would have been completely We have made a direct comparison on the spacgifke-
independent ofA if we had employed a vertex that preservesaxis of the numerical solutions far, andog obtained herein
multiplicative renormalizability. This observation provides a with the parametrized forms used in RE3]. The agreement
guantitative measure of the violation of multiplicative renor-in form and magnitude is very good, which suggests that the
malizability when the the rainbow approximation is used inone parameter model gluon propagator will also provide a
Landau gauge. It is significantly worse in other gauges. Agjood description of hadronic form factors.
remarked above, rainbow approximation entails a loss of One observes that the mass formula in &) yields an
gauge covariance. Our experience suggests that our resuliscurate estimate of the mass obtained by solving the pion
would change by no more than 10% if we had used a dresse8ISE. We find that, with parameters of E?2), the right-
fermion—gauge-boson vertex that ensured gauge covariant&nd side of Eq(41) is well described by
of the fermion propagatdi,15,16,35.
The formulas for the observables were then evaluated us- m2NZ2 =2 (0.45°mg+ (2.6)°ma+ 150m3 (53
ing the solution obtained and the approximation that(E@) o
is valid for mg# 0. After obtaining the optimal values of the in the rangemge[0,0.02 GeV, from which one may infer a
parameters we recalculated the observables using the piaalue of(qq),= —(0.45 GeV}. At the value ofmg in Eq.
Bethe-Salpeter amplitude calculated as described in Sec. I¥62) the term linear inmg contributes almost 96% of the
A. We found numerically that total. We see, therefore, that E@l1) entailsm?«mg, for
) small mg, but that the constant of proportionality is not
FO(pZ'PZ)”BmRZO(pZ)' (52) given by the usual definition of the vacuum quark conden-
sate, Eq(43).
Our one parameter model for the gluon propagator explic-
ity excludesthe Ifk?] corrections associated with the
m;=0.69 GeV and mg=1.1 MeV. (52)  anomalous dimensions in QCD. It is therefore inappropriate

. i . to directly compareng(w) in Eg. (52) with the QCD evolu-
We also carried out an extendgd fit where the ratio of the tion of the commonly quoted value Ofm,_; gey

coefficients of the two terms in E¢4) was allowed to vary. ~7.5 MeV [43]. (This entails that the same is true of
In this case the begt?> was obtained with the value of, in qa),.) We note that replacing #d)/k® by
Eqg. (52 and a ratio that agreed with that in Eg) to within o2 9(2) /1 in Eq. (4) would lead to a suppression of the

2%. The data therefore requires both terms in the propagat(%erliI of the quark mass function, thereby requiring a larger

and the cancellation of long-range effects described in E%alue ofm to reproduce the pion mass and a commensurate
©). ec?ange inm, . This represents a quantitative improvement of

The observables calculated with these parameter valu 1 model but would not chanae its qualitative features
are presented in Table I. One observes immediately that ot 9 q '

one parameter model for the gluon propagator provides a
good description of low energy pion observables. This im-
proves upon the results of Ref2-5], in which the quark We have employed our model gluon propagator in a pre-
propagator was parametrized, and illustrates the connectiotiminary study ofp-meson properties.

suggested in these articles, that may be made between had-The regularized, generalized-ladder approximation to the
ronic observables and the quark-quark interaction. p-meson BSE is

The besty? fit was obtained with

A. p-meson observables

A d
FAPIP) =22 3CoR) [ 57 07 D, (P~ 0) BT 7,80 iTu(PISIA ) 7, F,(GP), (59

where[T,(P)=v,+v- PPM/mf)]. The subtractively renor- p2. To obtain an approximate solution of E¢4), without
malized amplitude is given by Fp(p;P):F”)(p;p) splving the qugrk DSE at. complepxz,_we introduced an
—F)(u;P). We neglected the other Dirac structures allowedeigenvalueA(P?) on the right-hand side of E¢54) and
in the vector-meson Bethe-Salpeter amplitude. Fopthee- ~ S0lved thlszequatlon at spgcellke \/f;|u€5R?f, thereby ob-
son the error introduced by this truncation is approximatel)}a'n'ng)‘(P >0). For 0<P. <120 fm™= the results could be
10%]36]. Thep andw mesons are degenerate at this level ofdescribed by the quadratim P*)
approximation. As for the pion, we project this equation onto
the lowest Tschebyshev moment and solve Fgtp?,P?), \(P2)=0.44-0.021P2+0.000 076", (55)
neglecting the coupling to the higher moments. This is a
good approximation for the meson[26].

In this preliminary study we have only solved the quarkwith a standard deviation of 0.000 044. We compared this
DSE at realp?. For an on-shelp mesonP?<0 and hence with both linear and cubic fitting forms: It provides a smaller
Eq. (54) samples the quark propagator at complex values o$tandard deviation than the linear form and is monotonic,
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whereas the cubic is not. The value Bf for which this the solution of realistic, approximate gluon Dyson-
algebraic form of\ (P2)=1 provides the mass estimate pre- Schwinger equationéDSE’s), we solved the renormalized,
sented in Table I. rainbow approximation quark DSE and subsequently the
The calculated p-meson Bethe-Salpeter amplitude is renormalized, generalized-ladder approximatien and
much narrower in momentum space than that of the pion, in,-meson Bethe-Salpeter equatiofBSE’s. We varied the
agreement with the results of R¢26]. parameter in the gluon propagator,, which is a mass scale
The calculation 0, proceeds in a similar manner. In that marks the transition between the perturbative and non-
the generalized impulse approximation therm coupling  perturbative domains, and the renormalized current quark
can be expressed in terms of a nonlocal coupling functlonaﬁ]assy and obtained a good description of a range-adnd
N,(p,q), which is discussed in Reff47]. This expression is p-meson observables. The value mf was not knowna

used to evaluatgpm,(PZ) at 0<P?<10 fm 2. The results riori. Good agreement with the dataquired m~700
were fitted and extrapolated to the calculated mass-she;@/lev which corresponds to a length 6f0.3 fm

point. The best fit was obtained with In studying the pion BSE we were led to a mass formula

gpm(p2): 1.15-0.076P%+0.0013*—0.000 025, for the pion, Eq.(41), expressed solely in terms of the mas-
(56) sive and massless quark propagators. This formula provides

a very accurate estimate of the pion mass. It is valid to all

giving a standard deviation of 0.000 23. This form provides g,;qers inmg, the renormalized current quark mass, and for

smaller value of the standard deviation than either a linear o|rnR< 20 MeV the nonlinear terms provide a contribution of

guadratic form and is monotonic whereas the quartic is Not. 5 more than—10%
The value obtained at the calculated on-mass-shell point is We obtained num-erical solutions of the quark DSE on the

given in Table I. . : timelikep? axis, which showed the quark propagator to have
These calculations are only a first step. They serve merel . . P
o 0 singularity on the regh* axis in our model. We found
to indicate that our one parameter model gluon propagator.

which was fitted to pion observables, can reasonably be exé_wdence to suggest that, as a function it the quark

pected to provide a good description of other observabIegr(.)p"’lg""t.0 r hgs a pair of complex conjugate pol_es or branch
points with timelike real parts and large imaginary parts.

too. Such a propagator does not have a Lehmann representation
) and admits the interpretation of describing a confined par-
B. Confinement ticle
We have also solved the quark DSE for rpék 0. There Our study illustrates the manner in which the DSE’s can

is no singularity on the reg? axis. The solution therefore be used to develop a semiphenomenological approach to

does not have a Lehmann representation and hence may RED that incorporates the perturbative, large spaceéifke-

interpreted as describing a confined patrticle. behavior known from renormalization group studies and, via
A plot of 1[p?+M(p?)?], which for a free particle an economical parametrization, extrapolates this into the

would have a pole at the mass-shell point, has a broad resaonperturbative, small spacelik-domain. This efficacious,

nance like peak centred pf~ —(0.55) Ge\2. This admits nonperturbative approach allows for the correlation of a large

an interpretation as the “constituent-quark mass” in ourrange of observables via very few parameters, which it may

model. be possible to relate to the fundamental parameters of QCD.
The form of our solution is suggestive of a pair of com-

plex conjugate poles or branch points with timelike real parts

and large magnitude imaginary parts. We have made no at- ACKNOWLEDGMENTS
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