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Molecular states in the equator-equator orientation of two oblately deformedC nuclei
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Intermediate resonance states in th@ + °C system are explained in the framework of a phenomenologi-
cal model assuming the oblately deform&@ in the equator-equator orientation. The corresponding internu-
clear potential is determined by means of a double-folding model with parameters obtained by an optical model
calculation reproducing the experimental excitation function. With this potential energy expanded around the
stable equator-equator orientation, the Sdinger equation is approximately solved. The obtained energies of
the eigenstates are compared with experimental data and their decay widths are calculated.

PACS numbds): 25.70.Ef, 24.10.Ht, 24.30.Gd

. INTRODUCTION tem. The development of their model on tHiSi + 2Sj sys-
tem was carried out parallel to our work on th&C + *°C
After the discovery of narrow resonance structures in thesystem[15].

low energy scattering of twd?C nuclei by Bromleyet al.[1] In our approach, we first make a phenomenological ansatz
selected heavier systems, lik&C + %0 [2], %*Mg + for the potential energy by means of the double-folding
24\g [3], and 28Si + 28Si[4], have also revealed small reso- Mmodel using the sudden approximation for convenience. The
nance widths at higher angular momenta. The main commoR@rameters of the potential are determined in such a way that
attributes are the high correlation of resonances between dift Optical model calculation reproduces roughly the experi-
ferent exit channels, the appearance of several resonancgi¢ntal gross structure of the excitation function '6€ +
per grazing partial wave, and the preference of those chan- Starting with a general Hamiltonian for the two cluster

nels which approximately conserve the identity of the scatSystem, we look for quasibound states in the equator-equator

tering partners. Since statistical analyses have not been ab(IEE) orientation Of_ the_ oblat_ely deformedC nuclei. By
) Introducing approximations similar to those of REE1] we
to explain these resonances as compound nucleus fluctua-

) .~ “calculate spectra of resonances and the decay widths into
tions (see, e.9.[5,6]), one has postulated a molecular origin. __ - 1
Molecul del g dinucl fiourationd2ous %C channels.

olecular models presupposing - dinuciear conigurations , gec ) the basic Hamiltonian is explained. The calcu-

havzbeen sztil\(jlcessfully applied to these sysféfh.9., 10 |ation of the internuclear potential is shown in Sec. Il in-
the Mg + “"Mg system by Uegaki and Abk8,9] and by ¢yding the optical model calculation and the application to
Maass and Scheifil0—12. These authors consider various he nyclear molecule. Finally, Sec. IV gives the approximate

but different excitation modes with respect to the favoredqg|culation of molecular resonances and decay widths.
equilibrium configuration where the nuclei touch each other

with their poles. As a result both models reproduce roughly
the level density and distribution of decay widths.

Coupled channel(CC) calculations usually use a re- In coupled channel calculations for elastic and inelastic
stricted number of molecular states built up by the states o$cattering, the Hamiltonian describing the radial motion and
the separated nuclei. They cannot reproduce the experimentdile intrinsic structure of the nuclei can be written in the
decay widths o*Mg + 2“Mg scatterind 11]. In the case of molecular c.m. framéprimed coordinates;=re,,) as fol-
the lighter *°C + '%C system coupled channel calculations lows:
give uncorrelated resonance structure with nearly correct
widths aboveE;,,=10 MeV [13]. The resonances in the p? (I—Jl—J2)§,+(I—J1—J2)§,
region ofE. ;<10 MeV, which have very small experimen- Hcc:ﬂ + 2ur?
tal widths, are not reproduced. Thus the question arises
whether our molecular model of th#Mg + 2*Mg system
can explain the intermediate resonances of the well investi- + 2 Trom(JiBi 7)) U1, B1, 71,91, B82,72,05)
gated'“C + 2C system, too. The aim of the present paper is =t
the study of the resonance states formed by two obf&te
nuclei in molecular configurations. Similar investigations +iW+
have been recently published by Uegaki and Ab4 for the :
8Sj + 285j as an example of an oblate-oblate dinuclear sys- (1)

Il. THE COLLECTIVE HAMILTONIAN
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Here,| denotes the total angular momentum ahdand J,
*Present address: Mathematisches Institut der Justus-Liebigare the intrinsic spinsl g,y Means the kinetic energy opera-
Universitd, D35392 Giessen, Germany. tor of the rotation-vibration modelRVM) [16]. The Euler
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anglesQ/ = (¢!, 9/,¢) (i=1,2) describe the orientation of have chosen here for reasons of simplicity. In combination

each nucleus with respect to the moleculsliO) frame. g; with the sudden approximation the potential is a function of

andy; (i=1,2) are the intrinsic quadrupole deformation co-the collective coordinates as requested. In this case the indi-

ordinates. The potentid) depends on the deformation and Vvidual nuclear densities are added in the region of overlap.

orientation of the nuclei and can be written as Special care has to be taken when the radial distance be-
comes too small. Actually this approximation is only ad-
equate in high energy collisions, but has been successfully

U(r,B1,v1,.91,82,v2,Q5) applied, e.g., by Uegaki and A&]. We use the following

nucleon-nucleon interaction:

:V(r)+Vcoup(rvﬁla71!91’:82172-Qé)- i)

The potentialV+iW is the r-dependent optical potential. v(r,p)=[V.exp(—r/u)/r+V,exp(—r/u)/r]
V coupt €N be expanded in a series of spherical harmonics
and deformation coordinates in the c.m. frame with space- X exp(— yp) + V(1) +Veouiomb: 3

fixed axes(subsequent use of the notation “c.m. frame” re-

fers to such a coordinate system which CC calculations The genuinely nuclear part is a sum of an attractive and
are performed usually. Likewise, the required wave functiongepulsive Yukawa potential which is density dependent in a
can be expanded in an asymptotic bdstsannel wave func-  simple way. The advantage of such a dependence appears in
tions) which couple in the region of interaction. a shallower potential without softening the barrier step

First, we use the optical model for the determination ofRef.[18]). In order to describe greater overlaps of the nuclei
the potential parameters by reproducing the gross structure iore accurately, we have added a repulsive delta interaction
the *2C + °C elastic 90° differential cross section. On the potential(cf. Ref.[8]). Thus the more the nuclei overlap, the
other hand, we construct quasibound states with the samgreater the repulsion of this pseudopotential becomes which
Hamiltonian but in the MO frame by using appropriate ap-can be interpreted as caused by the Pauli principle.
proximations. It is possible to combine both studies in one The ranges of the Yukawa forces refer to the values of the
picture by expanding the wave function in a series of bothM3Y interaction[18], i.e., u,=0.45 fm andu,=0.25 fm.
the channel wave functions and the molecular quasiboungthe strength parameters are determined via a scattering cal-
stateq12]. Cross sections can be obtained either by means cfulation presented in the next section with the result

an extended CC calculation or by using fRematrix theory V,=—780 MeV fm,V,=1460 MeV fm, andv,=25 MeV
with several approximations. In the latter case the narrowm3. Moreover, we have useg=5.4 fnr.

resonances appear as Breit-Wigner resonance terms added toThe folding potential in the sudden approximation
the S matrix of the conventional CC calculation. (p=p1+p,) is defined in the c.m. frame as

Ill. THE NUCLEUS-NUCLEUS POTENTIAL

A potential depending on the geometrical properties of the u(r,a't, a'?)= j f d3r 3 ,p4(ry,a'Y)

nuclei is required. As nuclear molecules have longer life- s g

times, they can be treated adiabatically, which is a difficult

task[10]. A new ansatz for calculating an adiabatic potential Xv(r+11=13,p)pa(r2, ). (4)

is the symplectic model where a microscopic Hamiltonian is _

mapped onto a phenomenological potential. For moleculaHereaﬁL') are intrinsic quadrupole deformation coordinates in

potentials a procedure of interpolation between the compoghe c.m. frame. Using the techniques of Fourier transforma-

ite system and the separated nuclei is apgliEd. tion and transforming the potential into the MO frame we
Another possibility is the double-folding model which we obtain by a straightforward calculatideee, e.g., Ref.18])

U(rvﬂl!(Pi’ﬁi!BZ!(Pé’ﬁé)ZIIEm Uln:llz(r!Bl!BZ)COEEm((Pé_ QD;_)]PPI(COS&;_) PE(CO&?é)! (5)

m=0

with

N

UL (1 B1,B2) = 20 i 1712211+ 1) V32154 1)V%1,01,0]10) f:dkszffS(k,ﬁl)AffS(k,ﬁz)ﬁ(k)J|(kr)(—)m

3

X (13mlp=m[10)(2= 8mo)[(13—M)! (1= m) YA (1 + M)t (1 +m) ]~ Y2 (6)
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P"(x) denotes the Legendre polynomiglkr) are spherical
Bessel functions, and(k) is the Fourier transform of the
nucleon-nucleon interaction. Note that E&) merely de-
scribes nuclei with axial symmetry around the intrinsic axes,
i.e., with B8 deformations. Only the so-called form factors
depend on the deformation of each nucleus 1,2; double
primed coordinates: intrinsic principle-axes system

A (k,B) =2 JO driri’%j(krf) fo dd{'sind] p;

X exp(— ypi) Yio( 97). @)

V, (Mev)

For calculating the density dependent part of the interaction
given in Eq.(3) we set exp{ yp)=exp(—yp)exp(—yp,) as
usual [19]. This density dependence causes a factor
piexp(— yp;) without requiring additional effort.

A single 1%C nucleus in its ground state can be satisfacto-
rily described as solely3 deformed[20]. Although y defor-
mation could be important for the description of the nucleus
as a molecular constituent part, we neglect this deformation
here for convenience. Since different ground state deforma-
tions have been measured with several metheée, e.g., 2 4 5 : 8 : 10
Refs. [20,21), we have assumed a mean value of
Bo=—0.60. Moreover, a nuclear Fermi density distribution r (fm)

(i=1,2)

FIG. 1. Potentials V,(r)=V(r)[=U3(r,B:=8,=0)]
p(r!, 8!, 8)=po(L+exp[r] —R(d/,8)1/a}) ! (8 +/(/+1)h2(2ur?) for various angular momenta.

with Here®(r) is the classical moment of inertia ands a spin
cutoff parameter. The parameterdetermines the absorption
R(97,81)=Ro( B[ 1+ Bi Yoo ¥7)] (99  strength angB adjusts the angular momentum dependence of
W. Since the absorption mainly occurs at the touching region

has been fitted to twice the experimental proton density disof the nuclei, the radial functioN(r) is chosen as a Woods-
tribution [22], with B, being zero. We have chosen Saxon form(radius and diffuseness parametef,zand v,
po=0.18 fn 3 anda=0.55 fm. With these variables kept respectively rather than the number of nucleons in the over-
fixed, Ry(3;) is determined in such a way that the condition 1ap region(cf. Ref.[11]). The strength ofN(r) is set 12 for

of mass conservation is fulfilled for each valuegf. the sake of equivalence to the usual functiomat.

The form factorsAl) with 1>2 can be neglected due to ~ AS the calculations of Korotky24] have been very suc-
their very small contributions. The coefficients cessful |n.desclr|b|ng the expenmenta}I excitation function,
U™ (r,B1.8,) have been calculated by means of a GaussWVe have first tried to reproduce the V|rtual_ resonance ener-

12 } . gies of the Korotky potential by performing calculations
Legendre integration. without an absorptive potential. So the real part of the poten-
tial V(r) has been fixedfor parameters see abgveith
A. Optical model calculations resonance energies 8.9, 12.8, 17.5, 23.6, and 31.1 MeV for

In this calculation we do not consider inelastic channelsth® angular momente=8, 10, 12, 14, and 16, respectively.

—na—0) : The obtained potentidV/(r) is shown in Fig. 1 where also
Ugo(r,/s’l—,Bz—O) is used as a real part of the optical po- . ;
tential V(r). By following the statistical model of Helling the centrifugal potentials are added. Then the calculated elas-

et al. [23] the imaginary potential can be written as tic 90° differential cross section pas been fitted to the experi-
mental one by varyingy, 8, and y. Best results have been
21+1 obtained with «=—0.07 MeV, 8=0.31 MeV !, and
W(r,E,l1)=aN(r) 3 y=0.55 fm, the radiuRy=3.11 fm being used. Evidently
the gross structures of the excitation function are well repro-
(1+1/2)? duced as shown in Fig. 2.
xXexp 2 a[E—V(r)]—T , (10

B. The molecular potential for several orientations

with In Sec. IV we will use the potential energy E¢) in
o order to obtain the quasibound states of the Sdiiger
, Og(r) (E=V(r) ® ()= 8R2+ 2 1y  equation. Since the rotational energy influences the proper-
- R? 5 | a(=wp{zgRo+re. (11 ties of the potential minima, around which the quasibound
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FIG. 2. Elastic excitation function. ,,=90°) for the scatter- hn' 0

ing of %C on '2C calculated with the potentials of Fig. 1. The dots
are experimental values taken frd@¥].

states are situated, this energy should be chosen very care- /:>\
fully. As an approximation we assume a stiff rotation of the %
whole molecule, which means “frozen” intrinsic degrees of N
freedom, rather than neglecting individual rotatiofis]. @
Therefore, the Hamiltonian for calculating effective poten- —mﬁ
tials reads
| _1 rt@ — 1y ’ ’ ’ ’
HPES_EI O 1" +U(r,B1,¢1,91,B2,95,%3)
2
+ E %(B- .y )2 (12) FIG. 3. Radial intersections of the potential energy surfaces for
=1 2 : ol the angular moment=0, 8, and 14 for three orientatiofgarallel

equator-equatofEE): full; pole-equator(PE): dashed; pole-pole
with r,8,,8,,91,95, and (p,— ¢}) fixed.1' is the operator (PP: dotted. Here, the variableg; and B, are fixed by their
of the total angular momentum ard is the inertia tensor, Vvalues at the corresponding minimum.
both with respect to the axes of the MO systdnis a sum
of the diagonal inertia tensor of the relative moti®n and  for the pole-polePP), the pole-equatafPE), and the parallel
the inertia tensors of each nucle®s (i =1,2). The latter can  equator-equator orientation. The latter means that the sym-
be obtained by means of the transformationmetry axes of the nuclei are parallel. Each intersection of the

@izR}(Qi’)(:)iRi(Qi’) (15,16 with PES exhibits a minimum. It is worth mentioning that the
potentials without rotational energy are very similar to those

3ByB? 0 0 of Cugnon et al. [25] who have performed constrained

(:)i: 0 3BO:8i2 ol (13 Hartree-Fock calculations with a Skyrme S Il interaction.

Note that the potentials in Fig. 3 amot minimal curves
0 0 0 except around the minima.
The difference between the internuclear potentials of the

Using the value of Bp=—0.60 we have calculated orthogonal and parallel EE orientations is roughly 0.25 MeV
C;z=36.6 MeV andB,=0.6261> MeV~* according to the and the rotational energies differ at most by 0.75 MeV with-
RVM [16]. out significantly different coordinates of their minima. Fig-

First, we diagonaliz® for arbitrary but fixed orientations ure 4 shows the molecular potential of butterfly oscillations.
of the nuclei, i.e., we transform to a molecular principle-axedt is interesting that there exists a path in the PES of the PE
system. Then Eq(12) describes a triaxial rotator and the orientation(bottom pictur¢ which allows us to incline the
corresponding Schdinger equation is solved by diagonal- nuclei very much by using only about 1 MeV of energy. In
ization in the eigenstates of the symmetric rotatbfK ) [cf.  the case of the parallel EE positigapper picturg one can
asymmetric rotator modéARM) [16] ]. Note that only even observe elliptic equipotential surfaces lying diagonal which
K values appear here because of the unambiguousness of tii@ans a preference of touching configurations. On the other
wave function. In case that the intrinsic symmetries of thehand, the orthogonal EE orientation shows an advantage of
molecule are considered, too, oKdvalues are consequently independent butterfly oscillations of both nucleiot illus-
allowed (see Sec. IY. That is why our calculation of the trated which is pretty obvious because there does not exist
effective potential has an approximate character. any inclination of the nuclei which increases touchirmd.

Figure 3 shows the radial intersections of the potentiapotential term proportional t€3 in Eq. (14)]. In Table | we
energy surfacéPES for three orientations of the axes, i.e., give the minimum energy and the parameters of the PES at
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the potential minima for different angular momenta, ,

C{, andC? are the stiffness parameters of the relative and
deformatlon degrees of freedom, respectively, calculated at
the potential minima.

V. CONSIDERATION OF EQUATOR-EQUATOR-LIKE
CONFIGURATIONS

There are some hints that the equator-equator orientation
is the most important one for the consideration of molecular
resonancef26]. This orientation is connected with maximal
elongation and is the first stage of the nuclei brought together
with minimized energy. Contrary to this, the pole-pole orien-
tation would be rather connected with fusion and smaller
total deformation. So we restrict ourselves in the following
to the EE orientation.

A. The Hamiltonian

We assume that motions in the deformation and relative
coordinates close to the molecular minima are independent
so that a quadratic expansion in these variables can be per-
formed. Besides this, the potential is expanded up to second
order in the angleé}’ ) — 72 (i=1,2):

Vee(I To,€1,62,05— 1,97, 9%)

C Cpe
=5 (r=rg*+ 3% §|+Vo+_(19 2+ 97)
C2 ’ ’ QA2 ar?
+7005{2(<P2_<P1)](1_191 =95
C3 ’ "o’
+ 7005( 2= @1) 9105, (14

The parameters depend on the total angular momentum and
are given in Table | and Table Il. The coordinatgsare
defined as;= B;— Bo- By neglecting they; dependences we
can write the kinetic part of the Hamiltonian Ed) explic-

itly as (@,=3ByB33)

TABLE |. The coordinates of the minima and parameters of a harmonic expansion of the effective
molecular potential fofa) the parallel equator-equator orientation dbylthe pole-equator orientation.

=0 1=2 1=4 1=6 1=8 I=10 I=12 |=14
(@  Emin (MeV) —-2.83 —-217 -0.68 153 434 763 1129 1524
ro (fm) 5.27 5.30 5.37 5.47 5.60 5.75 5.93 6.17
Bo -058 -058 -060 -062 -066 —070 —-0.73 —0.76
C, (MevVfm™2) 831 842 8.10 7.51 6.72 5.79 457 2.99
Cs (MeV) 39.6 39.5 38.9 374 367 37.1 37.4 375
(b)  Emin (MeV) -6.80 —6.03 -425 -161 1.92 586 1039  15.32
ro (fm) 420 425 435 435 440 4.45 455 4.65
B -073 -074 -075 -080 -0.83 —-089 —092 -0.95
B -054 -055 -058 -060 -065 —-069 —076 —0.83
C; (MeVfm=2) 15,0 15.1 13.9 14.0 12.8 13.0 11.7 10.3
c<l (MeV) 454 454 446 445 437 43.9 43.0 42.2
c<2 (MeV) 38.7 38.6 38.2 37.0 344 315 305 322
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Tee= Sy -
EES T 24t ar?' lesoagf 2ur? 2

212 2 K2R |2—|§,—(J1)§,—(J2)§,+1(1 1

2
2 2
8. " Tré) 2, (3t (3]

1
+ M_I,(ZJ{(‘]l)x’(‘]Z)x’ + (\]l)y’(JZ)y’ =1 x’[(Jl)x’ + (‘J2)x’] =1 y’[(\]l)y’ + (Jz)y’]}- (15)

expanded around the EE orientation. In principle, the COMegnergies of Eq(12) within an error of 0.25 Me\[15]. By
sponding Schrainger equation can now be solved by diago- measuring the angular momentum of the nuclei with respect

nalization. One can find a basis where most parts of the, ihe c.m. system the operatalsin Eq. (15) yield large
HamiltonianHge=Tee+ Vee are diagonal, except for the last ¢ontipytions to the EE orientation. Therefore, we have in-
two terms in Eq(14) and the last one in curly brackets in EQ. 54, ,ceq the operatord/ in Eq. (16) which describe the
(15). Since the rotational energy should be roughly the SaMEotation of each nucleus with respect to the MO frame. Here,

aftgr_d|agonal|z_at|on as in Ed12), ie. it shoulq include an exact transformation is difficult to findor detailed dis-
individual rotations, one can draw the conclusion that theCussion see Refl1])
nondlag_onal contrlbutlo_ns are anyth_mg but small. With th(_a The intrinsic rotational energy explicitly reads
calculation of the nondiagonal matrix elements and the di-
agonalization ofHge being lengthy, we prefer an approxi- ¢ 2

mate method. Instead of using the full form we neglect the—— >, [(Ji’)§(,+(Ji’))2,,,]

last two terms in Eq(14), which means free rotation of the 2001
nuclei in the angle ¢;,— ¢1), and rewrite Eq(15): 52 2 P 3 1 72
=———> |~z t+cotd —+—5— —7|. (19
n2 1 9 i h2 52 12-12, 20051 | 992 98] sintd del?)
Tee=— 5 o2~ 2 55 22t 5270 72,
2uror =1 2Bo 9&7  2(puro+40,/3) Transforming the volume element fromde;des
1 2 X sin®;dd;sind,ddor’drdQdédé, to  deidesddiddsr?
+ WE [(Ji’)i,,+(Ji’)§,,], (16) xXdrdQdé&,dé¢, yields a change of the differential operators
0i=1 i i in 9:
The last two terms in this formula are an approximation and 52 P J 1
arise from the insertion of - /Simf}.’( — +cotd)/ _>
20, ! ﬁﬁiz b oo vsing{
Dy = g2+ @] Iz =) 2 | g
i x’,y’: 2 X'y’ i )xryr i)z = i)z fL 9 1
pro+40,/3 - ht 1y
an 20, 7972 + 4cot219| +3]- (19

into Eq. (15, with small terms being neglected and Expanding the approximate Hamiltonian up to second order
/Lré/@O%G (cf. Table ) being used. The rotational energy in &; and ¥, we finally get

2 2

R Sl WA 1212, h2§ cian PG ,
e 2ut o’ 2Be| 9 T 087 | T 2wiira0g3) 2042 a5 TGzt 2 (10T

E:.B 2 2 1 ? 3712, Q12 h?

t5 (G FE) TS C1—4—®0 (9,7t 9, )+Vo—2—®0- (20)

TABLE II. The coefficients of the potential expansidm MeV) in the Euler angle§9i around the EE
orientation[see Eq(14)].

I=0 1=2 =4 I=6 1=8 1=10 1=12 =14
Vo —-271 —2.70 —2.65 —2.52 —2.19 —1.64 —0.92 0.16
C: 0.55 0.91 1.68 2.72 3.96 5.22 6.36 7.26
C, —-0.25 —0.25 —0.26 —0.26 —-0.27 —0.27 —-0.25 —-0.22

Cs 0.41 0.60 1.08 1.69 2.48 3.23 3.79 4.09
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For reasons of symmetrization in the next section, we

have introduced the coordinatés =2"Y%(¢,+&,) in Eq.

(20). Note that the corresponding wave functions have to be

used with the simplified volume element.

B. Eigenstates of the approximate Hamiltonian

In order to solve the Schdinger equation for the EE
orientation we make the following ansatz:

V(r,Q,01,05,6,,6)=R,(r)Sv), (213

21+1\* o,
|V>:(W) DI\/TK(Q):a(QllQZ)vﬂ+(§+)vﬂ_(§7)a
(21b)

whereS is a symmetrization operator including the normal-

ization. The Schrdinger equation separates into four differ-
ential equations. The equations dependingprandé_ can

be simply solved by normalized one-dimensional harmonic

oscillator eigenfunctionsvh(@) and v, (£-), respec-

tively (u,,#-=0,1,2,...). By additionally substituting
R,(r)=g(r—rg)/r, the solutiong(r —ry) of the correspond-

ing third differential equation is a harmonic oscillator eigen-

function, too. The remaining equation reads as follows:

_ﬁ22 2 . P
— > | =5 +(1+ 3/
{ 2®0i=l {aﬂi/z ( i )ﬁ(PiIZ}
1c ﬁzéB’ZE”Q'Q'—o 22
+§ 1_4_(,_)0 “~ i Lo '—'a( 1 2)_ . ( )

This equation has the solution

1 : ' : '
Eo(Q1,Q))= meXp(lkm)exp(lkz@z)

XD i, () Pyl (92) (23
Here an integration in the coordinate is providefhormal-
ization constant () 1] analogously to the channel wave
functions. The function@ni‘ki‘(ﬂi’) are harmonic oscillator

JURGEN SCHMIDT AND WERNER SCHEID

C1®O
h2

, 1 1/4
+kI_Z y Nni=

(25

a;j

1/2
Qi
J?z%u) '

:

Hni(x) denotes a Hermite polynomial. The demand for peri-

odicity with 277 in the anglesp; and ¢ restrict the quantum
numbersk, andk, to integers. As the wave functiolt, has

to fulfill the condition[1,:—(31),—(33)]¥,=0 [11], we
have k;+k,=K. Introducing the quantum number
k=Kk;—k, for the asymmetric rotational mode around the
molecularz’ axis, we can replace the quantum numbers
andk, by K=k; +k, and k=k;—k, in the following.

The operatoSin Eg. (21) symmetrizes the wave function
with respect to an inversion of the intrinsi{ axes, an ex-
change of the nuclei and a parity operatiorn+(—r). Then,
the wave function should be invariant under the inversion of
the intrinsicz] axes:

1?1‘{_’_13(, i —oi+m (i=1,2). (26)

It can be seen that the wave functign,(Q;,Q) is a eigen-
function of these symmetry operations with the eigenvalues
(—)%* i, Thus choosing those wave functions with positive

eigenvalues leads to the rule

ki+n;: even/\ k,+n,: even.

(27)

Here, this symmetrization reduces the number of solutions,
in contrast to the case of théMg + Mg system.

The exchange of both identical nuclei changes the wave
function in the following manner:

|V:(|,M,K,K,nl,n2,lu,+ ,/_L_)>_)(_)|+,u.,+n1+n2
X|v=(1,M, =K, &,Nz,np, s ). (28)

Analogously, the global parity operation-{¢ —r) yields

|1/=(|,|\/|,K,K,r11,l’]2,lu+ ,M,)>—>(—)|+n1+“2

X[p=(,M,~K,=kNy Mgy o). (29)

eigenfunctions which additionally depend on the rotational

guantum numberg; (i=1,2)

@, k| =Np Hy (13 Y expl — af 9/°12), (24)

with

As the elastic and inelastic channel wave functions have
positive parity we choose the same paritiy for the quasibound
states. Otherwise, there is no overlap between both types of
wave functions. By additionally using the relation
(—)"""2=(—)K which holds due to Eq(27) the symme-
trized wave function can be written as

S|V>:NV[|VZ(I!M!K|K!n1|n2|,u/+ 1#—)>+(_)I+K+M7|V:(|,M,_K,K,nz,nl,/.l/_'_ ,ILL_)>

+(_)I+K|V:(I1M1_K!_K!nl!n2wu“+ 1/~L7)>+(_)#_|V:(I1MvK1_K1n21nlwu+ !M*))]v

(30
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TABLE IIl. The energy constants used in E§5) for angular momentb=0 to | =14 in MeV. The values
of ﬁwﬁi are given for different quantum numbers |&f].
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I=0 1=2 1=4 I1=6 1=8 =10 1=12 I=14
Dk 0.292 0.302 0.271 0.251 0.216 0.188 0.172 0.158
D, 0.396 0.396 0.370 0.347 0.306 0.272 0.250 0.231
ha),g,i(|ki|=0) 0.494 0.906 1.390 1.815 2.115 2.319 2472 2.547
hw,,i(|ki|: 1) 1.658 1.825 2.030 2.284 2.444 2.562 2.667 2.709
hw,_c,i(|ki|=2) 3.204 3.296 3.270 3.313 3.234 3.179 3.180 3.145
fiwg 7.95 7.95 7.88 7.73 7.66 7.70 7.74 7.74
ho, 7.61 7.66 7.51 7.23 6.84 6.35 5.64 4.56

with change much with the relative distance. The other degrees of
freedom have zero-point energies.

Table Il gives the values oby, D, and of the vibra-
tional energies for different angular momenta. Calculated en-
ergies of resonances are shown fer8 in Fig. 5 and are
listed for =4, 10, and 14 in Table IV. As in the work of
With the total angular momentum being even in the scatterRefs.[9,14] there exists the mode of simultaneous rotation
ing _of two bosonic nuclei with spin zero, the following se- (K mode and the one of opposite rotatior (node of both
lection rules can be summed up: nuclei around the’ axis. Together with the butterfly modes
they build up the low energy spectrum of the molecule. Here,
the butterfly modes are independent vibrations of each
nucleus because the responsible coupling terms in the poten-
tial have been just neglectécf. Sec. 11l B). On raisingl one
can observe an increasing stiffness of the lowest butterfly
potential, whereas the rotational energy decreases. It is inter-
esting to compare our butterfly frequencies to those of Hess
and Pereyrd27] who have used parameters of an energy
formula fitted to the experimental spectrum lcf0. They
Rave obtained a butterfly excitation energy of 1.13 MeV to
which our values of small are very close. Moreover, the
Bi degrees of freedom apparently do not need to be espe-
cially considered since the excitation energy of surface vi-

1
N, =5 {1+ (=) 6koduot ()" Snyn,[ o+ (=)' o]} 12
(31)

(K+k)/[2+ny: even, (K—«k)/2+n,: even,

K=*«k: even, K=0,

=

k=0 for (n;=ny)\/(K=0), n;=n,,

u_: even for (n;=ny)\[(k=0)\/(K=0)]. (32

Combined with these rules the eigenenergies can be calc
lated by means of the formula

EV: EIKKnannru+#7:EO(I)+DKK2+DK(K2_2)

+ oo (N +12) +frwy (N +1/2) +fw, (N+1/2)

thop(p.tuo), (33 o I=8
Lo =3 _0
with ~{0,0) SRRy (1.1) =1

10 (1.0} ¢

. [1(1+1)]A? = 0 —

- — {0,0)
y . . w12 (1.0) 2 —
The quantitiedD andD, and frequencies are given as (0,0 —
Dy =h?[(200) 1~ (urg+404/3) 1112, 10 —
x=0 T

D,.=%2%(40), {0,0)

K=0 K=1 K=2 K=3 K=¢4 EXP

0y, ={C1/Oo+AZ[(K+ k)2 1]/(405)}"?,
®9,={C1/O0+h’[(K— k)2~ 1]/(407)}*2,

0 =(Cr /)" wg=(Cy/By)*2 (35)

FIG. 5. Energies of the quasibound states for t#he + *C
system around the parallel equator-equator orientation for an angu-
lar momentuml =8. Only energies up to 17 MeV are given. For
each state the quantum numbéts « (number above the lings

n, andn, ((ny,n;) = numbers below the lingsare shown, the
For the vibrations the zero-point energies are not includedother ones are set zero with exception of the first excited states with
because the asymptotic potential energy-(°) is just de- n,=1 andu,=1. The levels are ordered according to the scheme
fined with respect to the vibrational ground state of eaclof Uegaki and Abg14]. The experimental resonance energies are
nucleus and these vibrational zero-point energies do natken from Abbondannf28].
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TABLE IV. Molecular excitation energyin MeV) and summed partial width@n keV) for the decay of
the molecular state=(1,7)=(l,K,x,n;,n,,n, ,u; ,;_) into a scattering state]fl,ng), the angular mo-
mental =4, 10, and 14 being chosen as representative examples. The summation of widths runs over all
possible decay channeisleading to the given final state. In parentheses the summed reduced Gid#s
of yzsp) calculated with the Coulomb penetrability of the stretched configuratiqree( —J,—J,) are given.
The brackets in the second column me#&n«,n,,n,), and an asterisk denotas=1, otherwisen,=0. The
remaining guantum numbers are zero.

Widths
I ’i’/ EV (0+,O+) (2+’0+) (2+,2+) (4+,O+)
4 g.s. 3.74 0.0 (16.58 0.0 (0.00 0.0 (0.00
(0,0,2,0) 6.53 1.4 (0.78 0.0 (1.60 0.0 (0.00
(1,1,1,00  6.73 — 00 (25) 00 (0.00
(22,000 7.24 — 00 (17) 00 (0.00

(0,022) 931 01  (0.0) 00 (009 00 (0.3)
(0,04,0) 931 103 (0.6 04 (189 00 (0.00

(1,-1,22 952 — 00 (00§ 00 (0.95
(20,1,1)  9.53 — — 0.0 (0.63
(3-1,10 9.84 — — 0.0 (117
(0,2,1,1)  9.92 — — 0.0 (0.27
(4,0,00)  9.95 — — 0.0 (1.53
(2,-2,20 10.03 — 01 (0.05 00 (056
(1,-3,1,0 10.63 — — 0.0 (0.33
(1,1,30)  10.80 — 41 (114 00 (0.00
(0,000« 11.26 19842 (77.08 02  (0.04 0.0 (0.00

10 g.s. 1252 1961 (2992 03 (045 0.0  (0.00
(2,2,00)  14.79 — 145 (229 00 (0.02
(1,1,1,0)  15.66 — 407 (40) 00 (0.08
(4,0,00)  16.39 — — 03 (0.17
(0,0,20) 17.16 1208 (467 471 (273 02 (0.05
(3-1,1,0 17.60 — — 2.6 (0.4)

(0,4,00)  17.73 — — 0.9 (0.12
(1,-3,1,0 18.26 — — 35 (0.3
(2,0,1,1)  18.64 — — 4.8 (0.4
(0,00,0* 18.87 3021.9 (93.67 502 (2.0) 0.1  (0.01
(02,1,1)  18.97 — — 46 (0.35
(2,-2,20 19.43 — 94 (034 58 (037
(1,-1,22  20.30 — 113  (0.37 163 (0.8)

14 g.s. 19.72 5827 (3779 111  (1.09 00 (0.0) 0.0 (0.00
(2,2,00) 2157 — 712 (409 05 (005 0.0 (0.00
(4,0,00) 2285 — — 63 (0.4) —
(1,1,1,00  22.90 — 1225 (542 22 (014 00 (0.02
(0,4,00)  24.01 — — 75 (037 —
(0,000~ 2429 24762 (78.9) 819 (299 05 (0.02 0.0 (0.0
(3-1,1,0 24.46 — — 163 (074 —
(0,0,20) 2481 3575 (1083 921 (313 33 (014 04 (0.12
(1,-31,0 25.04 — — 179 (074 —
(2,0,1,1)  25.93 — — 205 (0.74 —
(2,2,0,0*  26.14 — 4317 (1277 58 (020 0.1 (0.0
(02,1,1)  26.22 — — 206 (0.7) —
(2-2,20 26.67 — 319 (090 190 (062 0.0 (0.00
(4,4,00)  26.91 — — — 76 (0.73

brations is nearly identical to the corresponding value of an Theoretical and experimental resonances are compared in
isolated nucleus. But thg; variables must not be fixed be- Fig. 6. It is remarkable that, in most cases, the theory repro-
cause the individual moments of inertia considerably dependuces the experimental level density at higher energies. The
on them(cf. Table ). absolute location of the theoretical spectrum depends on the
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FIG. 7. Harmonic approximation of the molecular potential in
_ ) the radial coordinate for different values of total angular momentum
FIG. 6. Calculated and experimental resonance energies faijotted lineg around the corresponding minimum. The right edge of

various angular momenta. The calculated enerdéshand side of  each parabola denotes the cutoff at the channel radils
each columpare the eigenenergies for the equator-equator orienta-

tion of the *2C nuclei. The experimental datsight-hand side of
each columpare taken from Abbondanr{@8]. complete set of orthogonal basis states inside the spherical
nuclear interaction region fr=<a (interior region in

] ] R-matrix theory. Accordingly, the decay of¥, into the
shape and height of the real potential. As stated above, th@nanne”c) has a partial width defined as
potential was obtained by fitting its parameters to the elastic

12C+12C scattering. Apagykt al. [29] recently solved the T,e=2P.(kea)y% (36)
inverse scattering problem with experiment4aC+'%C elas-

tic scattering data and got energy-dependent potentials witlith the Coulomb penetrability

different shapes. Comparing our real potential with those of

Apagyi et al. [29] we conclude that it is difficult to fix the Pc(kea) =ka/[G (ksa)*+F (k.a)*]. (37)
absolute energy of the resonances without an experimental

evidence for a special resonance state. However, the relativiéhe reduced partial width

positions of the resonances as a function of the angular mo-
mentum| are not very sensitive on the real potential. The
slopes of both the deformation coordinggg(l) and the ra-

dial stiffnessC, (1) with respect td are nearly independent

of the potential parameters and consequently, the slopes &1 Eg. (36) is commonly given in terms of the so-called
the functionsD(1),D (1), wy.(1), andw,(1) have the same Wigner-Teichmann single-particle limit:

property. Therefore, the relative position of the resonance 2
. o . . 34

energies resulted nearly quantitatively, if we had not intro- 75 ——

duced several simplifications in our model. The effects of Pra2u

these simplifications will be studied next. .
It is clear that our calculations are based on a simplified®" calculating the scalar product we have used the volume

model for the rotation and oscillations of tH&C+1°C sys- ~ elementdQ;dQ; ... and have divided the molecular wave
tem with special assumptions for the dynamics and paranfunction by (siny;sin®,)*2. The channel radiua is impor-
eters based on realistic physical grounds. Therefore, odgnt due to our bound state approximation and should
model can only give a qualitative description of the reso-roughly describe the location of the actual potential barrier.

nance states, but not a quantitative prediction of their abscSince formulas applied, e.g., {fMg + 2*Mg do not match
lute energies. this condition here, we have estimated the channel radius

visually [the right ends of the dotted parabolas in Fig. 7

indicate the used channel radijl)]. Summed partial widths

of the lowest molecular states for selected angular momenta
For the calculation of widths we use tRematrix theory. are given in Table IV. Here a dash denotes zero overlap of

Here the molecular stat# , is regarded as a member of a the wave functions and thus a vanishing width per construc-

2

h
vic=ﬂaRv<a)2|<clv>|2 (39)

(39

C. The decay widths
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T T T T T T T T T V. SUMMARY
80|
col =12 (0°,0%) _ _ _ :
w0l ] For the interpretation of the resonances in the scattering
20| | ] of two oblately deformed?C nuclei, we have used a mo-
ol 1 ] lecular model which has been originally developed and suc-
14 F cessfully applied to the case of two prolately deformed nu-
1ef (20,07 ] clei. We have shown that the formation of dinucl€4iMg
. gt E configurations consisting of two oblatéC nuclei in equator-
e i | | 1 ] equator orientation can cause intermediate resonances in the
e O ! —t 12C + 12C scattering. Here, mainly the Pauli principle, in-
Loy ] corporated phenomenologically, prevents the nuclei from
«f 061 (2%,2") 1 fusing. Characteristic of the treated equator-equator orienta-
g';: L | ‘ | | tion are the maximal elongation and the minimal height of
ool \ ! I L1 11 the Coulomb barrier.
05f ] Starting with a double-folding potential, we have added
0.4 . 1 the rotational energy of a stiff molecular rotator and per-
8'2: (47,07 ] formed an expansion of the potential around the equator-
o1k ] equator orientation. By simplifying complicated terms in the
0.0 f - , , , , L. , — Hamiltonian we have calculated a spectrum of resonances
16 17 18 19 20 21 22 23 24 revealing about two states per MeV. The low energy spec-

E (MeV) trum is dominated by rotations of the nuclei around the
z'-axis and butterfly oscillations. Although surface vibrations
FIG. 8. The summed reduced widths in terms of the Wigner-of the nuclei in the molecule have small importance, ghe
Teichmann single-particle limit for=12 and different final states. degrees of freedom must not be fixed because of the sensitive
For explanation see caption of Table IV. influence upon the intrinsic moments of inertia.
The decay widths of the molecular states into selected
12C channels show the experimental characteristics at an av-
tionem. In parentheses the summed reduced widths amerage, but for a detailed comparison the Hamiltonian should
given, shown additionally foF=12 in Fig. 8. be diagonalized. As we have used a bound state approxima-
The Coulomb penetrability strongly increases wkthbe-  tion with the nuclei strongly inclined, one can draw the con-
ing calculated by means @i’k%/2u=E,— Eq,. Therefore, clusion that, furthermore, the radial and butterfly modes are
the higher the excitation energy of the final state is, the morectually strongly coupled.
the widths of the decay into the corresponding channels are Since the model for the resonance states is phenomeno-
diminished. However, the summed reduced widths, whichogical and includes several simplifications for the dynamics
should not depend oR.(k.a) anymore, show the same de- |ike the linearization of the oscillations and the free rotation
pendency. So an inspection [¢t|v)| reveals that this over-  of the nuclei around the internuclear axis, we conclude that
Iap lies inside the interval of 0.25 and 1.00 for ela§t|c widthsihe resulting energies of the quasibound states should be un-
with K=x=0, each molecular ground state having nearlyyersiood as qualitative values. Comparison with experimen-
full overlap with trje glastlc channel wave function. In thetal resonances in th#C+12C system yields the right order
case of the (2,0") final state the Sca'af products Vary of level density. Nevertheless one has to keep in mind that
around 0.10 and those of the mutually excited final state arg ot all the experimental resonances belong to states in the

even _smaller. Variations of the ”?O'ecu'ar potential within equator-equator orientation, but may also be described with
realistic ranges do not change this dependency very mucr(‘:’onfi urations consisting of more than two clusters. The
above all the nonvanishing elastic overlaps are fairly stable 9 g '

Only the magnitudes of the calculated widths are more Serphysical natu_re of the exp_erimental resonances Is not vv_eII

sitive to such variations due to their shifted resonance enefinderstood with the exception of the virtual resonances with

gies. Despite this, the mutual relations of the widths of thd@'9€ widths in the nucleus-nucleus potentials. Therefore, it

resonances are nearly conserved. It is noticeable that the fir§y néarly impossible to compare calculated resonances di-

excited states in the radial potentiah &1) have elastic reptly anq q_uantltatlvely with measured resonances;'only cer-

widths of 2 to 3 MeV since these states lie considerabl)}a'” predictions can be stated about the level density of the

above the Coulomb barrier and are no more bound. resonance states above the energy of the lowest state for each
In our approximations many quasibound states have ngngular momentum.

overlap with the elastic entrance channel. This deficiency

could be removed by a diagonalization of the complete

Hamiltonian which would lead to states which all have small ACKNOWLEDGMENTS

overlaps with the elastic entrance channel. Such calculations
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