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Molecular states in the equator-equator orientation of two oblately deformed12C nuclei

Jürgen Schmidt* and Werner Scheid
Institut für Theoretische Physik der Justus-Liebig-Universita¨t, D-35392 Giessen, Germany

and Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, México D.F., México
~Received 18 May 1995!

Intermediate resonance states in the12C1 12C system are explained in the framework of a phenomenologi-
cal model assuming the oblately deformed12C in the equator-equator orientation. The corresponding internu-
clear potential is determined by means of a double-folding model with parameters obtained by an optical model
calculation reproducing the experimental excitation function. With this potential energy expanded around the
stable equator-equator orientation, the Schro¨dinger equation is approximately solved. The obtained energies of
the eigenstates are compared with experimental data and their decay widths are calculated.

PACS number~s!: 25.70.Ef, 24.10.Ht, 24.30.Gd
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I. INTRODUCTION

After the discovery of narrow resonance structures in t
low energy scattering of two12C nuclei by Bromleyet al. @1#
selected heavier systems, like12C1 16O @2#, 24Mg 1
24Mg @3#, and 28Si1 28Si @4#, have also revealed small reso
nance widths at higher angular momenta. The main comm
attributes are the high correlation of resonances between
ferent exit channels, the appearance of several resona
per grazing partial wave, and the preference of those ch
nels which approximately conserve the identity of the sc
tering partners. Since statistical analyses have not been
to explain these resonances as compound nucleus fluc
tions ~see, e.g.,@5,6#!, one has postulated a molecular origin
Molecular models presupposing dinuclear configuratio
have been successfully applied to these systems@7#, e.g., to
the 24Mg 1 24Mg system by Uegaki and Abe@8,9# and by
Maass and Scheid@10–12#. These authors consider variou
but different excitation modes with respect to the favore
equilibrium configuration where the nuclei touch each oth
with their poles. As a result both models reproduce rough
the level density and distribution of decay widths.

Coupled channel~CC! calculations usually use a re
stricted number of molecular states built up by the states
the separated nuclei. They cannot reproduce the experime
decay widths of24Mg 1 24Mg scattering@11#. In the case of
the lighter 12C1 12C system coupled channel calculation
give uncorrelated resonance structure with nearly corr
widths aboveEc.m.510 MeV @13#. The resonances in the
region ofEc.m.,10 MeV, which have very small experimen
tal widths, are not reproduced. Thus the question aris
whether our molecular model of the24Mg 1 24Mg system
can explain the intermediate resonances of the well inve
gated12C1 12C system, too. The aim of the present paper
the study of the resonance states formed by two oblate12C
nuclei in molecular configurations. Similar investigation
have been recently published by Uegaki and Abe@14# for the
28Si1 28Si as an example of an oblate-oblate dinuclear sy
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tem. The development of their model on the28Si1 28Si sys-
tem was carried out parallel to our work on the12C1 12C
system@15#.

In our approach, we first make a phenomenological ansa
for the potential energy by means of the double-foldin
model using the sudden approximation for convenience. T
parameters of the potential are determined in such a way th
an optical model calculation reproduces roughly the expe
mental gross structure of the excitation function of12C1
12C. Starting with a general Hamiltonian for the two cluste
system, we look for quasibound states in the equator-equa
~EE! orientation of the oblately deformed12C nuclei. By
introducing approximations similar to those of Ref.@11# we
calculate spectra of resonances and the decay widths i
various 12C channels.

In Sec. II the basic Hamiltonian is explained. The calcu
lation of the internuclear potential is shown in Sec. III in-
cluding the optical model calculation and the application t
the nuclear molecule. Finally, Sec. IV gives the approxima
calculation of molecular resonances and decay widths.

II. THE COLLECTIVE HAMILTONIAN

In coupled channel calculations for elastic and inelast
scattering, the Hamiltonian describing the radial motion an
the intrinsic structure of the nuclei can be written in the
molecular c.m. frame~primed coordinates,r5rez8) as fol-
lows:

HCC5
pr
2

2m
1

~ I2J12J2!x8
2

1~ I2J12J2!y8
2

2mr 2

1(
i51

2

TRVM~Ji ,b i ,g i !1U~r ,b1 ,g1 ,V18 ,b2 ,g2 ,V28!

1 iW1(
i51

2 SCb

2
~b icosg i2b0!

21
Cg

2
~b ising i !

2D .
~1!

Here, I denotes the total angular momentum andJ1 andJ2
are the intrinsic spins.TRVM means the kinetic energy opera-
tor of the rotation-vibration model~RVM! @16#. The Euler

big-
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53 323MOLECULAR STATES IN THE EQUATOR-EQUATOR . . .
anglesV i85(w i8,q i8,c i8) ( i51,2) describe the orientation o
each nucleus with respect to the molecular~MO! frame.b i
andg i ( i51,2) are the intrinsic quadrupole deformation co
ordinates. The potentialU depends on the deformation an
orientation of the nuclei and can be written as

U~r ,b1 ,g1 ,V18 ,b2 ,g2 ,V28!

5V~r !1V coupl~r ,b1 ,g1 ,V18 ,b2 ,g2 ,V28!. ~2!

The potentialV1 iW is the r -dependent optical potential
V coupl can be expanded in a series of spherical harmon
and deformation coordinates in the c.m. frame with spac
fixed axes~subsequent use of the notation ‘‘c.m. frame’’ re
fers to such a coordinate system! in which CC calculations
are performed usually. Likewise, the required wave functio
can be expanded in an asymptotic basis~channel wave func-
tions! which couple in the region of interaction.

First, we use the optical model for the determination
the potential parameters by reproducing the gross structur
the 12C1 12C elastic 90° differential cross section. On th
other hand, we construct quasibound states with the sa
Hamiltonian but in the MO frame by using appropriate a
proximations. It is possible to combine both studies in o
picture by expanding the wave function in a series of bo
the channel wave functions and the molecular quasibou
states@12#. Cross sections can be obtained either by means
an extended CC calculation or by using theR-matrix theory
with several approximations. In the latter case the narr
resonances appear as Breit-Wigner resonance terms add
theSmatrix of the conventional CC calculation.

III. THE NUCLEUS-NUCLEUS POTENTIAL

A potential depending on the geometrical properties of t
nuclei is required. As nuclear molecules have longer lif
times, they can be treated adiabatically, which is a difficu
task@10#. A new ansatz for calculating an adiabatic potenti
is the symplectic model where a microscopic Hamiltonian
mapped onto a phenomenological potential. For molecu
potentials a procedure of interpolation between the comp
ite system and the separated nuclei is applied@17#.

Another possibility is the double-folding model which w
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have chosen here for reasons of simplicity. In combinatio
with the sudden approximation the potential is a function o
the collective coordinates as requested. In this case the in
vidual nuclear densities are added in the region of overla
Special care has to be taken when the radial distance b
comes too small. Actually this approximation is only ad
equate in high energy collisions, but has been successfu
applied, e.g., by Uegaki and Abe@8#. We use the following
nucleon-nucleon interaction:

v~r,r!5@Vaexp~2r /ma!/r1Vrexp~2r /m r !/r #

3exp~2gr!1Vpd~r !1VCoulomb. ~3!

The genuinely nuclear part is a sum of an attractive an
repulsive Yukawa potential which is density dependent in
simple way. The advantage of such a dependence appear
a shallower potential without softening the barrier step~cf.
Ref. @18#!. In order to describe greater overlaps of the nucle
more accurately, we have added a repulsive delta interact
potential~cf. Ref. @8#!. Thus the more the nuclei overlap, the
greater the repulsion of this pseudopotential becomes whi
can be interpreted as caused by the Pauli principle.

The ranges of the Yukawa forces refer to the values of th
M3Y interaction @18#, i.e., ma50.45 fm andm r50.25 fm.
The strength parameters are determined via a scattering c
culation presented in the next section with the resu
Va52780 MeV fm,Vr51460 MeV fm, andVp525 MeV
fm3. Moreover, we have usedg55.4 fm3.

The folding potential in the sudden approximation
(r5r11r2) is defined in the c.m. frame as

U~r,am
~1! ,am

~2!!5E E d3r 1d
3r 2r1~r1 ,am

~1!!

3v~r1r12r2 ,r!r2~r2 ,am
~2!!. ~4!

Heream
( i ) are intrinsic quadrupole deformation coordinates i

the c.m. frame. Using the techniques of Fourier transform
tion and transforming the potential into the MO frame we
obtain by a straightforward calculation~see, e.g., Ref.@18#!
U~r ,b1 ,w18 ,q18 ,b2 ,w28 ,q28!5 (
l1l2m
m>0

Ul1l2
m ~r ,b1 ,b2!cos@m~w282w18!#Pl1

m~cosq18!Pl2
m~cosq28!, ~5!

with

Ul1l2
m ~r ,b1 ,b2!5(

l

2

p
i l1 l12 l2~2l 111!1/2~2l 211!1/2~ l 10l 20u l0!E

0

`

dkk2Al10
~1!~k,b1!Al20

~2!~k,b2!ṽ~k! j l~kr !~2 !m

3~ l 1ml22mu l0!~22dm0!@~ l 12m!! ~ l 22m!! #1/2@~ l 11m!! ~ l 21m!! #21/2. ~6!



of
on

r-

n,
er-
s
n-

for
.

las-
ri-

o-

er-
d
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Pl
m(x) denotes the Legendre polynomial,j l(kr) are spherical

Bessel functions, andṽ(k) is the Fourier transform of the
nucleon-nucleon interaction. Note that Eq.~5! merely de-
scribes nuclei with axial symmetry around the intrinsic axe
i.e., with b deformations. Only the so-called form factor
depend on the deformation of each nucleus (i51,2; double
primed coordinates: intrinsic principle-axes system!:

Al0
~ i !~k,b i !52pE

0

`

dri9r i9
2 j l~kri9!E

0

p

dq i9sinq i9r i

3exp~2gr i !Yl0~q i9!. ~7!

For calculating the density dependent part of the interact
given in Eq.~3! we set exp(2gr)5exp(2gr1)exp(2gr2) as
usual @19#. This density dependence causes a fac
r iexp(2gri) without requiring additional effort.

A single 12C nucleus in its ground state can be satisfact
rily described as solelyb deformed@20#. Althoughg defor-
mation could be important for the description of the nucle
as a molecular constituent part, we neglect this deformat
here for convenience. Since different ground state deform
tions have been measured with several methods~see, e.g.,
Refs. @20,21#!, we have assumed a mean value
b0520.60. Moreover, a nuclear Fermi density distributio
( i51,2)

r~r i9,q i9,b i !5r0„11exp$@r i92R~q i9,b i !#/a%…21 ~8!

with

R~q i9,b i !5R0~b i !@11b iY20~q i9!# ~9!

has been fitted to twice the experimental proton density d
tribution @22#, with b i being zero. We have chosen
r050.18 fm23 and a50.55 fm. With these variables kep
fixed,R0(b i) is determined in such a way that the conditio
of mass conservation is fulfilled for each value ofb i .

The form factorsAl0
( i ) with l.2 can be neglected due to

their very small contributions. The coefficient
Ul1l2
m (r ,b1 ,b2) have been calculated by means of a Gaus

Legendre integration.

A. Optical model calculations

In this calculation we do not consider inelastic channe
U00
0 (r ,b15b250) is used as a real part of the optical po

tential V(r ). By following the statistical model of Helling
et al. @23# the imaginary potential can be written as

W~r ,E,I !5aN~r !
2I11

s3

3expH 2Aa@E2V~r !#2
~ I11/2!2

2s2 J , ~10!

with

s25
Qcl~r !

\2 SE2V~r !

b D 1/2, Qcl~r !5mS 85R0
21r 2D . ~11!
s,
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HereQcl(r ) is the classical moment of inertia ands is a spin
cutoff parameter. The parametera determines the absorption
strength andb adjusts the angular momentum dependence
W. Since the absorption mainly occurs at the touching regi
of the nuclei, the radial functionN(r ) is chosen as a Woods-
Saxon form~radius and diffuseness parameters 2R0 and g̃,
respectively! rather than the number of nucleons in the ove
lap region~cf. Ref. @11#!. The strength ofN(r ) is set 12 for
the sake of equivalence to the usual function atr50.

As the calculations of Korotky@24# have been very suc-
cessful in describing the experimental excitation functio
we have first tried to reproduce the virtual resonance en
gies of the Korotky potential by performing calculation
without an absorptive potential. So the real part of the pote
tial V(r ) has been fixed~for parameters see above! with
resonance energies 8.9, 12.8, 17.5, 23.6, and 31.1 MeV
the angular momental58, 10, 12, 14, and 16, respectively
The obtained potentialV(r ) is shown in Fig. 1 where also
the centrifugal potentials are added. Then the calculated e
tic 90° differential cross section has been fitted to the expe
mental one by varyinga, b, and g̃. Best results have been
obtained with a520.07 MeV, b50.31 MeV21, and
g̃50.55 fm, the radiusR053.11 fm being used. Evidently
the gross structures of the excitation function are well repr
duced as shown in Fig. 2.

B. The molecular potential for several orientations

In Sec. IV we will use the potential energy Eq.~5! in
order to obtain the quasibound states of the Schro¨dinger
equation. Since the rotational energy influences the prop
ties of the potential minima, around which the quasiboun

FIG. 1. Potentials Vl(r )5V0(r )@5U00
0 (r ,b15b250)#

1l (l 11)\2/(2mr 2) for various angular momenta.
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53 325MOLECULAR STATES IN THE EQUATOR-EQUATOR . . .
states are situated, this energy should be chosen very c
fully. As an approximation we assume a stiff rotation of th
whole molecule, which means ‘‘frozen’’ intrinsic degrees o
freedom, rather than neglecting individual rotations@11#.
Therefore, the Hamiltonian for calculating effective pote
tials reads

HPES
I 5

1

2
I 8tQ21I 81U~r ,b1 ,w18 ,q18 ,b2 ,w28 ,q28!

1(
i51

2
Cb

2
~b i2b0!

2, ~12!

with r ,b1 ,b2 ,q18 ,q28 , and (w282w18) fixed. I 8 is the operator
of the total angular momentum andQ is the inertia tensor,
both with respect to the axes of the MO system.Q is a sum
of the diagonal inertia tensor of the relative motionQ r and
the inertia tensors of each nucleusQ i ( i51,2). The latter can
be obtained by means of the transformatio
Q i5Ri

t(V i8)Q̃iRi(V i8) @15,16# with

Q̃i5S 3B0b i
2 0 0

0 3B0b i
2 0

0 0 0
D . ~13!

Using the value of b0520.60 we have calculated
Cb536.6 MeV andB050.626\2 MeV21 according to the
RVM @16#.

First, we diagonalizeQ for arbitrary but fixed orientations
of the nuclei, i.e., we transform to a molecular principle-ax
system. Then Eq.~12! describes a triaxial rotator and the
corresponding Schro¨dinger equation is solved by diagonal
ization in the eigenstates of the symmetric rotatoruIMK & @cf.
asymmetric rotator model~ARM! @16# #. Note that only even
K values appear here because of the unambiguousness o
wave function. In case that the intrinsic symmetries of t
molecule are considered, too, oddK values are consequently
allowed ~see Sec. IV!. That is why our calculation of the
effective potential has an approximate character.

Figure 3 shows the radial intersections of the potent
energy surface~PES! for three orientations of the axes, i.e

FIG. 2. Elastic excitation function (qc.m.590°) for the scatter-
ing of 12C on 12C calculated with the potentials of Fig. 1. The dot
are experimental values taken from@24#.
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for the pole-pole~PP!, the pole-equator~PE!, and the parallel
equator-equator orientation. The latter means that the sy
metry axes of the nuclei are parallel. Each intersection of t
PES exhibits a minimum. It is worth mentioning that th
potentials without rotational energy are very similar to thos
of Cugnon et al. @25# who have performed constrained
Hartree-Fock calculations with a Skyrme S III interaction
Note that the potentials in Fig. 3 arenot minimal curves
except around the minima.

The difference between the internuclear potentials of t
orthogonal and parallel EE orientations is roughly 0.25 Me
and the rotational energies differ at most by 0.75 MeV with
out significantly different coordinates of their minima. Fig
ure 4 shows the molecular potential of butterfly oscillation
It is interesting that there exists a path in the PES of the P
orientation~bottom picture! which allows us to incline the
nuclei very much by using only about 1 MeV of energy. I
the case of the parallel EE position~upper picture! one can
observe elliptic equipotential surfaces lying diagonal whic
means a preference of touching configurations. On the ot
hand, the orthogonal EE orientation shows an advantage
independent butterfly oscillations of both nuclei~not illus-
trated! which is pretty obvious because there does not ex
any inclination of the nuclei which increases touching@cf.
potential term proportional toC3 in Eq. ~14!#. In Table I we
give the minimum energy and the parameters of the PES

s

FIG. 3. Radial intersections of the potential energy surfaces
the angular momentaI50, 8, and 14 for three orientations@parallel
equator-equator~EE!: full; pole-equator~PE!: dashed; pole-pole
~PP!: dotted#. Here, the variablesb1 and b2 are fixed by their
values at the corresponding minimum.



d
at

on
r

er
-
r

e
nt
er-
nd

nd

326 53JÜRGEN SCHMIDT AND WERNER SCHEID
FIG. 4. Potential energy surface forI58 depending on the Euler
anglesq18 and q28 with w185w2850 in each case. The remaining
variablesr ,b1 ,b2 are fixed with respect to the minimum of the
parallel equator-equator~EE! orientation~upper picture! and with
respect to the minimum of the pole-equator~PE! orientation~pic-
ture below!. The difference between neighboring contour lines
0.5 MeV.
the potential minima for different angular momenta.Cr ,
C̃b
(1) , andC̃b

(2) are the stiffness parameters of the relative an
deformation degrees of freedom, respectively, calculated
the potential minima.

IV. CONSIDERATION OF EQUATOR-EQUATOR-LIKE
CONFIGURATIONS

There are some hints that the equator-equator orientati
is the most important one for the consideration of molecula
resonances@26#. This orientation is connected with maximal
elongation and is the first stage of the nuclei brought togeth
with minimized energy. Contrary to this, the pole-pole orien
tation would be rather connected with fusion and smalle
total deformation. So we restrict ourselves in the following
to the EE orientation.

A. The Hamiltonian

We assume that motions in the deformation and relativ
coordinates close to the molecular minima are independe
so that a quadratic expansion in these variables can be p
formed. Besides this, the potential is expanded up to seco
order in the anglesq̃ i85q i82p/2 (i51,2):

VEE~r ,r 0 ,j1 ,j2 ,w282w18 ,q̃18 ,q̃28!

5
Cr

2
~r2r 0!

21
C̃b

2 (
i51

2

j i
21V01

C1

2
~q̃18

21q̃28
2!

1
C2

2
cos@2~w282w18!#~12q̃18

22q̃28
2!

1
C3

2
cos~w282w18!q̃18q̃28 . ~14!

The parameters depend on the total angular momentum a
are given in Table I and Table II. The coordinatesj i are
defined asj i5b i2b̃0 . By neglecting theg i dependences we
can write the kinetic part of the Hamiltonian Eq.~1! explic-
itly as (Q053B0b̃0

2)

is
TABLE I. The coordinates of the minima and parameters of a harmonic expansion of the effective
molecular potential for~a! the parallel equator-equator orientation and~b! the pole-equator orientation.

I50 I52 I54 I56 I58 I510 I512 I514

~a! Emin ~MeV! 22.83 22.17 20.68 1.53 4.34 7.63 11.29 15.24
r 0 ~fm! 5.27 5.30 5.37 5.47 5.60 5.75 5.93 6.17

b̃0 20.58 20.58 20.60 20.62 20.66 20.70 20.73 20.76

Cr ~MeV fm22) 8.31 8.42 8.10 7.51 6.72 5.79 4.57 2.99

C̃b ~MeV! 39.6 39.5 38.9 37.4 36.7 37.1 37.4 37.5

~b! Emin ~MeV! 26.80 26.03 24.25 21.61 1.92 5.86 10.39 15.32
r 0 ~fm! 4.20 4.25 4.35 4.35 4.40 4.45 4.55 4.65

b̃0
(1) 20.73 20.74 20.75 20.80 20.83 20.89 20.92 20.95

b̃0
(2) 20.54 20.55 20.58 20.60 20.65 20.69 20.76 20.83

Cr ~MeV fm22) 15.0 15.1 13.9 14.0 12.8 13.0 11.7 10.3

C̃b
(1) ~MeV! 45.4 45.4 44.6 44.5 43.7 43.9 43.0 42.2

C̃b
(2) ~MeV! 38.7 38.6 38.2 37.0 34.4 31.5 30.5 32.2



53 327MOLECULAR STATES IN THE EQUATOR-EQUATOR . . .
TEE52
\2

2m

1

r

]2

]r 2
r2(

i51

2
\2

2B0

]2

]j i
2 1

I22I z8
2

2~J1!z8
2

2~J2!z8
2

2mr 0
2 1

1

2 S 1

Q0
1

1

mr 0
2D(

i51

2

@~Ji !x
i9
2

1~Ji !y
i9
2

#

1
1

mr 0
2 $~J1!x8~J2!x81~J1!y8~J2!y82I x8@~J1!x81~J2!x8#2I y8@~J1!y81~J2!y8#%. ~15!
ct

-

e,

er
Here the intrinsic angular momentum operators have to
expanded around the EE orientation. In principle, the cor
sponding Schro¨dinger equation can now be solved by diago
nalization. One can find a basis where most parts of
HamiltonianHEE5TEE1VEE are diagonal, except for the las
two terms in Eq.~14! and the last one in curly brackets in Eq
~15!. Since the rotational energy should be roughly the sa
after diagonalization as in Eq.~12!, i.e., it should include
individual rotations, one can draw the conclusion that t
nondiagonal contributions are anything but small. With th
calculation of the nondiagonal matrix elements and the
agonalization ofHEE being lengthy, we prefer an approxi
mate method. Instead of using the full form we neglect t
last two terms in Eq.~14!, which means free rotation of the
nuclei in the angle (w282w18), and rewrite Eq.~15!:

TEE52
\2

2m

1

r

]2

]r 2
r2(

i51

2
\2

2B0

]2

]j i
2 1

I22I z8
2

2~mr 0
214Q0/3!

1
1

2Q0
(
i51

2

@~Ji8!x
i9
2

1~Ji8!y
i9
2

#. ~16!

The last two terms in this formula are an approximation a
arise from the insertion of

~Ji !x8,y85
4Q0/9

mr 0
214Q0/3

I x8,y81~Ji8!x8,y8, ~Ji !z85~Ji8!z8

~17!

into Eq. ~15!, with small terms being neglected an
mr 0

2/Q0'6 ~cf. Table I! being used. The rotational energ
be
re-
-
the
t
.
me

he
e
di-
-
he

nd

d
y

proportional to (I22I z8
2 ) in Eq. ~16! reproduces the rotational

energies of Eq.~12! within an error of 0.25 MeV@15#. By
measuring the angular momentum of the nuclei with respe
to the c.m. system the operatorsJi in Eq. ~15! yield large
contributions to the EE orientation. Therefore, we have in
troduced the operatorsJi8 in Eq. ~16! which describe the
rotation of each nucleus with respect to the MO frame. Her
an exact transformation is difficult to find~for detailed dis-
cussion see Ref.@11#!.

The intrinsic rotational energy explicitly reads

1

2Q0
(
i51

2

@~Ji8!x
i9
2

1~Ji8!y
i9
2

#

52
\2

2Q0
(
i51

2 S ]2

]q i8
2 1cotq i8

]

]q i8
1

1

sin2q i8

]2

]w i8
2D . ~18!

Transforming the volume element fromdw18dw28
3sinq18dq18sinq28dq28r

2drdVdj1dj2 to dw18dw28dq18dq28r
2

3drdVdj1dj2 yields a change of the differential operators
in q i8:

2
\2

2Q0
Asinq i8S ]2

]q i8
2 1cotq i8

]

]q i8
D 1

Asinq i8

52
\2

2Q0
S ]2

]q i8
2 1

1

4
cot2q i81

1

2D . ~19!

Expanding the approximate Hamiltonian up to second ord
in q̃18 and q̃28 we finally get
H̃EE52
\2

2m

1

r

]2

]r 2
r2

\2

2B0
S ]2

]j1
2 1

]2

]j2
2 D 1

I22I z8
2

2~mr 0
214Q0/3!

2
\2

2Q0
(
i51

2 F ]2

]q̃ i8
2 1~11q̃ i8

2!
]2

]w i8
2G1

Cr

2
~r2r 0!

2

1
C̃b

2
~j1

2 1j2
2 !1

1

2 SC12
\2

4Q0
D ~q̃18

21q̃28
2!1V02

\2

2Q0
. ~20!

TABLE II. The coefficients of the potential expansion~in MeV! in the Euler anglesq̃ i around the EE
orientation@see Eq.~14!#.

I50 I52 I54 I56 I58 I510 I512 I514

V0 22.71 22.70 22.65 22.52 22.19 21.64 20.92 0.16
C1 0.55 0.91 1.68 2.72 3.96 5.22 6.36 7.26
C2 20.25 20.25 20.26 20.26 20.27 20.27 20.25 20.22
C3 0.41 0.60 1.08 1.69 2.48 3.23 3.79 4.09
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For reasons of symmetrization in the next section, w
have introduced the coordinatesj65221/2(j16j2) in Eq.
~20!. Note that the corresponding wave functions have to
used with the simplified volume element.

B. Eigenstates of the approximate Hamiltonian

In order to solve the Schro¨dinger equation for the EE
orientation we make the following ansatz:

Cn~r ,V,V18 ,V28 ,j1 ,j2!5Rn~r !Sun&, ~21a!

un&5S 2I11

8p2 D 1/2DMK
I* ~V!Ja~V18 ,V28!vm1

~j1!vm2
~j2!,

~21b!

whereS is a symmetrization operator including the norma
ization. The Schro¨dinger equation separates into four diffe
ential equations. The equations depending onj1 andj2 can
be simply solved by normalized one-dimensional harmon
oscillator eigenfunctionsvm1

(j1) and vm2
(j2), respec-

tively (m1 ,m250,1,2,. . . ). By additionally substituting
Rn(r )5g(r2r 0)/r , the solutiong(r2r 0) of the correspond-
ing third differential equation is a harmonic oscillator eigen
function, too. The remaining equation reads as follows:

H 2\2

2Q0
(
i51

2 F ]2

]q̃ i8
2 1~11q̃ i8

2!
]2

]w i8
2G

1
1

2 SC12
\2

4Q0
D (
i51

2

q̃ i8
22EaJ Ja~V18 ,V28!50. ~22!

This equation has the solution

Ja~V18 ,V28!5
1

4p2 exp~ ik1w18!exp~ ik2w28!

3Fn1uk1u~q̃18!Fn2uk2u~q̃28!. ~23!

Here an integration in thec i8 coordinate is provided@normal-
ization constant (2p)21# analogously to the channel wave
functions. The functionsFni uki u

(q̃ i8) are harmonic oscillator
eigenfunctions which additionally depend on the rotation
quantum numberski ( i51,2)

Fni uki u
5Nni

Hni
~a iq̃ i8!exp~2a i

2q̃ i8
2/2!, ~24!

with
e

be

l-
r-

ic

-

al

a i5S C1Q0

\2 1ki
22

1

4D 1/4, Nni
5S a i

Ap2nini !
D 1/2. ~25!

Hni
(x) denotes a Hermite polynomial. The demand for per

odicity with 2p in the anglesw18 andw28 restrict the quantum
numbersk1 andk2 to integers. As the wave functionCn has
to fulfill the condition @ I z82(J18)z82(J28)z8#Cn50 @11#, we
have k11k25K. Introducing the quantum number
k5k12k2 for the asymmetric rotational mode around the
molecularz8 axis, we can replace the quantum numbersk1
andk2 by K5k11k2 andk5k12k2 in the following.

The operatorS in Eq. ~21! symmetrizes the wave function
with respect to an inversion of the intrinsiczi9 axes, an ex-
change of the nuclei and a parity operation (r→2r). Then,
the wave function should be invariant under the inversion o
the intrinsiczi9 axes:

q̃ i8→2q̃ i8, w i8→w i81p ~ i51,2!. ~26!

It can be seen that the wave functionJa(V18 ,V28) is a eigen-
function of these symmetry operations with the eigenvalue
(2)ki1ni. Thus choosing those wave functions with positive
eigenvalues leads to the rule

k11n1 : even ` k21n2 : even. ~27!

Here, this symmetrization reduces the number of solution
in contrast to the case of the24Mg 1 24Mg system.

The exchange of both identical nuclei changes the wa
function in the following manner:

un5~ I ,M ,K,k,n1 ,n2 ,m1 ,m2!&→~2 ! I1m21n11n2

3un5~ I ,M ,2K,k,n2 ,n1 ,m1 ,m2!&. ~28!

Analogously, the global parity operation (r→2r) yields

un5~ I ,M ,K,k,n1 ,n2 ,m1 ,m2!&→~2 ! I1n11n2

3un5~ I ,M ,2K,2k,n1 ,n2 ,m1 ,m2!&. ~29!

As the elastic and inelastic channel wave functions hav
positive parity we choose the same paritiy for the quasiboun
states. Otherwise, there is no overlap between both types
wave functions. By additionally using the relation
(2)n11n25(2)K which holds due to Eq.~27! the symme-
trized wave function can be written as
Sun&5Nn@ un5~ I ,M ,K,k,n1 ,n2 ,m1 ,m2!&1~2 ! I1K1m2un5~ I ,M ,2K,k,n2 ,n1 ,m1 ,m2!&

1~2 ! I1Kun5~ I ,M ,2K,2k,n1 ,n2 ,m1 ,m2!&1~2 !m2un5~ I ,M ,K,2k,n2 ,n1 ,m1 ,m2!&], ~30!
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TABLE III. The energy constants used in Eq.~35! for angular momentaI50 to I514 in MeV. The values
of \vq i

are given for different quantum numbers ofuki u.

I50 I52 I54 I56 I58 I510 I512 I514

DK 0.292 0.302 0.271 0.251 0.216 0.188 0.172 0.158
Dk 0.396 0.396 0.370 0.347 0.306 0.272 0.250 0.231
\vq i

(uki u50) 0.494 0.906 1.390 1.815 2.115 2.319 2.472 2.547
\vq i

(uki u51) 1.658 1.825 2.030 2.284 2.444 2.562 2.667 2.709
\vq i

(uki u52) 3.204 3.296 3.270 3.313 3.234 3.179 3.180 3.145
\vb 7.95 7.95 7.88 7.73 7.66 7.70 7.74 7.74
\v r 7.61 7.66 7.51 7.23 6.84 6.35 5.64 4.56
of
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Nn5
1

2
$11~2 ! IdK0dk01~2 !m2dn1n2@dk01~2 ! IdK0#%

21/2.

~31!

With the total angular momentum being even in the scatt
ing of two bosonic nuclei with spin zero, the following se
lection rules can be summed up:

~K1k!/21n1 : even, ~K2k!/21n2 : even,

K6k: even, K>0,

k>0 for ~n15n2!~~K50!, n1>n2 ,

m2 : even for ~n15n2!`@~k50!~~K50!#. ~32!

Combined with these rules the eigenenergies can be ca
lated by means of the formula

En5EIKkn1n2nrm1m2
5Ẽ0~ I !1DKK

21Dk~k222!

1\v r~nr11/2!1\vq1
~n111/2!1\vq2

~n211/2!

1\vb~m11m2!, ~33!

with

Ẽ0~ I !5V01
@ I ~ I11!#\2

2~mr 0
214Q0/3!

. ~34!

The quantitiesDK andDk and frequencies are given as

DK5\2@~2Q0!
212~mr 0

214Q0/3!21#/2,

Dk5\2/~4Q0!,

vq1
5$C1 /Q01\2@~K1k!221#/~4Q0

2!%1/2,

vq2
5$C1 /Q01\2@~K2k!221#/~4Q0

2!%1/2,

v r5~Cr /m!1/2, vb5~C̃b /B0!
1/2. ~35!

For theb vibrations the zero-point energies are not include
because the asymptotic potential energy (r→`) is just de-
fined with respect to the vibrational ground state of ea
nucleus and these vibrational zero-point energies do
er-
-

lcu-

d

ch
not

change much with the relative distance. The other degrees
freedom have zero-point energies.

Table III gives the values ofDK , Dk and of the vibra-
tional energies for different angular momenta. Calculated e
ergies of resonances are shown forI58 in Fig. 5 and are
listed for I54, 10, and 14 in Table IV. As in the work of
Refs. @9,14# there exists the mode of simultaneous rotatio
(K mode! and the one of opposite rotation (k mode! of both
nuclei around thez8 axis. Together with the butterfly modes
they build up the low energy spectrum of the molecule. Her
the butterfly modes are independent vibrations of ea
nucleus because the responsible coupling terms in the po
tial have been just neglected~cf. Sec. III B!. On raisingI one
can observe an increasing stiffness of the lowest butter
potential, whereas the rotational energy decreases. It is in
esting to compare our butterfly frequencies to those of He
and Pereyra@27# who have used parameters of an energ
formula fitted to the experimental spectrum ofI50. They
have obtained a butterfly excitation energy of 1.13 MeV
which our values of smallI are very close. Moreover, the
b i degrees of freedom apparently do not need to be es
cially considered since the excitation energy of surface v

FIG. 5. Energies of the quasibound states for the12C1 12C
system around the parallel equator-equator orientation for an an
lar momentumI58. Only energies up to 17 MeV are given. Fo
each state the quantum numbersK, k ~number above the lines!,
n1 and n2 ((n1 ,n2) 5 numbers below the lines! are shown, the
other ones are set zero with exception of the first excited states w
nr51 andm151. The levels are ordered according to the schem
of Uegaki and Abe@14#. The experimental resonance energies a
taken from Abbondanno@28#.
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TABLE IV. Molecular excitation energy~in MeV! and summed partial widths~in keV! for the decay of
the molecular staten5(I ,ñ)5(I ,K,k,n1 ,n2 ,nr ,m1 ,m2) into a scattering state (J1

p1 ,J2
p2), the angular mo-

mentaI54, 10, and 14 being chosen as representative examples. The summation of widths runs over
possible decay channelsc leading to the given final state. In parentheses the summed reduced widths~in %
of g sp

2 ) calculated with the Coulomb penetrability of the stretched configuration (l c5I2J12J2) are given.
The brackets in the second column mean (K,k,n1 ,n2), and an asterisk denotesnr51, otherwisenr50. The
remaining quantum numbers are zero.

Widths

I ñ En (01,01) (21,01) (21,21) (41,01)

4 g.s. 3.74 0.0 ~16.58! 0.0 ~0.00! 0.0 ~0.00!
(0,0,2,0) 6.53 1.4 ~0.78! 0.0 ~1.60! 0.0 ~0.00!
(1,1,1,0) 6.73 — 0.0 ~2.51! 0.0 ~0.00!
(2,2,0,0) 7.24 — 0.0 ~1.71! 0.0 ~0.00!
(0,0,2,2) 9.31 0.1 ~0.01! 0.0 ~0.08! 0.0 ~0.31!
(0,0,4,0) 9.31 10.3 ~0.66! 0.4 ~1.85! 0.0 ~0.00!
~1,–1,2,1! 9.52 — 0.0 ~0.06! 0.0 ~0.95!
(2,0,1,1) 9.53 — — 0.0 ~0.63!
~3,–1,1,0! 9.84 — — 0.0 ~1.17!
(0,2,1,1) 9.92 — — 0.0 ~0.27!
(4,0,0,0) 9.95 — — 0.0 ~1.53!
~2,–2,2,0! 10.03 — 0.1 ~0.05! 0.0 ~0.56!
~1,–3,1,0! 10.63 — — 0.0 ~0.33!
(1,1,3,0) 10.80 — 4.1 ~1.14! 0.0 ~0.00!
~0,0,0,0!* 11.26 1984.2 ~77.06! 0.2 ~0.04! 0.0 ~0.00!

10 g.s. 12.52 196.1 ~29.92! 0.3 ~0.45! 0.0 ~0.00!
(2,2,0,0) 14.79 — 14.5 ~2.29! 0.0 ~0.02!
(1,1,1,0) 15.66 — 40.7 ~4.01! 0.0 ~0.06!
(4,0,0,0) 16.39 — — 0.3 ~0.17!
(0,0,2,0) 17.16 120.8 ~4.67! 47.1 ~2.73! 0.2 ~0.05!
~3,–1,1,0! 17.60 — — 2.6 ~0.41!
(0,4,0,0) 17.73 — — 0.9 ~0.12!
~1,–3,1,0! 18.26 — — 3.5 ~0.36!
(2,0,1,1) 18.64 — — 4.8 ~0.41!
~0,0,0,0!* 18.87 3021.9 ~93.67! 50.2 ~2.01! 0.1 ~0.01!
(0,2,1,1) 18.97 — — 4.6 ~0.35!
~2,–2,2,0! 19.43 — 9.4 ~0.34! 5.8 ~0.37!
~1,–1,2,1! 20.30 — 11.3 ~0.37! 16.3 ~0.81!

14 g.s. 19.72 582.7 ~37.75! 11.1 ~1.09! 0.0 ~0.01! 0.0 ~0.00!
(2,2,0,0) 21.57 — 71.2 ~4.08! 0.5 ~0.05! 0.0 ~0.00!
(4,0,0,0) 22.85 — — 6.3 ~0.41! —
(1,1,1,0) 22.90 — 122.5 ~5.42! 2.2 ~0.14! 0.0 ~0.02!
(0,4,0,0) 24.01 — — 7.5 ~0.37! —
~0,0,0,0!* 24.29 2476.2 ~78.91! 81.9 ~2.96! 0.5 ~0.02! 0.0 ~0.01!
~3,–1,1,0! 24.46 — — 16.3 ~0.74! —
(0,0,2,0) 24.81 357.5 ~10.83! 92.1 ~3.13! 3.3 ~0.14! 0.4 ~0.12!
~1,–3,1,0! 25.04 — — 17.9 ~0.74! —
(2,0,1,1) 25.93 — — 20.5 ~0.74! —
~2,2,0,0!* 26.14 — 431.7 ~12.77! 5.8 ~0.20! 0.1 ~0.01!
(0,2,1,1) 26.22 — — 20.6 ~0.71! —
~2,–2,2,0! 26.67 — 31.9 ~0.90! 19.0 ~0.62! 0.0 ~0.00!
(4,4,0,0) 26.91 — — — 7.6 ~0.73!
d in
ro-
he
the
brations is nearly identical to the corresponding value of
isolated nucleus. But theb i variables must not be fixed be
cause the individual moments of inertia considerably depe
on them~cf. Table I!.
an
-
nd

Theoretical and experimental resonances are compare
Fig. 6. It is remarkable that, in most cases, the theory rep
duces the experimental level density at higher energies. T
absolute location of the theoretical spectrum depends on



cal

e

ld
r.

us

ta
of
c-

m
f

53 331MOLECULAR STATES IN THE EQUATOR-EQUATOR . . .
shape and height of the real potential. As stated above,
potential was obtained by fitting its parameters to the elas
12C112C scattering. Apagyiet al. @29# recently solved the
inverse scattering problem with experimental12C112C elas-
tic scattering data and got energy-dependent potentials w
different shapes. Comparing our real potential with those
Apagyi et al. @29# we conclude that it is difficult to fix the
absolute energy of the resonances without an experime
evidence for a special resonance state. However, the rela
positions of the resonances as a function of the angular m
mentumI are not very sensitive on the real potential. Th
slopes of both the deformation coordinateb̃0(I ) and the ra-
dial stiffnessCr(I ) with respect toI are nearly independent
of the potential parameters and consequently, the slope
the functionsDK(I ),Dk(I ),vq i

(I ), andv r(I ) have the same
property. Therefore, the relative position of the resonan
energies resulted nearly quantitatively, if we had not intr
duced several simplifications in our model. The effects
these simplifications will be studied next.

It is clear that our calculations are based on a simplifi
model for the rotation and oscillations of the12C112C sys-
tem with special assumptions for the dynamics and para
eters based on realistic physical grounds. Therefore,
model can only give a qualitative description of the res
nance states, but not a quantitative prediction of their ab
lute energies.

C. The decay widths

For the calculation of widths we use theR-matrix theory.
Here the molecular stateCn is regarded as a member of

FIG. 6. Calculated and experimental resonance energies
various angular momenta. The calculated energies~left-hand side of
each column! are the eigenenergies for the equator-equator orien
tion of the 12C nuclei. The experimental data~right-hand side of
each column! are taken from Abbondanno@28#.
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complete set of orthogonal basis states inside the spheri
nuclear interaction region 0<r<a ~interior region in
R-matrix theory!. Accordingly, the decay ofCn into the
channeluc& has a partial width defined as

Gnc52Pc~kca!gnc
2 ~36!

with the Coulomb penetrability

Pc~kca!5kca/@Glc
~kca!21Flc

~kca!2#. ~37!

The reduced partial width

gnc
2 5

\2

2m
aRn~a!2u^cun&u2 ~38!

in Eq. ~36! is commonly given in terms of the so-called
Wigner-Teichmann single-particle limit:

gsp
2 5

3

a

\2

2m
. ~39!

On calculating the scalar product we have used the volum
elementdV18dV28 . . . and have divided the molecular wave
function by (sinq18sinq28)

1/2. The channel radiusa is impor-
tant due to our bound state approximation and shou
roughly describe the location of the actual potential barrie
Since formulas applied, e.g., to24Mg 1 24Mg do not match
this condition here, we have estimated the channel radi
visually @the right ends of the dotted parabolas in Fig. 7
indicate the used channel radiia(I )#. Summed partial widths
of the lowest molecular states for selected angular momen
are given in Table IV. Here a dash denotes zero overlap
the wave functions and thus a vanishing width per constru

for

ta-

FIG. 7. Harmonic approximation of the molecular potential in
the radial coordinate for different values of total angular momentu
~dotted lines! around the corresponding minimum. The right edge o
each parabola denotes the cutoff at the channel radiusa(I ).
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tionem. In parentheses the summed reduced widths
given, shown additionally forI512 in Fig. 8.

The Coulomb penetrability strongly increases withkc be-
ing calculated by means of\2kc

2/2m5En2Eexc. Therefore,
the higher the excitation energy of the final state is, the mo
the widths of the decay into the corresponding channels
diminished. However, the summed reduced widths, whi
should not depend onPc(kca) anymore, show the same de
pendency. So an inspection ofu^cun&u reveals that this over-
lap lies inside the interval of 0.25 and 1.00 for elastic width
with K5k50, each molecular ground state having near
full overlap with the elastic channel wave function. In th
case of the (21,01) final state the scalar products var
around 0.10 and those of the mutually excited final state
even smaller. Variations of the molecular potential with
realistic ranges do not change this dependency very mu
above all the nonvanishing elastic overlaps are fairly stab
Only the magnitudes of the calculated widths are more s
sitive to such variations due to their shifted resonance en
gies. Despite this, the mutual relations of the widths of t
resonances are nearly conserved. It is noticeable that the
excited states in the radial potential (nr51) have elastic
widths of 2 to 3 MeV since these states lie considerab
above the Coulomb barrier and are no more bound.

In our approximations many quasibound states have
overlap with the elastic entrance channel. This deficien
could be removed by a diagonalization of the comple
Hamiltonian which would lead to states which all have sma
overlaps with the elastic entrance channel. Such calculati
are planned for the near future. Presently we cannot comp
our calculated widths quantitatively with the experiment
ones, but the gross tendency of the widths is very similar
the experimental ones.

FIG. 8. The summed reduced widths in terms of the Wigne
Teichmann single-particle limit forI512 and different final states.
For explanation see caption of Table IV.
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V. SUMMARY

For the interpretation of the resonances in the scatter
of two oblately deformed12C nuclei, we have used a mo-
lecular model which has been originally developed and su
cessfully applied to the case of two prolately deformed n
clei. We have shown that the formation of dinuclear24Mg
configurations consisting of two oblate12C nuclei in equator-
equator orientation can cause intermediate resonances in
12C1 12C scattering. Here, mainly the Pauli principle, in
corporated phenomenologically, prevents the nuclei fro
fusing. Characteristic of the treated equator-equator orien
tion are the maximal elongation and the minimal height
the Coulomb barrier.

Starting with a double-folding potential, we have adde
the rotational energy of a stiff molecular rotator and pe
formed an expansion of the potential around the equat
equator orientation. By simplifying complicated terms in th
Hamiltonian we have calculated a spectrum of resonanc
revealing about two states per MeV. The low energy spe
trum is dominated by rotations of the nuclei around th
z8-axis and butterfly oscillations. Although surface vibration
of the nuclei in the molecule have small importance, theb i

degrees of freedom must not be fixed because of the sensi
influence upon the intrinsic moments of inertia.

The decay widths of the molecular states into select
12C channels show the experimental characteristics at an
erage, but for a detailed comparison the Hamiltonian shou
be diagonalized. As we have used a bound state approxim
tion with the nuclei strongly inclined, one can draw the con
clusion that, furthermore, the radial and butterfly modes a
actually strongly coupled.

Since the model for the resonance states is phenome
logical and includes several simplifications for the dynami
like the linearization of the oscillations and the free rotatio
of the nuclei around the internuclear axis, we conclude th
the resulting energies of the quasibound states should be
derstood as qualitative values. Comparison with experime
tal resonances in the12C112C system yields the right order
of level density. Nevertheless one has to keep in mind th
not all the experimental resonances belong to states in
equator-equator orientation, but may also be described w
configurations consisting of more than two clusters. Th
physical nature of the experimental resonances is not w
understood with the exception of the virtual resonances w
large widths in the nucleus-nucleus potentials. Therefore
is nearly impossible to compare calculated resonances
rectly and quantitatively with measured resonances; only c
tain predictions can be stated about the level density of t
resonance states above the energy of the lowest state for e
angular momentum.
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