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A distorted waves Faddeev method for three-body systems is introduced, following Bencze and Redish
Birse and Redish, by using a multipole expansion to select parts of the interactions in rearrangement chan
to serve as three-body distorting potentials in the first Faddeev equation. The consequence is a greatly red
role for the second and third Faddeev equations. Truncating the multipole expansion and discarding the sec
and third equations reduces us back to the well-known continuum discretized coupled channels~CDCC!
method. The relations among these methods are discussed. Despite the difficulties of the CDCC method,
much easier than a full Faddeev calculation.

PACS number~s!: 21.45.1v, 25.10.1s, 24.10.Eq
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I. INTRODUCTION

Many physical systems are modeled as three-body s
tems, giving rise to the idea that they should properly b
analyzed by some version of the Faddeev theory@1#. Unfor-
tunately, Faddeev equation methods, with their coupl
equations, are complicated@2#, with the result that these
methods have only been applied for a few, simple physic
systems or for systems with simple, separable interactio
Important interactions tend to enter only as off-diagonal o
erators that connect the equations@1,2#.

Meanwhile, the continuum discretized coupled channe
~CDCC! method, introduced originally as an approximatio
for stripping@3–7#, has gradually been improved, until it ha
become a competitor to the Faddeev approach@8–12#. We
carry out the coupled channels method in configurati
space, where the physicist’s imagination tends to be m
comfortable. However, we do not experience the bounda
condition problems of a completely configuration-space fo
mulation @15–17#, because our use of a channel expansi
enables the outgoing boundary condition to be applied in o
channel at a time.

The new theory originated from coupled channels a
proximations of deuteron stripping, regarded as a three-bo
system. It came as a surprise that a modest reinterpretatio
CDCC calculations converts them into variations of the Fa
deev method@6,7#. This result ends the long controvers
@9–12# about convergence of CDCC calculations.

The new theory is obtained by transforming all coord
nates to the same degrees of freedom as in the entrance c
nel, in a kind of resonating group@13# approach. A flexible
angular momentum truncation is then introduced. Transfo
mation between the old and new methods is purely kin
matic; it can be performed without solving any equations
motion.

Our method resembles closely the use of distorted wav
in the Faddeev theory, advocated some years ago by Ben
53813/96/53~1!/314~8!/$06.00
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and Redish and by Birse and Redish@14#. However, our
distorted waves are constructed by a procedure of par
wave expansion.

Section II discusses the new method in detail. It sho
how the modifications ofc0 and the reduction ofc1 andc2 to
unimportance take place. It discusses multipole expansi
of the transformed potentials. Section III takes up the pro
lem of practical coupled-channels solutions of the trunca
equation of motion for the system. It also discusses the lo
tails of the transformed potentials and their relation to d
cretization of the breakup continuum. It discusses spec
values of the breakup momenta and the use of complex
tentials in nuclear physics. Section IV is a summary and
discussion of the relation of our method to other methods
calculation.

Appendix A reviews the stationary phase method for t
evaluation of integrals. Appendix B considers the propert
of a projection operator used in this article. Appendix C co
siders the procedure to be used if the kinematics differs fr
the special case treated here. Appendix D reviews meth
for obtaining practical results from this theory.

II. EXACT THEORY IN MODEL SPACE

A. Structure of the theory

In a discussion@6# of iterative procedures for the three
body model,

@E2K2V~r !2U1~r 1!2U2~r 2!#c50, ~2.1!

we pointed out that the exact Faddeev equations for t
system could be put into a form related to the CDCC mod
space approximation by regarding model-space projecti
of the potentialsU1(r 1), U2(r 2) as ‘‘compact distorting po-
tentials’’ in the Faddeev equations, as in the discussions
Bencze and Redish and by Birse and Redish@14#. In general,
particles 1 and 2, which may be composite, have coordina
314 © 1996 The American Physical Society
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53 315THREE-BODY REACTION THEORY IN MODEL SPACE
rW1 and rW2 with respect to an infinitely massive nucleusA
located at the origin.~Infinite mass forA only simplifies the
notation; it is not a necessary part of the theory. See Appe
dix C for details.! The kinetic energy operator for the ac
tive particles isK11K25K, the interaction potential be-
tween them isV, and the interaction ‘‘potentials’’ betweenA
and the active particles~allowed to be nonlocal! areU1 and
U2. For simplicity, we assume thatV is a short-ranged cen-
tral potential. We assume that the incident wave function
the entrance channel contains a bound state of particles 1
2. Spins are ignored.

‘‘Distorted-wave’’ Faddeev differential equations for the
above system are

@E2K2V~r !2P l~U11U2!P l#cl5V@c1l1c2l#, ~2.2!

@E2K2U1~r 1!#c1l5P l@U12P lU1P l#cl1P lU1c2l ,
~2.3!

@E2K2U2~r 2!#c2l5P l@U22P lU2P l#cl1P lU2c1l ,
~2.4!

with the condition

cl1c1l1c2l5c. ~2.5!

The model space is defined by the kinematic projection o
eratorP l that selects low angular momental<l that are
associated with the relative coordinaterW5rW12rW2 . Properties
of the projectorP l are discussed in Appendix B. Model-
space projections ofU1 andU2 appear as distorting poten-
tials in ~2.2!–~2.4!.

There are two sets of internal coordinates in the abo
equations: rW,RW for the relative and center-of-mass coord
nates of the active particles andrW1 ,rW2 for their individual
displacements fromA. Explicit transformations between
these coordinates depend on the particle masses and wil
avoided as far as possible in this paper. Evidently, ‘‘mod
space’’ is defined in terms of the coordinatesrW,RW .
n-
-
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i-

l be
el

In the standard Faddeev theory, with no distorting pote
tials ~P l51!, the Green’s function for each Faddeev equ
tion produces associated asymptotic bound two-body ch
nels, with the result that componentc0 contains all the 1-2
bound states,c1 all the 1-A bound states, andc2 all the 2-A
bound states. Three-body breakup appears in all three F
deev components. The usual analyses of convergence a
ciated with Eqs.~2.2!–~2.4! emphasize ‘‘compactness’’ of
the right-hand side~RHS! of these equations. WithP l51,
compactness is produced in~2.3! and~2.4! by the short range
of U1 or U2 in one variable and of the wave functions, e
pecially c0, in another; these effects combine to guarant
that the coupling terms are short ranged in configurati
space in all directions. An important ingredient in proofs
compactness is the well-known [r 1

21r 2
2]25/4 asymptotic de-

crease of the three-body breakup continuum.
In the distorted Faddeev theory, the asymptotically bou

two-body channels are distributed among the Faddeev co
ponents in the same manner as above. Compactness o
coupling terms is maintained, because the ‘‘distorting pote
tials’’ P lU1P l , P lU2P l are themselves compact@18#.

B. Projection on model space

Model-space calculations are invariably performed in t
framework of an expansion in the set of basis states

uk@ lL #JM)[uf l~k,r !@Yl~ r̂ !,YL~R̂!#JM), ~2.6!

which we define in terms of the coordinatesr ,R of the en-
trance channel. The quantum numbers that label this set
klLJM. Heref l8(k,r )Ylm( r̂ ) is thek8lm wave function for
the relative motion of 1-2 under potentialV, with asymptotic
momentumkW8 and energy«(k8). One can also use Sturmian
for this expansion@15#. Finally, the spherical harmonic
YLM(R̂) refers to the motion of the center of mass of 1,2.

The above basis is used to expand~2.2! for the first Fad-
deev component, giving
@E2e~k!2KR#gl lL
J @P~k!,RW #5E d3r dR̂$f1~k8,r !@Y1~r !,YL~R!#JM%* $P l~U11U2!P l8c081V@c1l1c2l#%. ~2.7!
f

-
e

d

The expansion coefficientsg l lL
J of cl in the basis~2.6! are

‘‘channel functions’’ in our calculation. The wave numbe
P(k) are computed fromk by requiring that the relative and
center-of-mass motions conserve energy. Some proced
for calculating directly with~2.7! are discussed in Sec. III.

Since we are primarily concerned about the relation b
tween the first Faddeev equation and the combined effect
the other two equations, it is convenient to add~2.3! and
~2.4!, to obtain the simpler coupled system

@E2K2V2P l~U11U2!P l#cl5Vjl , ~2.8!

@E2K2U12U2#jl5@U11U22P l~U11U2!P l#cl ,
~2.9!
rs

ures

e-
s of

in which jl[c1l1c2l. The further notationUl5P l(U1
1U2)P l8 is also used below. TheVjl term in~2.8! expresses
the reaction oncl by the breakup and rearrangement parts o
jl .

Under the assumption thatA has infinite mass and does
not recoil, the same rearranged coordinatesrW1 ,rW2 appear in
~2.3! and ~2.4! and again in~2.9!, and the system of equa-
tions ~2.8!, ~2.9! is equivalent to~2.2!–~2.4!. ~Also see Ap-
pendix C.! Like the original Faddeev equations,~2.8!,
~2.9!, and their solutions are valid throughout the configura
tion space. Coupled differential equations provide a flexibl
framework in which to introduce the interactions and the
boundary conditions. The combination ofU1 with U2 on the
LHS of ~2.9! allows one interaction to be a distorting poten-
tial for the outgoing particle in a rearrangement channel an
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the other to be the binding potential for the particle that
left behind.

The most obvious effect of the distorting potentials i
~2.8!, ~2.9! is to present a counterterm to the potentia
U11U2 in ~2.9!, which significantly weakens the solutionjl

for low values ofl . If l is large enough,cl alone can be a
good approximation over a large volume of space. This su
gests a procedure for managing~2.8!, ~2.9!: Omit the Vjl

term from (2.8) and carry a large enough value of the pa
rameterl to produce the desired accuracy in the evaluatio
of cl . This procedure is already followed in CDCC calcula
tions @3–5#.

C. Significance ofjl

TheVjl term decreases asl increases, and the rearrange
ment and breakup effects move more directly intocl . We
exploit this effect to discuss convergence. Our procedure w
be to demonstrate thatVjl tends to become negligible asl
increases indefinitely. Since allS matrix elements can be
obtained from the conditionVjl50 ~Appendix D!, this suf-
fices to produce the required result.

To begin we solve~2.9! for jl , which gives

jl5@E12K2U#21~U2Ul!cl . ~2.10!

Outgoing boundary conditions are appropriate in this equ
tion, because by definitioncl contains all the incident flux.

Our interpretation of~2.10! depends in an important way
on the properties of the Green’s function. Nevertheless,
note first that the overall magnitude of the RHS of the abo
equation is determined by the cancellation of low multipole
in the expressionU2Ul ; it is a consequence of the structur
of the multipole expansion.

The Green’s function in~2.10! acts on the source function
~U2Ul!cl . The resulting expression has a hole near t
origin, where the low multipoles ofU cancel with those of
Ul . In the calculation ofjl this hole cannot fill in with flux
transferred at larger radii, becausejl is known to be a purely
outgoing wave function.

The hole created injl has the significance of pushing the
nonzero region of this function out to large radii, at lea
several nuclear radii. At the same time, because of the sou
function in ~2.10!, (U2Ul)cl5@U11U22P l(U1
1U2)P l#cl , one particle is compelled to remain near th
target nucleus, and therefore the particles become well se
rated. Furthermore, our Green’s function is outgoing and t
source function (U2UJ)cl on which it operates also tends
to be outgoing; hence, there is no stationary point involved
its operation@19#. These effects combine to makejl small
within the range ofV.

Equation~2.10! limits the range ofjl either for any one
partial wave or for any limited set of partial waves, becau
the source then has a maximum ‘‘radius,’’ beyond whichjl

becomes an outgoing ‘‘spherical wave.’’ Cancellation in th
above expression is likely to be particularly close and d
rable, because the terms that cancel approximately are
rived from the same source potential.

Finally, we note that the manipulations above are on
possible with distorted waves, for which the potential diffe
enceU2Ul is nonvanishing. Only distorted waves make th
manipulations nontrivial.
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Let us examine the iteration of our theory. Considerc, the
complete wave function of the system, which satisfies t
equation

@E2K2V2U#c50, ~2.11!

and thelth approximationcl , which satisfies the equation

@E2K2V2P lUP l#cl50. ~2.12!

From ~2.11! one gets exactly

@E2K2V2P lUP l#c5P lU~12P l!c. ~2.13!

Now, however, by the analysis given before, we recogn
that P lU~12P l!c must be negligible in a domainD , de-
fined byR,Rc . We assume that we can findRc in such a
way that it is small enough to ensure thatP lU~12P l!c is
small in D , so that partial waves withl,l are not much
affected inD by those withl.l. At the same time,Rc is
large enough to ensure that the truncated tail ofP lUP l be-
yondRc is small and smooth, so that the reflection ofP lcl

from outside is negligible. ThenP lc satisfies approximately
the same equation inD and approximately the same bound
ary conditions atR5Rc ascl , so thatcl'P lc in D . The
largerl is, the largerRc can be and the closercl is to c.

An extra factorP l is inserted on the left in Eqs.~2.12!,
~2.13!. This factor establishes consistency in the use of m
trix notation. It establishes that the meaning of matrix labe
is the same on the left as on the right. However, the use
this factor does not change the solutions of the equatio
above.

We also use a sharp cutoff at large radii for integrations
model space, so thatO l in the truncated Schro¨dinger equa-
tion is effectively treated asO l'O lu(Rc2R). We also em-
ploy discretization, which replaces an integration over t
continuum by a sum over bins. We easily find that the effe
tive range of the continuum-continuum interactions is sm
enough so that an excessive number of bins is not requi
The same remark applies to the truncation errors, with
additional feature that the adiabatic theorem must be invok
@24#.

The individual terms in the partial wave series decrea
with l 8, both because the Clebsch-Gordan coefficients
crease withl 8 and because of the rapid convergence of t
multipole expansion for the potential.

D. Expansion of potentials

A major step in the solution of~2.8! is the introduction of
entrance channel coordinates in the potentialsU1(r 1) and
U2(r 2), givingU1(uRW 2rW/2u) andU2(uRW 1rW/2u). ~Again, the
notation is simplified by assuming particles 1 and 2 ha
equal masses.! This is followed by the expansion ofU1 ,U2
in multipoles of the new coordinates. The expansion coe
cient is

Ul~r ,R![E
21

1

dm Pl~m!U~r!; ~2.14!

here,m[( r̂ •R̂).



n

ergy

an
in

f-

ite

e
ed
n-

rt
y
to

or
er

e.
n

l

ive
e

53 317THREE-BODY REACTION THEORY IN MODEL SPACE
Equation~2.14! is convenient as it stands for low multi
poles, for which it can be evaluated numerically. The lo
multipoles ofUJ depend on details of the shape of the p
tential. However, for potentials of not too bizarre shapes,
convergence to the forms that apply for largel is rapid.

To treat the higher multipoles, it is convenient to tak
r[[R21r 2/42mrR] 1/2 as the independent variable, wit
x5ur /22Ru, giving

Ul~r ,R!5~R21xR!21E
x

2R1x

r dr U~p!Pl

3S 11
x22r2

2R212RxD . ~2.15!

We note that the principal role ofx is to cut off the lower end
of the integral. The integral vanishes rapidly as this low
limit becomes comparable to or exceeds the range ofU~r!.
Keeping this in mind, we examine the integral for the spec
casex50, along the ‘‘center line’’ of a contour graph o
Ul(r ,R):

Ū l~r ,R![R22E
0

2R

r dr U~r!Pl~12r2/2R2!. ~2.16!

Aside from the overall decrease withR22, the magnitude of
the integral~2.16! is determined by the interplay between th
short-range functionU~r! and the oscillatory functionPl .

There are three cases to consider.
~i! ForR less than or comparable to the range ofU, sev-

eral cycles ofPl lie within U, and even for moderate value
of l the integral averages to a very small value.

~ii ! When R becomes larger, the range ofU limits the
range of integration and the range of the argument ofPl
becomes increasingly restricted. In turn, this restricts the
cillations of Pl and the integral reaches a broad maximu
nearR5 l3~range ofU!. At this maximum the full range of
U just extends over the full first peak of the Legendre fun
tion.

~iii ! Beyond the maximum,R becomes so large that fur
ther variations of the argument ofPl and of the integral are
suppressed and the functionŪ l(r ,R) decreases toward zero
asR22.

We can now restore theuRW 2rW/2u lower limit of the inte-
gral in ~2.16!. Overall, we see that asl increases, the peak o
the Legendre transform moves outwards along the center
of a contour graph in ther ,R plane and the peak stretches o
along this line; the transverse width of the peak remains
changed, independent ofl or R. Peaks for successive multi
poles overlap radially to a considerable extent.

It is interesting to apply the analysis ofP l that is given in
Appendix B. There it is shown that applying the operatorP l

to a function ofr is equivalent to multiplying that function
by an angle-averaging operator. Hence, whereverP l ap-
pears, we can just as well insert the averaging operat
Furthermore, the averaging operation is localized in the ‘‘fo
ward’’ direction; thus, ifrW8 is localized in a given direction,
then rW will tend to be localized in that same direction. Th
localization is more precise the largerl is.
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III. ASPECTS OF THE CALCULATION

Techniques for the practical calculation of componentcl

in model space asl becomes large are more important tha
its coupling to the secondary componentjl . We therefore
omit theVjl term from ~2.7! and look for numerical proce-
dures for solving the truncated equation.

A. Basic calculations in model space

The outgoing-wave Green’s function for the LHS of~2.7!
is applied to the source term on the RHS. We get

@E2e~k!2KR#gl lL
J ~P~k!,R!

'E d3rdR̂$f lk,r !@Yl~ r̂ !,YL~R̂!#JM%*

3P l~U11U2!P l8cl8 lL
J . ~3.1!

Theg l lL
J (P(k),R) are theexpansion coefficientsof cl in the

basis chosen in Sec. II. Because the basis states are en
eigenstates governed byV(r ), the g l lL

J can also be inter-
preted as model spacechannel wave functionsfor elastic and
inelastic scattering from the entrance channel, and they c
be required to satisfy outgoing wave boundary conditions
the coordinateR. The wave numbersP(k) are computed
from k by the requirement that the relative plus center-o
mass motions conserve energy.

Accurate calculation with~3.1! demands a coupled chan-
nels expansion ofcl , in which this undetermined function is
expressed in terms of a basis of states that have defin
values ofJ,l 8,L8, definite states of relative motion of par-
ticles 1,2, and unspecified relative motion of particleA and
the center of mass of 1,2. In general, particles 1,2 will hav
continuous spectra, and so this step of going to a coupl
channels expansion will also involve discretizing those co
tinua.

In the lowest approximation, we take~3.1! in monopole
order, withl850. While this does not quite reduce~3.1! to
an expression involving only local potentials, it does conve
~3.1! to a form that has a convenient expansion in two-bod
eigenfunctions. Such eigenfunction expansions are known
give excellent descriptions of elastic scattering.

The basis states for~3.1! use energy eigenstates for therW
degree of freedom and configuration space for theRW degree
of freedom. Transformation to a configuration space basis f
both degrees of freedom would require an integration ov
the channel momentumk. This integral is traditionally per-
formed approximately by the method of stationary phas
~This stationary phase integration produces the well-know
radial asymptotic formR25/4eimR of the wave function for
three-body breakup.! Unfortunately, it has been shown by
accurate numerical studies of integrations overk that it may
be necessary to go tor 1 ,r 2;thousands of fm to come near
the asymptotic result. This is a major difficulty for numerica
calculations performed entirely in configuration space@15–
18#.

B. Special values of continuum momenta

Certain classes of basis states might be thought to g
difficulties in the calculation of the associated channel wav
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functions. First, we consider basis states whose energye(k)
is greater than the total energyE. The channel energy be-
comes E(k),0, the channel momentum becomesP(k)
5 i uP(k)u, imaginary, and the channel wave functions d
crease exponentially at largeR. The principal comment
about such ‘‘closed channels’’ is that their inclusion in th
analysis isnecessaryfor the set of basis states to be com
plete. Beyond this, experience with model-space calculatio
for deuteron-induced reactions shows that for total energ
below about 100 MeV the excitation of closed channels s
nificantly affects the numerical results@20,21#.

The threshold caseP(k)50 is more interesting. This
P(k) vanishes when the relative energy equals the total e
ergy. It might be thought thatg lL

J (P,R) would vanish when
P50. However,P(k) labels a Green’s function, rather than
basis function, and the channel wave function need not va
ish. Instead, Eq.~3.1! becomes

2KRglL
J ~0,R!5F ~R!, ~3.2!

with

F ~R![E d3r dR̂$f l~k,r !@Yl~ r̂ !,YL~R̂!#JM%*

3P l~U11U2!P lc0~rW,RW !, ~3.3!

or

F d2dR2
2
L~L11!

R2 GRglLJ ~0,R!52~2M /\2!RF ~R!. ~3.4!

The solution is

RglL
J ~0,R!52~2M /\2!~2L11!21

3E
0

R

~R,
L11/R.

L !•R8F ~R8!dR8, ~3.5!

a straightforward continuation of the results forPÞ0. For
large values ofL, the Green’s function becomes a very na
row function ofR. On the other hand, forL50,1, the con-
vergence of~3.5! must be affected by the properties o
F ~R8!.

The g lL
J (0,R) functions produced by~3.5! are standing

waves, for which the outgoing wave boundary conditio
emphasized in earlier sections of this paper, is best rein
preted as ano-incoming-wavecondition. The kinetic energy
becomes zero in the external region, an effective discontin
ity, and there is 100% reflection of the wave function. Th
standing wave is confined nearR50. The solutions of~3.5!
are also rather confined if the channel energy is only sligh
positive.

Finally, we consider relative motion states withk'0. In
this paper they are defined to have the asymptotic form

f l~k,r !→r21 sin~kr1d l2 lp/2!.

Then,
e-
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^f l~k!uf l~k8!&5E
0

`

r 2 dr f l~k,r !f l~k8,r !

5~p/2!d~k2k8!.

These equations define the radial dependence and normali
tion of the overlap integrals. It is significant thatk does not
appear in them as a coefficient. We see that for any fini
radiusr the basis functions all vanish in the limitk→0, and
therefore the channel function for thek50 channel vanishes.

C. Complex potentials

In a previous publication@22#, we argued that the validity
of the CDCC approximate solution of the three-body Schro¨-
dinger equation could be regarded as a result of the lar
imaginary parts in nuclear single-particle potentials.~For an
opposing analysis, see@12#.! We remarked that derivations of
nuclear three-body models from more fundamental man
body theories show that optical potentials are strongly sta
dependent and their imaginary parts should vanish for boun
states. However, this fact is largely ignored in CDCC mode
space calculations. We further showed that retaining th
imaginary potentials in rearrangement bound states dam
the wave function of the outgoing particle. Thus the~spuri-
ous! bound state absorptive potentials truncate the rearrang
ment channels, somewhat like the kinematic truncations em
phasized in this paper.

Effects of the imaginary potentials are more obvious in
the distorted Faddeev formulation. Consider the simplifie
equations~2.8!, ~2.9!, specialized to a channel determined by
f~1!, a particle-1 bound state. Let the complex single
particle potential beU(x)5V(x)1 iW(x). Let the two active
particles be in a stretched configuration, in which they ar
too far apart to interact, so thatjl can be used in the form

jl5E f~1!x~2!,

where the integral is over energy-conserving products. Equ
tion ~2.10! becomes

@E2K22«121^fuWuf&#x~2!5~f~1!uU12O 1ucl~1,2!&.
~3.6!

The expectation ofW(x) contributes a large positive imagi-
nary part to the net energy of the outgoing particle, and th
dampsx~2!. For nucleons of about 100 MeV, we estimate
^W&'10 MeV, which implies a damping length forx~2! of
about 6 fm.

Evidently, a model-space calculation is subject to tw
truncations, both of which suppress long-range rearrang
ment channels: ~1! The damping of outgoing waves de-
scribed above and~2! truncation of relative angular momen-
tum. The simultaneous presence of these two effec
probably reduces the sensitivity of a calculation to either on
alone. This may be a major reason for the well-know
@20,23# insensitivity of CDCC calculations to more thanl54
or 6 multipoles.

Breakup in the nuclear interior is particularly sensitive to
the imaginary potentials. This situation was revealed acc
dentally in comparisons of recent model-space calculation
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@23# with an early calculation@5# that used schematic optica
potentials that had very small imaginary parts. The mat
elements ofU1 ,U2 for interior breakup actually are found to
be large, but absorption by the imaginary parts ofU1 ,U2
prevents the breakup particles from getting out.

Although the spurious imaginary potentials discuss
above can be excluded artificially when constructing e
channel wave functions for particular reactions, they still r
main in the model-space calculation ofcl . Perhaps the most
realistic observation is that such physical effects cannot
entirely separated from the techniques for solving the thre
body Schro¨dinger equation.

IV. SUMMARY

A method for solving the Faddeev equations for a thre
body system is described, based on ordinary distorted-w
Faddeev components. The distorted-wave components
introduced in such a way as to be completely connected. T
requires the use of three-body distorting potentials, which
derived by a process of multipole expansion. A truncat
version of our chosen procedure is equivalent to CDCC.

Perhaps the most important step of our analysis is
demonstration that when the procedure is iterated the thr
body Green’s function is applied on an asymptotically ou
going three-body source function. Since the Green’s funct
is outgoing, the natural consequence is that the integral
erages to a small value.

In a review several years ago, Kuruogˇlu @25# proposed
that the coupled reaction channels~CRC! method should be
applied for reaction calculations. This CRC approach us
the channels that actually occur in a reaction to expand
wave function for the system. At best, this set of chann
functions is overcomplete and considerable effort is requir
to extract a meaningful set of functions from the chos
starting point.

Kaneko, Kanada, and Tang@25# have circulated a resonat
ing group study ofp1d scattering.

Recent work by Kersting and Sandhas@13# resembles the
method given in this paper. They apply a ‘‘resonating grou
expansion of the wave function for the three-nucleon syste
and they find excellent convergence for one of the cas
treated by Payne and co-workers@15#. However, they do not
point out the relation to the Faddeev theory, as we do he
and they do not employ distorted waves.

Payne and co-workers have described their calculations
the3H, 3He systems as ‘‘benchmarks of excellence’’ for Fa
deev calculations@15#. They take the first Faddeev equatio
and express it in the form of a differential operator times
Faddeev component equals a potential times a sum of o
Faddeev components. They use symmetry arguments to
the other components in terms of the first one. In our proc
dure the differential operator on the LHS is first changed
adding to it some multipole pieces of the interactions on t
RHS. By removing these pieces from the RHS, the roles
the other two components are considerably weakened
they can be omitted from the~modified! Faddeev equations.
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APPENDIX A: STATIONARY PHASE

This topic concerns the approximate evaluation of int
grals of the form

I5E
0

m

dk f~k!eip~k!, ~A1!

with

p~k![x1k1x2~m22k2!1/2, ~A2!

in the limit x1 ,x2→asymptotically large. Such integrals ap
pear, for example, in the transformation@26# of the asymp-
totic c0 from a channel representation to a configuration re
resentation, using the coordinates of both active particles.
the limit the integral is dominated by the momentum at th
point p8(k0)50.

The Taylor expansion ofp(k) aboutk0 is

p~k!5p02~q2/2d2!1••• ~A3!

with q[k2k0 and

k0 /x15~m22k0
2!1/2/x25m/R, ~A4!

R[~x1
21x2

2!1/2, p05mR, d[~x2/R!~m/R!1/2.
~A5!

In terms of the quantities just defined, the original integr
becomes

I5eip0f ~k01q!E
2k0

m2k0
dq e2 iq2/2d2, ~A6!

where the higher terms of the Taylor series in~A3! have been
omitted.

The usual discussion of~A6! points out that in the limit
x1 ,x2→` the integrand oscillates rapidly and it averages
zero, everywhere except in an interval of widthd centered at
q50. In this limit the integration is extended to6` and
f (k01q)' f (k0) is removed from the integrand, so that

I5eip0f ~k0!E
2`

`

dq e2 iq2/2d25~ i2p!1/2deimRf ~k0!. ~A7!

The stationary phase evaluation of~A1! produces the asymp-
totic ~semiclassical! limit of a wave mechanical expression
We see especially in~A4! that at the point of stationary phase
the particles have traveled distances that are proportiona
their velocities.

It is mentioned in Sec. III A that several author
@14–17# find that convergence to the stationary phase lim
~A7! asx1 ,x2 become large is very slow. This should not b
a surprise. Let us examine~A6!, the result of a Taylor expan-
sion in the original integral, without subsequent approxim
tions. Consider the special casex15x25x. The Taylor ex-
pansion gives
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I5eimRE
2k0

m2k0
dq f~k01q!e2 i4q2x/m, ~A8!

which becomes

I5mei1.414NE
20.707

0.273

f ~0.7071n!e2 i4Nn2dn, ~A9!

where now all momenta are measured in units ofm, with
n[q/m and withN[mx the number of wavelengths in the
distancex.

It is obvious in the form~A9! thatN must be very large if
the region of the stationary phase is to be much smaller th
the entire available range of integration or smaller than re
sonable ranges of variation of the functionf . In cases of
practical interest, it might easily be necessary to go
N;104.

The cause of this slow convergence@15–18# is the slow
variation of the original phase factorp(k) in ~A2!. In dimen-
sionless form, again taking the special casex15x25x,

p~k!5N@k/m1~12k2/m2!#. ~A10!

The function in brackets has the value 1 at both end points
integration; at its maximum, it only rises to 1.414. It takes
very large coefficientN to sharpen up this maximum.

APPENDIX B: SUMMATION OF P l

By definition,P l selects all angular momentum states th
havel<l,

P l5 (
i ,m50

l

Yl ,m~ r̂ !Yl ,m* ~ r̂ 8!. ~B1!

An integration overr̂ 8 is understood when this expressio
operates on some given function ofr̂ 8. The spherical har-
monic addition theorem gives

P l5~4p!21(
i50

l

~2l11!Pl~ r̂ • r̂ 8!, ~B2!

and this is summed to produce

P l5~4p!21
d

dm
@Pl111Pl#. ~B3!

This closed form for the projection operator is obtained fro
the derivative formula for Legendre polynomials, as in Bla
@27#. Especially forl large,P l is a somewhat broadenedd
function of the angle betweenr̂ and r̂ 8, of half width;l21.
We obtain*dV P l51, as required by this interpretation. In
rough sense, the operatorP l averages the function of rˆ8 on
which it operates, over a range of anglesd r̂ 8;l21. Averag-
ing to this extent has little effect onYlm( r̂ ) functions with
l,l, but it tends to destroyYlm( r̂ ) functions withl.l. We
also note that the mixture of parities inP l eliminates contri-
butions from the backward hemisphere.
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APPENDIX C: UNEQUAL MASSES, RECOIL

Although the second and third Faddeev equations can
ways be added, giving a system of two equations, as in
text; these are not of much use unless the variables on
LHS of ~2.9! can be separated. The kinetic energy operatorK
separates in any system of Jacobi variables, consisting of
arbitrary vector coordinate and the coordinate conjugate to
However,rW1A andrW2A in the two potential functions in~2.9!
are not usually conjugate to each other, and so the flexibil
of K is of no use.

The distorted Faddeev equations

@E2K2V2O 12O 2#cl5V~c1l1c2l!, ~2.28!

@E2K2U1~r 1!#c1l2U1c2l5@U12O 1#cl , ~2.38!

@E2K2U2~r 2!#c2l2U2c1l5@U22O 2#cl ~2.48!

offer another approach to the problem of coordinates. If t
cutoff l is large enough, the RHS’s of~2.3! and~2.4! become
negligible: hence, the RHS of~2.2! also vanishes, leaving a
soluble equation to solve.

APPENDIX D: S-MATRIX ELEMENTS

In this appendix we reduce theS-matrix elements to more
calculable forms, under the assumptionVj50. Standard ex-
pressions for theS-matrix elements are

Tel5^f0~r !exp~ upW 0•RW !uUuC&, ~D1!

Tre5^f1~r 1!fk2
~r 2!uVuC&, ~D2!

Tbr5^fk1
~r 1!fk2

~r 2!uVuC&, ~D3!

respectively, wheref0(r ) andf1~r 1! are bound state wave
functions for the 1-2 and 1-A subsystems andfk1 /k2

is the
scattering wave function for the 1-A subsystem with the mo-
mentumk1 , k2 . In the limitVj50, ~D2! and~D3! obviously
reduce to

Tre'^f1~r 1!fk2
~r 2!uVucCDCC&, ~D28!

Tbr'^fk1
~r 1!fk2

~r 2!uVucCDCC&. ~D38!

Reduction of the elastic amplitude is a little more involved
We first apply the equationc5cl1jl , to get

Uc5U~cl1jl!5$Ocl1~E2K2U !jl%1Ujl

5Ocl1~E2K !jl , ~D4!

using ~2.9!. We now use the assumptionVjl'0 to write
~D4! as

Uc'Ocl1~E2K2V!jl . ~D5!

If we now substitute~D5! in ~D1!, the second term vanishes
becausej has no asymptotic, elastic amplitude, and the ela
tic amplitude as a whole has reduced to

Tel5^f0~r !exp~ ipW 0•RW !uO ucCDCC&, ~D18!

which is no surprise.
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@18# W. Glöckle, Phys. Rev. C37, 6 ~1988!.
@19# For discussions of the stationary phase method, see, e.g., G

Watson,A Treatise on the Theory of Bessel Functions~Cam-
bridge University Press, Cambridge, England, 1952!, p. 229.

@20# M. Yahiro, Ph.D. thesis, Kyushu University, 1985.
@21# Evidently, any Efimov effect that occurs must be associa

with the low partial waves.
@22# N. Austern and M. Kawai, Prog. Theor. Phys.80, 694 ~1988!;

see especially the last paragraph of Sec. 4.
@23# A. D. Piyadasa, M. Yahiro, M. Kamimura, and M. Kawa

Prog. Theor. Phys.81, 910~1989!; M. Kawai and M. Yahiro, in
Proceedings of the International Workshop on the Few-Bo
Approach to Nuclear Reactions in Tandem and Cyclotron R
gions, Tokyo, 1986, edited by S. Oryu and T. Sawada~World
Scientific, Singapore, 1987!, p. 234; R. A. D. Piyadasa, Ph.D
thesis, Kyushu University, 1989.

@24# A. Messiah,Quantum Mechanics~Wiley, New York, 1963!;
see Chap. VII, Sec. 13.
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