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A distorted waves Faddeev method for three-body systems is introduced, following Bencze and Redish and
Birse and Redish, by using a multipole expansion to select parts of the interactions in rearrangement channels
to serve as three-body distorting potentials in the first Faddeev equation. The consequence is a greatly reduced
role for the second and third Faddeev equations. Truncating the multipole expansion and discarding the second
and third equations reduces us back to the well-known continuum discretized coupled cH@@els
method. The relations among these methods are discussed. Despite the difficulties of the CDCC method, it is
much easier than a full Faddeev calculation.

PACS numbegs): 21.45+v, 25.10+s, 24.10.Eq

[. INTRODUCTION and Redish and by Birse and Redigh¥]. However, our
distorted waves are constructed by a procedure of partial
Many physical systems are modeled as three-body sysvave expansion.
tems, giving rise to the idea that they should properly be Section Il discusses the new method in detail. It shows
analyzed by some version of the Faddeev théatyUnfor-  how the modifications ofy, and the reduction of, and, to
tunately, Faddeev equation methods, with their coupled!nimportance take place. It discusses multipole expansions
equations, are complicatel®], with the result that these Of the transformed potentials. Section IIl takes up the prob-
methods have only been applied for a few, simple physicalem of practical coupled-channels solutions of the truncated
systems or for systems with simple, separable interaction§guation of motion for the system. It also discusses the long
Important interactions tend to enter only as off-diagonal op@ils of the transformed potentials and their relation to dis-
erators that connect the equatidis?]. cretization of the breakup continuum. It discusses special
Meanwhile, the continuum discretized coupled channely/@/ues of the breakup momenta and the use of complex po-
(CDCO) method, introduced originally as an approximation t€ntials in nuclear physics. Section IV is a summary and a
for stripping[3—7], has gradually been improved, until it has discussion of the relation of our method to other methods of
become a competitor to the Faddeev approghl2. we  calculation. . ,
carry out the coupled channels method in configuration APPendix A reviews the stationary phase method for the
space, where the physicist's imagination tends to be mogivaluation of integrals. Appendix B considers the properties
comfortable. However, we do not experience the boundarf @ Projection operator used in this article. Appendix C con-
condition problems of a completely configuration-space for-Siders the procedure to be used if the kinematics differs from
mulation [15-17, because our use of a channel expansiorf1® Special case treated here. Appendix D reviews methods
enables the outgoing boundary condition to be applied in onPr Obtaining practical results from this theory.
channel at a time.
The new theory originated from coupled channels ap- Il. EXACT THEORY IN MODEL SPACE
proximations of deuteron stripping, regarded as a three-body
system. It came as a surprise that a modest reinterpretation of
CDCC calculations converts them into variations of the Fad- In a discussiori6] of iterative procedures for the three-
deev method6,7]. This result ends the long controversy body model,
[9-12] about convergence of CDCC calculations.
The new theory is obtained by transforming all coordi- [E=K=V(r)=Uy(ry) = Uy(r)J¢=0, 2.1
nates to the same degrees of freedom as in the entrance chan-
nel, in a kind of resonating groud3] approach. A flexible we pointed out that the exact Faddeev equations for this
angular momentum truncation is then introduced. Transforsystem could be put into a form related to the CDCC model-
mation between the old and new methods is purely kinespace approximation by regarding model-space projections
matic; it can be performed without solving any equations ofof the potentialdJ,(r;), U,(r,) as “compact distorting po-
motion. tentials” in the Faddeev equations, as in the discussions by
Our method resembles closely the use of distorted waveBencze and Redish and by Birse and RedlisH. In general,
in the Faddeev theory, advocated some years ago by Bencparticles 1 and 2, which may be composite, have coordinates

A. Structure of the theory
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r, andr, with respect to an infinitely massive nucleés In the standard Faddeev theory, with no distorting poten-
located at the origin(Infinite mass forA only simplifies the tials (#%,=1), the Green’s function for each Faddeev equa-
notation; it is not a necessary part of the theory. See Appertion produces associated asymptotic bound two-body chan-
dix C for details) The kinetic energy operator for the ac- nels, with the result that componeit contains all the 1-2

tive particles isK;+K,=K, the interaction potential be- bound statesy; all the 1A bound states, ang, all the 2A
tween them i9/, and the interaction “potentials” betweek  bound states. Three-body breakup appears in all three Fad-
and the active particle@llowed to be nonlocgalareU,; and  deev components. The usual analyses of convergence asso-
U,. For simplicity, we assume that is a short-ranged cen- ciated with Egs.(2.2—(2.4) emphasize “compactness” of

tral potential. We assume that the incident wave function irthe right-hand sidéRHS) of these equations. Wit =1,

the entrance channel contains a bound state of particles 1 acdmpactness is produced(@.3) and(2.4) by the short range

2. Spins are ignored. of U, or U, in one variable and of the wave functions, es-
“Distorted-wave” Faddeev differential equations for the pecially ¢4, in another; these effects combine to guarantee
above system are that the coupling terms are short ranged in configuration

) B space in all directions. An important ingredient in proofs of
[E-K=V(") =AU+ U)ATNW=Vdnt ¥l (22 compactness is the well-known §+r 3] > asymptotic de-
B ] - crease of the three-body breakup continuum.
[E-K=U(r) ] =AU = A UA L+ AU In the distorted Faddeev theory, the asymptotically bound
(2.3 two-body channels are distributed among the Faddeev com-

K — D). 7 ponents in the same manner as above. Compactness of the
[E=K=Ua(ro)Jgar=751U, '/)AUZ'/)*]%JF'/)”UW(?"D coupling terms is maintained, because the “distorting poten-

' tials” U7, A U7, are themselves compad8).
with the condition
B. Projection on model space

Int bt b= (2.5 , _ _ _
Model-space calculations are invariably performed in the

The model space is defined by the kinematic projection opframework of an expansion in the set of basis states
erator 7, that selects low angular momenka\ that are .
associated with the relative coordinater; —r,. Properties [K[ILTIM)= | (K, D)LY ((F), YL (R am),  (2.6)
of the projector7’, are discussed in Appendix B. Model-
space projections df); andU, appear as distorting poten- which we define in terms of the coordinate®R of the en-
tials in (2.2 —(2.4). trance channel. The quantum numbers that label this set are

There are two sets of internal coordinates in the abov&ILIM. Here | (k,r)Y () is thek’Im wave function for
equations: r,R for the relative and center-of-mass coordi- the relative motion of 1-2 under potentid| with asymptotic
nates of the active particles amd,r, for their individual ~momentunk’ and energy(k’). One can also use Sturmians
displacements fromA. Explicit transformations between for this expansion[15]. Finally, the spherical harmonic
these coordinates depend on the particle masses and will bg y(R) refers to the motion of the center of mass of 1,2.
avoided as far as possible in this paper. Evidently, “model The above basis is used to expa@®) for the first Fad-
space” is defined in terms of the coordinateR. deev component, giving

[E_f(k)_KR]gilL[P(k)vﬁ]:f d3r dé{d’l(k’yr)[Yl(r),YL(R)]JM}*{i’/)x(Ul‘FU2)<7)£¢6+V[‘//1>\+lﬂzx]}- 2.7

The expansion coefficients;,, of ¢, in the basis(2.6) are  in which &=y, + 1. The further notationU,=7,(U,
“channel functions” in our calculation. The wave numbers +U,)7 is also used below. Thé¢, term in(2.8) expresses
P(k) are computed fronk by requiring that the relative and the reaction ony, by the breakup and rearrangement parts of
center-of-mass motions conserve energy. Some procedurgs.
for calculating directly with(2.7) are discussed in Sec. lIl. Under the assumption th#t has infinite mass and does
Since we are pl’imarily concerned about the relation benot recoil, the same rearranged Coordineﬁ?’g_)z appear in
tween the first Faddeev equation and the combined effects Q§.3) and (2.4) and again in(2.9), and the system of equa-
the other two equations, it is convenient to a@d) and  tions (2.8), (2.9 is equivalent to(2.2)—(2.4). (Also see Ap-
(2.4), to obtain the simpler coupled system pendix C) Like the original Faddeev equation$2.8),
(2.9), and their solutions are valid throughout the configura-
[E—K—V—2(U;+U)A ] =VE, , 2.9 tion space. .Coupl_ed diff(_arential equatiqns proyide a flexible
framework in which to introduce the interactions and the
boundary conditions. The combination df with U, on the
[E-K-U;—Us]&=[U+ U= AU+ U A T, LHS of (2.9 allows one interaction to be a distorting poten-
(2.9  tial for the outgoing particle in a rearrangement channel and
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the other to be the binding potential for the particle that is Let us examine the iteration of our theory. Consigethe
left behind. complete wave function of the system, which satisfies the

The most obvious effect of the distorting potentials in equation
(2.8), (2.9 is to present a counterterm to the potentials
U;+U, in (2.9), which significantly weakens the solutigp [E-K-V-U]y=0, (2.11
for low values ofl. If \ is large enoughy, alone can be a
good approximation over a large volume of space. This sugdand the\th approximationy, , which satisfies the equation
gests a procedure for managif2.8), (2.9): Omit the &,
term from (2.8) and carry a large enough value of the pa- [E-K—-V—-AUZ],=0. (2.12
rameter\ to produce the desired accuracy in the evaluation
of ¢, . This procedure is already followed in CDCC calcula- From (2.11) one gets exactly
tions[3-5].

C. Significance ofé§,

The V¢, term decreases asincreases, and the rearrange- Now, however, by the analysis given before, we recognize
ment and breakup effects move more directly igta We  thatAU(1—-7)¢ must be negligible in a domait, de-
exploit this effect to discuss convergence. Our procedure wilfined by R<R.. We assume that we can fif} in such a
be to demonstrate thaté, tends to become negligible as ~ Wway that it is small enough to ensure tha{U(1-73)¢ is
increases indefinitely. Since a8 matrix elements can be small in &, so that partial waves with<\ are not much
obtained from the conditiol&,=0 (Appendix D), this suf-  affected inZ by those withl >\. At the same timeR. is

fices to produce the required result. large enough to ensure that the truncated taiVpt) 7, be-
To begin we solveg?2.9) for ¢, , which gives yond R, is small and smooth, so that the reflectionzgfis,
from outside is negligible. Thew, i satisfies approximately
£=[ET—K-U]"YU-U,)¢,. (2.10  the same equation i¥ and approximately the same bound-

ary conditions aR=R; as ¢, , so thaty,~A ¢ in Z. The
Outgoing boundary conditions are appropriate in this equalargerX is, the largeiR, can be and the closep, is to .
tion, because by definitiotk, contains all the incident flux. An extra factor?, is inserted on the left in Eq$2.12),

Our interpretation of2.10 depends in an important way (2.13. This factor establishes consistency in the use of ma-
on the properties of the Green’s function. Nevertheless, wérix notation. It establishes that the meaning of matrix labels
note first that the overall magnitude of the RHS of the abovés the same on the left as on the right. However, the use of
equation is determined by the cancellation of low multipolesthis factor does not change the solutions of the equations
in the expressiotd — U, ; it is a consequence of the structure above.
of the multipole expansion. We also use a sharp cutoff at large radii for integrations in

The Green’s function i12.10 acts on the source function model space, so that, in the truncated Schdinger equa-
(U—-Uy¥, . The resulting expression has a hole near thdion is effectively treated ag’,~@, 8(R.—R). We also em-
origin, where the low multipoles df) cancel with those of ploy discretization, which replaces an integration over the
U, . In the calculation o, this hole cannot fill in with flux  continuum by a sum over bins. We easily find that the effec-
transferred at larger radii, becauges known to be a purely tive range of the continuum-continuum interactions is small
outgoing wave function. enough so that an excessive number of bins is not required.

The hole created ig, has the significance of pushing the The same remark applies to the truncation errors, with the
nonzero region of this function out to large radii, at leastadditional feature that the adiabatic theorem must be invoked
several nuclear radii. At the same time, because of the sour¢e4].
function in (210, (U-U,)¢=[U;+U,—A (U, The individual terms in the partial wave series decrease
+U,)Z, ], one particle is compelled to remain near thewith |I’, both because the Clebsch-Gordan coefficients de-
target nucleus, and therefore the particles become well separease withl’ and because of the rapid convergence of the
rated. Furthermore, our Green’s function is outgoing and thenultipole expansion for the potential.
source function  —U ;) on which it operates also tends
to be outgoing; hence, there is no stationary point involved in
its operation[19]. These effects combine to makg small ) ) _ ] ) )
within the range obV. A major step in the so_lut|on (1_12.8) is the introduction of

Equation(2.10 limits the range ofg, either for any one €ntrance channel coordinates in the potentidigr,) and
partial wave or for any limited set of partial waves, becausél2(r2), 9iving U;(|R—r/2[) andU,(|R+r/2]). (Again, the
the source then has a maximum “radius,” beyond whigh ~ hotation is S|mpllf!eq by assuming particles 1 and 2 have
becomes an outgoing “spherical wave.” Cancellation in the€qual masses. This is followed by the expansion &f,,U,
above expression is likely to be particularly close and duJn mu_lt|poles of the new coordinates. The expansion coeffi-
rable, because the terms that cancel approximately are délent s
rived from the same source potential. 1

Fmally, we note that the manlpul_atlons above_are.only Ul(r,R)Ef du P(w)U(p); (2.14
possible with distorted waves, for which the potential differ- -1
enceU — U, is nonvanishing. Only distorted waves make the ~
manipulations nontrivial. here,u=(r-R).

D. Expansion of potentials
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Equation(2.14) is convenient as it stands for low multi- Ill. ASPECTS OF THE CALCULATION
poles, for which it can be evaluated numerically. The low

multipoles ofU, depend on details of the shape of the po- Techniques for the practical calculation of compongjt

tential. However, for potentials of not too bizarre shapes, th(%.\?s n;gge:irs]patrc:)e tﬁz Ziigrr?;:rIag%emafng)trmren?ﬁ;trae?éfgan
convergence to the forms that apply for latges rapid. ping Y PON&H

To treat the higher multipoles, it is convenient to takegumr'éstr}gysgélrl?;m tfrzgr?rszr{?ag:jdeloggtrg:m numerical proce-
p=[R?+r?/4— urR]*? as the independent variable, with 9 q :

x=|r/2—R|, giving
A. Basic calculations in model space

2R+x The outgoing-wave Green’s function for the LHS(@t7)
Ul(r,R)=(R2+XR)_1f p dp U(p)P, is applied to the source term on the RHS. We get
X
x2— p2 [E— (k) ~Krlgli (P(K),R)
X 1+—2R2+2Rx)' (2.15

%f CrdR{dik,NDY(F), YL(R) o

We note that the principal role afis to cut off the lower end o 1l

of the integral. The integral vanishes rapidly as this lower XAULHU) A - 3.1
limit becomes comparable to or exceeds the rangd @.
Keeping this in mind, we examine the integral for the specia
casex=0, along the “center line” of a contour graph of
Ui(r,R):

Theg3, (P(k),R) are theexpansion coefficientsf , in the

|basis chosen in Sec. Il. Because the basis states are energy
eigenstates governed By(r), the g3, can also be inter-
preted as model spachannel wave functiorfer elastic and
inelastic scattering from the entrance channel, and they can
be required to satisfy outgoing wave boundary conditions in
the coordinateR. The wave number$(k) are computed
from k by the requirement that the relative plus center-of-
mass motions conserve energy.

L_J,(r,R)ER—ZfOZRp dp U(p)P(1—p?/2R?). (2.1

Aside from the overall decrease wiki 2, the magnitude of Accurate calculation wit3.1) demands a coupled chan-

the integral(2.16) is determined by the interplay between the pe|s expansion ofs, , in which this undetermined function is

short-range functiot (p) and the oscillatory functioi®, . expressed in terms of a basis of states that have definite
There are three cases to consider. values ofJ,l’,L’, definite states of relative motion of par-

(i) ForR less than or comparable to the rangelbfsev-  ticles 1,2, and unspecified relative motion of partiélend
eral cycles ofP, lie within U, and even for moderate values {he center of mass of 1,2. In general, particles 1,2 will have
of | the integral averages to a very small value. continuous spectra, and so this step of going to a coupled
(i) When R becomes larger, the range bf limits the  channels expansion will also involve discretizing those con-
range of integration and the range of the argumenPpf 4inua.

becomes increasingly restricted. In turn, this restricts the 0s- | the lowest approximation, we tak®.1) in monopole
cillations of P, and the integral reaches a broad maximumorder, with\’=0. While this does not quite redu¢8.1) to
nearR=|X(range ofU). At this maximum the full range of 5 expression involving only local potentials, it does convert
L} just extends over the full first peak of the Legendre func—(3_1) to a form that has a convenient expansion in two-body
tion. _ eigenfunctions. Such eigenfunction expansions are known to

(iii) Beyond the maximumR becomes so large that fur- give excellent descriptions of elastic scattering.
ther variations of the argu.m_ent &% and of the integral are The basis states faqB.1) use energy eigenstates for the
suppjgssed and the functiah(r,R) decreases toward zero gegree of freedom and configuration space forRhéegree
asR "~ - L o ) of freedom. Transformation to a configuration space basis for

We can now restore th&R—r/2| lower limit of the inte-  poth degrees of freedom would require an integration over
gral in (2.16). Overall, we see that dsincreases, the peak of the channel momenturk. This integral is traditionally per-
the Legendre trans_form moves outwards along the center lingmed approximately by the method of stationary phase.
of a contour graph in the,R plane and the peak stretches out (Thjs stationary phase integration produces the well-known
along this line; the transverse width of the peak remains ungygig) asymptotic formz~%4e#” of the wave function for
changed, independent bfor R. Peaks for successive multi- three-body breakup.Unfortunately, it has been shown by
poles overlap radially to a con5|derapleﬁ extent.  accurate numerical studies of integrations deehat it may

Itis interesting to a_pply the analyss.e?; that is given in - he necessary to go g ,r,~thousands of fm to come near
Appendix B. There it is shown that applying the operatgr  the asymptotic result. This is a major difficulty for numerical

to a function ofp is equivalent to multiplying that function  ¢giculations performed entirely in configuration spat6—
by an angle-averaging operator. Hence, wherevgrap-  1g)

pears, we can just as well insert the averaging operation.
Furthermore, the averaging operation is localized in the “for-
ward” direction; thus, iff” is localized in a given direction,
thenr will tend to be localized in that same direction. This  Certain classes of basis states might be thought to give
localization is more precise the largeris. difficulties in the calculation of the associated channel wave

B. Special values of continuum momenta
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functions. First, we consider basis states whose engligy %

is greater than the total enerdy. The channel energy be- <¢|(k)|¢|(k')>=f r2dr ¢y(k,r)gy(k',r)
comes E(k)<0, the channel momentum becom&gk) 0

=i|P(k)|, imaginary, and the channel wave functions de- =(mwl2)8(k—Kk').

crease exponentially at largR. The principal comment

about such “closed channels” is that their inclusion in the These equations define the radial dependence and normaliza-
analysis isnecessaryfor the set of basis states to be com- tion of the overlap integrals. It is significant thiatdoes not
plete. Beyond this, experience with model-space calculationappear in them as a coefficient. We see that for any finite
for deuteron-induced reactions shows that for total energiegadiusr the basis functions all vanish in the linkt—0, and
below about 100 MeV the excitation of closed channels sigtherefore the channel function for the=0 channel vanishes.
nificantly affects the numerical resuft20,21].

The threshold casé’(k)=0 is more interesting. This
P(k) vanishes when the relative energy equals the total en- ] o o
ergy. It might be thought thatj (P,R) would vanish when In a previous publicatiofi22], we argued that the validity
P=0. HoweverP (k) labels a Green’s function, rather than a Of the CDCC approximate solution of the three-body Sehro
basis function, and the channel wave function need not var@dinger equation could be regarded as a result of the large

C. Complex potentials

ish. Instead, Eq(3.1) becomes imaginary parts in nuclear single-particle potenti@for an
opposing analysis, s¢#&2].) We remarked that derivations of
—KRy,JL(O,R):?(R), (3.2 nuclear three-body models from more fundamental many-
body theories show that optical potentials are strongly state
with dependent and their imaginary parts should vanish for bound

states. However, this fact is largely ignored in CDCC model-
space calculations. We further showed that retaining the

~7(R)Ef d®r dR{¢(k,")LY,(7),YL(R) 1M} imaginary potentials in rearrangement bound states damps
the wave function of the outgoing particle. Thus flspuri-
X 7,(U 1+ Up) 2 o F ﬁ), 3.3 ous bound state absorptive potentials truncate the rearrange-

ment channels, somewhat like the kinematic truncations em-
phasized in this paper.

or Effects of the imaginary potentials are more obvious in
the distorted Faddeev formulation. Consider the simplified

d?> L(L+1) ; . equationg2.9), (2.9), specialized to a channel determined by
d~ Rz |RALOR)=—CMIAIHRZ(R). (34  41) a particle-1 bound state. Let the complex single-

particle potential b&J (x) =V(x) +iW(x). Let the two active
particles be in a stretched configuration, in which they are

The solution is : :
ution | too far apart to interact, so thgf can be used in the form

R/ (0,R)=—(2M/%?)(2L+1)"*
A (0,R)= — (2M/#?)(2L+1) §x=f¢(l)x(2),

R
xf (REFYRY)-R'.7Z(R)dR’, (3.5 _ _ ,
0 where the integral is over energy-conserving products. Equa-
tion (2.10 becomes
a straightforward continuation of the results Br#0. For ;
large values oL, the Green’s function becomes a very nar- [E~Ka—e1= H(B[W[$)]x(2)=($(1)|U1~“1[§1(1,2)).
row function of R. On the other hand, fot =0,1, the con- (3.9

j;(?(rg(,a)nce of(3.5 must be affected by the properties of The expectation ofW(x) contributes a large positive imagi-

nary part to the net energy of the outgoing particle, and this
dampsx(2). For nucleons of about 100 MeV, we estimate
ﬁW)wlO MeV, which implies a damping length fgi(2) of

The‘yﬂ_(O,R) functions produced by3.5) are standing
waves, for which the outgoing wave boundary condition,
emphasized in earlier sections of this paper, is best reinte
preted as ano-incoming-waveondition. The kinetic energy about 6 fm.

becomes zero in the external region, an effective discontinut- Evuil_ently, ba thmo?el—rs]pa;ce calculatltlnn is subject to two
ity, and there is 100% reflection of the wave function. The runcations, both of which SUppress long-range rearrange-

standing wave is confined neR=0. The solutions 0f3.5 ment channels: (1) The damping of outgoing waves de-

are also rather confined if the channel energy is only slightlf‘cr'b(ad abovg an() truncation of relative angular momen-
positive. tum. The simultaneous presence of these two effects

Finally, we consider relative motion states wkk-0. In probably reduces the sensitivity of a calculation to either one

. ' - alone. This may be a major reason for the well-known
this paper they are defined to have the asymptotic form [20,23 insensitivity of CDCC calculations to more thar-4

o or 6 multipoles.
¢ (k,r)—r~ = sin(kr+ & —17/2). Breakup in the nuclear interior is particularly sensitive to
the imaginary potentials. This situation was revealed acci-
Then, dentally in comparisons of recent model-space calculations
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[23] with an early calculatiofi5] that used schematic optical Professor C. M. Vincent, who provided valuable criticisms of
potentials that had very small imaginary parts. The matrixhe manuscript.
elements olJ,,U, for interior breakup actually are found to
be Iarge, but absorption by the imaginary partqu_f,Uz APPENDIX A: STATIONARY PHASE
prevents the breakup particles from getting out.
Although the spurious imaginary potentials discussed This topic concerns the approximate evaluation of inte-
above can be excluded artificially when constructing exitgrals of the form
channel wave functions for particular reactions, they still re-

main in the model-space calculation #f. Perhaps the most | = J"“dk f(k)elP® (A1)
realistic observation is that such physical effects cannot be 0 ’
entirely separated from the techniques for solving the three-
body Schrdinger equation. with
IV. SUMMARY p(k)=x:k+Xo(u?—k?)*?, (A2)

A method for solving the Faddeev equations for a threejp the limit x, ,x,—asymptotically large. Such integrals ap-
body system is described, based on ordinary dlstorted-wavlgear' for example, in the transformatif@6] of the asymp-
Faddeev components. The distorted-wave components afgtic y, from a channel representation to a configuration rep-
introduced in such a way as to be completely connected. Thigasentation, using the coordinates of both active particles. In

requires the use of three-body distorting potentials, which arghe |imit the integral is dominated by the momentum at the
derived by a process of multipole expansion. A truncatecbointp’(ko)=0.

version of our chosen procedure is equivalent to CDCC. The Taylor expansion af(k) aboutky is
Perhaps the most important step of our analysis is the
demonstration that when the procedure is iterated the three- p(K)=po—(q¥2d?)+--- (A3)

body Green’s function is applied on an asymptotically out-
going three-body source function. Since the Green’s functiomith g=k—k, and
is outgoing, the natural consequence is that the integral av-
erages to a small value. Ko/x1= (2= k3) 2 xp= ! 72, (A4)
In a review several years ago, Kuriod25] proposed
that the coupled reaction channéBRC) method should be %E(Xiﬂg)l/z, Po= w2,  d=(X2.2)(ul 72)22.
applied for reaction calculations. This CRC approach uses (A5)
the channels that actually occur in a reaction to expand the
wave function for the system. At best, this set of channeln terms of the quantities just defined, the original integral
functions is overcomplete and considerable effort is require¢hecomes
to extract a meaningful set of functions from the chosen
starting point. _ip u=Kg ~iq22d?
Kaneko, Kanada, and Tafg5] have circulated a resonat- | =ePof(ko+0) fﬁk dg e , (A6)
ing group study ofp+d scattering. 0
Recent. wor_k by_ Kersting and Sandras] resem_bles the where the higher terms of the Taylor seriesA8) have been
method given in this paper. They apply a “resonating group” g mitted.
expansion of the wave function for the three-nucleon system, The usual discussion df\6) points out that in the limit

and tf(]jeg find excell;:nt convkergence for onehof t(;1e Caseg x,—x» the integrand oscillates rapidly and it averages to
treated by Payne and co-workgf]. However, they do not ¢, everywhere except in an interval of widtitentered at
point out the relation to the Faddeev theory, as we do hereq:O In this limit the integration is extended tac and

and they do not employ distorted waves. f(ko+q)~f(ko) is removed from the integrand, so that
Payne and co-workers have described their calculations of( ot @)= (ko) g ’

the®H, *He systems as “benchmarks of excellence” for Fad- _ o s .
deev calculation§15]. They take the first Faddeev equation | =e'90f(ko)f dg e '972d°= (j2m)Y2d#Rf (ko). (A7)
and express it in the form of a differential operator times a e

Faddeev component equals a potential times a sum of other . .
Faddeev components. They use symmetry arguments to g&f'€ stationary phase evaluation(éfl) produces the asymp-

the other components in terms of the first one. In our procelotic (semiclassicallimit of a wave mechanical expression.
dure the differential operator on the LHS is first changed by/Ve See especially itA4) that at the point of stationary phase
adding to it some multipole pieces of the interactions on théhe_partlcle_z; have traveled distances that are proportional to
RHS. By removing these pieces from the RHS, the roles ofh€ir velocities. ,

the other two components are considerably weakened and !t 1S mentioned in Sec. IIIA that several authors

they can be omitted from thenodified Faddeev equations. [14-17 find that convergence to the stationary phase limit
(A7) asx,,X, become large is very slow. This should not be

a surprise. Let us examir@6), the result of a Taylor expan-
sion in the original integral, without subsequent approxima-
We are happy to acknowledge Professor Joe Redish, whitons. Consider the special cagg=x,=Xx. The Taylor ex-

first told us about the distorted-wave idea. We are grateful tpansion gives
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) w—ko _ APPENDIX C: UNEQUAL MASSES, RECOIL
[ :eme dq f(ko+q)e H4axe, (A8) _ _

—ko Although the second and third Faddeev equations can al-
ways be added, giving a system of two equations, as in the
which becomes text; these are not of much use unless the variables on the

LHS of (2.9 can be separated. The kinetic energy opergtor
_ 0.273 I separates in any system of Jacobi variables, consisting of one
I= #9'1'414Nf f(0.707+v)e”"™""dv, (A9)  arbitrary vector coordinate and the coordinate conjugate to it.
—0.ror However,r;, andr,, in the two potential functions 2.9
are not usually conjugate to each other, and so the flexibility
of K is of no use.
The distorted Faddeev equations

where now all momenta are measured in unitsugfwith
v=q/u and withN= ux the number of wavelengths in the
distancex.

Itis obvious in the form{A9) thatN must be very large if [E-K—=V—0O1— O, =V (1 + bs), (2.2)
the region of the stationary phase is to be much smaller than
the entire available range of integration or smaller than rea- [E-K—=Uy(r)]¢n—Ugn=[U—21]¢, (2.3)
sonable ranges of variation of the functién In cases of
practé)(‘:lal interest, it might easily be necessary to go to [E=K—=Uy(ry) oy —Usihn =[U— O], (2.4)
N~10".

The cause of this slow convergengs—19 is the slow offer another approach to the problem of coordinates. If the
variation of the original phase factp(k) in (A2). In dimen-  cutoff A is large enough, the RHS's @.3) and(2.4) become

sionless form, again taking the special cage:x,=x, negligible: hence, the RHS @R.2) also vanishes, leaving a
soluble equation to solve.

= +(1-Kk% u?)].
PU) =N p+ (1=k )] (A10) APPENDIX D:  S-MATRIX ELEMENTS

The function in brackets has the value 1 at both end points of In this appendix we reduce ti&matrix elements to more
integration; at its maximum, it only rises to 1.414. It takes acalculable forms, under the assumptiééi=0. Standard ex-

very large coefficienN to sharpen up this maximum. pressions for th&-matrix elements are
APPENDIX B: SUMMATION OF Ter=(o(r)exp(|po- R)U[W), (BD
By definition, 7, selects all angular momentum states that Tre=(#1(r1) ¢, (r2)|V[¥), (D2)

havel <\,
Tor={ba, (1) i (12) [V P), (D3)
A
A= 2 Y, m(OYFE (T, (B1)  respectively, wherepy(r) and ¢,(r,) are bound state wave
i,m=0 ' '

functions for the 1-2 and & subsystems ancbkl,k2 is the

) ) o ] _ scattering wave function for the A-subsystem with the mo-
An integration overr’ is understood when this expression mentumk, , k. In the limit V€=0, (D2) and(D3) obviously
operates on some given function bf. The spherical har- equce to

monic addition theorem gives

Tre~(#1(r1) i, (12)|V]dheoco) s (D2)
A
(A:(477)‘1i20 I+ )Py (F-F1), (B2) T~ (bi, (r1) i, (12) V] ¥eped - (D3)
o Reduction of the elastic amplitude is a little more involved.
and this is summed to produce We first apply the equation=y; +&, , to get
., d Uyg=U(h+ &) ={Oh+(E-K-U)&F+UE,
A=(4m) " o [Paiat Py (B3)

a =g +(E-K)é, (D4)

This closed form for the projection operator is obtained fromusing (2.9). We now use the assumptiofi&,~0 to write
the derivative formula for Legendre polynomials, as in Blair (D4) as

[27]. Especially for\ large,, is a somewhat broadenet] \

function of the angle betweenandf’, of half width ~x~%. Ug=Cip+(E-K=V)§,. (DS5)
We obtainfd() &/, =1, as required by this interpretation. In a
rough sense, the operatet, averages the function of ron
which it operatesover a range of anglesf'~\"1. Averag-
ing to this extent has little effect oM,,(f) functions with

| <\, but it tends to destroY,,(f) functions with|>\. We Te={o(1)eXpiPo- R)| 7] ¥renca), (D1')
also note that the mixture of parities i, eliminates contri-

butions from the backward hemisphere. which is no surprise.

If we now substitutgD5) in (D1), the second term vanishes
because has no asymptotic, elastic amplitude, and the elas-
tic amplitude as a whole has reduced to
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