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We study the application of boson mapping methods to a two-color delta model of interacting quarks, with
the purpose of extracting information of relevance to quark-model descriptions of nuclei. In an earlier treat-
ment, the boson Hamiltonian resulting from the mapping was approximately diagonalized at the level of
Hartree-Bose approximation. The results differed from those of an exact solution of the model at first order in
the density. Furthermore, the results were worse than those arising from a BCS treatment of pair correlation
at the quark level. Here we extend the analysis to a Brueckner treatment, so as to properly take into account th
short-range repulsion between bosons originating from the quark Pauli principle. The resulting energy pe
quark reproduces the exact results through first order in the density and is significantly better than the BCS
results. At higher densities, deviations appear, reflecting the need for a full cluster expansion in the treatmen
of short-range correlation effects. The relevance of these results to more realistic three-color quark models o
nuclei is discussed.@S0556-2813~96!03606-0#

PACS number~s!: 21.60.Gx, 12.39.Jh, 21.30.Fe, 24.85.1p
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I. INTRODUCTION

Traditionally, the nucleus is treated as a system of inte
acting nucleons. This approach is founded on the assump
that the QCD interactions that build the nucleon decoup
from the residual interactions between nucleons respons
for nuclear structure. Recent experiments suggest that
some level this assumption breaks down. The EMC data,
example, suggest that the internal structure of the nucle
changes in the presence of a nuclear medium. As such, th
is currently great interest in trying to develop a theory o
nuclear structure directly from QCD, thereby taking into a
count those effects that arise from medium corrections to
structure of the nucleon.

Modifications to the structure of the nucleon are a cons
quence of quark exchange. Some of these effects are n
rally incorporated in the traditional approach, whereby th
nucleon-nucleon interaction is first derived from QCD~or
some approximation to it! and then used in subsequen
nuclear structure analysis. Such an approach omits quark
change effects involving several nucleons, however. It
generally thought that such effects should not be importan
normal~relatively dilute! nuclear densities, except perhaps i
dynamical processes involving large momentum transfe
However, in the absence of a fully consistent analysis th
incorporates on the same footing the effects of QCD
building the nucleon and also in nuclear structure, this r
mains unproven. From our perspective, it is important, the
fore, to build a theory that consistently incorporates the
various aspects of QCD. A theory of this type, able to repr
duce traditional nuclear properties, could then help isola
where to look for explicit quark effects in nuclear structure

While such a consistent theory should ideally start fro
QCD, this is not currently practical. What is required instea
is an effective theory that builds in~at least approximately!
the important properties of QCD, while still remaining trac
table. Constituent quark models seem to satisfy these crite
53813/96/53~6!/3088~9!/$10.00
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Though not derived directly from QCD, these models inco
porate at some level several of its key ingredients, includin
for example, approximate confinement@1# and approximate
chiral invariance@2#. Furthermore, they have been shown t
reproduce with impressive success the properties of nucl
systems with very few particles. What is much less clea
however, is how to apply these models to many-body sy
tems. Since a system of 3A quarks clusters intoA triplets
~nucleons! at normal nuclear densities, a necessary ingredie
is a method of handling strong three-quark correlations in
many-quark environment, a scenario that cannot be hand
with traditional many-body approaches.

Recently, a method was proposed@3# for treating
multinucleon systems in a constituent quark framework u
ing mapping techniques. The earliest tests of these metho
were to models that did not admit spatial three-quark corr
lations@3,4#, a key ingredient of any realistic quark descrip
tion of nuclei. For that reason, the method was subsequen
applied to a series of models due to Koltun and collaborato
@8,9#, in which quarks~with color! move nonrelativistically
in one dimension~1D! and interact through a residual attrac
tive delta-function potential. Despite severe limitations of th
model—one-dimensional motion, schematic interaction
nonrelativistic dynamics—-there are several features of th
model that nevertheless make it attractive as a testing grou
of quark mapping methods. At low densities, the model e
hibits spatial correlations between clusters of quarks. Equa
important, the model can be exactly solved as a function
the density of the system using the Bethe ansatz.

Models of this type have been developed both for two an
three colors. While the three-color version certainly has
more obvious~albeit still schematic! connection to quark dy-
namics in nuclei, the two-color model is also of interest t
study in view of its greater simplicity.

An analysis of the two-color model was reported in Re
@5#. Following a boson mapping@7# of the model, the result-
ing Hamiltonian was treated in the Hartree-Bose approxim
3088 © 1996 The American Physical Society
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tion. The resulting energy per quark was found to differ fro
the exact results at first~linear! order in the density. Further-
more, the results were somewhat worse than achieved b
simple BCS treatment of the same model, even though t
analysis likewise was unable to reproduce the linear term
density correctly. It should be noted here that for this mod
effects of the interaction between clusters can first contrib
at linear order in the density.

A corresponding analysis of the more physically releva
three-color model was reported in@6#. There, a baryon map-
ping of the model was carried out and the resulting Ham
tonian was then treated in the Hartree-Fock approximati
Very similar conclusions to those of the two-color analys
were obtained. The mapping could be implemented, bu
subsequent mean-field treatment could not adequatly rep
duce the exact dynamics. There, the resulting energy
quark differed from the exact results at third order in th
density. But this too is the lowest order in which the inte
actions between clusters contribute; the fermionic nature
this model guarantees that the cluster-cluster interaction d
not contribute to the energy in either first or second order

Clearly, a many-body method of cluster phenomena th
is unable to treat correctly the interactions between cluste
even to lowest order, cannot be used with any degree
confidence. Mapping techniques,coupled with a pure mean-
field analysis, are unable to accomplish this for either of th
two cases studied.

Mapping methods, however, are not limited to a pu
mean-field analysis. As discussed in@5,6#, the mapping also
provides the interaction between clusters. This has two i
portant consequences. On the one hand, it provides the in
mation needed to isolate the physics that was ‘‘missin
from the pure mean-field treatment. Equally important, on
this physics has been appropriately identified, it provides
framework to incorporate these additional correlations.

In our analysis of both the two- and three-color mode
the cluster-cluster interaction that emerged from the mapp
was found to be strongly repulsive at short distances. A
consequence, we suggested, both in@5,6#, that Brueckner
theory @10# might be the key missing ingredient required t
improve the usefulness of mapping methods in the prese
of spatial clustering. The situation is analogous to that
traditional nuclear physics. As is well known, thebare
nucleon-nucleon interaction contains a strong short-range
pulsive component, originating in quark exchange~though
often simulated byv exchange!, and this precludes a direc
mean-field treatment.

The purpose of the present work is to assess the ab
conjecture that including Brueckner correlations significan
improves the ability of mapping techniques to describe t
cluster dynamics of quark models. Since the three-co
model is so much more difficult to treat than the two-colo
model, though certainly more relevant to quarks, we ha
chosen to address this issue in the context of the simp
two-color model. Thus, we report here a Brueckner treatm
of the boson Hamiltonian that results from a boson mappi
of the two-color model.

The key result of our analysis is that by including Bruec
ner correlations we are able to achieve perfect agreem
with the exact linear term in the energy per quark. This su
gests that the same conclusions would most likely be o
m
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tained for the more realistic three-color model. Namely,
we were to include short-range correlation effects in
Brueckner-Hartree-Fock analysis, we should be able rep
duce the exact results of that model through third order in t
density, i.e., through the lowest order in which the intera
tions between the relevant three-particle clusters~nucleons!
contribute.

The structure of the paper is as follows: In Sec. II, w
briefly summarize some essential features of the two-co
delta model, including its treatment using the BCS metho
In Sec. III, we review our earlier application of boson
mapping techniques to the model. In Sec. IV, we describ
our Brueckner analysis and report the results. Sec. V co
tains some concluding remarks, including comments on t
relevance of the work to the three-color model and to mo
realistic quark models of nuclei.

II. THE TWO-COLOR DELTA MODEL

A. The model

In this model, a system ofN nonrelativistic quarks with
color c ~which is allowed to take the two possible value
61/2) move in a one-dimensional~1D! box of sizeL subject
to an attractive delta-function interaction. Lettingqkc

† (qkc)
denote the creation~annihilation! operator for a quark with
momentumk and colorc, we can express the model Hamil-
tonian as (\51)

H5(
kc

«kqkc
† qkc2

G

2 (
i jkl ,c

qic
† qj2c

† ql2cqkcd i1 j ,k1 l , ~1!

whereG is the strength of the interaction and«k5k2/2m.
The infinite-matter limit,N→` , L→` (r5N/L finite!, is
then obtained by replacing

(
k
→

L

2pE dk, d i j→
2p

L
d~ i2 j !, G→g/L. ~2!

B. Exact solution at low densities

In the infinite-matter limit, the ground state energy pe
particle can be obtained exactly by solving the following se
of integral equations@8#:

r 52E
2K

K

F~k,K !dk, ~3!

E

N
52

mg2

8
1
2

rE2K

K

«kF~k,K !dk, ~4!

where the density function for doublet clustersF(k,K) sat-
isfies the relation

pF~k,K !512E
2K

K F mgF~v,K !

~mg!21~k2v!2Gdv. ~5!

These equations scale with the dimensionless parame
r̃ 5r/(mg). From this, it is straightforward to obtain the
energy per particle numerically at any density. Here, w
present the analytic results of an expansion in powers ofr̃
through third order:
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E

N

1

mg2
52

1

8
1

p2r̃2

96
1

p2r̃3

96
1O~ r̃ 4!. ~6!

Note that no linear term inr̃ appears in Eq.~6!.

C. BCS treatment

A BCS treatment of the model leads to the familiar num
ber and gap equations@8#

r5
1

L(k F12
«̄k
2

A~ «̄k
21D2!

G , 2

G
5(

k

1

A~ «̄k
21D2!

,

~7!

where l is the chemical potential,«̄k5«k2l2GN/2,
D5G(kukvk is the pairing gap, andr5(2/L)(kvk

2 is the
density of the system. Equations~7! are solved for the
chemical potential and the pairing gap. The resulting BC
energy is then given by

EBCS52(
k

«kvk
22G(

kk8
~ukvkuk8vk81vk

2vk8
2

!, ~8!

where

vk
25

1

2 F12
«̄k
2

A~ «̄k
21D2!

G , uk
25

1

2 F11
«̄k
2

A~ «̄k
21D2!

G .
~9!

Solutions to the BCS equations in powers ofr̃ are given
in @4#. The energy per quark through second order inr̃ that
results is

EBCS

N

1

mg2
52

1

8
1

r̃

8
1

r̃ 2

16
1O~ r̃ 3!. ~10!

The BCS approximation reproduces correctly the zero
order term but yields a first-order contribution not present
the exact results. Nevertheless, it is important to note that
date, this is the best approximate treatment of the model t
has been reported.

III. DYSON BOSON MAPPING APPLIED TO THE MODEL

A. Boson mapping

The Dyson mapping@7# is based on the requirement tha
the commutation algebra of bilinear quark operators be p
served by their mapping onto boson operators. A key featu
of this mapping is that it is finite but non-Hermitean.

Application of the Dyson method to the model o
interest involves mapping a colorless quark pa
(c(2)1/22cqck1

† q2ck2
† onto a colorless bosonGkK

† . Here

k5(1/2)(k12k2) is the relative momentum of the quark pai
andK5k11k2 is its total momentum. The colorless creatio
operatorGkK

† and the corresponding colorless annihilatio
operatorGkK satisfy the commutation relation

@GkK ,Gk8K8
†

#5dKK8~dkk81dk2k8!. ~11!

For our purposes, the key result is that the quark Ham
tonian ~1! is mapped onto a boson Hamiltonian
-

S
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HB5H01VB , ~12!

where

H05 (
kk8K

F S k22m1
K2

8mD dkk82
g

2LGGkK
† Gk8K , ~13!

and

VB5
g

4L(
kk8q
KK8

Gq
2 2k82

K82K
2 ,q1K

†
G
k82

q
2 ,K82q

†
Gk8K8GkK .

~14!

To apply known many-body techniques to the Hami
tonian ~12!-~14!, we introduce a~nonunitary! collective
transformation@11#

LpK
† 5(

k
Xkp
K GkK

† , lpK5(
k
Ykp
K GkK , ~15!

where

@lpK ,Lp8K8
†

#5dpp8dKK8, ~16!

and the coefficients of the collective transformation satisfy

(
k
Xkp
K Ykp8

K8 5
1

2
dpp8dKK8,

(
p
Xk8p
K Ykp

K85
1

4
~dkk81dk2k8!dKK8. ~17!

The collective transformation~15! can be readily inverted,
giving

GkK
† 52(

p
Ykp
K LpK

† , GkK52(
p
Xkp
K lpK . ~18!

To obtain an appropriatecollectiveHamiltonian to use in
describing the ground state of the system, we truncate to
lowest collective (p51) boson for eachK value. To sim-
plify the notation, we suppress the labelp in all subsequent
expressions; viz. (Lp51K

† ,lp51K ,Xkp51
K ,Ykp51

K ) →
(LK

† ,lK ,Xk
K ,Yk

K).
The resulting collective Hamiltonian can then be writte

as

HB5(
K

eKLK
†lK1 (

q,D,K
f ~q,D,K !Lq1K

† LK1D2q
† lK1DlK ,

~19!

where

eK5(
k8

S 2k82m
1

K2

2mDXk8
K Yk8

K
2
2g

L (
k8k9

Xk8
K Yk9

K , ~20!

and

f ~q,D,K !5
4g

L (
k8k9

Yk82~D2q!/2
K1q Yk82~q/2!

K1D2q Xk8
K1DXk9

K .

~21!
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B. Hartree-Bose approximation

We now summarize the key features of our earlier ap
cation of the Hartree-Bose~HB! approximation to the abov
boson system. The Hartree Bose approximation is a va
tional approximation based on a boson condensate trial

uF0&5
1

ANB!
L0
†NBu0&, ^C0u5

1

ANB!
^0ul0

NB, ~22!

whereNB5N/2. The variational condition is to minimize

EHB~l! 5^C0uHB2lN̂BuF0&, ~23!

subject to the normalization constraint(kXk
0Yk

051/2.
The boson condensate~22! only involves collective

K50 bosons, since they are the lowest in energy. The
condition, thus, provides a variational prescription for gen
ating the structure coefficients of theK50 bosons only, viz.
Xk
0 andYk

0 . For simplicity, we denote these collective stru
ture coefficients byxk and yk , respectively. The relevan
energy functional to be minimized, subject to the normali
tion constraint, is

EHB~l!5N(
k

S k2m2l D xkyk2 gN

L (
kk8

xkyk

1
gN2

L (
kk8

yk8
2 xk8xk . ~24!

Note that in Eq.~24!, we have thrown away all terms dow
by 1/N relative to the terms retained, as is appropriate in
infinite-matter limit.

The solution of the HB variational equations was d
cussed in@5#. An important feature is that the structure fun
tions can be directly related to theuk andvk coefficients of
the BCS approximation, through the introduction of aphysi-
cal condition. In particular,

xk5A1

N
vkuk , yk5A1

N

vk
uk
. ~25!

As a consequence, the HB structure functions can be
tained from the same gap and number equations that ari
the BCS approximation~7!. For our purposes, the principa
result that emerges is that the energy per quark of the
approximation through first order inr̃ is

EHB

N

1

mg2
52

1

8
1
3r̃

8
1O~ r̃ 2!. ~26!
pli-

ria-
tate

HB
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HB

Thus, like BCS approximation, the HB analysis also pr
duces a linear term in the energy per particle. However, t
linear term that arises is three times larger than in BCS,
that the agreement with the exact results is even worse.

At first glance, the results of our HB analysis might see
discouraging, since they suggest that mapping methods c
not incorporate correlations as well as simpler quasiparti
methods carried out on the original quark model. Such
conclusion is premature, however. As we now discuss, m
ping methods provide a natural framework for systematica
going beyond the mean field and thus improving on the H
results.

The key point is that the mapping provides not only th
Hamiltonian involvingK50 bosons~those that enter in HB
approximation! but also@see Eq.~21!# those that connect the
HB condensate to ‘‘excited’’KÞ0 bosons.

The collective boson Hamiltonian given in Eq.~21! de-
pends on the structure amplitudes for the dominant collect
bosons with allK values. It is only the structure of the col
lective K50 bosons, however, that is provided by the H
analysis. To obtain the collective Hamiltonian required fo
analysis beyond the HB approximation, we also need t
structure of the collectiveKÞ0 bosons. In the numerical
calculations to follow, we consider two approaches. In th
first, we assume that the internal structure of the collecti
KÞ0 bosons is the same as for theK50 bosons that derive
from the HB approximation. Such an assumption is precise
true at zero-density, from translational invariance argumen
but not at finite density. Thus, we also discuss in the ne
subsection an alternative means of generating the structur
the collectiveKÞ0 bosons, using the Tamm-Dancoff~TD!
approximation.

C. Tamm-Dancoff approximation

At very low densities, a meaningful prescription for th
internal structure of theKÞ0 collective bosons is provided
by the TD approximation. Here, one assumes for eachK
Þ0 value a variational trial state of the form

ufK&5
1

ANB

LK
†l0uF0&, ^cKu5

1

ANB

^C0uL0
†lK , ~27!

where uF0& and ^C0u are the Hartree-Bose ground stat
wave functions~22!.

The expectation value of the Hamiltonian~19! taken be-
tween the states~27! defines the variational energy func
tional
ETD
K ~mK!5^cKuHB2mKN̂BufK&2EHB~mK!52(

k
F S k2m1

K2

4mD2mKGXk
KYk

K2
2g

L (
kk8

Xk
KYk8

K
1
2gN

L (
kk8

xk8yk8Xk
K~Yk82K/2

K

1Yk81K/2
K )1

2gN

L (
kk8

Xk8
K Yk8

K xk~yk82K/21yk81K/2!. ~28!
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The TD approximation involves minimizing this function
with respect to the variational structure amplitudesXk

K or
Yk
K , subject to the normalization constraint(kXk

KYk
K51/2

@see Eq.~17!#. As in the Hartree-Bose treatment of@4#, we
impose a physical condition that relates theXk

K andYk
K am-

plitudes. Here, the appropriate condition is

Xk
K5Yk

K@12N~xK2k/2yK2k/21xK1k/2yK1k/2!#. ~29!

Performing the variation of the functional~28! and using
the normalization constraint and physical condition leads
the following solutions for the collective structure amp
tudes of interest:

Yk
K5

DK

k2/m1K2/4m2mK1AND@yk2K/21yk1K/2#
,

Xk
K5

DK@12N~xk2K/2yk2K/21xk1K/2yk1K/2!#

k2/m1K2/4m2mK1AND@yk2K/21yk1K/2#
.

~30!

Here,xk andyk are theK50 structure amplitudes derived i
the HB approximation in terms of the BCS gapD and chemi-
cal potentiall. Also, mK and DK satisfy Tamm-Dancoff
‘‘number’’ and ‘‘gap’’ equations

15
g

L(k
12N~xk2K/2yk2K/21xk1K/2yk1K/2!

k2/m1K2/4m2mK1AND@yk2K/21yk1K/2#
~31!

and
l

to
li-

n

1

2DK
2 5(

k

12N~xk2K/2yk2K/21xk1K/2yk1K/2!

~k2/m1K2/4m2mK1AND@yk2K/21yk1K/2# !2
.

~32!

The system of equations~30!–~32! can be numerically
solved, thereby giving a variational prescription for theYk

K

andXk
K amplitudes appropriate in the limit of low densities

D. The collective boson Hamiltonian

Once the structure coefficients have been obtained, w
can determine the collective boson Hamiltonian from Eq
~21! and use it in many-body treatments that include corre
lations beyond those of the Hartree-Bose approximation.

It is useful, however, to first make some qualitative re
marks about this collective Hamiltonian. As we have see
the energy per quark derived in the HB approximation differ
from the exact results already at first order in the density. T
obtain the energy to this order, we only require informatio
on the collective boson wave functions at zeroth order
r̃ , i.e., atr̃50. At zero-density, the structure coefficients o
all collective bosons are the same and given by@5#

Yk
K5Xk

K5Abk
L
, ~33!

where

bk5
m3g3

4~k21m2g2/4!2
. ~34!

The interaction between collective bosons to this order
likewise independent ofK and is given by@5#
f ~q,D,K !5
8m4g5

L

q21D22qD112m2g2

@~q2D!214m2g2#~q214m2g2!~D214m2g2!
. ~35!
a
l

g

The above interaction is clearly repulsive, reflecting th
fact that it originates solely from quark exchange. Furthe
more, the repulsion is maximal for bosons with the sam
momentum, i.e.,D5q50. As such, a condensate ofK50
bosons, though certainly lowest in kinetic energy, will not b
the optimum means of exploiting the interaction. A natur
way to optimally treat the short-range Pauli-based corre
tions that arise from this residual interaction is through th
use of Brueckner theory, to which we turn in the followin
section.

IV. BRUECKNER THEORY

A. G-matrix treatment

In order to take into account Brueckner correlations for
boson system governed by a HamiltonianHB5H01VB , we
introduce theG-matrix operator equation

G5VB1VB

Q

E02H0
G, ~36!
e
r-
e

e
l
a-
e

a

whereE0 is the lowest (K50) eigenvalue of the unperturbed
HamiltonianH0 ,

H0uF0&5E0uF0&, ^C0uH05^C0uE0 , ~37!

and Q is the projection operator out of the uncorrelated
ground stateuF0& or ^C0u. TheG-matrix operator connects
the uncorrelated statesuF0& and ^C0u with the correlated
onesuF& and ^Cu, respectively, according to

VBuF&5GuF0&, ^CuVB5^C0uG. ~38!

Due to the non-Hermiticity of the interaction,VB
†ÞVB , we

are obviously dealing with a nonunitaryG-matrix theory.
Using the complete set of eigenstates ofH0 and project-

ing, we obtain the matrix form of Eq.~36!,

^CKuGuF0&5^CKuVBuF0&

1 (
PÞ0

^CKuVBuFP&^CPuGuF0&
E02EP

,
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^C0uGuFK&5^C0uVBuFK&

1 (
PÞ0

^CPuVBuFK&^C0uGuFP&
E02EP

. ~39!

The fact that we need two equations to fully specify th
matrix elements ofG is again a reflection of the non-
Hermiticity of the Hamiltonian. Given the solution to thes
two equations, the total energy of the system is then obtain
as

EG5^CuHuF0&5^C0uHuF&5E01^C0uGuF0&, ~40!

where the correlated states are assumed to be normalize
the usual way according to

^C0uF&5^CuF0&51. ~41!

B. Two-body correlations

We restrict our consideration here only totwo-body cor-
relationsamong the particles, adopting for the problem th
following set of states involving two noncondensed~i.e., K
Þ0) bosons:

uFK&5
1

A~NB22!!
LK
†L2K

† L0
†~NB22!u0&,

^CKu5
1

A~NB22!!
^0ul0

~NB22!l2KlK . ~42!

This set of states, together with the condensate states~22!,
form the two-body sector of the complete Fock space.

Not all of the terms that enter the complete collectiv
boson Hamiltonian~19!-~21! contribute in the two-body sec-
tor. For those that do contribute, it is useful to split the
according to

HB→H081VB8 , ~43!

where

H085e0L0
†l01 (

KÞ0
eKLK

†lK1 f ~0,0,0!L0
†L0

†l0l0

14(
KÞ0

f ~K,K,K !L0
†LK

†lKl0 , ~44!

and

VB85 (
KÞ0

f ~K,2K,K !L0
†L0

†lKl2K

1 (
KÞ0

f ~K,0,K !LK
†L2K

† l0l0

1 (
K8,KÞ0

f ~K2K8,2K,K !L2K8
† LK8

† lKl2K , ~45!

with eK and f (q,D,K) defined by Eqs.~20! and~21!, respec-
tively. The separation~43!–~45! has the property that
e

e
ed

d in

e

e

m

^C0uVB8 uF0&50, ^C0uH08uF0&5E0 ~46!

which shows thatVB8 is a true residual interaction, and tha
the uncorrelated energyE0 is precisely the expectation value
of H08 taken between the condensate wave functions~22!.

Using this form of the Hamiltonian, we obtain for the
unperturbed ground state energy

E05^C0uH0uF0&5NB«01NB~NB21! f ~0,0,0!, ~47!

and for the unperturbed energies corresponding to the sta
~42!

EK5^CKuH0uFK&

5~NB22!«012«K1~NB22!~NB23! f ~0,0,0!

14~NB22!@ f ~K,K,K !1 f ~0,K,K !#. ~48!

For large values ofNB , the energy differenceE02EK is
given by

E02EK52
K2

2m
14NB@ f ~0,0,0!2 f ~0,K,K !2 f ~K,K,K !#,

~49!

and the required matrix elements of the interaction (K
Þ0,K8Þ0) by

^C0uVB8 uF0&50, ^CKuVB8 uF0&52NBf ~K,0,K !,

^C0uVB8 uFK&52NBf ~K,2K,K !,

^CK8uVB8 uFK&54 f ~K2K8,2K,K !. ~50!

With the aid of the matrix elements given above, th
G-matrix equations~39! become

^CKuGuF0&52NBf ~K,0,K !

12(
PÞ0

f ~P2K,2P,K !^CPuGuF0&
E02EP

,

^C0uGuFK&

52NBf ~K,2K,K !

12(
PÞ0

f ~K2P,2K,K !^C0uGuFP&
E02EP

,

^C0uGuF0&5NB(
PÞ0

f ~P,2P,0!^CPuGuF0&
E02EP

5NB(
PÞ0

f ~P,0,0!^C0uGuFP&
E02EP

. ~51!

The total Brueckner energy of the system (EG) is obtained
from the resultingG-matrix elements according to

EG5E01NB(
PÞ0

f ~P,2P,0!^CPuGuF0&
E02EP

. ~52!
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C. Scaling procedure

As noted earlier, the two-color delta model scales acco
ing to the dimensionless parameterr̃5r/(mg). This scaling
property can be used to simplify the numerical analysis.
do so, we introduce the following scaled quantities:

GS~K !5
4

mg2
^CmgKuGuF0&,

G̃S~K !5
4

mg2
^C0uGuFmgK&,

f S~K,P!5
4L

pg
f ~mgP2mgK,2mgP,mgK!,

f̃ S~K,P!5
4L

pg
f ~mgK2mgP,2mgK,mgK!,

X̃ k
K5ANXmgk

mgK ,Ỹk
K5ANYmgk

mgK . ~53!

Using this notation and going to the infinite-matter lim
leads to the following set of scaledG-matrix equations:

GS~K !5pr̃ f S~K,0!2E f S~K,P!GS~P!

P22 r̃AS~P!
dP,

G̃S~K !5pr̃ f̃ S~K,0!2E f S~K,P!G̃S~P!

P22 r̃AS~P!
dP, ~54!

where

f S~K,P!5 f̃ S~P,K !

5
8D̃P

~pr̃!2
E Ỹk81~P1K !/2

K Ỹk82~P2K !/2
K X̃k8

P dk8,

~55!

and

AS~P!5
8p

~pr̃!2
E dk8F D̃Ỹk8

0 Ỹk8
0 X̃k8

0
2D̃PỸk8

0 Ỹk81P/2
P X̃k8

0

2D̃Ỹk8
P Ỹk81P/2

0 X̃k8
P

1
1

2
~D̃PỸk8

P
2D̃Ỹk8

0
!

1
1

2
k82~X̃k8

0 Ỹk8
0

2X̃k8
P Ỹk8

P
!G , ~56!

with D̃51/(2p)*Xk
0dk andD̃K51/(2p)*Xk

Kdk. It should be
emphasized that in the infinite-matter limit all integration
can be extended to include the pointP50.

The set of equations~55! and~56! can be solved numeri-
cally, given a set of collective structure amplitude
(X̃k

K ,Ỹk
K). The total energy per particle is then given by

EG

N

1

mg2
5E0S1DEG

S , ~57!
rd-

o

it

s

s

where the first term is the uncorrelated ground state ener
per particle

E0S5
E0
N

1

mg2
5

1

2pr̃
E k2Xk

0Yk
0dk2

D̃2

r̃
~58!

and the second term represents the correlation energy

DEG
S5

DEG

N

1

mg2
52

1

2E f S~0,P!GS~P!

P22 r̃AS~P!
dP. ~59!

D. Numerical results

In Fig. 1, we plot the total energy per particle versusr̃ for
small densities, up tor̃ 5 0.05. Two sets of Brueckner re-
sults are shown:~a! those denoted as GHB are obtained un
der the assumption that all collective bosons, independent
K, have the internal structure given in the HB approxima
tion, ~b! those denoted as GTD arise when the structure
theKÞ0 bosons is taken from a boson TD analysis. The
two sets of results are compared with the energies obtain
using the exact Bethe ansatz~4!, the BCS approximation~8!,
and the uncorrelated Hartree-Bose~HB! treatment~24!. Sev-
eral points can be readily seen from the figure.

~1! No linear contribution arises when Brueckner correla
tions are taken into account, in contrast to both the BCS a
Hartree-Bose results. In fact, though fairly clear from th
figure itself, this conclusion was actually reached by nume
cal differentiation of the energies at very low densities. No
further that this is the case for both the GHB and GTD pre
scriptions, reflecting the fact that the linear term in the en
ergy is only sensitive to the zero-density structure amp
tudes.

~2! The Brueckner energy is lower than both the BCS an
Hartree-Bose energies, and in better agreement with the
act results.

~3! The use ofK-dependent structure functions deter
mined dynamically in TD approximation further improves
the agreement with the exact resultsat these low densities.

FIG. 1. The energy per quark~in units of 8/mg2) for the two-
color delta model as a function of the scaled densityr̃5r/mg. The
various curves are described in the text.
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In Fig. 2, we extend the comparison tor̃51. We only
show the Brueckner results under the simplifying assumpt
that all bosons have the same structure, as given by the
approximation. Starting at a density of aboutr̃' 0.5, the
Brueckner results begin to show an unphysical behavior, a
soon thereafter fall below the exact results. This can
readily understood. We have only included two-bod
Brueckner correlations in our analysis. It is well known
however, that as the density goes up, higher-body corre
tions play an increasingly more important role.

V. DISCUSSION AND CONCLUDING REMARKS

In this work, we have extended an earlier application
boson mapping techniques to a two-color delta model of
teracting quarks. In an earlier work, the method of bos
mappings was supplemented by a Hartree-Bose treatmen
the resulting Hamiltonian, to obtain a variational descriptio
of the ground state of the system. Such a treatment gives
to a linear term in the energy per quark as a function
density, a term that is not present in the exact results for t
model. In the present analysis, we have improved on
Hartree-Bose treatment by including two-boson Brueckn
correlations. To do this, we had to develop Brueckner theo
for non-Hermitean Hamiltonians, which to the best of o
knowledge has not been done before. The key result is t
Brueckner correlations completely suppress the linear te
in the density, in agreement with the exact results for t
model, thereby leading to a much more accurate descript
of the underlying quark dynamics.

That Brueckner correlations might be important in d
scribing the boson dynamics of this problem was alrea
evident from the structure of the residual boson-boson int
action that derived from the Hartree-Bose analysis. This
teraction is strongly repulsive at short distances, reflect
the effects of quark exchange when two composite boso
overlap. By incorporating Brueckner correlations, we are e
fectively suppressing those terms in the ground state wa
function in which the bosons have the same momenta a
thus overlap maximally.

There is an alternative, but equivalent, way of looking
the effect of Brueckner correlations. The fundamental dif
culty in all approximate applications of mapping technique
whether to bosons or baryons, is the admixture of unphysi
states in the resulting wave functions. These unphysical
mixtures represent Pauli-violating contributions to the wa

FIG. 2. The same as Fig. 1, but extended top̃51.
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function. The inclusion of Brueckner correlations can thus b
viewed as a means of suppressing unphysical component
the ground states of composite-particle systems. The fact t
our Brueckner analysis is able to reproduce the linear term
the density properly suggests that it is indeed a viable mea
of suppressing unphysical components following a mappin
Considering the great interest in developing procedures
removing unphysical~or spurious! components following
anymapping@12#, we believe that this is an important con-
clusion.

As emphasized in the Introduction, the analysis present
here is part of a larger program aimed at the application
baryon mapping techniques to semirealistic constituent qua
models of real nuclei. Towards that end, it is important t
reiterate the significance of these results to the more relev
three-color delta model studied in@6#. A baryon mapping of
that model followed by a pure Hartree-Fock treatment like
wise was unable to describe the exact dynamics at the low
order in density in which the cluster-cluster interaction con
tributed. There, it was third order, however, due to the fe
mionic nature of baryons. The exact results gave a repuls
third-order contribution with coefficientp2/729; the baryon
HF analysis gave a coefficient roughly six times larger. Th
fact that lowest-order Brueckner theory exactly corrects th
first-order term in the energy of the two-color model sug
gests that it would likewise correct the corresponding third
order term of the three-color model.

Overall, our Brueckner1 Hartree-Bose ~1 Tamm-
Dancoff! treatment of the two-color delta model provides th
most accurate approximate description of its ground sta
dynamicsat low densitiesto date. At higher densities, how-
ever, the agreement between our results and those obtai
by exact solution of the model breaks down . We believe th
this is a reflection of two limitations in the analysis.

~1! In our calculations, we have assumed that the structu
of the dominant collective bosons can be taken from pu
mean-field treatments prior to the inclusion of short-rang
Brueckner correlations. While this is probably true at fairl
low densities, where the HB and/or the TD approximation
should suffice in giving the dominant structure of the collec
tive bosons, it does not seem to be the case at higher de
ties. There, we no doubt should be carrying out a fully sel
consistent Brueckner-Hartree-Bose treatment, in which t
structure of the collective bosons is treated on the same fo
ing as the short-range Brueckner correlations.

~2! We have only included in our Brueckner analysis two
body correlations. While this is appropriate at low densitie
it is well known that at higher densities higher-body Brueck
ner correlations must be included.

Such extensions of the analysis, though numerically ve
demanding, are conceptually straightforward within the ma
ping framework described in this paper.

Were we to treat the three-color model analogously, di
agreement with the exact results would no doubt show up
fourth-order in the density, for precisely the same reason
Here too improvements are possible, by extending to a fu
self-consistent Brueckner-Hartree-Fock treatment. Howev
the fact that these corrections would only affect the results
fourth order and higher suggests that they should not be
pecially important at the relatively low densities typical o
realistic nuclei. As such,baryon mapping techniques coupled
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with a lowest-order Brueckner treatment of short-range co
relation effects should be useful in treating quark clust
dynamics in realistic nuclear systems. Based on this conclu-
sion, we are now planning to apply these methods to m
realistic quark Hamiltonians@2#.

It is useful to stress here another important difference b
tween problems involving two-particle correlations~as in the
two-color delta model! and three-particle correlations~as in
the three-color delta model or more realistic quark model!.
When dealing with two-particle correlations, mapping tec
niques are useful, but not essential. Much the same phy
can be incorporated in quasiparticle methods. When dea
with three-particle correlations, however, no analogous q
siparticle methods exist. As such, baryon mappings seem
provide a unique tool for treating such correlation effec
That being the case, it is of crucial importance that there n
exists a method, namely non-Hermitean Brueckner theo
for suppressing unphysical components that result fro
quark exchange effects at short distances.

A limitation of the models discussed here is their restri
tion to nonrelativistic dynamics. This is probably acceptab
for treating nuclear processes at low momentum transfe
However, it will no doubt be important to include relativisti
r-
er

re

e-

s
h-
ics
ing
a-
to
s.
w
ry,
m

c-
le
rs.

effects at higher momentum transfers. While there is no co
ceptual difficulty in building relativity into the mapping for-
malism, this has not been worked out in detail yet.

Though our ultimate goal, as noted above, is the descri
tion of quarks in nuclei, the model that we have studied i
this work is of importance to other areas of physics as we
In particular, it has generic relevance to boson mapping tec
niques and more specific relevance to superconducting pro
erties of condensed matter systems@13#.
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