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We study the application of boson mapping methods to a two-color delta model of interacting quarks, with
the purpose of extracting information of relevance to quark-model descriptions of nuclei. In an earlier treat-
ment, the boson Hamiltonian resulting from the mapping was approximately diagonalized at the level of
Hartree-Bose approximation. The results differed from those of an exact solution of the model at first order in
the density. Furthermore, the results were worse than those arising from a BCS treatment of pair correlations
at the quark level. Here we extend the analysis to a Brueckner treatment, so as to properly take into account the
short-range repulsion between bosons originating from the quark Pauli principle. The resulting energy per
quark reproduces the exact results through first order in the density and is significantly better than the BCS
results. At higher densities, deviations appear, reflecting the need for a full cluster expansion in the treatment
of short-range correlation effects. The relevance of these results to more realistic three-color quark models of
nuclei is discussedS0556-28186)03606-(

PACS numbses): 21.60.Gx, 12.39.Jh, 21.30.Fe, 24.85.

I. INTRODUCTION Though not derived directly from QCD, these models incor-
porate at some level several of its key ingredients, including,
Traditionally, the nucleus is treated as a system of interfor example, approximate confinemddf and approximate
acting nucleons. This approach is founded on the assumptiarhiral invariancg 2]. Furthermore, they have been shown to
that the QCD interactions that build the nucleon decoupleeproduce with impressive success the properties of nuclear
from the residual interactions between nucleons responsibleystems with very few particles. What is much less clear,
for nuclear structure. Recent experiments suggest that &owever, is how to apply these models to many-body sys-
some level this assumption breaks down. The EMC data, fotems. Since a system ofA3quarks clusters intd\ triplets
example, suggest that the internal structure of the nucleofnucleongat normal nuclear densities, a necessary ingredient
changes in the presence of a nuclear medium. As such, theig a method of handling strong three-quark correlations in a
is currently great interest in trying to develop a theory ofmany-quark environment, a scenario that cannot be handled
nuclear structure directly from QCD, thereby taking into ac-with traditional many-body approaches.
count those effects that arise from medium corrections to the Recently, a method was proposd@®] for treating
structure of the nucleon. multinucleon systems in a constituent quark framework us-
Modifications to the structure of the nucleon are a conseing mapping techniques. The earliest tests of these methods
guence of quark exchange. Some of these effects are natwere to models that did not admit spatial three-quark corre-
rally incorporated in the traditional approach, whereby thdations[3,4], a key ingredient of any realistic quark descrip-
nucleon-nucleon interaction is first derived from Q@&  tion of nuclei. For that reason, the method was subsequently
some approximation to )itand then used in subsequent applied to a series of models due to Koltun and collaborators
nuclear structure analysis. Such an approach omits quark ef8,9], in which quarks(with color) move nonrelativistically
change effects involving several nucleons, however. It ign one dimensior{1D) and interact through a residual attrac-
generally thought that such effects should not be important dive delta-function potential. Despite severe limitations of the
normal(relatively diluté nuclear densities, except perhaps in model—one-dimensional motion, schematic interactions,
dynamical processes involving large momentum transfersaonrelativistic dynamics—-there are several features of this
However, in the absence of a fully consistent analysis thamodel that nevertheless make it attractive as a testing ground
incorporates on the same footing the effects of QCD inof quark mapping methods. At low densities, the model ex-
building the nucleon and also in nuclear structure, this rehibits spatial correlations between clusters of quarks. Equally
mains unproven. From our perspective, it is important, thereimportant, the model can be exactly solved as a function of
fore, to build a theory that consistently incorporates thes¢he density of the system using the Bethe ansatz.
various aspects of QCD. A theory of this type, able to repro- Models of this type have been developed both for two and
duce traditional nuclear properties, could then help isolaté¢hree colors. While the three-color version certainly has a
where to look for explicit quark effects in nuclear structure. more obviouqalbeit still schematicconnection to quark dy-
While such a consistent theory should ideally start fromnamics in nuclei, the two-color model is also of interest to
QCD, this is not currently practical. What is required insteadstudy in view of its greater simplicity.
is an effective theory that builds ifat least approximately An analysis of the two-color model was reported in Ref.
the important properties of QCD, while still remaining trac- [5]. Following a boson mappinyy] of the model, the result-
table. Constituent quark models seem to satisfy these criteriitng Hamiltonian was treated in the Hartree-Bose approxima-
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tion. The resulting energy per quark was found to differ fromtained for the more realistic three-color model. Namely, if
the exact results at firglinear order in the density. Further- we were to include short-range correlation effects in a
more, the results were somewhat worse than achieved by Brueckner-Hartree-Fock analysis, we should be able repro-
simple BCS treatment of the same model, even though thatuce the exact results of that model through third order in the
analysis likewise was unable to reproduce the linear term iiflensity, i.e., through the lowest order in which the interac-
density correctly. It should be noted here that for this modefions between the relevant three-particle clusterscleon
effects of the interaction between clusters can first contributéontribute. _

at linear order in the density. The structure of the paper is as follows: In Sec. Il, we

A corresponding analysis of the more physically relevantriefly summgrize some essential feat_ures of the two-color
three-color model was reported [ii]. There, a baryon map- delta model, |nclud|r_19 Its treatment using thg BCS method.
ping of the model was carried out and the resulting Hamil-" Se'c. i, we review: our earlier application of bosor]-
tonian was then treated in the Hartree-Fock approximation'.“applng techniques to the model. In Sec. IV, we describe
Very similar conclusions to those of the two-color analysisoqr Brueckner anaIyS|s and report the_ results. Sec. V' con-
were obtained. The mapping could be implemented, but fains some concluding remarks, including comments on the
subsequent mean-field treatment could not adequatly repr(gt_aleya_nce of the work to the th.ree—color model and to more
duce the exact dynamics. There, the resulting energy pdfalistic quark models of nuclei.
quark differed from the exact results at third order in the
density. But this too is the lowest order in which the inter- IIl. THE TWO-COLOR DELTA MODEL
actions between clusters contribute; the fermionic nature of A. The model
this model guarantees that the cluster-cluster interaction does ) o )
not contribute to the energy in either first or second order.  In this model, a system df nonrelativistic quarks with

Clearly, a many-body method of cluster phenomena thagolor ¢ (WhIC.h is allowed to.take the two p.ossmle \_/alues
is unable to treat correctly the interactions between clusterst 1/2) move in a one-dimension@lD) box of sizel subject
even to lowest order, cannot be used with any degree dP an attractive delta-function interaction. Letting(dy.)
confidence. Mapping techniquesyupled with a pure mean- denote the creatiofannihilation) operator for a quark with
field analysis are unable to accomplish this for either of the momentunk and colorc, we can express the model Hamil-
two cases studied. tonian as =1)

Mapping methods, however, are not limited to a pure
mean-field analysis. As discussed[§6], the mapping also
provides the interaction between clusters. This has two im-
portant consequences. On the one hand, it provides the infor- ) . ]
mation needed to isolate the physics that was “missing”WhereG is the strength of the interaction amg=k?/2m.
from the pure mean-field treatment. Equally important, oncel he infinite-matter limitN—o , L—o (p=N/L finite), is
this physics has been appropriately identified, it provides dhen obtained by replacing
framework to incorporate these additional correlations. L

In our analysis of both the two- and three-color models, > _>_f dk. & —
the cluster-cluster interaction that emerged from the mapping 2m ’ N
was found to be strongly repulsive at short distances. As a
consequence, we suggested, both[56], that Brueckner B. Exact solution at low densities
theory[10] might be the key missing ingredient required to o _
improve the usefulness of mapping methods in the presence !N the infinite-matter limit, the ground state energy per
of spatial clustering. The situation is analogous to that off@ticle can be obtained exactly by solving the following set
traditional nuclear physics. As is well known, thmre Of integral equation$s]:
nucleon-nucleon interaction contains a strong short-range re- K
pulsive component, originating in quark exchangeough p :Zf F(k,K)dk, 3
often simulated byw exchangg and this precludes a direct K
mean-field treatment.

The purpose of the present work is to assess the above E mg® ;JK e F(K,K)dK, @)

-K

G
H=> Skqlchc_ 5_2 qichijcqlfchcéiﬂ,kHv (1)
ke ijkl,c

2

—ai-i), G-glL. (

. . ) ; > — =——+
conjecture that including Brueckner correlations significantly N 8

improves the ability of mapping techniques to describe the

cluster dynamics of quark models. Since the three-colowhere the density function for doublet clustéiék,K) sat-
model is so much more difficult to treat than the two-colorisfies the relation

model, though certainly more relevant to quarks, we have

chosen to address this issue in the context of the simpler +F(k K)=1—J'K [ mgH(w,K) do 5
two-color model. Thus, we report here a Brueckner treatment ' —K (mg)z+(k— w)?|"

of the boson Hamiltonian that results from a boson mapping

of the two-color model. These equations scale with the dimensionless parameter

The key result of our analysis is that by including Brueck-p=p/(mg). From this, it is straightforward to obtain the
ner correlations we are able to achieve perfect agreemeenergy per particle numerically at any density. Here, we
with the exact linear term in the energy per quark. This sugpresent the analytic results of an expansion in powerg of
gests that the same conclusions would most likely be obthrough third order:
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E 1 1 #%p? =8 - Hg=Hy+ Vg, 12
__:__+_P+ P +O(p4). (6) B 0 B ( )
N mg? 8 96 96

where
Note that no linear term ip appears in Eq(6).

Ho= 2

2+ a2
C. BCS treatment kk'K

2m 8m 5kk' ZL}FKKFK'K ’ (13)

A BCS treatment of the model leads to the familiar num-and
ber and gap equatiorn$8]

t
1 |:1 87}; 2 2 1 VB 4'—% Fg k’*K’27K,q+KFk’—g,K’—qu,K’FkK'
=T e P~ —_—, X
L% VGiran] 6 % i+ra?) % " (14
7

To apply known many-body techniques to the Hamil-
tonian (12)-(14), we introduce a(nonunitary collective
transformation 11]

where \ is the chemical potentiale,=g,—\—GN/2,

A=GZuw, is the pairing gap, an¢>=(2/L)Ekv§ is the
density of the system. Equatior(¥) are solved for the
chemical potential and the pairing gap. The resulting BCS

energy is then given by 2 Xicpl b >\pK=2k Yiolkk (15

EBcs—Zz ewg—GY (Ukvkuk’vk’+vkvkr) (8)  where
KK’

[)\pK’A;’K’]:épp’éKK’! (16)
where
and the coefficients of the collective transformation satisfy
-2 -2
2 1 €y 2 1 Lo
vica| 1 = Y| Y T |
(e2+A?) J(ei+A?) o 2 XY kp zapp,aKK,
Solutions to the BCS equations in powerspofire given K ok 1
in [4]. The energy per quark through second ordep ithat > XirpYkp= Z(‘Skk’Jr Sic—k?) O (17
results is
E 1 13 The collective transformatioil5) can be readily inverted,
Escs __*.P P_ 3 giving
N md 8+8+ +0(p?). (10
T K At _ K
The BCS approximation reproduces correctly the zeroth- FkK_ZEp YipApic» FkK_Z% XipMpK - (18)

order term but yields a first-order contribution not present in
the exact results. Nevertheless, it is important to note that, to To obtain an appropriateollective Hamiltonian to use in
date, this is the best approximate treatment of the model thafescribing the ground state of the system, we truncate to the

has been reported. lowest collective p=1) boson for eactK value. To sim-
plify the notation, we suppress the lalein all subsequent
Ill. DYSON BOSON MAPPING APPLIED TO THE MODEL expressions;  viz. /(p 1K N p=1K ’XEp=1 ,Yl’fpzl) —

(Ak A XL YR

) ] _ The resulting collective Hamiltonian can then be written
The Dyson mappind7] is based on the requirement that 53¢

the commutation algebra of bilinear quark operators be pre-

served by their mapping onto boson operators. A key feature +

of this mapping is that it is finite but non-Hermitean. Hg= ; ex AT E Y K)Aq+KAK+A g ahi
Application of the Dyson method to the model of (19)

interest involves mapping a colorless quark pair

So(—)"*°qly a’ ek, onto a colorless bosor'y. Here where

k=(1/2)(k;—k5) is the relative momentum of the quark pair

A. Boson mapping

12 2
andK=k; +k; is its total momentum. The colorless creation =2 (Zk K )XErY — E Xk,Yk", (20)
operatorl“lK and the corresponding colorless annihilation K’ L g
operatorl', x satisfy the commutation relation and
[Cyg I k’K’] Ok (O + Ok—xr)- (11

YK+A q XK+AX

g K+q
f(q,A,K)= Z Y —(a—qu2k —(q2) K"

For our purposes, the key result is that the quark Hamil- L
tonian (1) is mapped onto a boson Hamiltonian (22
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B. Hartree-Bose approximation Thus, like BCS approximation, the HB analysis also pro-
We now summarize the key features of our earlier appli-duces a linear term in the energy per particle. However, the
cation of the Hartree-Bos¢iB) approximation to the above linear term that arises is three times larger than in BCS, so
boson system. The Hartree Bose approximation is a varighat the agreement with the exact results is even worse.

tional approximation based on a boson condensate trial state At first glance, the results of our HB analysis might seem
discouraging, since they suggest that mapping methods can-

1 1 not incorporate correlations as well as simpler quasiparticle
| D)= AiNe|0), (Wo|=—=(0|Ao"8, (22)  methods carried out on the original quark model. Such a
VNg! VNg! conclusion is premature, however. As we now discuss, map-

ping methods provide a natural framework for systematically
going beyond the mean field and thus improving on the HB
Ens(\) = (Wo|Hg—ANg|Dy), 23  results.

e(M) (WolHs sl Do) 23 The key point is that the mapping provides not only the
Hamiltonian involvingK =0 bosongthose that enter in HB

subject to the normalization constraliX, Y, =1/2. approximation but also[see Eq(21)] those that connect the
The boson condensat€22) only involves collective HB condensate to “excited’K 0 bosons.

K=0 bosons, since they are the lowest in energy. The HB  Thea collective boson Hamiltonian given in E@1) de-
condition, thus, provides a variational prescription for generyengs on the structure amplitudes for the dominant collective
aténg theostructur.e coefficients of the=0 bosons only, viz.  p,50ns with allk values. It is only the structure of the col-
Xy andY, . For simplicity, we denote these collective struc- |gctive K=0 bosons, however, that is provided by the HB
ture coefficients byx, andyy, respectively. The relevant analysis. To obtain the collective Hamiltonian required for
energy func_tion_al to be minimized, subject to the normaliza-am:ﬂysiS beyond the HB approximation, we also need the
tion constraint, Is structure of the collectiveK#0 bosons. In the numerical
K2 gN qalculations to follow, we _consider two approaches. In t_he
EHB()\):NE (__)\)Xkyk_ _2 XYk first, we assume that the internal structure of the collgctlve
k \m L K#0 bosons is the same as for tie=0 bosons that derive
N2 from the HB approximation. Such an assumption is precisely
g_E yi/xkka- (24)  true at zero-density, from translational invariance arguments,
— but not at finite density. Thus, we also discuss in the next

) subsection an alternative means of generating the structure of
Note that in Eq(24), we have thrown away all terms down iha collectiveK = 0 bosons, using the Tamm-DancdffD)
by 1N relative to the terms retained, as is appropriate in theapproximation.

infinite-matter limit.

The solution of the HB variational equations was dis-
cussed iff5]. An important feature is that the structure func- C. Tamm-Dancoff approximation
tions can be directly related to thg andv, coefficients of
the BCS approximation, through the introduction gblaysi-
cal condition In particular,

whereNg=N/2. The variational condition is to minimize

+

At very low densities, a meaningful prescription for the
internal structure of th& #0 collective bosons is provided
by the TD approximation. Here, one assumes for eldch
1 1 v, #0 value a variational trial state of the form
X= \[ﬁ okl Y= VN g, (25

1 1
As a consequence, the HB structure functions can be oHd’K):\/——Ab\oVDo)a <¢K|:\/_—<WO|A8)\K1 (27)
tained from the same gap and number equations that arise in B Ng
the BCS approximatioii7). For our purposes, the principal
result that emerges is that the energy per quark of the HB
approximation through first order i is where |®,) and (¥,| are the Hartree-Bose ground state
wave functiong22).
_ The expectation value of the Hamiltonigh9) taken be-
Emg 1 1 3p tween the state$27) defines the variational energy func-

- —__ _ _ ~2
N m@g 8 8 oW 28 fional

k2 2

_+_
m 4m

29 2gN
—MK}XEY;}E— TE XKV + TE XY XK (Y
kk’

E'IK'D(:U’K):<¢K|HB_MKNB|¢K>_EHB(MK):ZEK [ 2

2gN
K K K
Yy k) T L % X Yo X Yier kit Yier +ki2) - (28
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The TD approximation involves minimizing this functional 4
with respect to the variational structure amplitudeﬁ or 5 = > > 5"
YK, subject to the normalization constraiB{X{ Y\ =1/2 20 (KPIme+K2Am= i+ INADYi- kot Yier krz])
[see Eq.(17)]. As in the Hartree-Bose treatment [ef], we (32)
impose a physical condition that relates Dh@ and YE am-  The system of equation$30)—(32) can be numerically
plitudes. Here, the appropriate condition is solved, thereby giving a variational prescription for thE

K UK and XE amplitudes appropriate in the limit of low densities.
Xie= Y[ 1= N(Xk - k2Yk k2t Xk + WYk +k2) - (29

Performing the variation of the functioné&28) and using - .
the normalization constraint and physical condition leads to ©ONCce the structure coefficients have been obtained, we

the following solutions for the collective structure ampli- €N determine the collective boson Hamiltonian from Eq.
tudes of interest: (21) and use it in many-body treatments that include corre-

lations beyond those of the Hartree-Bose approximation.

A It is useful, however, to first make some qualitative re-

K , marks about this collective Hamiltonian. As we have seen,

K?/m+ K2/4m— py+ \/NA[yk,K,er Vit k2] the energy per quark derived in the HB approximation differs

from the exact results already at first order in the density. To

K_ A1 =Nk k2Yk—k/2T Xkt ki2Yk+k/2) ] obtr#]n the”en(ta_rgy tt)o this order,fwe ?nly re?uire itnr:oméatio_n

k=15 2 : on the collective boson wave functions at zeroth order in

kZ/m e+ K2/Am— pc+ INALY kit Yicswie] (30) P, i.e., atp=0. At zero-density, the structure coefficients of

all collective bosons are the same and giver] Bly

Here,x, andy, are theK=0 structure amplitudes derived in

the HB approximation in terms of the BCS gApand chemi- YE: XL<: \/E
L 1

1= N(Xy—k2Yk— k2t Xis kYt kr2)

D. The collective boson Hamiltonian

K
k

33
cal potential\. Also, ux and Ay satisfy Tamm-Dancoff 33
“number” and “gap” equations
where
1- gz 1= N(Xg— /Y k— k2 X+ ki2Yke+ k/2) o m3g> 24
L% i@m-+ K2i4m— e+ WNALYic_ o+ Yies izl < A+ gAY (9
31
The interaction between collective bosons to this order is
and likewise independent ok and is given byf5]

8m?g°® q?+A2—qgA+12m?g?

HaA K= T (g 2)2+ amPg?(q7+ amPg?) (AZ+ anigd)

(39

The above interaction is clearly repulsive, reflecting thewhere&, is the lowest K=0) eigenvalue of the unperturbed
fact that it originates solely from quark exchange. FurtherHamiltonianH,,
more, the repulsion is maximal for bosons with the same
momentum, i.e.A=qg=0. As such, a condensate kf=0 Hol®o)=Eo| Do),  (WolHo=(¥|&, (37)
bosons, though certainly lowest in kinetic energy, will not be
the optimum means of exploiting the interaction. A naturaland Q is the projection operator out of the uncorrelated
way to optimally treat the short-range Pauli-based correlaground statéd) or (¥,|. The G-matrix operator connects
tions that arise from this residual interaction is through thethe uncorrelated statd®,) and (¥,| with the correlated
use of Brueckner theory, to which we turn in the following ones|®) and(¥|, respectively, according to
section.

Vg|®)=G|dg), (¥[Ve=(¥[G. (38)

IV. BRUECKNER THEORY Due to the non-Hermiticity of the interactioMEaﬁVB, we
are obviously dealing with a nonunitay-matrix theory.

Using the complete set of eigenstatesHyf and project-
In order to take into account Brueckner correlations for aing, we obtain the matrix form of Eq36),

boson system governed by a Hamiltonldg=Hy+ Vg, we
introduce theG-matrix operator equation (V|G| o) = (¥ |Vg| Do)

V| Ve|Pp)(Vp|G|P
6Vervop %6 5 o5 (VP (¥elG|o)

P70 Eo—Ep '

A. G-matrix treatment




(PolG|Dy)=(V|Vg|Dk)

(Wp|V|Pi)(WolG[Pp)
Eo_gp '

(39
PZ0

The fact that we need two equations to fully specify the
matrix elements ofG is again a reflection of the non-
Hermiticity of the Hamiltonian. Given the solution to these

two equations, the total energy of the system is then obtained

as
Ec=(W[H|®o)=(Vo|H|D)=E+(¥o|G|Dg), (40

where the correlated states are assumed to be normalized
the usual way according to

(Wo|@)=(P[Dg)=1. (41

B. Two-body correlations

We restrict our consideration here only tiwo-body cor-
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(WolVg|Po)=0, (Wo|HglPo)=& (46)
which shows that/j is a true residual interaction, and that
the uncorrelated energy, is precisely the expectation value
of Hg taken between the condensate wave functi@2s.

Using this form of the Hamiltonian, we obtain for the
unperturbed ground state energy

Eo=(Wo|Ho|Po)=Ngeo+tNg(Ng—1)f(0,0,0, (47

and for the unperturbed energies corresponding to the states

(42)
in Ex={(¥k|Ho|Pk)
:(NB_2)80+ 28K+(NB_2)(NB_3)f(0,0,Q

+4(Ng—2)[f(K,K,K)+f(0K,K)]. (48)

For large values ofNg, the energy differenc&y— & is
given by

relations among the particles, adopting for the problem the

following set of states involving two noncondensge., K
#0) bosons:

|i)= ALAGNe2)0),

1
——A

(ONgMNB™IN (A, (42

1
e ean

This set of states, together with the condensate sta®s
form the two-body sector of the complete Fock space.

Not all of the terms that enter the complete collective
boson Hamiltoniar{19)-(21) contribute in the two-body sec-
tor. For those that do contribute, it is useful to split them
according to

Hg—H{+ Vg, (43

where

Ho=eoAdNo+ K;O ek AN+ (0,0,0 AJAIN N

+4 Y, (KK K)AJAIN N, (44)
K#0

and

VE= > F(K,2K,K)AFAIN N ¢
K#0

+
K#

f(K,0K)AFAT Aok
0

+ > F(K=K,2KK)AT AT N g, (45)
K’ ,K#0

with e andf(q,A,K) defined by Eqs(20) and(21), respec-
tively. The separatiori43)—(45) has the property that

KZ

fo=&= "3y

+4Ng[f(0,0,0 — f(0OK,K)—f(K,K,K)],
(49)

and the required matrix elements of the interactidf (
#0K'#0) by

(Wo|Va|Po)=0, (W|Vg|Po)=2Ngf(K,0,K),
(Wo| V| P k) =2Ngf(K,2K,K),

(W VL @) =4F(K—K,2K,K). (50)

With the aid of the matrix elements given above, the
G-matrix equationg39) become

(Wk|G|Po)=2Ngf(K,0.K)

f(P—K,2P,K){¥p|G|D
23 ( N Vp|G|Do)
P70 Eo—Ep

(Wo|G|Dk)
= 2Ngf(K,2K,K)

f(K=P,2K, K}V, G|D
+22 ( )< 0| | P>
PZ0 Eo—E&p

(¥o|G|Dg)=Ng X, £ tn

P70

f(P1010)<\PO|G|q)P>

=Neg So—Ep

P70

(51)
The total Brueckner energy of the systefg) is obtained

from the resultingG-matrix elements according to

f(P,2P,0(¥p|G|D()
Eo—Cp :

Eg=&+Ng >, (52)
P£0
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C. Scaling procedure 084 . . . . .
As noted earlier, the two-color delta model scales accord-
ing to the dimensionless paramefet p/(mg). This scaling '0'95_' . ]
property can be used to simplify the numerical analysis. To 096 L HB BCS .~ ]
do so, we introduce the following scaled quantities:
oo7f S 4
4
S 4 w 0.98 . GHB
G3(K)= W(ngdelq)o)’ ) e
0.99 |
- 4 -1.00
G(K)= WolG|P k), \ . L, Bt .
(K) mg< ol GlPmgid 0.00 0.01 0.02 0.03 0.04 0.05

4L
fS(K,P)= W—gf(mg P—mgK,2mgP,mgK),
_ 4L
fS(K,P)= W—gf(mgK—mgP,ngK,mgK),

XK= UNXTIE Y= N YmIK. (53)

Using this notation and going to the infinite-matter limit

leads to the following set of scaléd-matrix equations:

fS(K,P)GS(P)
PZ—HAS(P) :

GS(K)=wpfS(K,0)—

fS(K,P)GS(P)

ave 07

GS(K)=7pfS(K,0)— f (54)

where
fS(K,P)=TS(P,K)
88p <k TK TP L
= Wf Yo+ priy2Y k- (p— k)2 AKs
(55)

and

& 1 Av0 U0 Y0 X YO0 P Y0
AS(P)= (w’ﬁ)zf dk [AYk,Yk,Xk,—Aka,Yk,+P/2Xk,

——p ~ _ 1~ ~ —_—
P30 P P 0
—AY Y pXio T 5 (BpY 0 —AY)

1 gmg ~pe
+§k'2(x‘k’,vﬁ,—x§’,v§’,) , (56)

with A= 1/(27) [ X2dk andA, = 1/(27) [ XKdk. It should be

pimg

FIG. 1. The energy per quarfin units of 8mg?) for the two-
color delta model as a function of the scaled dengityp/mg. The
various curves are described in the text.

where the first term is the uncorrelated ground state energy
per particle

& 1 1 A2
£5=" 5= | kX0Yk— —

=0 = - 58

and the second term represents the correlation energy

AEZ=

A fS S
Ec 1 1f (O’P)G(P)dp_ (59

N m@ 2] PZ—pASP)

D. Numerical results

In Fig. 1, we plot the total energy per particle vergur
small densities, up tp = 0.05. Two sets of Brueckner re-
sults are shown(a) those denoted as GHB are obtained un-
der the assumption that all collective bosons, independent of
K, have the internal structure given in the HB approxima-
tion, (b) those denoted as GTD arise when the structure of
the K#0 bosons is taken from a boson TD analysis. These
two sets of results are compared with the energies obtained
using the exact Bethe ansdth, the BCS approximatiof8),
and the uncorrelated Hartree-Bd$¢B) treatment(24). Sev-
eral points can be readily seen from the figure.

(1) No linear contribution arises when Brueckner correla-
tions are taken into account, in contrast to both the BCS and
Hartree-Bose results. In fact, though fairly clear from the
figure itself, this conclusion was actually reached by numeri-
cal differentiation of the energies at very low densities. Note
further that this is the case for both the GHB and GTD pre-
scriptions, reflecting the fact that the linear term in the en-

emphaSized that in the infinite-matter limit all integrationSergy is 0n|y sensitive to the Zero_density structure amp”_

can be extended to include the polit=0.

The set of equationg5) and(56) can be solved numeri-

tudes.
(2) The Brueckner energy is lower than both the BCS and

cally, given a set of collective structure amplitudesHartree-Bose energies, and in better agreement with the ex-

(XK, YK). The total energy per particle is then given by

Es 1
S =S+ AES,

N mg (57

act results.

(3) The use ofK-dependent structure functions deter-
mined dynamically in TD approximation further improves
the agreement with the exact resutsthese low densities
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1.2 U — function. The inclusion of Brueckner correlations can thus be
1.0 P viewed as a means of suppressing unphysical components in
0.8} g the ground states of composite-particle systems. The fact that
06 our Brueckner analysis is able to reproduce the linear term in
041 the density properly suggests that it is indeed a viable means
02 of suppressing unphysical components following a mapping.
E _g‘gz Py S ] Considering the great interest in developing procedures for
oal D i removing unphysical(or spuriou$ components following
06k any mapping[12], we believe that this is an important con-
08 Exact clusion.
1,0 [ ] As emphasized in the Introduction, the analysis presented
ey 03 o4 o5 o8 07 08 03 1.0 here is part of a larger program aimed at the application of

baryon mapping techniques to semirealistic constituent quark
models of real nuclei. Towards that end, it is important to
reiterate the significance of these results to the more relevant
In Fig. 2, we extend the comparison fo=1. We only  three-color delta model studied [6]. A baryon mapping of
show the Brueckner results under the simplifying assumptiofhat model followed by a pure Hartree-Fock treatment like-
that all bosons have the same structure, as given by the H@iSe was unable to describe the exact dynamics at the lowest
approximation. Starting at a density of abg#t 0.5, the order in density in which the cluster-cluster interaction con-
Brueckner results begin to show an unphysical behavior, anfiibuted. There, it was third order, however, due to the fer-
soon thereafter fall below the exact results. This can bdhionic nature of baryons. The exact results gave a repulsive
readily understood. We have only included two-bodythird-order contribution with coefficient?/729; the baryon
Brueckner correlations in our analysis. It is well known, HF analysis gave a coefficient roughly six times larger. The
however, that as the density goes up, higher-body correldact that lowest-order Brueckner theory exactly corrects the

tions play an increasingly more important role. first-order term in the energy of the two-color model sug-
gests that it would likewise correct the corresponding third-

order term of the three-color model.

Overall, our Brueckner+ Hartree-Bose(+ Tamm-

In this work, we have extended an earlier application ofDancoff) treatment of the two-color delta model provides the
boson mapping techniques to a two-color delta model of inmost accurate approximate description of its ground state
teracting quarks. In an earlier work, the method of bosordynamicsat low densitiego date. At higher densities, how-
mappings was supplemented by a Hartree-Bose treatment efrer, the agreement between our results and those obtained
the resulting Hamiltonian, to obtain a variational descriptionby exact solution of the model breaks down . We believe that
of the ground state of the system. Such a treatment gives ridbis is a reflection of two limitations in the analysis.
to a linear term in the energy per quark as a function of (1) In our calculations, we have assumed that the structure
density, a term that is not present in the exact results for thaif the dominant collective bosons can be taken from pure
model. In the present analysis, we have improved on thenean-field treatments prior to the inclusion of short-range
Hartree-Bose treatment by including two-boson BrueckneBrueckner correlations. While this is probably true at fairly
correlations. To do this, we had to develop Brueckner theoryow densities, where the HB and/or the TD approximations
for non-Hermitean Hamiltonians, which to the best of ourshould suffice in giving the dominant structure of the collec-
knowledge has not been done before. The key result is thdive bosons, it does not seem to be the case at higher densi-
Brueckner correlations completely suppress the linear terrties. There, we no doubt should be carrying out a fully self-
in the density, in agreement with the exact results for theconsistent Brueckner-Hartree-Bose treatment, in which the
model, thereby leading to a much more accurate descriptiostructure of the collective bosons is treated on the same foot-
of the underlying quark dynamics. ing as the short-range Brueckner correlations.

That Brueckner correlations might be important in de- (2) We have only included in our Brueckner analysis two-
scribing the boson dynamics of this problem was alreadyody correlations. While this is appropriate at low densities,
evident from the structure of the residual boson-boson interit is well known that at higher densities higher-body Brueck-
action that derived from the Hartree-Bose analysis. This inner correlations must be included.
teraction is strongly repulsive at short distances, reflecting Such extensions of the analysis, though numerically very
the effects of quark exchange when two composite bosondemanding, are conceptually straightforward within the map-
overlap. By incorporating Brueckner correlations, we are efping framework described in this paper.
fectively suppressing those terms in the ground state wave Were we to treat the three-color model analogously, dis-
function in which the bosons have the same momenta andgreement with the exact results would no doubt show up at
thus overlap maximally. fourth-order in the density, for precisely the same reasons.

There is an alternative, but equivalent, way of looking atHere too improvements are possible, by extending to a fully
the effect of Brueckner correlations. The fundamental diffi-self-consistent Brueckner-Hartree-Fock treatment. However,
culty in all approximate applications of mapping techniquesthe fact that these corrections would only affect the results at
whether to bosons or baryons, is the admixture of unphysicdburth order and higher suggests that they should not be es-
states in the resulting wave functions. These unphysical adecially important at the relatively low densities typical of
mixtures represent Pauli-violating contributions to the waverealistic nuclei. As suctharyon mapping techniques coupled

p/mg
FIG. 2. The same as Fig. 1, but extendedtel.

V. DISCUSSION AND CONCLUDING REMARKS
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with a lowest-order Brueckner treatment of short-range cor-effects at higher momentum transfers. While there is no con-

relation effects should be useful in treating quark clusterceptual difficulty in building relativity into the mapping for-

dynamics in realistic nuclear systentased on this conclu- malism, this has not been worked out in detail yet.

sion, we are now planning to apply these methods to more Though our ultimate goal, as noted above, is the descrip-

realistic quark Hamiltoniang2]. tion of quarks in nuclei, the model that we have studied in
It is useful to stress here another important difference bethis work is of importance to other areas of physics as well.

tween problems involving two-particle correlatiof@s in the  |n particular, it has generic relevance to boson mapping tech-

two-color delta modgland three-particle correlatiorias in niques and more specific relevance to superconducting prop-
the three-color delta model or more realistic quark models erties of condensed matter systefs].

When dealing with two-particle correlations, mapping tech-
nigues are useful, but not essential. Much the same physics
can be incorporated in quasiparticle methods. When dealing
with three-particle correlations, however, no analogous qua-
siparticle methods exist. As such, baryon mappings seem to This work was supported in part by the National Science
provide a unique tool for treating such correlation effects.Foundation under Grant Nos. PHY-9303041 and INT-
That being the case, it is of crucial importance that there nov@224875, by NATO under Grant No. CRG.900466, by the
exists a method, namely non-Hermitean Brueckner theoryBulgarian National Foundation for Scientific Research under
for suppressing unphysical components that result fronContract Nos.®-527 and ®-415 and by the DGICYT
guark exchange effects at short distances. (Spain under Contract No. PB 92/0021-C02-01. One of the

A limitation of the models discussed here is their restric-authors(M.V.S.) would like to acknowledge the support of a
tion to nonrelativistic dynamics. This is probably acceptablegrant from the Fulbright Foreign Scholar Program. Useful
for treating nuclear processes at low momentum transfergliscussions with Jonathan Engel in the early stages of this
However, it will no doubt be important to include relativistic investigation are also gratefully acknowledged.
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