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QCD scales in finite nuclei
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The role of QCD scales and chiral symmetry in finite nuclei is examined. The Dirac-Hartree mean-field
coupling constants of Nikolaus, Hoch, and MadlaiNHM) are scaled in accordance with the QCD-based
prescription of Manohar and Georgi. Whereas the 9 empirically based coupling constants of NHM span 13
orders of magnitude, the scaled coupling constants are almosataital, being dimensionless numbers of
order 1. We argue that this result provides good evidence that QCD and chiral symmetry apply to finite nuclei.
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PACS numbgs): 24.85:+p, 12.39.Fe, 21.16:k, 21.30.Fe

Although QCD is widely believed to be the underlying man [4] examined isospin violation in the nuclear force.
theory of the strong interaction, a direct description ofPark, Min, and Rhd5] were the first to treat external elec-
nuclear properties in terms of timatural degrees of freedom tromagnetic and weak interactions with nuclei. Nuclear pho-
of that theory, quarks and gluons, has proven elusive. Thtopion production was calculated by Beane, Lee, and van
problem is that at sufficiently low energy, tiiaysicalde-  Kolck [6]. Threshold#° production inpp collisions has
grees of freedom of nuclei are nucleons gimdranucleay  been recently treated {iv]. Most of this work was focused
pions. Nevertheless, QCD can be mapped onto the latter Hilen few-nucleon systems, where computational techniques are
bert space and the resulting effective field theory is capablgophisticated. Only was the work of Lyd8] on (nucleaj
in principle of providing a dynamical framework for nuclear chiral liquids specifically directed at heavier nuclei and,
calculations. This framework is usually called chiral pertur-more recently, Gelmini and RitZB] have calculated nuclear

bation theory §PT). matter properties using lowest-order nonlinear chiral effec-
Two organizing principles govern thjgPT: (1) (broken  tive Lagrangians. . _
chiral symmetry(which is manifest in QCDand (2) an ex- Is there any evidence for chiral symmetry or QCD scales

pansion in powers of @/A), whereQ is a general intra- in finite nuclei? The tractability and astonishing success of
nuclear momentum or pion mass, akds the generic QCD the recent few-nucleon calculations &H, °H, °He, “He,
large-mass scale 1 GeV, which in a loose sense indicates *He, °He, °Li, and °Be with only a weak three-nucleon
the transition region between the two alternative sets of deforce and no four-nucleon forcgl0] confirms Weinberg's
grees of freedom indicated aboftbat is, quark-gluon versus Ppower-counting predictior{1] in light nuclei and yields
nucleon-pion transitions Typically, one constructs Strong but indirect evidence for chiral symmetry. The work
Lagrangiangthat is, interactionsthat display(broken chiral ~ of Lynn [8] established a procedure for going beyond few-
symmetry and retains only those terms with exponents lesgucleon systems. Nucle&N-body) forces either have zero
than or equal to some fixed power @A ). The chiral sym- range or are generated by pion exchange. Following Mano-
metry itself provides a crucial constraint: a general term ha$ar and Geordill] we can scale a generic Lagrangian com-
the structure~ (Q/A)N andN=0 is mandated. This guaran- ponent as
tees that higher-order constructions in perturbation theory

- ]I = m n
(viz., loops will have even highernot lowen powers of [~—c yy ™ J",my F272 (1)
(Q/A). The price one pays for this mapping fraratural to mn £2A ) |, A e

effectivedegrees of freedom is an infinite series of interac-

tion terms, whose coefficients are unknown and must be dewhere ¢ and 7 are nucleon and pion fields, respectively,

termined from experiment. f . andm_ are the pion decay constant, 92.5 MeV, and pion
To date only a few nuclear calculations have been permass, 139.6 MeV, respectivelp~1 GeV has been dis-

formed within this framework. The seminal work of Wein- cussed above, and,m_) signifies either a derivative or

berg[1] highlighted the role of power counting and chiral the pion mass. Dirac matrices and isospin operaioesuse

symmetry in weakening N-body forces. That is, two-nucleong here rather tharr) have been ignored. Chiral symmetry

forces are stronger than three-nucleon forces, which arfemandg12]

stronger than four-nucleon forces, ... . This chain makes

nuclear physics tractable. A=l+n—-2=0. 2
Van Kolck and co-worker§2] developed a chiral nuclear

potential model, including one-loogtwo-pion exchange Thus the series contains orgpsitivepowers of(1/A). If the

contributions. Friar and Coof3] developed nonadiabatic theory is natural [8,11,13, the dimensionless coefficients

two-pion-exchange forces, while van Kolck, Friar, and Gold-c,,, are of order 1. Thus, all information on scales ultimately
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resides in theg,,. If they are natural, scaling works. Our TABLE I. Optimized coupling constants for the NHM Lagrang-
limited experience with nuclear-force models suggests thagn and corresponding dimensional power-counting coefficients and

natural coefficients are the rulg 4. chiral expansion order.
Unfortunately, zero-range nuclear-force models are not

widely used. However, a recent calculation has been pef“onstant Magnitude Dimension ¢,y Order

formed using zero-range forces for an extended range o&s —4508< 104 MeV —2 —1.93 AO

mass numbeA and this work provides significant new in- . 7403107 MeV ~2 0013 A°

formation on QCD and chiral symmetry in nuclei. Nikolaus, aT 3497 10°4 MeV —2 1'47 A©

Hoch, and MadlandNHM) [14] used a series of zero-range " 3.257>< 10°5 MeV -2 0'56 A0

interactions to perform Dirac-Hartree calculations in a means ™V ' 11 © _5 ' _1

field approximation for a total of 57 nuclei. Their Lagrangian Ps 1.110¢ 10_17 MEV_B 0.27 A_2

(using their notatiopis given by s 5.735¢ 10_17 Mev_s 8.98 A_2
Yv —4.389< 10 MeV —6.87 A

L= £free+ £4f +L hott Eder+ ‘Cemv (3) % —4.239<10° % Mev~* -181 A2

Sy —1.144x10° %0 MeV ~4 —0.49 A2

where L. and Lg, are the kinetic and electromagnetic
terms, respectively, and
. _ _ It was not motivated either by power counting or by chiral
Lys=— 3 as(Ph)(Ph) — 5 ay(y, b)) (Py*P) symmetry. The pion degrees of freedom are ignored and the
. . . Lagrangian is not complete; additional operators in each or-
— 3 ars( YY) - (Y1) = 5 ary(PTy ) - (YTYH), der of (1/A) are possible. Specifically, the NHM Lagrangian,
4) Eqgs.(4)—(6), has four operators in ordét/A)°, one opera-
tor in order(1/A)*, and four operators in ordét/A)?, con-
stituting an incomplete mix of three different orders (it

Lro=— 3 Bs(w)*~ § ys(yp)® A).
1 — — 2 Nevertheless, a meaningful comparison can be made of
s WLPrh Wy )%, 5) the generic chiral Lagrangian given by Eqg$) and(2) and
. _ _ _ the NHM Lagrangian given by Eq$4)—(6), precisely be-
Lae=— 3 80, 40) (0" ih) — 5 S D,hy ,th) (3" Yy ). cause our test of naturalness does not care whether a particu-

(6) lar ¢,y coefficient has the value 0.5 or 2.0 or some other
value near 1. Changingefining) the model by adding terms
In these equations) is the nucleon field, the subscripts would changeall of the ¢,,,, but the same test of natural-
SandV refer to the isoscalar-scalar and isoscalar-vector demess still applies. Adding new terms would simply change a
sities, respectively, and the subscriptSandTV refer to the  specific coefficient by an amount1 (or less. That is, test-
isovector-scalar and isovector-vector densities, respectivelyng naturalness is largely and uniquely independent of the
containing the nucleon isospin operatorThe nine coupling details, such as adding pions or performing more sophisti-
constants of the NHM Lagrangian were determined in a selfcated nuclear calculations, provided the framework is given
consistent procedure that solved the model equations for seby Egs.(1) and(2) while the physics is introduced via the
eral nuclei simultaneously in a nonlinear least-squares adneasured observables of nuclei.
justment algorithm with respect to measured ground-state The nine coupling constants of the NHM Lagrangian are
observablegTable IV of Ref.[14]). The predictive power of shown in Table I, both in dimensional and dimensionless
the extracted coupling constants is quite good both for otheform, the latter obtained by equating Ed$) and (4)—(6),
finite nuclei and for the properties of saturated nuclear mattefith A=1 GeV, using isospin operatotsin Eq. (1), and
(see Tables VIII, IX, and XI of Ref{14]). solving for ¢, in terms ofa, B, y, and 8. In the former
L4+ contains four two-nucleon-force terms correspondingform they span more than 13 orders of magnitude, while in
to A=0, and the first term oLy is a three-nucleon-force the latter form 6 of the 9 coupling constants can be regarded
term corresponding taA=1, whereas the remaining two as natural. Only the very smail;g and largeys and yy are
terms are four-nucleon-force terms corresponding\te2.  unnatural. However, the sum of the latter appears to be natu-
Finally, L4 contains two nonlocal two-nucleon-force terms, ral, and we speculate that the difference may not be well
also corresponding toA=2. The derivative terms act determined in the least-squares adjustments to the measured
on ¢y, rather than on just one of the fields, because the lattepbservables. The unnaturally smal}g, if correct, would
would generate a factdE=M, the nucleon mass, whereas presuppose a symmetry to preserve its small value.
the former generates an energy difference that is consider- Other unpublished calculations by NHM with fewer cou-
ably smaller. The latter terms would spoil the series in Eqpling constants led to somewhat different numerical results
(1), sinceM=A. However, either by a transformation or by for those constants, but application of the procedure above
rearranging the series, this problem could in principle beshows that they are mostly natural. This illustrates an impor-
eliminated[8]. tant point: the various terms in the Lagrangiérare sensi-
The construction of the NHM Lagrangian was motivatedtive to different nuclear properties. Thus, small changes in
by empirically based improvements to a Walecka-typethe larger coefficients do not drastically alter the smaller
scalar-vector moddl15,16], but using contactzero-rangg  ones. Another example of this is that Hartree-Fock calcula-
interactions to allow treatment of the Fo@xchanggterms.  tions with contact interactions are nothing more than Hartree
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calculations with slightly modified coefficients, obtained by where @, ,m,), (9,.m,), and @,,m,) are, respectively,

use of Fierz identitie$17]. The , B, 7y, and § terms do

the coupling constant and mass for ffietitious) o , w, and

not mix between types, but only within each type. The re-p meson exchange. The three coupling constants rapd

sults of [17] show that the exchange mixing within the
terms will not by itself destroy naturalness.

were determined from measured observables of finite nuclei
in the calculation, whereas, and m, have their nominal

Having obtained these results using Dirac-Hartree calcuvalues. Reinhard18] has compiled the results of 12 such
lations in a mean-field approximation with contact interac-calculations. Evaluating Eq$7)—(9) for the 12 and taking
tions, it is useful to compare them with corresponding calcuheir averages y|el_dsszs= —3.93x107%, ay=2.78<10"",
lations that use meson exchanges. Three of the four ordd@Nd ary=3.65<107". Clearly, these values compare well

(1/A)° coupling constants of Table | can be compared with

the latter calculations by using tlfapproximatg relations

2
2
N
2
aTV:(i—Z)' 9

with the corresponding results in Table I, yielding another
example of naturalness in finite nuclei.

Although these results were not obtained to test chiral
symmetry and QCD scales and hence are imperfect, they are
conversely completely unbiased. They are very indicative of
the role of chiral symmetry and QCD in finite nuclei, and
complement the work on chiral suppression of many-body
forces in light nuclei. A systematic study of the former ap-
proach is clearly indicated.

The work of J.L.F. and D.G.M. was performed under the
auspices of the U.S. Department of Energy.
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