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The role of QCD scales and chiral symmetry in finite nuclei is examined. The Dirac-Hartree mean
coupling constants of Nikolaus, Hoch, and Madland~NHM! are scaled in accordance with the QCD-bas
prescription of Manohar and Georgi. Whereas the 9 empirically based coupling constants of NHM sp
orders of magnitude, the scaled coupling constants are almost allnatural, being dimensionless numbers o
order 1. We argue that this result provides good evidence that QCD and chiral symmetry apply to finite n
@S0556-2813~96!04506-2#

PACS number~s!: 24.85.1p, 12.39.Fe, 21.10.2k, 21.30.Fe
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Although QCD is widely believed to be the underlyin
theory of the strong interaction, a direct description
nuclear properties in terms of thenaturaldegrees of freedom
of that theory, quarks and gluons, has proven elusive.
problem is that at sufficiently low energy, thephysicalde-
grees of freedom of nuclei are nucleons and~intranuclear!
pions. Nevertheless, QCD can be mapped onto the latter
bert space and the resulting effective field theory is capa
in principle of providing a dynamical framework for nuclea
calculations. This framework is usually called chiral pertu
bation theory (xPT!.

Two organizing principles govern thisxPT: ~1! ~broken!
chiral symmetry~which is manifest in QCD! and ~2! an ex-
pansion in powers of (Q/L), whereQ is a general intra-
nuclear momentum or pion mass, andL is the generic QCD
large-mass scale;1 GeV, which in a loose sense indicate
the transition region between the two alternative sets of
grees of freedom indicated above~that is, quark-gluon versus
nucleon-pion transitions!. Typically, one constructs
Lagrangians~that is, interactions! that display~broken! chiral
symmetry and retains only those terms with exponents
than or equal to some fixed power of~1/L). The chiral sym-
metry itself provides a crucial constraint: a general term h
the structure;(Q/L)N andN>0 is mandated. This guaran
tees that higher-order constructions in perturbation the
~viz., loops! will have even higher~not lower! powers of
(Q/L). The price one pays for this mapping fromnatural to
effectivedegrees of freedom is an infinite series of intera
tion terms, whose coefficients are unknown and must be
termined from experiment.

To date only a few nuclear calculations have been p
formed within this framework. The seminal work of Wein
berg @1# highlighted the role of power counting and chir
symmetry in weakening N-body forces. That is, two-nucle
forces are stronger than three-nucleon forces, which
stronger than four-nucleon forces, . . . . This chain mak
nuclear physics tractable.

Van Kolck and co-workers@2# developed a chiral nuclea
potential model, including one-loop~two-pion exchange!
contributions. Friar and Coon@3# developed nonadiabatic
two-pion-exchange forces, while van Kolck, Friar, and Go
5396/53~6!/3085~3!/$10.00
g
of

he

il-
ble
r
r-

s
e-

ess

as
-
ry

c-
de-

er-
-
l
n
are
es

d-

man @4# examined isospin violation in the nuclear force
Park, Min, and Rho@5# were the first to treat external elec
tromagnetic and weak interactions with nuclei. Nuclear ph
topion production was calculated by Beane, Lee, and v
Kolck @6#. Thresholdp0 production in pp collisions has
been recently treated in@7#. Most of this work was focused
on few-nucleon systems, where computational techniques
sophisticated. Only was the work of Lynn@8# on ~nuclear!
chiral liquids specifically directed at heavier nuclei an
more recently, Gelmini and Ritzi@9# have calculated nuclear
matter properties using lowest-order nonlinear chiral effe
tive Lagrangians.

Is there any evidence for chiral symmetry or QCD scal
in finite nuclei? The tractability and astonishing success
the recent few-nucleon calculations of2H, 3H, 3He, 4He,
5He, 6He, 6Li, and 6Be with only a weak three-nucleon
force and no four-nucleon force@10# confirms Weinberg’s
power-counting prediction@1# in light nuclei and yields
strong but indirect evidence for chiral symmetry. The wo
of Lynn @8# established a procedure for going beyond few
nucleon systems. Nuclear~N-body! forces either have zero
range or are generated by pion exchange. Following Man
har and Georgi@11# we can scale a generic Lagrangian com
ponent as

L;2clmnF c̄c

f p
2L

G lF pW

f p
GmF ]m,mp

L
Gnf p

2L2, ~1!

wherec and pW are nucleon and pion fields, respectively
f p andmp are the pion decay constant, 92.5 MeV, and pio
mass, 139.6 MeV, respectively,L;1 GeV has been dis-
cussed above, and (]m,mp) signifies either a derivative or
the pion mass. Dirac matrices and isospin operators~we use
tW here rather thantW ) have been ignored. Chiral symmetr
demands@12#

D5 l1n22>0. ~2!

Thus the series contains onlypositivepowers of~1/L). If the
theory is natural @8,11,13#, the dimensionless coefficients
clmn are of order 1. Thus, all information on scales ultimate
3085 © 1996 The American Physical Society
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resides in theclmn . If they are natural, scaling works. Our
limited experience with nuclear-force models suggests th
natural coefficients are the rule@2,4#.

Unfortunately, zero-range nuclear-force models are n
widely used. However, a recent calculation has been pe
formed using zero-range forces for an extended range
mass numberA and this work provides significant new in-
formation on QCD and chiral symmetry in nuclei. Nikolaus
Hoch, and Madland~NHM! @14# used a series of zero-range
interactions to perform Dirac-Hartree calculations in a mea
field approximation for a total of 57 nuclei. Their Lagrangian
~using their notation! is given by

L5Lfree1L4 f1L hot1Lder1Lem, ~3!

where Lfree and Lem are the kinetic and electromagnetic
terms, respectively, and

L4 f52 1
2 aS~ c̄c!~c̄c!2 1

2 aV~ c̄gmc!~c̄gmc!

2 1
2 aTS~ c̄tWc!•~ c̄tWc!2 1

2 aTV~ c̄tWgmc!•~ c̄tWgmc!,

~4!

Lhot52 1
3 bS~ c̄c!32 1

4 gS~ c̄c!4

2 1
4 gV@~ c̄gmc!~c̄gmc!#2, ~5!

Lder52 1
2 dS~]nc̄c!~]nc̄c!2 1

2 dV~]nc̄gmc!~]nc̄gmc!.
~6!

In these equations,c is the nucleon field, the subscripts
S andV refer to the isoscalar-scalar and isoscalar-vector de
sities, respectively, and the subscriptsTSandTV refer to the
isovector-scalar and isovector-vector densities, respective
containing the nucleon isospin operatortW . The nine coupling
constants of the NHM Lagrangian were determined in a se
consistent procedure that solved the model equations for s
eral nuclei simultaneously in a nonlinear least-squares a
justment algorithm with respect to measured ground-sta
observables~Table IV of Ref.@14#!. The predictive power of
the extracted coupling constants is quite good both for oth
finite nuclei and for the properties of saturated nuclear matt
~see Tables VIII, IX, and XI of Ref.@14#!.
L4 f contains four two-nucleon-force terms correspondin

to D50, and the first term ofLhot is a three-nucleon-force
term corresponding toD51, whereas the remaining two
terms are four-nucleon-force terms corresponding toD52.
Finally, Lder contains two nonlocal two-nucleon-force terms
also corresponding toD52. The derivative terms act
on c̄c, rather than on just one of the fields, because the lat
would generate a factorE>M , the nucleon mass, whereas
the former generates an energy difference that is consid
ably smaller. The latter terms would spoil the series in E
~1!, sinceM>L. However, either by a transformation or by
rearranging the series, this problem could in principle b
eliminated@8#.

The construction of the NHM Lagrangian was motivate
by empirically based improvements to a Walecka-typ
scalar-vector model@15,16#, but using contact~zero-range!
interactions to allow treatment of the Fock~exchange! terms.
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It was not motivated either by power counting or by chira
symmetry. The pion degrees of freedom are ignored and t
Lagrangian is not complete; additional operators in each o
der of~1/L) are possible. Specifically, the NHM Lagrangian
Eqs.~4!–~6!, has four operators in order~1/L)0, one opera-
tor in order~1/L)1, and four operators in order~1/L)2, con-
stituting an incomplete mix of three different orders in~1/
L).

Nevertheless, a meaningful comparison can be made
the generic chiral Lagrangian given by Eqs.~1! and ~2! and
the NHM Lagrangian given by Eqs.~4!–~6!, precisely be-
cause our test of naturalness does not care whether a part
lar clmn coefficient has the value 0.5 or 2.0 or some othe
value near 1. Changing~refining! the model by adding terms
would changeall of the clmn , but the same test of natural-
ness still applies. Adding new terms would simply change
specific coefficient by an amount;1 ~or less!. That is, test-
ing naturalness is largely and uniquely independent of t
details, such as adding pions or performing more sophis
cated nuclear calculations, provided the framework is give
by Eqs.~1! and ~2! while the physics is introduced via the
measured observables of nuclei.

The nine coupling constants of the NHM Lagrangian ar
shown in Table I, both in dimensional and dimensionles
form, the latter obtained by equating Eqs.~1! and ~4!–~6!,
with L51 GeV, using isospin operatorstW in Eq. ~1!, and
solving for clmn in terms ofa, b, g, andd. In the former
form they span more than 13 orders of magnitude, while
the latter form 6 of the 9 coupling constants can be regard
as natural. Only the very smallaTS and largegS andgV are
unnatural. However, the sum of the latter appears to be na
ral, and we speculate that the difference may not be w
determined in the least-squares adjustments to the measu
observables. The unnaturally smallaTS, if correct, would
presuppose a symmetry to preserve its small value.

Other unpublished calculations by NHM with fewer cou
pling constants led to somewhat different numerical resu
for those constants, but application of the procedure abo
shows that they are mostly natural. This illustrates an impo
tant point: the various terms in the LagrangianL are sensi-
tive to different nuclear properties. Thus, small changes
the larger coefficients do not drastically alter the smalle
ones. Another example of this is that Hartree-Fock calcul
tions with contact interactions are nothing more than Hartr

TABLE I. Optimized coupling constants for the NHM Lagrang-
ian and corresponding dimensional power-counting coefficients a
chiral expansion order.

Constant Magnitude Dimension clmn Order

aS 24.50831024 MeV22 21.93 L0

aTS 7.40331027 MeV22 0.013 L0

aV 3.42731024 MeV22 1.47 L0

aTV 3.25731025 MeV22 0.56 L0

bS 1.110310211 MeV25 0.27 L21

gS 5.735310217 MeV28 8.98 L22

gV 24.389310217 MeV28 26.87 L22

dS 24.239310210 MeV24 21.81 L22

dV 21.144310210 MeV24 20.49 L22
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calculations with slightly modified coefficients, obtained by
use of Fierz identities@17#. The a, b, g, andd terms do
not mix between types, but only within each type. The re
sults of @17# show that the exchange mixing within thea
terms will not by itself destroy naturalness.

Having obtained these results using Dirac-Hartree calcu
lations in a mean-field approximation with contact interac
tions, it is useful to compare them with corresponding calcu
lations that use meson exchanges. Three of the four ord
(1/L)0 coupling constants of Table I can be compared with
the latter calculations by using the~approximate! relations

aS52S gs

ms
D 2, ~7!

aV5S gv

mv
D 2, ~8!

aTV5S gr

mr
D 2, ~9!
-

-
-
-
er

where (gs ,ms), (gv ,mv), and (gr ,mr) are, respectively,
the coupling constant and mass for the~fictitious! s , v, and
r meson exchange. The three coupling constants andms
were determined from measured observables of finite nuc
in the calculation, whereasmv andmr have their nominal
values. Reinhard@18# has compiled the results of 12 such
calculations. Evaluating Eqs.~7!–~9! for the 12 and taking
their averages yieldsaS523.9331024, aV52.7831024,
and aTV53.6531025. Clearly, these values compare wel
with the corresponding results in Table I, yielding anothe
example of naturalness in finite nuclei.

Although these results were not obtained to test chir
symmetry and QCD scales and hence are imperfect, they
conversely completely unbiased. They are very indicative
the role of chiral symmetry and QCD in finite nuclei, and
complement the work on chiral suppression of many-bod
forces in light nuclei. A systematic study of the former ap
proach is clearly indicated.

The work of J.L.F. and D.G.M. was performed under th
auspices of the U.S. Department of Energy.
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