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Transport coefficients of a hot pion gas
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General expressions for transport coefficients of a single-componefmaa®ly, thermal conductivity and
shear and bulk viscositiesf bosons are derived from a Boltzmann-Uehling-Uhlenbeck transport equation by
means of the Chapman-Enskog method to first order. These expressions are then used for the calculation of the
associated transport relaxation times and applied to the pion gas produced in ultrarelativistic heavy-ion colli-
sions. The influence of Bose enhancement factors on transport properties can be seen by comparison with
previous calculationd.S0556-28186)02306-0

PACS numbes): 25.75~q, 05.60+w

I. INTRODUCTION The paper is organized as follows. In the second section
we will recall some basic equations and give the general
The transport properties of a system out of equilibriumformulas for thermodynamic quantities at equilibrium. In the

are governed by some phenomenological coefficiémams-  third section, we will develop the Chapman-Enskog formal-
port coefficients which relate flows to thermodynamic ism and apply it to our transport equation in order to obtain
forces. In other words, these coefficients characterize ththe expressions of the three transport coefficiétitermal
magnitude of the response of the systélows) to a certain  conductivity and shear and bulk viscosifietn the fourth
disturbancéthermodynamic forcgsThey have already been section we will derive the corresponding relaxation times.
derived in the context of nonrelativistid,2] and relativistic ~ All the numerical results are given for a pion gas and com-
kinetic theory[3,4] but only, to our knowledge, with the use pared with those previously obtained[] and[10].
of a Boltzmann collision terni.e., without Bose enhance-
ment factors Our aim is to generalize the treatment given in 1. BASIC EQUATIONS AND THERMODYNAMIC
[5-7] to a transport equation with a Boltzmann-Uehling- EQUILIBRIUM

Uhlenbeck collision ternt: _
From a formal exchange of the four variabfep’,p;, and

p;, it can be easily proved from Eql) that
p#a“f(x,p):f f f dwdw’dwy[f'f1(1+Agf)

dp
X (14 Aofy) — FFo(1+ Agf ) (1+ Agf )] J 20 (DS=0 ©
XW(pp1/p'p1) where S, can be any linear combination @* and some
—1(f) ) constantgthese are called summational invariants

From this equation and E¢l) we can then deduce, as for
a Boltzmann collision term, that the mass four-flow and the
energy-momentum tensor defined as the first and second mo-
ments of the distribution functiom{ is the mass of the par-

W:UP26(4)(pa+pg_pra_ p:rLa) (2) t|C|e),

where f=f(x,p),f'=f(x,p’), etc., dw=d3p/p°®, and the
collision rateW is related to the differential cross section by

d3
with P=[—(p“+p7)(Pat P1a) 1" M“(x)=m0f )

Furthermore, an application of such calculations is the P
hadronic phasdwhich will be supposed here only consti- d3
tuted of pion$ produced in ultrarelativistic heavy-ion colli- TILV(X):CJ _(?p,upr(X,p), (4)
sions at CERN and in the near future at the BNL Relativistic p
Heavy lon Collider(RHIC). The dissipative effectgcon-

trolled by transport coefficientaind the different time scales are conserved:

(characterized by relaxation timesver which particles pro- 9 TH=0,
duced are equilibrated are important in order to describe pre- .
cisely the space-time evolution of these collisions. J,M#=0. (5)

Let us now introduce another fundamental quantity which
The notations are those of RET]. In particular,A, is a constant ~ will be used further: the hydrodynamic four-velocity*. It
that makesAof dimensionles§A,=(27#)%] and we use the metric is a timelike vector with norne: U#U ,= —c?. From it, we
g%=-1g"=19%?=10%=1, and 0 for the other components. ~can construct a projector on the spatial part:
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AFY=gH?+c 2U#U". Furthermore, the relation between Agl
U* and the other quantities will be chosen such (atkart fedP)=—4 Uikt 1" (14
choice[5]) B
M#“=pU*. 6) By using the above definitions, we can then obtain the
following equilibrium formulas
At this point, one must note that this choice is only possible 3 A1 1
if there is a conserved charge in the system. In this paper, as p=4mm-CAy kgTS, 7, (19
in [6,7,10, this charge is the mass. This choice is actually of y
fundamental importance for the calculation of the thermal p— pkeT S,
oo . = — (16)
conductivity: in the absence of a conserved charge, this co- m S
efficient vanishegthis has already been noted[i&] and in
the context of the pion gas [10] where a physical interpre- 53*1
tation based on a formal analogy with thermal conductivity pe=—P+p—xc? (17)
in insulators is proposed S
The choice of the velocity made, we can determine the 1
density uniql_Jer. Effectively, by contraction witd ,, the h= szlczzﬁcz, (18)
above equation reads S,
p=—C2M*U,. (7) UrU”
TH'=pe—=—+PA*, (19
An important remark concerningy) is that the density is ¢
actually defined in a permanent rest fraifthe frame in “_
which U#=(c,0)]. Similarly, we define the energy density =0,
in the same frame as
m#**=0 (20

=c 2 124

pe=C U, T, ® with z=mc@/kgT, St=3;_,ekm/keTkeK (kZ), andK, the

With U#, we can also construct an energy four-flowi¢ the ~ MacDonald function. Note that the suBf introduced above

enthalpy: is such that the first term corresponds to the case of a Bolt-
zmann equilibrium distribution function so that a comparison

lg=(hM7+U, T")A #,, (99 with the results of6,7] is possible at each step of the calcu-

lation.

and a pressure tensor:

lll. TRANSPORT COEFFICIENTS
PHY=A #* TI7A ¥ =PA*+11#7, (10
A. Chapman-Enskog expansion
Let us now turn to the equilibrium properties and, as a

consequence, to the entropy production. The four-entropy i8f The Chapman-Enskog expansion is used to find a solution

transport equations in the so-called hydrodynamic regime.

equal to In this regime, a system tries to smooth spatial inhomogene-

d3p ities to go from local to global equilibrium. Local equilib-

5"(X)=—kscf —5 P AofIN(Agf) — (1+ Agf) rium means that at each point the distribution function is
p equal to
XIn(1+Apf)] 11 AL
0
. L fO(x,p)= m (21

so that the entropy density, also defined in the permanent rest e~ [PLU* )+ mu)/kgT()] 9

frame, reads
(wherew, U#, andT are nowparameterswvhich depend on
SU, X).
pPS== - (12 Physically, “local” means that the mean free pathis
less than a distanck over which macroscopic quantities
By taking the derivative and using the mass conservation lawuch asT can vary appreciably and that the time between

(5), one can then write from Eq12) (D=U"4,) two collisions is smaller than the time needed for a macro-
scopic parameter to change significantly. Actually, one as-
pDs=—d,(A""S,)+0. (13 sumes that a system can be divided into volumes large com-

pared to the mean free path and small enough so That
This relation can be seen as a balance equation for the ep;, or U# is uniform inside. The Chapman-Enskog expansion

tropy. Thus, by definitiong=43,S" is the entropy produc- s performed with respect te (e=\/L<1 in the hydrody-
tion. When the equilibrium is reached, vanishes and the namic regimg

resolution of the equatiomr=0 leads to the equilibrium
function fo,. Of course, one finds the usual Bose-Einstein  f(x,p)=f©(x,p) + ef Y (x,p) + {2 (x,p) + - - -
distribution (22



53 TRANSPORT COEFFICIENTS OF A HOT PION GAS 3071

We are going to restrict ourselves to the first order and writgium, the relation between flows and thermodynamic forces

f, for convenience, as can be approximated by a linear law:
f(x,p) = (x,p) + O, p)[ 1+ Aof P (x,p) 1 p(X, p) 14=—NA*"(9,T+c ?TDU¥), (29
(23
[I#7'=—2p(*U") — n,A*"3,UY (30)

wheref(© is given by(21). We have to remark that in this
expressionu, T, andU” areparametersin order to identify ~ (if t*” is a tensor, (t*")=[3(A*7A°+AVYAH0)

T with the temperature, we have previously used the pressure 3§ A“”A 75]t75; (t*"y is thus space-space-like and trace-
tensor. However, in a nonequilibrium system this tensor idesy. Of course the decompositid80) and (29), which de-

not reduced to a scalar. Since it seems natural to associdfi@ees the three transport coefficients of a single-component
T(x) with the local temperature angd(x) with the local gas Q, the thermal conductivityy,, the shear viscosity, and
chemical potential, we will impose that the density and they,, the bulk viscosity, is, although conventional, com-
energy density must be equal to those calculated at equililpletely arbitrary.

rium: We have two expressions at our disposal for the flows:
one phenomenologicgEg. (30)], coming from the entropy
p(x)=4mmPcAy ke T(x)S; [z(x)], production, and another one coming from the Chapman-
Enskog expansiofEq. (27)]. The consequence of consider-
pksT(X) S, 4 z(x)] S; z(x)] ) ing only the first order in this expansion is thus now clear:
p(X)e(x)=— S, [z(x)] TP x)mc - the knowledge ofp is sufficient to obtain the expression of

(24)  the transport coefficients. Moreover, to first order, the ther-
modynamic laws are still available. To illustrate this point,
These equations have thus to be considered as the definitiolet us replace (x,p) by its expressiori23) in (12):
for T(x) and w(x). This natural choice imposes some con-

straints on¢ [see Eq(7)]: Kg
o [ a(7] s= p_cf deMUM( [Aof(O)InAof(")—(1+A0f<°>)

fdw(p”‘U“)f<°>(1+Aof<°))¢=0, XIN(1+Agf(©@)]— Agf O (1+Ayf (@)

Af©@
1+Aof<°>) ] ' 3

. . -The last term, describing the correction to the entropy due to
These constraints reflect that, by choice, only the local equi . is proportional tofdwp“UMAof(O)(lJerf(O))¢> and

librium distribution function contributes to the calculation of 4
. A iz 2 (0) (0) i
local densities. In the same spirit, in order to preserve thd W(P*U.) Aot (1+Acf™) ¢ and is thus equal to zero

relation MA(x) = p(x)U(x), that is, to interpreU#(x) as y virtue of Eq.(25): to first order, the Chapman-Enskog
the local velocity, one must impose expansion does not contribute to the entropy:s(®). More-
’ over, it is possible to check, with the definitions Mf* and

f dW(p, U201+ A F ) p=0. (25) X ¢ln

T#”, thats can be written as
f dwp,fO(1+A,f?)¢p=0. (26)
1+P )1(h ) (Eulerf la
=—|le+——ul|==(h— uler formulg.
Whereasg plays no role for local densities, it does enter in p #Imr K
the expression of the flows: (32
14=(U, T +hM?)A * S])Q;Laking the derivative of16), it is easy to show explicitly
=cf dw (p,U")+mh]p,A7#fO(1+ Ay )¢,
d,P=pTd, T +phT 19, T (Gibbs-Duhem (33)

T"“’=T"“’(0)+CJ dwptp’fO(1+A,f@)¢p. (270 or, equivalently,

. 19 P= +a,u.
One can also remark that the calculation of the entropy pro- p0P=s,THd,p (34
duction with the formulg13) gives By differentiation of(32), we then obtain
To,s=d,e+Pa,p ! (35

o=— chf p,d"f® pdw. (29

which is thesecond thermodynamic las a conclusion, we
By replacingf(® by its expression, one would obtain, as in can say that all the relations of thermodynamics remain valid
the nonrelativistic case, a bilinear form between these flow$or a system out of equilibrium, to first order in the
and these thermodynamic forces. Moreover, sigichas to  Chapman-Enskog expansiaf,the quantities in these ther-
be considered as a perturbation, i.e., we are close to equilimnodynamic relations are defined in the local rest frame.
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B. Linear Boltzmann equation

P
= — — I3
The comparison betwedB0) and(27) clearly shows that De p 9.V, (39

the calculation of transport coefficients reduces to the deter-
mination of the quantityp. As a conseqguence, we now turn A,,P=—phc ?DU,. (40
to the resolution of our transport equati).

If we replacef by its expressiori23) in Eq. (1), we arrive  Keeping Eq.(39) and transforming Eq40) with the help of
at the Gibbs-Duhem relation, we can write

) De=—(P/p)a,U",
paa“f<°>:f<°>f dw’ dwydw; F{0(1+Aof ©)(1+Axf ;) (Plp)s,

. - Dh=TD(u/T)+hT DT. (41)
X[ @+ P1— "~ h1]W(Pp1/p' Py
If we now expandDe andDh as

= ¢l (36)
whereC [ ¢] representshe collision integral De= _® D(ﬁ +—| DT,
The aim is to calculate explicitly the left hand side in HpIMr \T)dT] p
terms of the thermodynamic forces entering in E3f)). First
of all, we can notice that dh n
o Ut ma Dh—m ; ? +ﬁ ’u/TDT, (42
&“f(‘)):a“(“—)f(o)(1+A0f(°)). (37)
B

we obtain a system of equations fow/T) andDT. Using
By writing d,=—c 2U ,D+A*"9,=—c 2U,D+V, [i.e (7) and (17), this system can be solved after a straightfor-
m I v m p L=

by splitting time derivatives @) and gradients Y,)], we ~ ‘vard but tedious calculation:

realize immediately that we are confronted with terms such

-1 —(1— A v
asDT andD(u/T). Such terms do not enter in the expres- T DT=(1=v")a,U% (43)
sion of the thermodynamic forces; thus they have to be T
eliminated. This is possible if we use the conservation laws TD(E) :((y”—l)h— ywi a, U, (44)
"M ,=0,A,,d,TP"=0, andU,d, T#"=0. The result reads T m
Dp=—pd, U*, (39  with

, (82/82_1)2—(Sg/Sz_l)Z-f—42_18283_1/(82_1)2-1-2_152/52_1

Y T (SYs, H2=(SUsS, N2 43z 1S0S, 1/(S, 2+ 2z 18YS, 7 2 (45)
2—2
voL (SYS, 52— (SYs, H2+327 189S /(S 1) 2+ 227 1SYs, -7 (46)
" SIS, 1+52 1831S, 1 538y 1(S, 1)’
VS, P (SYs; 8 S (S VP 2r S @)
|
With these results it is then easy to obtain (36) which is the generalization of the usual linear equatisee

[5,6)). In the left hand side of this equation thermodynamic
forces with different tensorial rank appear. Because of the

[Qa,U"— paA“ﬁ(p#U“erh)(T*laBTJr c*ZDUB) Curie principle, we can thus deduce thatmust be of the
form

+H(PaPp)(dUA)TFO(L+ A ) =keTC[¢] (48)
$=Ad,U"+B,APT 15T+ ?DUp) +C,p(3°UP).
with (49
The transport coefficients then read

+c [(y"—1)mh

Q=- %(mc)2+(pﬂU“)20‘2(g— Y

" =—Cc| A f(o) 1+A f(O) dw, 50
— kBT]p,uU'uv e f Q ( 0 ) ( )
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)\:_ECTlf de(O)(1+Aof(O))(pVUV+mh)Bapa, 0.2 LIRS S B B L o 0.2 =R LN I L
3 812 £ (first order) 3 Lg 8:2
) 014 "o 22 0145 (first order)
1 ‘ 23

5=~ 15° f dwf O (1+Asf @) Cop(p*pf), (52

7,c2 X 1000 (GeV ¢ fm™)

L LA BRI LAY LI BB S

with A, B,,, andC,z solutions of

O

Hence one just has to determive B,, andC,,; to have

C[A]=(kgT) 1QfO(1+A,f?), (53 50 100 150 200 50 100 150 200
T (MeV) T (MeV)
— -1 14 0 0 o~ 0.2 prmr LU TT T 1]

C[B,]=(ksT) " *(p,U"+mh)A ,zpPfO(1+Aof' )).(54) T o8t ' AR = —100 MoV
g 8:2 E: (first order) _z o Zz B5OM:1\?V
CLCLpl=(kgT) " HPapp) fO(1+Af?). (55 gonzg /< —— jo = +50 MeV
v O1E % I f = +100 MeV

& 0.08 E Boltzmann

access to the transport coefficients. The technical details for o:gi 3
obtaining these quantities are given in Appendix A. At this 0.02 g e
point, one must notice tha, B,, andC,; are only deter- %0 100 150 200
mined perturbatively. That implies that we will obtain the T (MeV)

corresponding transport coefficients perturbatively as well.
Nevertheless, the numerical results shown in the next section FIG. 1. Transport coefficients computed from a Bose-Einstein
exhibit clearly the fact that the convergence is fast. distribution and for different values of chemical potential.

C. Numerical results (this work) with various values of the chemical potential.

As indicated in the introduction, all the numerical results When u,—— and more generally when,<0 and
will be given for the case of the hot pion gas produced inm/T_> 1, both cases are identical: the Bp;e enhancement fac-
ultrarelativistic heavy-ion collisions. Several comments ontors in the collision integral play a negligible role. However,
the applicability of the formalism developed in the preceding®S S00N agt, increasessay, u,>0 or m/T>1), the results
section are therefore necessary. The first one concerns ti§&hibit large differences. For example, Bt 150 MeV, the
chemical potential. Rigorously, the only conserved chargé’mk viscosity varies by a factor of 2.5, the shear viscosity is
for the pion system is the electric charge. However, the exdecreased by more than 50%, and the thermal conductivity
perimental data clearly show that pion-pion scattering iy 15%. This implies, for instance, that for a given thermal
elastic up to 1 GeV. Hence, in the energy range relevant fogradient, the energy flow, whose role is to smooth the effects
our problem, the number of pions is conserved with an ex9f the gradient, will be decreased by 15%. As a consequence,
cellent approximation. This allows the phenomenological in-
troduction of a chemical potential associated with the total
number of pions as pointed out by many auth@se Ref.
[12], for instance. Moreover, this conservation of the total
number of pions implies automatically the conservation of
the masqused in the preceding sectijon

If we now apply the formulasgiven in Appendix A for
the Boltzmann case, we recover the results given in Fgf.
(Fig. 1) from which we can make two conclusions: first of
all, the Chapman-Enskog expansion converges very rapidly
for N and »s; secondly,n,, the convergence of which is
less rapid, is much smaller than the other transport coeffi-
cients. So only the first order will be necessary to discuss the
order of magnitude of the effect of Bose-Einstein factors in

0.2_||||||||||||I|I|l|||l|lllllll

0.18 (massive pions)
s 1% order

0.16 F - 27
. 3!6

7,c"X 1000

Transport coefficients (GeV ¢ fm™)
o
N

0.08

our region of interestsay, 100 MeV<T<200 MeV for the 0.06 e e
hot pion gas A
On Fig. 2 is thus depicted, to first order, the comparison 004l  ___=F g
between the results obtained from a Boltzmann-like collision ~  E==mm=7-=
term (Ref. [6]) and from a Bose-Einstein-like collision term 0.02 Fmm=esss

1 I 1) ' 11 ) I 111 ' 1)) I | S -] I | I -] I 110
0
60 80 100 120 140 160 180 200

>The numerical results are presented here with the commonly used T (MeV)
units h/2r=kg=c=1, so that the temperature is expressed in en-
ergy units. Moreover, the cross section used in numerical calcula- FIG. 2. Transport coefficients up to third order calculated with a
tions is the one described [6]. Boltzmann distribution(cf. [6]).
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one could think that the system will reach its equilibrium  If the explicit dependence on flows is conserved, the con-
state in a longer time. Actually, this qualitative reasoningservations laws of mass and energy and the equation of mo-
does not hold: a more precise study based on the quantitié®n can be generalized as

that really govern the time scales of a system, namely, the Dp=—pV ,U* (60)
relaxation times, can show the opposite behavior. The calcu- we
lation of these quantities is the subject of the next section. pDe=—-PV U”"+ c‘2VMIg, (61

IV. RELAXATION TIMES phc ?DU#=—V#P—c ?DIf-V II*". (62

It is impossible to have access to the relaxation times with This implies that the formulagd3) and (44) giving DT

the Chapman-Enskog formalism because it gives an infinit@n‘.j D(u/T) In terms ofv,U* (=_¢9MU“) aré no longer
speed for the flowpmathematically, this comes from the fact val|d.' Follqwmg the same steps as in the previous paragraph,
that we neglect all the gradients of the flows in the conser"® finds instead
vation laws (see[5])]. Thus we will use in the following
another method for solving our transport equation, the mo-

ment method([5] and references therginThis method is

more general than the Chapman-Enskog one in the sense that A KB
the validity is not limited to situations where the mean free TD(T) _{(7 —Dh—vy W}
path is smaller than the characteristimacroscopig length ,

of the problem. However, it must be noticed that we do not _ 5—V |v (64)
use here this moment method in order to generalize the pre- p U

vious section or because we want to consider a different .
system with new physical hypotheses but only in order toV!

5
T‘lDTz(l—y’)(V,,U”Jr Ewg), (63

14 5 14
vV, U+ Evqu

th

have access to the relaxation times. SIS, 21(S, )2
If we assume, as in the previous section, that we are close 0= 1— (Sgsgl_sgsgl)/(sgl)Zv (65
to equilibrium it is possible to look for a solution of the
transport equation in the same form as Ezf): , -1
o :1_( 05, T-S3S, D)/(S, )2 (66)
F0,p) = O, p) + O x, P 1+ Agf (X, ) I $(x.P) Se% 5% (S )
(56) Following step by step the procedure of the last section,

o ) we can derive the new linear transport equation. The left
wheref(© is given by(21). Moreover, becausgis a scalar  hand side of58) is, for instance,

function of x* and p#, ¢ can be expressed as a complete

sum of scalar products between tensors depending'@nd ¢ _gef(0 =014+ A )i ¢| 71— m_h) v
tensors depending op* (cf. [5]): “ keT) ¢ T
$=A(X,7) = B, (X, DI+ Cp (6, )(TAIT) - VP Uy + QYU
# " 57 +CH“pkBT/m+H“Hﬁ<V U +Qv, U
wherell#=A*"T1,, T1#=cp*/kgT, and7=—p*U,/KgT. +c 711 ,DUPH 7 T(l—y’)+m—h(y”—1)
Moreover, we will still assume thak,u, andU* repre- kgT

sent, respectively, the temperature, the chemical potential, 5 Iy

and the hydrodynamic velocity, that is, we will still impose - y”’)—va|g— VJS‘} , (67)
the conditions(25) and (26). ¢ is, on the other hand, a so- P pkgT/m

lution of the completetransport equatiotfwe have reintro-  \where

duced the term negligible in the Chapman-Enskog formal- Qz[cz/(kBT)Z]Q 68)

ism, i.e., in the hydrodynamic regime
This equation represents a generalization of the equation ob-
tained in[5]. For the right-hand side @&8), one just has to
replace¢ by its expression57).

The convergence of the method is based on the fact that the pThe qps)ro)éedure pis now“i szmdard and makes use of the

necessary to determine a solution(68). Explicitly, we will  form

truncate the sum57) after (I1#I1”) and will expandA, 5
B,, andC,, in powers ofr, the last power being the one
M mv =
which gives a nonzero contribution to the collision term. 5¢(X1P)—§0 TORN(x),

P10 = —O(1+ A O)p,a"p+CLp].  (58)

(69)
Under these restrictiong takes the form
1
2 1
_ Sp(x,p)=—T1*D. 756B3(x), (70)
$=2, AS(X) 75— 2 BS(x) 714+ CY (x)(ITAIT"). poep 20 w9
s=0 s=0

(59) 8p(x,p)=(IT*I1")5CY () (72)
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to obtain a set of distinct equations satisfiedAyB* , and
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CY,. Because of relationg25) and (26), on one hand, and 2222_""_‘0‘ are S
thanks to the expressions of the coefficients given in Appen- £ 20 HE 20F 3
dix B, on the other hand, one can determine some relations T 175 (r) = 1712 o\ E
between flows andA®,B5,, and wa. From the resulting 1212; : 125E 3
equationg5], one can extract the relaxation times with the 10 B, 4 10 K 3
results 7K ERE 3
Imdi M [(ve)? 200504t va(vs)? 2’8 IR 2‘8 . ;
™= 402 pkgT (v2)2—v 103 Us|» 700 120 140 160 180 200 100 120 140 160 180 200
(72) - T (MeV) T (MeV)
P T T
-2 ‘v 225E 4
poiaTme el Lila o } (73 £ 2¢ E
B1 pkgT| mh B1 b 175 F (1) 3 _ _ _ u=0 MeV
1212 E : e u= +?8OMM6\</
7s=2[ Us]ll 5112, (74) 10 & —§ ........ goltztnonn °
pkeT (So) 7.5 & =
5E
with 258"
Sy 800120 140 160 1(80 2)00
V1=Z=1» (75) T (MeV
S
Sg FIG. 3. Relaxation times associated with the different transport
Vo= Z§ —1, (76) coefficients.
0 -1
U3222 —1+3Z_183—1}, (77)
S, S, First of all, we can notice that the relaxation times are pro-
$ ng portional to the corresponding transport coefficients. Thus
04223{j+15z—21+22—1 , (78)  the reduction found in the last section will imply a decrease
S, S, of the relaxation times as well. Therefore the linear [483®
0 -2 -1 -3 must not be interpreted naively as in Sec. Ill C. They actu-
vs=2" il+152282_1+621<83_1+152283_1”, ally mean that the flows needed to reach equilibrium for a
S S, S S “Bose-Einstein” system are smaller than for a “Boltz-
(79) mann” system; but they do not give any information on the
Sgl velocity of the flow.
l1=3z—, (80 The relaxation times are depicted on Fig. 3 for several
S values of the chemical potential. One can see that these times
552 are(for u,=0) smaller by 15% foil = 150 MeV than those
l,=15z—1 + 322, (81)  obtained with a Boltzmann distributicisee Ref[6]) or in a
S relaxation time approximatiofsee Ref[10]). This is mainly
552 S;l 83’3 due to the fact that the relaxation times are proportional to
l3=1522—5+328 =1 +90z—, (82  the transport coefficientésee the comment abovand in-
S S S versely proportional to the densitywe know that, for some
S;Z given temperature and chemical potentiglg> pgoriz) - It IS
so=10z—=, (83)  also interesting to look at the case wherg>0 because, as
S noticed in the litteraturé[12], for example, the hot pion gas
32—2 33—3 is thought to be out of chemical equilibrium. We remark that
S = 1022(—1+62‘1—l , (84  for u,=100 MeV, which represents a reasonable value for
S2 S2 the hot pion ga$12], the relaxation times are divided by 3.
(1) S i S 35t . For instance, at=150 MeV, the.gys_tem'needs aproximately
aZ:El §<§—z + §+ 7 Tl) [(1-9")h 2.5 fm to reach its thermal equilibrium instead of 7.5 fm.
Other calculations qualitatively and quantitatively confirm
4 sg 53*2 our results. In Refl.8], it has been shown that a characteristic
+y"27 - 377 (§+1522§+221) ] time scale(the mean collision time;) decreases when one
incorporates Bose enhancement factors. Moreover, at
(85  T=150 MeV andu,=100 MeV, these authors have ob-
-2 1,2 tained 7.~1 fm. In addition, it is known that only two or
B1=—32% 1+ 5271%Tl _(S%) } (86)  three collisions are needed to reach thermal equilibrium, that
S, is, 2 or 3 fm, as our calculation shows.
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V. CONCLUSION APPENDIX A: CALCULATIONS OF TRANSPORT

. - . COEFFICIENTS AT FIRST ORDER
We have derived the transport coefficients for a single-

component gas of bosons. Our results exhibit a large differ- Let us start with the relations satisfied By B,, and
ence from previous calculations. These coefficients have ;:
then been used for the determination of transport relaxation
times. It has been found that these times are much smaller C[A]= (kgT) QO (1+Ayf @), (A1)
than those computed with a Boltzmann distribution. From
this we can conclude that the pion gas is probably thermally
equilibrated at early stage of its lif@.5 fm compared with
about 10-20 fm If we look at the other relaxation times, we
can also say that the pion gas has enough time to dissipate all _ © ©
other gradientgvelocity, etc) before the freeze-out. CLCupl=(KsT) {PaPp) ™ (1+Aof™). (A3)
Several extensions of the present work are poss-
ible: a systematic study of the asymptotic values of therirst of all, we can remark that from linearity and Lorentz
transport coefficients in the nonrelativistic and ultrarelativ-invariance of the collision ternB,, and C,p Must be of the
istic limits, a generalization to mixtures, or the incorpor- fgrm BQZBAaﬁpﬁ and C,;=C(p,ps). Considering the
ation of fgrmions [the only d_iﬁerence for fermions is  first equation, multiplying it by Y2, a Laguerre polynomial
the equation of state; one just has to repla8¢ by  of order? and of degrea, and integrating o, we obtain
S, "=3,(—1)k*elkme/keNK (k2)]. The latter point is mo-
tivated by the aim of taking into account the effect of the
nucleons in the hadronic phase produced in ultrarelativistic f f f f FOFO1+ A O)(1+Af; )
heavy-ion collisions.
We must also notice that these results have been obtained X (Ag+ A —A' —ADLYA HyWdwdw dw,dw;
with a free cross section although we know that, due to me-
dium effects, the pion-pion interaction can be notably modi-
fied [13]. Finally, we can remark that chemical potentials of
about 100 MeV correspond to systems with a relatively high

density in which three-body interactions, not taken into ac,1qre 7=—(p,U*+m)/kgT is the kinetic energy in the
count in our transport equation, can play a non-negligibl

®ermanent rest frame.
role. After symmetrization[i.e., a formal exchange between
The author is indebted to J. Delorme and G. Chanfray fop<p;, p'<p;, and @,p1)<(p’.p;)] the above equation
a critical reading of the manuscript. reads

C[Ba] = (kBT)fl(pVU vy mh)AQﬁpr(@(l_,_Aof(O)),
(A2)

:(kBT)*lf dwLY2(1) FO(1+ A @), (A4)

zl"f f f fﬂo)ﬁo)(l+A0f'(0))(1+Aofi(0))A(A)A(L,l,/Z)dedwldw'dw{ = (kBT)‘lfde,l,’z(T)ffO)(l.FAof{O))Q

2
=L [A.L(7)] =L,
me me (A5)
|
A(F)=F+F,—F'—F}. (A6) +e m _
> amam=—a, (n=0,1,...) with
here m=0 P
w
U2 g 12
ThusA satisfies the symbolic equation amn=[Ln(7),Ly(7)]. (A9)

» m Moreover,a,, is symmetric @mnz a_nm) a_nd amo=am =0
[ALyA(7)]=—a, (n=01,...). (A7)  becausem andp” are summational invariants.

p We can also show in the same manner, starting from the
imposed conditions orp [Egs. (25) and (26)] that g and

The Laguerre polynomials are orthogonal polynomials SO, are equal to zero. EquatiaiA9) can then be written as
that we can expand as

+o0 —
A= 2 amL#Z(T). (A8) 3La(x) is defined byLZ(x)=30_o(h*&)(—=x)™m! and has a
m=0 property which we will use in the following:
LA(x+y)=2P_oLeTK(x)(—y)¥/k!. Moreover, L§(x)=1 and
Thus we obtain fom,, L{(X)=a+1—x.
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m

+ oo
> amamn=— n=23,.... (A10)
m=2 P

ap,

With these notations, the bulk viscosity, [Eq. (50)] be-
comes

+ 00

E anayp .

m n=2

pkBT
M=

(A11)

The complete sum gives, of course, the exact resultfpr
but in practice only the first few terms contribute. For in-
stance, the approximation of order 1 obtained when we keeWith

only the termn=2 reads formally| 7,1,= (pkgT/m) a(zl)az
with* aPay,=(m/p)a,, ie.,

2

2]
[7,]1= kBTa_- (A12)
22
In the same way,
pkBT
[7,]e=——— (a7 aptaf as) (A13)
with
m
axay) +azay :; ay,
m
ayay) +azay 2; as. (A14)
Then
aja33— 2apa38,3+ a5ag,

2
Q2833 A3
We now have to determine the coefficieats, and «, .

We have fora,,,

amn=[LpA(7),LYA )]

m?c ,
=4—p2f f f fdwdwldw'dWQWf(O)fgo)(1+A0f 0)

1(0)

X(1+Aof 1 )ALRADIA{LYA 7)) (A16)

4aET?) represents the approximation of ordeffor the coefficient
am-
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We are going to simplify this expression by making the
change of variables described [#,11] which consists in
introducing the relative and global variablgs, g,,, P.,
and P/, defined as

0.= % (pla_ pa)!

9a=7 (P1a— P2, (A17)
Pe=PatPra=PetP1a=Py-
polar coordinates, P,  reads as

P=P(coshy, sinhy sind cosp, sinhy sing sing, sinhy coss).
Let us remark, then, that

e(1,=(0, co9) cosp, o sing, — sind),

e(5,=(0,— sing, cosp,0), (A18)
e(3)=(sinhy, coshy sing cosp, coshy
X sind sing, coshy cosd)

form an orthonormal basis of spacelike four-vectors.

Moreover, in the center of mass fram&® reads
P*=(P,0) andg“=(0,9) and e(”f):(o,a) have only space
components. Therefore we can write

g=g(sind cosp e;+sind sing e,+co ). (Al9)

Let us call® the scattering angle in the center of mass
frame @- g’ =g?cod) and still define the variablg such as
sinhgy=g/mc (so thatP=2mccoshy).

With these definitions, we can easily show that

Po=—2mc cosh/ coshy,

Jo= —mc sinhy sinhyy cos, (A20)

go= —mcsinhy sinhy cos®’ with cosy’
=c0s9 co —sind sin® cosp,
and, by introduction of the cross section

4m?

Amn= 2
p

c

(mc)6f fOFO1+Af @) (1

+AF OA{LYA N A{LYA 7))o sintPy cosBy

X sintfy sing sing sin® dy d¢ dé de do de.
(A21)

Moreover,
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OfO 1+ Agf @) (1+Af1?)

AS 2e(2m,u/kBT)e22 coshy coshy

(e~ [(Poc—goc+ mu)/2]/kgT _ 1)(e~[(Poct+goct mu) 2/ kgT _ 1)(6—[(Poc—g6c+ mu)/2]/kgT _ 1) (e [(Poct 9oC+mpu)/2)/kgT _ 1) ’

(A22)
Because this expression depends on neitheor 0] andq?we obtain
3m?cm? . sint?x(coshy sinhy)3e (22 coshy coshy)
8mn= PZAOZ (mc) f (eF+22 sinhy sinhy cosﬁ’_l)(eEJrZz sinhy sinhy cos) __ 1)
0 SN0 SN0\ (L} ALY )y dr d6 dO d A23
XF— -1 Mbn (MA{L(7)}dx dyr do ¢ (A23)
|
with a22 —A22 ,
E=2z(cosh} coshy—sinhy sinhy cosf) —mu/kgT, o 5o
ax = +LI(—2)a3; ,
F=2z(coshy coshy—sinhy sinhy cost’) —mul/kgT.
(R28) agr = A 21— 2)ag —[LJA-2) g | et
We have now to calculate (A31)
ax* = A{LYA ) A{LYA 7). (A25)  And, by application 0fA27),
With the use of Laguerre polynomial properties, we arrive at s% — 24(sinhy sinhy)*(co€6— co6')?,
k=m,l=n
amn = kéz LaZ (2L % (— A (A26) %% = — 75(sinhy sinhy)*(cog6—co$ 8’ )%coshy costy,
where ¥ =2Z5(sinhy sinhy)*(co€6—cog6’)?
z« 2
s —A A and Ak:HUal'”a"%lmak, (A27) X (coshy coshy)<, etc. (A32)
Then, if we define
with the following short-hand notations
u® - ek=c-kyer. . U %, 228ce?mn/keT . ) Lo
X”k':[S;—l]z . dy(coshy sinty)3coshy sinh o
5a1--~ak:(mc)_k5(pal' o pak)- (A28)

. xfﬂd(a sin® o(1,0)
The only unknown quantltyé(pal- . -pak), can actually be o

expressed with products betwegp andP,, [7]:
f dy sinty coshy smHX dd)

[n/2] X
w22 ( Glay - ayPagery s (A29) ) .
with X fo 46 S reE e 1)
. [cogO—cog ' | coSb+cose']
g (mc) (gal o _g(,yl' : .g‘/lk)’ ><(eE+22 sinhy sinhy cos§ __ 1)(eF+Zzsmh«pS|nI"p(_l) ’
- 1 (A33)
" (2moy¥ Poa' 7 P (A% we obtain

and where the parentheses around indices indicate that we
have to symmetrize the expression. To have access to 822~ X0420,
ax ., we just have to knowA** as we can see by writing

particular cases of the formul@26): 3= Z( X0420~ X1420 T 5 X0420;



2

-
A33= 22X 2400T 2 572 Z( X420~ X1420 T 5 X0420

1 ) 9 63
— EZ +§Z+§

Xo420, €fC. (A34)

Let us now derive an expression faf,. By using the same
property as fo(A26) one obtains
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f(O)(l+Aof(O)):Aalz kekzx/p2+l+km,u/kBT’ (A41)
k=1

we arrive at

+o  [n/2—-1]

=2k 2

(—1)5(21+ 25+ 1)1 ('ZS)

n |\ Knri—s+1(k2)
c x( ) — o ekekeT, A42
an=— f de(O)(l-f-Af(O))Lﬁ/z( 7Q, 21+ 2s (k2) +s+1 ( )
pkBT
i Therefore
— mc 2 z 1/2+I( Z)U _le"'Vi,
pkBT| bl Vi n[n/2]
_ pc(me
(A35) Frron™ miaTe TR An(AWn.  (A43)
with The various moments can be written in the form
ViV — V1. ..nVi (0) (0) P £ 4
Q" (mc)'f pri- - priQf Y (1+ AP dw. F:EZE(?_E)’
(A36)
Because of the form of), the knowledge ofQ”1 i is p S
governed by the knowledge of the moments of the distribu- Fa=auaj,
tion f©O(1+A,f(®), or, in other words, by the tensor S,

0
F., vnEJ Py, Dy, FOL+AF)dw.  (A37) Fa;;:pc(guaﬁ;(%ﬁ—uaﬁ))’
The result of the integral is a completely symmetric tensor of 3 33,1
rankn. A complete basis of such tensors is given by Fp,=MpC ( "Msz ST (A(aﬁuy)+uaﬁy)sz—l) ,
(AWn= G2 A agay - Bay_jagYazYaz o Yay: ) 3 _2852 .
Faﬁy,;:m pC §+152 §+22 Ua/;yg
n -2
le|0, > (A38) + 621+3022§)A(HBU75)
Thus we can writd7] -2
+32 21 A (apl 45 |- (A44)
S
[n/2]
Fyl...yn=4rr(mc)“+2A51|ZO a(Au),  (A39)  Thus
with 21/ |\ [ 3s? .,
" ?[3(§ gtz gflan
(=1)"n! 0 -2
qn 2.2 | _ 1AL mo—=17_ | _ _ — - -1
4mm?c?(21+ 1)1 (n—21)! A, Yz =3y s ? +15z 521+22 :
d3p
X | g FO(14 AGf© (A45)
J Jrmee? AT
p | A This enables us to write explicitlyn, 1,, that is, the low-
APYpgp,\ [ PsU est order approximation in the Chapman-Enskog expansion
X > . (A40) )
m’c mc? of first order.
For A and »g, the procedure is very similar: one ex-
Because presses both coefficients in the form of an infinite sum,
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1 pk3T & X[L3AT(PaP) Ly A7) (PPP)]
nBn (A46)
"3 m n=1 (A50)
whereb, is defined byB== "L ¥4 7)b, and is a solution and 5, satisfying
OfE-Hclb Bmn= P_lﬂn
B, as far as it is concerned, reads 1 o
7 =75P(KeT)? 2 Cm¥m- (A51)
10 m=0

mc
=T Tzf fO(1+Af LY 7)
B

X (p,UY+mh)A,zp*pPdw (A47)
andb,,, is equal to
/ /
b= kaT[L”( NP LAA AP (A48)

In the same way, if we note that

c
"= T f O+ A LA ) (Pape)(p PP dw
B

The derivation is then very similar to that fer, and, as a
consequence, will not be detailed here.

APPENDIX B: EXPRESSIONS OF TRANSPORT
COEFFICIENTS UP TO THIRD ORDER

In this appendix we give the complete expressions of the
transport coefficients up to third order necessary for the nu-
merical computation.

Let us start with the bulk viscosity.»,]:.[ 7,12, and
[ 7,15 are given with respect ta,,, (m,n=2,3,4) anda,
(n=2,3,4) (see Appendix A by the following expressions:

(A49) 2
and we look forC in the formC==X " ;c.L 2% 7), we arrive [7,11= kBT_ (B1)
at
+ o 2 2
1 1 as8g3— 2apazdyst aszdy;
- i - =kgT : (B2
mE:O CrCn= Jp7 7 with  cmp (mkeT) [7,]2=kg P 3
J
(7 JamkaT (g~ 834 a5+ (p284s— 850) @5+ (BppR3— 8) a4 + 2(psB34— B238as) 023
s QR3304+ 2823834804~ B384~ 27854~ Aaads
2(@p3834~ Ap4B33) A4+ 2( 83804~ B2pA34) A3y (83)
25283584 28334824 A3A54— 82245~ 844353 |

The coefficientsy,, as far as they are concerned, can be expressed in terms of tHgf'sanand the quantities’, ", and

I/I

all defined in the main body. The result reads

0 -1 0 -2
azI—‘%(S%— 1+ %+§%)[(1—7")5+7’”z1]—(%— )(S% +152~ Z%JrZZl)], (B4)
(7 108 S 35;
*=71272)13l517% Tls it z5 T
R 4 .2 41 3s;t
X[(l—y”)h-l—'y’”z1]—(5—7’>(§+1522%+221>}—% 5(%47%)
-2 0 —2 —1 -3
+[(1—y")ﬁ+y"'z—1](Sszgl+15z— Szl+2z—1)—(%—y)(%u&—z%% ‘1%+902‘3%)J,
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a4=% 22+92+%3 Z;(% S%Ol—z + Szioﬁsz1%)[(1—¢)ﬁ+wz1]—(g—y')(sszgl+15z 2§i+2zl)]
+ §+z %4|%(S%Ol+jzzl +[(1—9")h+y" ‘1]<§1+1&‘2§i+22‘1)—(g—7’
X %+15222—j+621§32—1+9023§32—j ]+;—Z[;(§1+152 22j+22 ) [(1—y)h+y"z"1]
X §+152‘2g+62‘1:3;+902‘3§}— g—y §+452—2§32;j+630z—482;i+5z—1 1+21z‘2222;j)H.

(B6)

The coefficientsa,,, can be also calculated numerically whereA,, is expressed in terms of the integradg, defined

thanks to the formulas in Appendix A:
axn=Az, (B7) A25= X0420; (B13)
7 - _
aye=Ayst > + Z) Ay, (B8) Ags ZX 1420 (B14)
) Az3=7%X 2420, (B15)
7
a33: A33+ 2 E +z A23+ E +z A22, (Bg)
2
z
A24:1—2[6X2420+ Xos21 (B16)
1 63
a24:A24+ §+Z A23+ 2 4 +9Z+ A22, (BlO)
— 23
o5 189 A34:§[6X3420+ X1621 (B17)
dzg= A34+ §+Z A33+ 22 + ?Z‘l‘ 4 A23
7 63 z!
|5 +z|Aut 5 ( 5tz 24 92+ | Az, Aas= 777 36X aa20t X022t 12x2621l- (B19)
(B11) For the thermal conductivity one obtains some expres-
sions comparable t@B1), (B2), and(B3) but with some new
9 2 1 3|2 coefficientsg, (n=1,2,3) andb,,, (m,n=1,2,3):
a44: A44+ E +z A33+ Z ( Zz+ 9Z+ Z A22
2
1 kgT Bl
63) (9 63 (MNi=3 oo (B19)
+| 22492+ — || 5+ 2| Agat | 22+ 92+ — | Ay 1
4/\2 4
9 [ 1 ké_T Bib2a—2B1B2b1o+ B3b1s (B20)
23 “)AS“’ (B12 *3m bub b,
I\ 1 kéT{(bzzb% b33 B3+ (b11b33—bTa) B3+ (D11bo— b3y B5+2(b1gbss—bibzz) B182
"3m b11D2oD33+ 2D10o3015— bygbT3— b11b3s—badb?,
2(b12b23—=013025) 8183+ 2(b1b13—b11b23) 8283 (B21)

D110 35+ 2D 0oe 13— booh?s— bysb3s— babi, ||
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The coefficients3,, read

-2 —1\2
B,=—37? 1+5zl—1—<83—1) } (B22)
7 2] (s;t 30S;° 58,72
B> §+Z ,31-1—? 3(T1+Z—T1+ET1>
St 5857
Sl i3 529
1, 63 3(9 JSst 30S;°
,33—5 Z +92+Z ﬂ1+§ E+Z Z §+Z_T1
4

5 S;2 -1 5 S:2

*z%%(”‘sg—

10/S;2 21834 sits;t

FleF -l
—2

o

zs,

And for by,, one obtains

) (B24)

b;1=B1y, (B25)

(B26)

7

b1,=Bj,+ >

Biaot (B27)

’ ’ ’ 2 ’
b22= 822+2 —+z §+Z Bll’

2

9 1
-tz Biz+§

=BRB! —+
b13 BlS 2

, 63| |

(B28)

3 ,,25 189
I A

!

9
bos=B/23t| 5 +2|Bopt 12

.
s+z

+ 2

2 2 4 B11,

7 1/, 63
5+2z|Bigt 5|27+ 92+ —
(B29)

9 \? ) 63\ |
§+z Z+92+Z Bi1

B’+1
22 Z

b33=B3s+

) 63)/9
z°+9z+ — §+z

+ Z

’
Bl3

63
Bi,+ ( z22+9z+ T

9
~+z

+22

B)s, (B30)

whereB;/,,, are equal to

D. DAVESNE 53

, Az
Bll: Bll+4?! (le)
, Ay
Bl,=Bio+6—7, (832
, Aszz
822: Bzz+ 9? (833)
, Ao
Bi3=B3t 8?, (B34)
, Azs
Bjs=Bart 1235, (B35)
, Ay
Bjs=Bart 165" (B36)
and whereB,,,, read
B11=4 X' 0402100 (B37)
B1o=—42zx 1412100 (B39)
B2o= — Z*X340aa™ 422X 2422100 (B39)
2
Bl3:T[3X 2422100t X 060401d» (B40)

3
z
Bos= §[322X 34144~ 6X 3432100~ 2X " 161401d:  (B4D)

4
z
Bas= 3[ — 922X a2as™ X 22421007 6 X 2624010" X 0806001
(B42)

(the integralsy’jjximno and xjjm are defined at the end of
this appendix
Similarly, for 5 one obtains

kgT 7(2)
[7sh=—=q Coy’ (B43)
ksT ¥5C11— 2¥0Y1C01+ ¥2Coo
[7sl2=—o : (B44)

2
CooC11~ Cop1
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2\ 2 2, .2 2.2
KgT| (C11C20— C12) Yo+ (CogC22— C52) ¥1+ (CooC11— Cor) Y2+ 2(Co2C34— C23Cas) Y071

[7s]s=—4
%710 CooC11C22% 2C01C12C02~ C11Coo— CooCia CaCoy
2(Cp1C12~ Co2C11) Y0 Y21 2(Co1Co2~ CooC12) Y172
— 2 2 7| (B45)
Co0C11C22 2C01C12C02~ C11Cho~ CooC12~ C22C01
|
with Ajs
, Cy1=Coi+4z Byt 8 (B56)
S;
Yo=— ST (B46) Ass
c;1:c11+8z—1822+24?, (B57)
7. \8° S’ 6S5°
n=—|5+2 §+1OZ §+E§ ,  (B47) ) . 2An  Axn
C02:C02+6Z Blg+§?+16?—, (858)
63\ S; 2 9 S, 6S;°
=— 2 ) = — <4 — = A A
2= =5\ 2+9z+ S£1+102 27 g1t z5T C12=c12+12z—1823+2;§3+48;§-4, (B59)
-2 —4 -3
42 7
-522 S3T1+—S3Tl+—szfl : (B48) . 1 A A
S2 VA z C22— 022+ 182 833+ 8? + 962_2, (BBO)
and where and
Coo=Coo: (B49) Coo=8X040002: (B61)
7 C :_8 n , 862
Co1=Co1+|5+2|Cho. (B50) 01~ BX150001 e
C11=47*(X34022t 2X342000 (B63)
7 7 2 _ 2 " m
¢ =Cj,+2 §+Z)C61+ §+z) Céor (B51) Co2=22°(4X242001" X060212) (B64)
C12=22%(2X 4127~ 4X343001~ X151112 (B65)
’ 9 ’ 1 2 63 ! 3 rree " m reee i
Coz=Cozt|5+2|Cort 5| 27+ 92+ | Coo, C12=22°(4X 440421 2X 44225+ 2X 444001+ Xas0a12=2X -
(852) (B66)
9 3 25 189 Finally, the integrals used in the expressions of the different
Cl=Clpt| = +2z|Cl+| S22+ Sz =), coefficients are listed below:
2 2 2 4
275ce2MulkeT (4o o
7 o1, 63\ (7 , Xi'jmmno:[sz——l]z . dy(coshysinhy)*coshy
+ §+Z C02+§ Z +92+Z §+Z COO’
(B53) X sinh .,yf dOsin®@o(,0)
0
R S 63\% o
Cpr=C5y+ §+z C11+Z z +9Z+Z Coo xf dysinty costy sinHy
0
4249 +63 c' 4l 249 +63 9+ )C' 2m - efzzcoshpcosh(
z z+— z z+—||s+z ng—
4 | 02 4112 01 Xfo d¢fo de Sme(eE—l)(eF—l)
+2 g+z)c’ (B54) [cogh+cogd’ —2 cod cosd’ coP]™
E+2z sinhy sinhy cosd _ F+2z sinhy sinhy __
2 = (e 1)(e 1)
with X[cod 6+ cod 8’ —cos 6 cod’ coPd

g —cost cos' 6’ coP "X [coL o+ coL’

8
o -1 _
Coo=Coot2z Byt 37, (BSS) —2c0$6 cos6' coP1°, (B67)
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27%ce?™WkeT 1o . .
Xﬁ"'m:[sz’—l]z dy(coshy sintwy)3coshy sint ¢
0

™ + o0
xf d@sin@o(z/x,@)f dy sintycosty sinH y
0 0

o - e72z coshy coshy
X d f do sin——+—F—=
J, 0e], (D1

[cog"0— 2 cod"260 cosV26’ cosV?@ + cod"¢’ ]

(eE+22 sinhy sinhy cosf __ 1)(eF+22 sinhy sinhy __ 1) ' (868)
27%ce?MkeT (e , e +oo
Xi,’j/k'm“:[sz—l]zfo dy(coshy sintwy)3coshy sint ¢JO d@sin@a(zﬂ,@)jo dy sint?ycosty sinH y
27 m g 2zcoshicosty [cogd+cog o’ ™(1—cod'0)
X JO dd)fo de Sma(eE_ 1)(eF_ 1) (eE+Zz sinhy sinhycosd __ 1)(eF+22 sinhy sinhy __ 1) ' (869)
224ceZm,u/kBT +o ) . -
Xiikimn= =7 o dy(coshy sinhy)3coshy sinh dlfo dOsin® o (,0)
+oo 2m - efzz coshy coshy
« . . .
fo dy sint?y cosHy smHXfo dqﬁfo de Sme—(eE—l)(eF—l)
[cog"9+ (—1)"cog"e’ ]
X ( E+ 2z sinhy sinhy cosd F+ 2z sinhy sinhy ' (870)
e “1)(e —1)
mm 224ce2m’u/kBT T ™ T 2m
X =——=—15—| du(coshy sinhp)%osﬁ’tpj de Sin@a'(l//,@)J dy sinky cosH‘Xj do
0 0 0 0
[S;7]
m g 2zcoshycosty cos 6 cos 6’ cosO
X J'O de Slna(eE_ 1)(eF_ 1) (eE+2Z sinhy sinhy cosf __ 1)(eF+22 sinhy sinhy __ 1) . (871)
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