
8,

e

th

PHYSICAL REVIEW C JUNE 1996VOLUME 53, NUMBER 6

0556-
Transport coefficients of a hot pion gas
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General expressions for transport coefficients of a single-component gas~namely, thermal conductivity and
shear and bulk viscosities! of bosons are derived from a Boltzmann-Uehling-Uhlenbeck transport equation by
means of the Chapman-Enskog method to first order. These expressions are then used for the calculation of th
associated transport relaxation times and applied to the pion gas produced in ultrarelativistic heavy-ion colli-
sions. The influence of Bose enhancement factors on transport properties can be seen by comparison wi
previous calculations.@S0556-2813~96!02306-0#

PACS number~s!: 25.75.2q, 05.60.1w
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I. INTRODUCTION

The transport properties of a system out of equilibri
are governed by some phenomenological coefficients~trans-
port coefficients! which relate flows to thermodynami
forces. In other words, these coefficients characterize
magnitude of the response of the system~flows! to a certain
disturbance~thermodynamic forces!. They have already bee
derived in the context of nonrelativistic@1,2# and relativistic
kinetic theory@3,4# but only, to our knowledge, with the us
of a Boltzmann collision term~i.e., without Bose enhance
ment factors!. Our aim is to generalize the treatment given
@5–7# to a transport equation with a Boltzmann-Uehlin
Uhlenbeck collision term:1

pm]m f ~x,p!5E E E dw1dw8dw18@ f 8 f 18~11A0f !

3~11A0f 1!2 f f 1~11A0f 8!~11A0f 18!#

3W~pp1 /p8p18!

[I ~ f !, ~1!

where f[ f (x,p), f 8[ f (x,p8), etc., dw5d3p/p0, and the
collision rateW is related to the differential cross section

W5sP2d~4!~pa1p1
a2p8a2p18

a! ~2!

with P5@2(pa1p1
a)(pa1p1a)#

1/2.
Furthermore, an application of such calculations is

hadronic phase~which will be supposed here only cons
tuted of pions! produced in ultrarelativistic heavy-ion coll
sions at CERN and in the near future at the BNL Relativis
Heavy Ion Collider ~RHIC!. The dissipative effects~con-
trolled by transport coefficients! and the different time scale
~characterized by relaxation times! over which particles pro-
duced are equilibrated are important in order to describe
cisely the space-time evolution of these collisions.

1The notations are those of Ref.@7#. In particular,A0 is a constant
that makesA0f dimensionless@A05(2p\)3# and we use the metri
g00521,g1151,g2251,g3351, and 0 for the other components.
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The paper is organized as follows. In the second sect
we will recall some basic equations and give the gene
formulas for thermodynamic quantities at equilibrium. In th
third section, we will develop the Chapman-Enskog forma
ism and apply it to our transport equation in order to obta
the expressions of the three transport coefficients~thermal
conductivity and shear and bulk viscosities!. In the fourth
section we will derive the corresponding relaxation time
All the numerical results are given for a pion gas and com
pared with those previously obtained in@6# and @10#.

II. BASIC EQUATIONS AND THERMODYNAMIC
EQUILIBRIUM

From a formal exchange of the four variablesp,p8,p1, and
p18, it can be easily proved from Eq.~1! that

E d3p

p0
I ~ f !SI50 ~3!

whereSI can be any linear combination ofpa and some
constants~these are called summational invariants!.

From this equation and Eq.~1! we can then deduce, as fo
a Boltzmann collision term, that the mass four-flow and th
energy-momentum tensor defined as the first and second
ments of the distribution function (m is the mass of the par-
ticle!,

Mm~x!5mcE d3p

p0
pm f ~x,p!,

Tmn~x!5cE d3p

p0
pmpn f ~x,p!, ~4!

are conserved:

]mT
mn50,

]mM
m50. ~5!

Let us now introduce another fundamental quantity whic
will be used further: the hydrodynamic four-velocityUm. It
is a timelike vector with normc: UmUm52c2. From it, we
can construct a projector on the spatial par
3069 © 1996 The American Physical Society
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3070 53D. DAVESNE
Dmn[gmn1c22UmUn. Furthermore, the relation between
Um and the other quantities will be chosen such that~Eckart
choice@5#!

Mm5rUm. ~6!

At this point, one must note that this choice is only possib
if there is a conserved charge in the system. In this paper
in @6,7,10#, this charge is the mass. This choice is actually
fundamental importance for the calculation of the therm
conductivity: in the absence of a conserved charge, this
efficient vanishes~this has already been noted in@9# and in
the context of the pion gas in@10# where a physical interpre-
tation based on a formal analogy with thermal conductivi
in insulators is proposed!.

The choice of the velocity made, we can determine t
density uniquely. Effectively, by contraction withUm , the
above equation reads

r52c22MmUm . ~7!

An important remark concerning~7! is that the density is
actually defined in a permanent rest frame@the frame in
which Um5(c,0)#. Similarly, we define the energy density
in the same frame as

re5c22UmT
mnUn . ~8!

With Um, we can also construct an energy four-flow (h is the
enthalpy!:

I q
m[~hMs1UnT

ns!D m
s , ~9!

and a pressure tensor:

Pmn[D m
sT

stD n
t[PDmn1Pmn. ~10!

Let us now turn to the equilibrium properties and, as
consequence, to the entropy production. The four-entropy
equal to

Sm~x!52kBcE d3p

p0
pm@A0f ln~A0f !2~11A0f !

3 ln~11A0f !# ~11!

so that the entropy density, also defined in the permanent
frame, reads

rs52
SmUm

c2
. ~12!

By taking the derivative and using the mass conservation l
~5!, one can then write from Eq.~12! (D[Un]n)

rDs52]m~DmnSn!1s. ~13!

This relation can be seen as a balance equation for the
tropy. Thus, by definition,s5]mS

m is the entropy produc-
tion. When the equilibrium is reached,s vanishes and the
resolution of the equations50 leads to the equilibrium
function f eq. Of course, one finds the usual Bose-Einste
distribution
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f eq~p!5
A0

21

e2~pmU
m1mm!/kBT21

. ~14!

By using the above definitions, we can then obtain th
following equilibrium formulas

r54pm3cA0
21kBTS2

21 , ~15!

P5
rkBT

m

S2
22

S2
21 , ~16!

re52P1r
S3

21

S2
21 c

2, ~17!

h5
S3

21

S2
21 c

2[ĥc2, ~18!

Tmn5re
UmUn

c2
1PDmn, ~19!

I q
m50,

Pmn50 ~20!

with z5mc2/kBT, Sn
a5(k51

` ekmm/kBTkaKn(kz), andKn the
MacDonald function. Note that the sumSn

a introduced above
is such that the first term corresponds to the case of a Bo
zmann equilibrium distribution function so that a compariso
with the results of@6,7# is possible at each step of the calcu
lation.

III. TRANSPORT COEFFICIENTS

A. Chapman-Enskog expansion

The Chapman-Enskog expansion is used to find a solut
of transport equations in the so-called hydrodynamic regim
In this regime, a system tries to smooth spatial inhomogen
ities to go from local to global equilibrium. Local equilib-
rium means that at each point the distribution function
equal to

f ~0!~x,p!5
A0

21

e2@pmu
m~x!1mm~x!/kBT~x!# 21

~21!

~wherem, Um, andT are nowparameterswhich depend on
x).

Physically, ‘‘local’’ means that the mean free pathl is
less than a distanceL over which macroscopic quantities
such asT can vary appreciably and that the time betwee
two collisions is smaller than the time needed for a macr
scopic parameter to change significantly. Actually, one a
sumes that a system can be divided into volumes large co
pared to the mean free path and small enough so thatT,
m, orUm is uniform inside. The Chapman-Enskog expansio
is performed with respect toe (e[l/L!1 in the hydrody-
namic regime!:

f ~x,p!5 f ~0!~x,p!1e f ~1!~x,p!1e2f ~2!~x,p!1•••.
~22!
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53 3071TRANSPORT COEFFICIENTS OF A HOT PION GAS
We are going to restrict ourselves to the first order and w
f , for convenience, as

f ~x,p!5 f ~0!~x,p!1 f ~0!~x,p!@11A0f
~0!~x,p!#f~x,p!

~23!

where f (0) is given by~21!. We have to remark that in this
expressionm, T, andUn areparameters. In order to identify
T with the temperature, we have previously used the pres
tensor. However, in a nonequilibrium system this tensor
not reduced to a scalar. Since it seems natural to asso
T(x) with the local temperature andm(x) with the local
chemical potential, we will impose that the density and t
energy density must be equal to those calculated at equ
rium:

r~x!54pm3cA0
21kBT~x!S2

21@z~x!#,

r~x!e~x!5
rkBT~x!

m

S2
22@z~x!#

S2
21@z~x!#

1r~x!
S3

21@z~x!#

S2
21@z~x!#

c2.

~24!

These equations have thus to be considered as the defini
for T(x) andm(x). This natural choice imposes some co
straints onf @see Eq.~7!#:

E dw~paUa! f ~0!~11A0f
~0!!f50,

E dw~paU
a!2f ~0!~11A0f

~0!!f50. ~25!

These constraints reflect that, by choice, only the local eq
librium distribution function contributes to the calculation o
local densities. In the same spirit, in order to preserve
relationMm(x)5r(x)Um(x), that is, to interpretUm(x) as
the local velocity, one must impose

E dwpa f
~0!~11A0f

~0!!f50. ~26!

Whereasf plays no role for local densities, it does enter
the expression of the flows:

I q
m5~UnT

ns1hMs!D s
m

5cE dw@~pnU
n!1mh#psDsm f ~0!~11A0f

~0!!f,

Tmn5Tmn~0!1cE dwpmpn f ~0!~11A0f
~0!!f. ~27!

One can also remark that the calculation of the entropy p
duction with the formula~13! gives

s52kBcE pn]n f ~0!fdw. ~28!

By replacingf (0) by its expression, one would obtain, as
the nonrelativistic case, a bilinear form between these flo
and these thermodynamic forces. Moreover, sincef has to
be considered as a perturbation, i.e., we are close to equ
rite
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rium, the relation between flows and thermodynamic forc
can be approximated by a linear law:

I q
m52lDmn~]nT1c22TDUm!, ~29!

Pmn522hs^]
mUn&2hvD

mn]gU
g ~30!

~if tmn is a tensor, ^tmn&[@ 1
2(D

mgDnd1DngDmd)
2 1

3 DmnDgd] tgd ; ^tmn& is thus space-space-like and trace
less!. Of course the decomposition~30! and ~29!, which de-
fines the three transport coefficients of a single-compone
gas (l, the thermal conductivity,hs , the shear viscosity, and
hv , the bulk viscosity!, is, although conventional, com-
pletely arbitrary.

We have two expressions at our disposal for the flow
one phenomenological@Eq. ~30!#, coming from the entropy
production, and another one coming from the Chapma
Enskog expansion@Eq. ~27!#. The consequence of consider
ing only the first order in this expansion is thus now clea
the knowledge off is sufficient to obtain the expression o
the transport coefficients. Moreover, to first order, the the
modynamic laws are still available. To illustrate this poin
let us replacef (x,p) by its expression~23! in ~12!:

s5
kB
rcE dwpmUmH @A0f

~0!lnA0f
~0!2~11A0f

~0!!

3 ln~11A0f
~0!!#2A0f

~0!~11A0f
~0!!

3f lnS A0f
~0!

11A0f
~0!D J . ~31!

The last term, describing the correction to the entropy due
f, is proportional to *dwpmUmA0f

(0)(11A0f
(0))f and

*dw(pmUm)
2A0f

(0)(11A0f
(0))f and is thus equal to zero

by virtue of Eq. ~25!: to first order, the Chapman-Enskog
expansion does not contribute to the entropy:s5s(0). More-
over, it is possible to check, with the definitions ofMm and
Tmn, thats can be written as

s5
1

T S e1
P

r
2m D5

1

T
~h2m! ~Euler formula!.

~32!

By taking the derivative of~16!, it is easy to show explicitly
that

]nP5rT]nS m

T D1rhT21]nT ~Gibbs -Duhem! ~33!

or, equivalently,

r21]nP5s]nT1]nm. ~34!

By differentiation of~32!, we then obtain

T]ns5]ne1P]nr21 ~35!

which is thesecond thermodynamic law. As a conclusion, we
can say that all the relations of thermodynamics remain va
for a system out of equilibrium, to first order in the
Chapman-Enskog expansion,if the quantities in these ther-
modynamic relations are defined in the local rest frame.
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B. Linear Boltzmann equation

The comparison between~30! and~27! clearly shows that
the calculation of transport coefficients reduces to the de
mination of the quantityf. As a consequence, we now tur
to the resolution of our transport equation~1!.

If we replacef by its expression~23! in Eq. ~1!, we arrive
at

pa]a f ~0!5 f ~0!E dw8dw1dw18 f 1
~0!~11A0f 8

~0!!~11A0f 18
~0!!

3@f1f12f82f18#W~pp1 /p8p18!

[C@f#, ~36!

whereC @f# representsthe collision integral.
The aim is to calculate explicitly the left hand side

terms of the thermodynamic forces entering in Eq.~30!. First
of all, we can notice that

]a f ~0!5]aS pmU
m1mm

kBT
D f ~0!~11A0f

~0!!. ~37!

By writing ]m52c22UmD1Dmn]n[2c22UmD1¹m @i.e.,
by splitting time derivatives (D) and gradients (¹m)#, we
realize immediately that we are confronted with terms su
asDT andD(m/T). Such terms do not enter in the expre
sion of the thermodynamic forces; thus they have to
eliminated. This is possible if we use the conservation la
]mMm50, Dnm]rT

rn50, andUn]mT
mn50. The result reads

Dr52r]mU
m, ~38!
ter-
n

n

ch
s-
be
ws

De52
P

r
]mU

m, ~39!

Dmr]rP52rhc22DUm . ~40!

Keeping Eq.~39! and transforming Eq.~40! with the help of
the Gibbs-Duhem relation, we can write

De52~P/r!]nU
n,

Dh5TD~m/T!1hT21DT. ~41!

If we now expandDe andDh as

De5
]e

]~m/T!
U
T
DS m

T D1
]e

]T U
m/T

DT,

Dh5
]h

]~m/T!
U
T
DS m

T D1
]h

]T U
m/T

DT, ~42!

we obtain a system of equations forD(m/T) andDT. Using
~7! and ~17!, this system can be solved after a straightfo
ward but tedious calculation:

T21DT5~12g8!]nU
n, ~43!

TDS m

T D5H ~g921!h2g-
kBT

m J ]nU
n, ~44!

with
g85
~S2

0/S2
21!22~S3

0/S2
21!214z21S2

0S3
21/~S2

21!21z21S3
0/S2

21

~S2
0/S2

21!22~S3
0/S2

21!213z21S2
0S3

21/~S2
21!212z21S3

0/S2
212z22 , ~45!

g9511
z22

~S2
0/S2

21!22~S3
0/S2

21!213z21S2
0S3

21/~S2
21!212z21S3

0/S2
212z22 , ~46!

g-5
S2
0/S2

2115z21S3
21/S2

212S3
0S3

21/~S2
21!2

~S2
0/S2

21!22~S3
0/S2

21!213z21S2
0S3

21/~S2
21!212z21S3

0/S2
212z22 . ~47!
c
e

With these results it is then easy to obtain for~36!

@Q]nU
n2paDab~pmU

m1mh!~T21]bT1c22DUb!

1^papb&^]aUb&# f ~0!~11A0f
~0!!5kBTC@f# ~48!

with

Q52
1

3
~mc!21~pmU

m!2c22S 432g8D1c22@~g921!mh

2g-kBT#pmU
m,
which is the generalization of the usual linear equation~see
@5,6#!. In the left hand side of this equation thermodynami
forces with different tensorial rank appear. Because of th
Curie principle, we can thus deduce thatf must be of the
form

f5A]nU
n1BaDab~T21]bT1c22DUb!1Cab^]aUb&.

~49!

The transport coefficients then read

hv52cE AQf~0!~11A0f
~0!!dw, ~50!
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l52
1

3
cT21E dw f~0!~11A0f

~0!!~pnU
n1mh!Bap

a,

~51!

hs52
1

10
cE dw f~0!~11A0f

~0!!Cab^papb&, ~52!

with A, Ba , andCab solutions of

C@A#5~kBT!21Qf ~0!~11A0f
~0!!, ~53!

C@Ba#5~kBT!21~pnU
n1mh!Dabp

b f ~0!~11A0f
~0!!,

~54!

C@Cab#5~kBT!21^papb& f ~0!~11A0f
~0!!. ~55!

Hence one just has to determineA, Ba , andCab to have
access to the transport coefficients. The technical details
obtaining these quantities are given in Appendix A. At th
point, one must notice thatA, Ba , andCab are only deter-
mined perturbatively. That implies that we will obtain th
corresponding transport coefficients perturbatively as w
Nevertheless, the numerical results shown in the next sec
exhibit clearly the fact that the convergence is fast.

C. Numerical results

As indicated in the introduction, all the numerical resu
will be given for the case of the hot pion gas produced
ultrarelativistic heavy-ion collisions. Several comments
the applicability of the formalism developed in the precedi
section are therefore necessary. The first one concerns
chemical potential. Rigorously, the only conserved cha
for the pion system is the electric charge. However, the
perimental data clearly show that pion-pion scattering
elastic up to 1 GeV. Hence, in the energy range relevant
our problem, the number of pions is conserved with an
cellent approximation. This allows the phenomenological
troduction of a chemical potential associated with the to
number of pions as pointed out by many authors~see Ref.
@12#, for instance!. Moreover, this conservation of the tota
number of pions implies automatically the conservation
the mass~used in the preceding section!.

If we now apply the formulas2 given in Appendix A for
the Boltzmann case, we recover the results given in Ref.@6#
~Fig. 1! from which we can make two conclusions: first o
all, the Chapman-Enskog expansion converges very rap
for l and hs ; secondly,hv , the convergence of which is
less rapid, is much smaller than the other transport coe
cients. So only the first order will be necessary to discuss
order of magnitude of the effect of Bose-Einstein factors
our region of interest~say, 100 MeV,T,200 MeV for the
hot pion gas!.

On Fig. 2 is thus depicted, to first order, the comparis
between the results obtained from a Boltzmann-like collis
term ~Ref. @6#! and from a Bose-Einstein-like collision term

2The numerical results are presented here with the commonly u
units h/2p5kB5c51, so that the temperature is expressed in e
ergy units. Moreover, the cross section used in numerical calc
tions is the one described in@6#.
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~this work! with various values of the chemical potentia
When mp→2` and more generally whenmp,0 and
m/T.1, both cases are identical: the Bose enhancement
tors in the collision integral play a negligible role. Howeve
as soon asmp increases~say,mp.0 orm/T.1), the results
exhibit large differences. For example, atT5150 MeV, the
bulk viscosity varies by a factor of 2.5, the shear viscosity
decreased by more than 50%, and the thermal conductiv
by 15%. This implies, for instance, that for a given therm
gradient, the energy flow, whose role is to smooth the effe
of the gradient, will be decreased by 15%. As a consequen

sed
n-
la-

FIG. 1. Transport coefficients computed from a Bose-Einste
distribution and for different values of chemical potential.

FIG. 2. Transport coefficients up to third order calculated with
Boltzmann distribution~cf. @6#!.
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one could think that the system will reach its equilibriu
state in a longer time. Actually, this qualitative reasoni
does not hold: a more precise study based on the quan
that really govern the time scales of a system, namely,
relaxation times, can show the opposite behavior. The ca
lation of these quantities is the subject of the next sectio

IV. RELAXATION TIMES

It is impossible to have access to the relaxation times w
the Chapman-Enskog formalism because it gives an infi
speed for the flows@mathematically, this comes from the fa
that we neglect all the gradients of the flows in the cons
vation laws ~see @5#!#. Thus we will use in the following
another method for solving our transport equation, the m
ment method~@5# and references therein!. This method is
more general than the Chapman-Enskog one in the sense
the validity is not limited to situations where the mean fr
path is smaller than the characteristic~macroscopic! length
of the problem. However, it must be noticed that we do
use here this moment method in order to generalize the
vious section or because we want to consider a differ
system with new physical hypotheses but only in order
have access to the relaxation times.

If we assume, as in the previous section, that we are c
to equilibrium it is possible to look for a solution of th
transport equation in the same form as Eq.~23!:

f ~x,p!5 f ~0!~x,p!1 f ~0!~x,p!@11A0f
~0!~x,p!#f~x,p!

~56!

where f (0) is given by~21!. Moreover, becausef is a scalar
function of xm and pm, f can be expressed as a comple
sum of scalar products between tensors depending onxm and
tensors depending onpm ~cf. @5#!:

f5A~x,t!2Bm~x,t!Pm̄1Cmn~x,t!^PmPn&1•••,
~57!

wherePm̄5DmnPn , Pm5cpm/kBT, andt52pmUm /kBT.
Moreover, we will still assume thatT,m, andUm repre-

sent, respectively, the temperature, the chemical poten
and the hydrodynamic velocity, that is, we will still impos
the conditions~25! and ~26!. f is, on the other hand, a so
lution of the completetransport equation~we have reintro-
duced the term negligible in the Chapman-Enskog form
ism, i.e., in the hydrodynamic regime!:

pa]a f ~0!52 f ~0!~11A0f
~0!!pa]af1C@f#. ~58!

The convergence of the method is based on the fact tha
distribution f (0) is sufficiently close to the equilibrium distri
bution, so that only the first terms of the expansion~57! are
necessary to determine a solution of~58!. Explicitly, we will
truncate the sum~57! after ^PmPn& and will expandA,
Bm , andCmn in powers oft, the last power being the on
which gives a nonzero contribution to the collision ter
Under these restrictions,f takes the form

f5(
s50

2

As~x!ts2(
s50

1

Bm
s ~x!tsPm̄1Cmn

0 ~x!^PmPn&.

~59!
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If the explicit dependence on flows is conserved, the co
servations laws of mass and energy and the equation of m
tion can be generalized as

Dr52r¹mU
m, ~60!

rDe52P¹nU
n1c22¹mI q

m , ~61!

rhc22DUm52¹mP2c22DI q
m2¹nPmn. ~62!

This implies that the formulas~43! and ~44! giving DT
and D(m/T) in terms of ¹mU

m (5]mU
m) are no longer

valid. Following the same steps as in the previous paragrap
one finds instead

T21DT5~12g8!S ¹nU
n1

d

P
¹nI q

nD , ~63!

TDS m

T D5H ~g921!h2g-
kBT

m J S ¹nU
n1

d

P
¹nI q

nD
2

d8

r
¹nI q

n , ~64!

with

d5
S2
0S2

22/~S2
21!2

12~S3
0S2

212S2
0S3

21!/~S2
21!2

, ~65!

d85
21

12~S3
0S2

212S2
0S3

21!/~S2
21!2.

~66!

Following step by step the procedure of the last sectio
we can derive the new linear transport equation. The le
hand side of~58! is, for instance,

cPa]a f ~0!5 f ~0!~11A0f
~0!!H cS t2

mh

kBT
DPa

¹aT

T

1cPa

¹aP

rkBT/m
1PaPb^¹aUb&1Q̂¹aU

a

1c21tPbDU
b1tF S t~12g8!1

mh

kBT
~g921!

2g-D d

P
¹aI q

a2
d8

rkBT/m
¹aI q

aG J , ~67!

where

Q̂[@c2/~kBT!2#Q. ~68!

This equation represents a generalization of the equation o
tained in@5#. For the right-hand side of~58!, one just has to
replacef by its expression~57!.

The procedure is now standard and makes use of t
variational approach proposed by Galerkin~see the reference
given in @5#!: one imposes arbitrary variations off of the
form

df~x,p!5(
s50

2

tsdAs~x!, ~69!

df~x,p!52Pm̄(
s50

1

tsdBm
s ~x!, ~70!

df~x,p!5^PmPn&dCmn
0 ~x! ~71!
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to obtain a set of distinct equations satisfied byAs,Bm
s , and

Cmn
0 . Because of relations~25! and ~26!, on one hand, and

thanks to the expressions of the coefficients given in Appe
dix B, on the other hand, one can determine some relatio
between flows andAs,Bm

s , and Cmn
0 . From the resulting

equations@5#, one can extract the relaxation times with th
results

tv5
@hv#1

4a2
2

m

rkBT
F ~v3!322v2v3v41v1~v4!

2

~v2!
22v1v3

1v5G ,
~72!

tl5
@l#1T

b1

mc22

rkBT
F l 2kBTmh

2
l 1l 2
b1

13l 3G , ~73!

ts52@hs#1
m

rkBT

5s1
~s0!

2 , ~74!

with

v15
S2
0

S2
21 , ~75!

v25z
S3
0

S2
21 21, ~76!

v35z2F S20S2
21 13z21

S3
21

S2
21G , ~77!

v45z3F S30S2
21 115z22

S3
22

S2
21 12z21G , ~78!

v55z4F S20S2
21 115z22

S2
22

S2
21 16z21S S321

S2
21 115z22

S3
23

S2
21D G ,

~79!

l 153z
S3

21

S2
21 , ~80!

l 2515z
S3

22

S2
21 13z2, ~81!

l 3515z2
S2

22

S2
21 13z3

S3
21

S2
21 190z

S3
23

S2
21 , ~82!

s0510z
S3

22

S2
21 , ~83!

s1510z2S S222

S2
21 16z21

S3
23

S2
21D , ~84!

a25
z3

2 H 13 S S3
0

S2
21 2z21D 1S S2

0

S2
21 1

3

z

S3
21

S2
21D @~12g9!ĥ

1g-z21#2S 432g8D S S3
0

S2
21 115z22

S3
22

S2
21 12z21D J ,

~85!

b1523z2F115z21
S3

22

S2
21 2S S321

S2
21D 2G . ~86!
n-
ns

e

First of all, we can notice that the relaxation times are pro
portional to the corresponding transport coefficients. Thu
the reduction found in the last section will imply a decreas
of the relaxation times as well. Therefore the linear laws~30!
must not be interpreted naively as in Sec. III C. They act
ally mean that the flows needed to reach equilibrium for
‘‘Bose-Einstein’’ system are smaller than for a ‘‘Boltz-
mann’’ system; but they do not give any information on th
velocity of the flow.

The relaxation times are depicted on Fig. 3 for sever
values of the chemical potential. One can see that these tim
are~for mp50) smaller by 15% forT5150 MeV than those
obtained with a Boltzmann distribution~see Ref.@6#! or in a
relaxation time approximation~see Ref.@10#!. This is mainly
due to the fact that the relaxation times are proportional
the transport coefficients~see the comment above! and in-
versely proportional to the density~we know that, for some
given temperature and chemical potential,rBE.rBoltz). It is
also interesting to look at the case wheremp.0 because, as
noticed in the litterature~ @12#, for example!, the hot pion gas
is thought to be out of chemical equilibrium. We remark tha
for mp5100 MeV, which represents a reasonable value f
the hot pion gas@12#, the relaxation times are divided by 3.
For instance, atT5150 MeV, the system needs aproximatel
2.5 fm to reach its thermal equilibrium instead of 7.5 fm.

Other calculations qualitatively and quantitatively confirm
our results. In Ref.@8#, it has been shown that a characteristi
time scale~the mean collision timet̄c) decreases when one
incorporates Bose enhancement factors. Moreover,
T5150 MeV andmp5100 MeV, these authors have ob-
tained t̄c;1 fm. In addition, it is known that only two or
three collisions are needed to reach thermal equilibrium, th
is, 2 or 3 fm, as our calculation shows.

FIG. 3. Relaxation times associated with the different transpo
coefficients.
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V. CONCLUSION

We have derived the transport coefficients for a sing
component gas of bosons. Our results exhibit a large dif
ence from previous calculations. These coefficients h
then been used for the determination of transport relaxa
times. It has been found that these times are much sma
than those computed with a Boltzmann distribution. Fro
this we can conclude that the pion gas is probably therm
equilibrated at early stage of its life~2.5 fm compared with
about 10–20 fm!. If we look at the other relaxation times, w
can also say that the pion gas has enough time to dissipat
other gradients~velocity, etc.! before the freeze-out.

Several extensions of the present work are po
ible: a systematic study of the asymptotic values of t
transport coefficients in the nonrelativistic and ultrarelat
istic limits, a generalization to mixtures, or the incorpo
ation of fermions @the only difference for fermions is
the equation of state; one just has to replaceSa

n by
Sa8

n5(k(21)kkae(kmm/kBT)Kn(kz)#. The latter point is mo-
tivated by the aim of taking into account the effect of th
nucleons in the hadronic phase produced in ultrarelativi
heavy-ion collisions.

We must also notice that these results have been obta
with a free cross section although we know that, due to m
dium effects, the pion-pion interaction can be notably mo
fied @13#. Finally, we can remark that chemical potentials
about 100 MeV correspond to systems with a relatively h
density in which three-body interactions, not taken into a
count in our transport equation, can play a non-negligi
role.

The author is indebted to J. Delorme and G. Chanfray
a critical reading of the manuscript.
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APPENDIX A: CALCULATIONS OF TRANSPORT
COEFFICIENTS AT FIRST ORDER

Let us start with the relations satisfied byA, Ba , and
Cab :

C@A#5~kBT!21Qf ~0!~11A0f
~0!!, ~A1!

C@Ba#5~kBT!21~pnU
n1mh!Dabp

b f ~0!~11A0f
~0!!,

~A2!

C@Cab#5~kBT!21^papb& f ~0!~11A0f
~0!!. ~A3!

First of all, we can remark that from linearity and Lorentz
invariance of the collision term,Ba andCab must be of the
form Ba5BDabp

b and Cab5C^papb&. Considering the
first equation, multiplying it byLn

1/2, a Laguerre polynomial3

of order 12 and of degreen, and integrating onp, we obtain

E E E E f ~0! f 1
~0!~11A0f 8

~0!!~11A0f 18
~0!!

3~A01A12A82A18!Ln
1/2~t!Wdwdw8dw1dw18

5~kBT!21E dwLn
1/2~t! f ~0!~11A0f

~0!!, ~A4!

wheret[2(pmU
m1mc2)/kBT is the kinetic energy in the

permanent rest frame.
After symmetrization@i.e., a formal exchange between

p↔p1, p8↔p18 , and (p,p1)↔(p8,p18)] the above equation
reads
~A5!
e

D~F ![F1F12F82F18 . ~A6!

where
ThusA satisfies the symbolic equation

@A,Ln
1/2~t!#5

m

r
an ~n50,1, . . .!. ~A7!

The Laguerre polynomials are orthogonal polynomials
that we can expandA as

A5 (
m50

1`

amLm
1/2~t!. ~A8!

Thus we obtain foram
so

(
m50

1`

amamn5
m

r
an ~n50,1, . . .! with

amn5@Lm
1/2~t!,Ln

1/2~t!#. ~A9!

Moreover,amn is symmetric (amn5anm) andam05am150
becausem andpn are summational invariants.

We can also show in the same manner, starting from th
imposed conditions onf @Eqs. ~25! and ~26!# that a0 and
a1 are equal to zero. Equation~A9! can then be written as

3Ln
a(x) is defined byLn

a(x)[(m50
n (n2m

n1a )(2x)m/m! and has a
property which we will use in the following:
Ln

a(x1y)5(k50
n Ln2k

a1k(x)(2y)k/k!. Moreover, L0
a(x)51 and

L1
a(x)5a112x.
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(
m52

1`

amamn5
m

r
an , n52,3, . . . . ~A10!

With these notations, the bulk viscosityhv @Eq. ~50!# be-
comes

hv5
rkBT

m (
n52

1`

anan . ~A11!

The complete sum gives, of course, the exact result forhv
but in practice only the first few terms contribute. For in
stance, the approximation of order 1 obtained when we ke
only the termn52 reads formally@hv#15(rkBT/m)a2

(1)a2

with4 a2
(1)a225(m/r)a2 , i.e.,

@hv#15kBT
a2
2

a22
. ~A12!

In the same way,

@hv#25
rkBT

m
~a2

~2!a21a3
~2!a3! ~A13!

with

a22a2
~2!1a32a3

~2!5
m

r
a2 ,

a23a2
~2!1a33a3

~2!5
m

r
a3 . ~A14!

Then

@hv#25kBT
a2
2a3322a2a3a231a3

2a22
a22a332a23

2 , etc. ~A15!

We now have to determine the coefficientsamn andan .
We have foramn

amn5@Lm
1/2~t!,Ln

1/2~t!#

5
m2c

4r2E E E E dwdw1dw8dw18Wf~0! f 1
~0!~11A0f 8

~0!!

3~11A0f 18
~0!

!D$Lm
1/2~t!%D$Ln

1/2~t!%. ~A16!

4am
(p) represents the approximation of orderp for the coefficient

am .
-
ep

We are going to simplify this expression by making the
change of variables described in@4,11# which consists in
introducing the relative and global variablesga , ga8 , Pa ,
andPa8 defined as

ga5 1
2 ~p1a2pa!,

ga85 1
2 ~p1a8 2pa8 !, ~A17!

Pa5pa1p1a5pa81p1a8 5Pa8 .

With polar coordinates, Pa reads as
Pa5P(coshc, sinhc sinū cosw̄, sinhc sinū sinw̄, sinhc cosū).
Let us remark, then, that

e~1!
a 5~0, cosū cosw̄, cosū sinw̄,2 sinū !,

e~2!
a 5~0,2 sinw̄, cosw̄,0!, ~A18!

e~3!
a 5~sinhc, coshc sinū cosw̄,coshc

3sinū sinw̄, coshc cosū !

form an orthonormal basis of spacelike four-vectors.
Moreover, in the center of mass frame,Pa reads

Pa5(P,0) and ga5(0,g) and e( i )
a 5(0,ei) have only space

components. Therefore we can write

g5g~sinu cosw e11sinu sinw e21cosu e3!. ~A19!

Let us callQ the scattering angle in the center of mass
frame (g•g85g2cosQ) and still define the variablec such as
sinhc5g/mc ~so thatP52mccoshc).

With these definitions, we can easily show that@7#

P0522mc coshc coshc,

g052mc sinhc sinhc cosu, ~A20!

g0852mcsinhc sinhc cosu8 with cosu8

5cosu cosQ2sinu sinQ cosf,

and, by introduction of the cross sections,

amn5
4m2c

r2
~mc!6E f ~0! f 1

~0!~11A0f 8
~0!!~1

1A0f 18
~0!!D$Lm

1/2~t!%D$Lm
1/2~t!%s sinh2c cosh3c

3sinh3c sinu sinū sinQ dx dc du dw dū dQ.

~A21!

Moreover,
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f ~0! f 1
~0!~11A0f 8

~0!!~11A0f 18
~0! !

5
A0

22e~2mm/kBT!e2z coshc coshc

~e2@~P0c2g0c1mm!/2#/kBT21!~e2@~P0c1g0c1mm!/2#/kBT21!~e2@~P0c2g08c1mm!/2#/kBT21!~e2@~P0c1g08c1mm!/2#/kBT21!
.

~A22!

Because this expression depends on neitherū nor f and f̄ we obtain

amn5
3m2cp2

r2A0
2 ~mc!6E sinh2x~coshc sinhc!3e2~2z coshc coshx!

~eF12z sinhc sinhx cosu821!~eE12z sinhc sinhx cosu21!

3
s sinu sinQ

~eE21!~eF21!
D$Lm

1/2~t!%D$Ln
1/2~t!%dx dc du dQ df ~A23!
with

E5z~coshc coshx2sinhc sinhx cosu!2mm/kBT,

F5z~coshc coshx2sinhc sinhx cosu8!2mm/kBT.
~A24!

We have now to calculate

amn** [D$Lm
1/2~t!%D$Ln

1/2~t!%. ~A25!

With the use of Laguerre polynomial properties, we arrive

amn** 5 (
k,l52

k5m,l5n

Lm2k
1/21k~2z!Ln2 l

1/21k~2z!Akl** ~A26!

where

Akl** [AkAl and Ak5
zk

k!
ua1•••akda1•••ak

, ~A27!

with the following short-hand notations

ua1•••ak5c2kUa1
•••Uak,

da1•••ak
5~mc!2kd~pa1

•••pak
!. ~A28!

The only unknown quantity,d(pa1
•••pak

), can actually be

expressed with products betweenga andPa @7#:

da1•••ak
52(

k51

@n/2# S n2kDgC ~a1•••a2k
P̂a2k11•••an)

, ~A29!

with

gC5
1

~mc!k
~ga1

•••gak
2ga1

8 •••gak
8 !,

P̂5
1

~2mc!k
Pa1

•••Pak
, ~A30!

and where the parentheses around indices indicate that
have to symmetrize the expression. To have access
amn** , we just have to knowAmn** as we can see by writing
particular cases of the formula~A26!:
at

we
to

a22** 5A22** ,

a23** 5A23** 1L1
5/2~2z!a22** ,

a33** 5A33** 12L1
5/2~2z!a23** 2@L1

5/2~2z!#2a22** , etc.
~A31!

And, by application of~A27!,

A22** 5z4~sinhc sinhx!4~cos2u2cos2u8!2,

A23** 52z5~sinhc sinhx!4~cos2u2cos2u8!2coshc coshx,

A33** 5z6~sinhc sinhx!4~cos2u2cos2u8!2

3~coshc coshx!2, etc. ~A32!

Then, if we define

x i jkl5
2z6ce2mm/kBT

@S2
21#2

E
0

1`

dc~coshc sinhc!3coshic sinhjc

3E
0

p

dQ sinQs~c,Q!

3E
0

1`

dx sinh2x coshix sinhjxE
0

2p

df

3E
0

p

du sinu
e22z coshc coshx

~eE21!~eF21!

3
@cos2u2cos2u8#k@cos2u1cos2u8# l

~eE12z sinhc sinhx cosu21!~eF12zsinhcsinhx21!
,

~A33!

we obtain

a225x0420,

a235z~x04202x1420!1 7
2 x0420,
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a335z2x242012S 721zD 2Fz~x04202x1420!1
7

2
x0420G

2F12 z21 9

2
z1

63

8 Gx0420, etc. ~A34!

Let us now derive an expression foran . By using the same
property as for~A26! one obtains

an52
mc

rkBT
E dw f~0!~11Af ~0!!Ln

1/2~t!Q,

52
mc

rkBT
(
i52

n
zi

i !
Ln2 i
1/21 i~2z!un1•••n i

Qn1•••n i,

~A35!

with

Qn1•••n i5
1

~mc! iE pn1
•••pn iQ f ~0!~11A0f

~0!!dw.

~A36!

Because of the form ofQ, the knowledge ofQn1•••n i is
governed by the knowledge of the moments of the distrib
tion f (0)(11A0f

(0)), or, in other words, by the tensor

Fn1•••nn
[E pn1

•••pnn
f ~0!~11Af ~0!!dw. ~A37!

The result of the integral is a completely symmetric tensor
rankn. A complete basis of such tensors is given by

~Du!nl5
1

cn22l D~a1a2•••
Da2l21a2l

Ua2l11
Ua2l12

•••Uan)
,

lPF0,Fn2G G . ~A38!

Thus we can write@7#

Fn1•••nn
54p~mc!n12A0

21 (
l50

@n/2#

aln~Du!nl ~A39!

with

aln5
~21!nn!

4pm2c2~2l11!! ~n22l !!A0
21

3E d3p

Ap21m2c2
f ~0!~11A0f

~0!!

3S Dbgpbpg

m2c2 D l S pdU
d

mc2 D n22l

. ~A40!

Because
u-

of

f ~0!~11A0f
~0!!5A0

21(
k51

kekzAp
2111kmm/kBT, ~A41!

we arrive at

aln5 (
k51

1`

k (
s50

@n/22 l #

~21!s~2l12s11!!! S l1s
s D

3S n
2l12sD Kn1 l2s11~kz!

~kz! l1s11 ekm/kBT. ~A42!

Therefore

Fn1•••nn
5

rc~mc!n

mkBTS2
21 (

l50

@n/2#

aln~Du! ln . ~A43!

The various moments can be written in the form

F5
r

m2c S S3
0

S2
21 2

4

zD ,
Fa5

r

m
ua

S2
0

S2
21 ,

Fab5rcS S3
0

S2
21uab1

1

z
~Dab2uab! D ,

Fabg5mrc2S uabg

S2
0

S2
21 1

3

z
~D (abug)1uabg!

S3
21

S2
21D ,

Fabgd5m2rc3F S S3
0

S2
21 115z22

S3
22

S2
21 12z21D uabgd

1S 6z21130z22
S3

22

S2
21DD~abugd)

13z22
S3

22

S2
21D~abDgd)G . ~A44!

Thus

a25
z3

2 H 13 S S3
0

S2
21 2z21D 1S S2

0

S2
21 1

3

z

S3
21

S2
21D @~12g9!ĥ

1g-z21#2S 432g8D S S3
0

S2
21 115z22

S3
22

S2
21 12z21D J .

~A45!

This enables us to write explicitly@hv#1 , that is, the low-
est order approximation in the Chapman-Enskog expans
of first order.

For l and hs , the procedure is very similar: one ex
presses both coefficients in the form of an infinite sum
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l5
1

3

rkB
2T

m (
n51

1`

bnbn , ~A46!

wherebn is defined byB5(n50
1` Ln

3/2(t)bn and is a solution
of (m51

1` bmbmn5r21bn .
bn , as far as it is concerned, reads

bn5
mc

rkB
2T2

E f ~0!~11A0f
~0!!Ln

3/2~t!

3~pgU
g1mh!Dabp

apbdw ~A47!

andbmn is equal to

bmn5
1

mkBT
@Lm

3/2~t!pa,Ln
3/2~t!Dabp

b#. ~A48!

In the same way, if we note that

gn5
c

rkB
2T2

E f ~0!~11A0f
~0!!Ln

5/2~t!^papb&^papb&dw

~A49!

and we look forC in the formC5(m50
1` cmLm

5/2(t), we arrive
at

(
m50

1`

cmcmn5
1

rkBT
gn with cmn5

1

~mkBT!
3@Lm
5/2~t!^papb&,Ln

5/2~t!^papb&#

~A50!

andhv satisfying

hv5
1

10
r~kBT!2 (

m50

1`

cmgm . ~A51!

The derivation is then very similar to that forhv and, as a
consequence, will not be detailed here.

APPENDIX B: EXPRESSIONS OF TRANSPORT
COEFFICIENTS UP TO THIRD ORDER

In this appendix we give the complete expressions of t
transport coefficients up to third order necessary for the n
merical computation.

Let us start with the bulk viscosity.@hv#1 ,@hv#2 , and
@hv#3 are given with respect toamn (m,n52,3,4) andan
(n52,3,4) ~see Appendix A! by the following expressions:

@hv#15kBT
a2
2

a22
, ~B1!

@hv#25kBT
a2
2a3322a2a3a231a3

2a22
a22a332a23

2 , ~B2!
@hv#35kBTF ~a33a442a34
2 !a2

21~a22a442a24
2 !a3

21~a22a332a23
2 !a4

212~a24a342a23a44!a2a3

a22a33a4412a23a34a242a33a24
2 2a22a34

2 2a44a23
2

1
2~a23a342a24a33!a2a412~a23a242a22a34!a3a4

a22a33a4412a23a34a242a33a24
2 2a22a34

2 2a44a23
2 G . ~B3!

The coefficientsan , as far as they are concerned, can be expressed in terms of the sumSn
a ,z, and the quantitiesg8,g9, and

g98 all defined in the main body. The result reads

a25
z3

2 H 13 S S3
0

S2
21 2z21D 1S S2

0

S2
21 1

3

z

S3
21

S2
21D @~12g9!ĥ1g-z21#2S 432g8D S S3

0

S2
21 115z22

S3
22

S2
21 12z21D J , ~B4!

a35
z3

2 S 721zD H 13 S S3
0

S2
21 2z21D 1S S2

0

S2
21 1

3

z

S3
21

S2
21D

3@~12g9!ĥ1g-z21#2S 432g8D S S3
0

S2
21 115z22

S3
22

S2
21 12z21D J 2

z4

6 H 13 S S2
0

S2
21 1

3

z

S3
21

S2
21D

1@~12g9!ĥ1g-z21#S S3
0

S2
21 115z22

S3
22

S2
21 12z21D 2S 432g8D S S2

0

S2
21 115z22

S2
22

S2
21 16z21

S3
21

S2
21 190z23

S3
23

S2
21D J ,

~B5!
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a45
1

2 S z219z1
63

4 D z32 H 13 S S3
0

S2
21 2

1

zD 1S S2
0

S2
21 13z21

S3
21

S2
21D @~12g9!ĥ1g-z21#2S 432g8D S S3

0

S2
21 115z22

S3
22

S2
21 12z21D J

1S 921zD z46 H 13 S S2
0

S2
21 1

3

z

S3
21

S2
21D 1@~12g9!ĥ1g-z21#S S3

0

S2
21 115z22

S3
22

S2
21 12z21D 2S 432g8D

3F S20S2
21 115z22

S2
22

S2
21 16z21

S3
21

S2
21 190z23

S3
23

S2
21G J 1

z5

24H 13 S S3
0

S2
21 115z22

S3
22

S2
21 12z21D 2@~12g9!ĥ1g-z21#

3F S20S2
21 115z22

S2
22

S2
21 16z21

S3
21

S2
21 190z23

S3
23

S2
21G2S 432g8D F S30S2

21 145z22
S3

22

S2
21 1630z24

S3
24

S2
21 15z21S 1121z22

S2
23

S2
21D G J .

~B6!
y

es-
The coefficientsamn can be also calculated numericall
thanks to the formulas

a225A22, ~B7!

a235A231S 721zDA22, ~B8!

a335A3312S 721zDA231S 721zD 2A22, ~B9!

a245A241S 921zDA231
1

2 S z219z1
63

4 DA22, ~B10!

a345A341S 921zDA331S 32 z21 25

2
z1

189

4 DA23

1S 721zDA241
1

2 S 721zD S z219z1
63

4 DA22,

~B11!

a445A441S 921zD 2A331
1

4 S z219z1
63

4 D 2A22

1S z219z1
63

4 D S 921zDA231S z219z1
63

4 DA24

12S 921zDA34, ~B12!
whereAmn is expressed in terms of the integralsx i jkl defined
in Appendix A:

A225x0420, ~B13!

A2352zx1420, ~B14!

A335z2x2420, ~B15!

A245
z2

12
@6x24201x0621#, ~B16!

A345
2z3

12
@6x34201x1621#, ~B17!

A445
z4

144
@36x44201x0822112x2621#. ~B18!

For the thermal conductivity one obtains some expr
sions comparable to~B1!, ~B2!, and~B3! but with some new
coefficientsbn (n51,2,3) andbmn (m,n51,2,3):

@l#15
1

3

kB
2T

m

b1
2

b11
, ~B19!

@l#25
1

3

kB
2T

m

b1
2b2222b1b2b121b2

2b11
b11b222b12

2 , ~B20!
@l#35
1

3

kB
2T

m F ~b22b332b23
2 !b1

21~b11b332b13
2 !b2

21~b11b222b12
2 !b3

212~b13b232b12b33!b1b2

b11b22b3312b12b23b132b22b13
2 2b11b23

2 2b33b12
2

1
2~b12b232b13b22!b1b312~b12b132b11b23!b2b3

b11b22b3312b12b23b132b22b13
2 2b11b23

2 2b33b12
2 G . ~B21!
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The coefficientsbn read

b1523z2F115z21
S3

22

S2
21 2S S321

S2
21D 2G , ~B22!

b25S 721zDb11
z3

2 F3S S321

S2
21 1

30

z2
S3

23

S2
21 1

5

z

S2
22

S2
21D

23
S3

21

S2
21 S 11

5

z

S3
22

S2
21D G , ~B23!

b35
1

2 S z219z1
63

4 Db11
3

2 S 921zD z3FS321

S2
21 1

30

z2
S3

23

S2
21

1
5

z

S2
22

S2
21 2

S3
21

S2
21 S 11

5

z

S3
22

S2
21D G2

z4

2 F1135z22
S2

23

S2
21

1
10

z S S322

S2
21 1

21

z2
S3

24

S2
21D 2

S3
21

S2
21 S S321

S2
21 1

30

z2
S3

23

S2
21

1
5

z

S2
22

S2
21D G . ~B24!

And for bmn one obtains

b115B118 , ~B25!

b125B128 1S 721zDB118 , ~B26!

b225B228 12S 721zDB128 1S 721zD 2B118 , ~B27!

b135B138 1S 921zDB128 1
1

2 S z219z1
63

4 DB118 ,

~B28!

b235B8231S 921zDB228 1S 32 z21 25

2
z1

189

4 DB128

1S 721zDB138 1
1

2 S z219z1
63

4 D S 721zDB118 ,

~B29!

b335B338 1S 921zD 2B228 1
1

4 S z219z1
63

4 D 2B118

1S z219z1
63

4 D S 921zDB128 1S z219z1
63

4 DB138

12S 921zDB238 , ~B30!

whereBmn8 are equal to
B118 5B1114
A22

z2
, ~B31!

B128 5B1216
A23

z2
, ~B32!

B228 5B2219
A33

z2
~B33!

B138 5B1318
A24

z2
, ~B34!

B238 5B23112
A34

z2
, ~B35!

B338 5B33116
A44

z2
~B36!

and whereBmn read

B1154x80402100, ~B37!

B12524zx81412100, ~B38!

B2252z4x240449 14z2x82422100, ~B39!

B135
2z2

3
@3x824221001x80604010#, ~B40!

B235
z3

3
@3z2x341449 26x8343210022x81614010#, ~B41!

B335
z4

9
@29z2x442449 19x8444210016x826240101x80806001#

~B42!

~the integralsx8 i jklmno andx i jklm
9 are defined at the end o

this appendix!.
Similarly, for hs one obtains

@hs#15
kBT

10

g0
2

c00
, ~B43!

@hs#25
kBT

10

g0
2c1122g0g1c011g1

2c00
c00c112c01

2 , ~B44!
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@hs#35
kBT

10 F ~c11c222c12
2 !g0

21~c00c222c02
2 !g1

21~c00c112c01
2 !g2

212~c02c342c23c44!g0g1

c00c11c2212c01c12c022c11c02
2 2c00c12

2 2c22c01
2

1
2~c01c122c02c11!g0g212~c01c022c00c12!g1g2

c00c11c2212c01c12c022c11c02
2 2c00c12

2 2c22c01
2 G , ~B45!
t

with

g052
S3

22

S2
21 , ~B46!

g152S 721zD S322

S2
21 110zS S222

S2
21 1

6

z

S3
23

S2
21D , ~B47!

g2525S z219z1
63

4 D S322

S2
21 110zS 921zD S S222

S2
21 1

6

z

S3
23

S2
21D

25z2S S322

S2
21 1

42

z2
S3

24

S2
21 1

7

z

S2
23

S2
21D , ~B48!

and where

c005C008 , ~B49!

c015C018 1S 721zDC008 , ~B50!

c115C118 12S 721zDC018 1S 721zD 2C008 , ~B51!

c025C028 1S 921zDC018 1
1

2 S z219z1
63

4 DC008 ,

~B52!

c125C128 1S 921zDC118 1S 32 z21 25

2
z1

189

4 DC018

1S 721zDC028 1
1

2 S z219z1
63

4 D S 721zDC008 ,

~B53!

c225C228 1S 921zD 2C118 1
1

4 S z219z1
63

4 D 2C008

1S z219z1
63

4 DC028 1S z219z1
63

4 D S 921zDC018

12S 921zDC128 , ~B54!

with

C008 5C0012z21B111
8

3

A22

z2
, ~B55!
C018 5C0114z21B1218
A23

z2
, ~B56!

C118 5C1118z21B22124
A33

z2
, ~B57!

C028 5C0216z21B131
2

3

A22

z2
116

A24

z2
, ~B58!

C128 5C12112z21B2312
A23

z2
148

A34

z2
, ~B59!

C228 5C22118z21B3318
A24

z2
196

A44

z2
, ~B60!

and

C0058x040002- , ~B61!

C01528x150001- , ~B62!

C1154z2~x240229 12x242001- !, ~B63!

C0252z2~4x242001- 1x060212- !, ~B64!

C1252z3~2x141229 24x343001- 2x151112- !, ~B65!

C1252z3~4x4404218888 22x442229 12x444001- 1x4404128888 22x-9 !.
~B66!

Finally, the integrals used in the expressions of the differen
coefficients are listed below:

x i jklmno8 5
2z5ce2mm/kBT

@S2
21#2

E
0

1`

dc~coshcsinhc!3coshic

3sinhjcE
0

p

dQsinQs~c,Q!

3E
0

1`

dxsinh2x coshkx sinhlx

3E
0

2p

dfE
0

p

du sinu
e22z coshc coshx

~eE21!~eF21!

3
@cos2u1cos2u822 cosu cosu8cosQ#m

~eE12z sinhc sinhx cosu21!~eF12z sinhc sinhx21!

3@cos4u1cos4u82cos3u cosu8cosQ

2cosu cos3u8cosQ#n3@cos6u1cos6u8

22cos3u cos3u8cosQ#o, ~B67!
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x i jklm9 5
2z4ce2mm/kBT

@S2
21#2

E
0

1`

dc~coshc sinhc!3coshic sinhjc

3E
0

p

dQsinQs~c,Q!E
0

1`

dx sinh2xcoshkx sinhlx

3E
0

2p

dfE
0

p

du sinu
e22z coshc coshx

~eE21!~eF21!

3
@cosmu22 cosm/2u cosm/2u8cosm/2Q1cosmu8#

~eE12z sinhc sinhx cosu21!~eF12z sinhc sinhx21!
, ~B68!

x i jklmn- 5
2z4ce2mm/kBT

@S2
21#2

E
0

1`

dc~coshc sinhc!3coshic sinhjcE
0

p

dQsinQs~c,Q!E
0

1`

dx sinh2xcoshkx sinhlx

3E
0

2p

dfE
0

p

du sinu
e22z coshc coshx

~eE21!~eF21!

@cos2u1cos2u8#m~12cosnQ!

~eE12z sinhc sinhxcosu21!~eF12z sinhc sinhx21!
, ~B69!

x i jklmn- 5
2z4ce2mm/kBT

@S2
21#2

E
0

1`

dc~coshc sinhc!3coshic sinhjcE
0

p

dQsinQs~c,Q!

3E
0

1`

dx sinh2x coshkx sinhlxE
0

2p

dfE
0

p

du sinu
e22z coshc coshx

~eE21!~eF21!

3
@cos2nu1~21!ncos2nu8#m

~eE12z sinhc sinhx cosu21!~eF12z sinhc sinhx21!
, ~B70!

x-95
2z4ce2mm/kBT

@S2
21#2

E
0

1`

dc~coshc sinhc!3cosh8cE
0

p

dQ sinQs~c,Q!E
0

1`

dx sinh2x cosh4xE
0

2p

df

3E
0

p

du sinu
e22z coshc coshx

~eE21!~eF21!

cos2u cos2u8cos2Q

~eE12z sinhc sinhx cosu21!~eF12z sinhc sinhx21!
. ~B71!
f
,

in

rt

,
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