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Equation of state of an interacting pion gas with realisticsr-7r interactions
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Within the finite-temperature Green’s-function formalism we study the equation of state of a hot interacting
pion gas at zero chemical potential. Employing realistie meson-exchange interactions, we self-consistently
calculate the in-medium single-pion self-energy and#he scattering amplitude in the quasiparticle approxi-
mation. These quantities are then used to evaluate the thermodynamic pdier{fidl from which the state
variables of pressure, entropy, and energy density can be derived. In contrast to earlier calculations based on
the low-energy Weinberg Lagrangian we find an overall increase as compared to the free-gas results. We also
consider the possibility of a droppingmeson mass as suggested by the “Brown-Rho scaling” [80556-
281396)03406-1

PACS numbsgps): 13.75.Lb, 24.10.Cn, 25.75q

[. INTRODUCTION In this article we want to concentrate on the equilibrium
properties of a thermal pion gas, i.e., the equation of state
In recent years much effort has been put into the study ofEOQS. Within the relativistic virial expansion, restricted to
ultrarelativistic heavy-ion collisiongURHIC’s). The main  two-body collisions, Welkest al. [11]. have previously em-
objective of these experiments is to create a new state gfloyed an empirical parametrization of the experimental
hadronic matter, the quark-gluon plasi@GP. However, it vacuums scattering phase shifts mxandp waves as their
is not settled if the current generation of experiments at thgyasic input for calculating the number, energy, pressure, and
BNL AGS and CERN SpS is able to generate sufficientlyentropy densities of an interacting gas of pions. They have
high energy densities to make the transition. On the othefonq that the net effect of the interaction stems from the
hand, lattice gauge calculations, although not yet at the Sta%sonanwlzll(p) channel, leading to an increase of the

of making accurate predictions, suggest the occurrence Oft%ermodynamic state variables, relative to the free gas, for

d_lfferent k!nd of phase trans!tlo‘r‘l a_ssouated with th? re,,St.orafemperatureé' =100 MeV. Quantitatively this contribution
tion of chiral symmetry. This “chiral phase transition” is

expected to occur prior to the deconfinement transition at r comparable to what one would expect from an admixture

critical temperature offf=140-170 MeV. Precursors of of free_p mesons. In ot_her words, the rather s_har_peso-
chiral symmetry restoration may arise well before that, e.g nance in ther s interaction resembles the contribution from
the dropping of vector meson masses as proposed by Browhe€ P Mesons, a mechanism well known from the Beth-
and Rhd[1,2] based on chiral effective Lagrangians and fur- Uhlenbeck formalisni16]. Bunatian and Kenpfer[12] have

ther corroborated by Hatsuda al. [3] within the QCD sum Pursued a rather different approach, based on finite-
rule approach. temperature Green'’s functions in the imaginary time formal-
In central collisions at the AGS, the midrapidity region is ism. As the 7 interaction they employed the Weinberg
characterized by highly compressed nuclear matter due to dsfigrangian[17], known to account for low-energg-wave
almost entire stopping of the Lorentz-contracted collidingm 7 scattering. As a result of their self-consistent calcula-
nuclei. Even at SpS energies, where the stopping power igons in the Hartree approximation the pressure, entropy, and
much less, one encounters sizable baryon densities at centeatergy density exhibit @ecreasefor temperatureg =150
rapidity, leading to an appreciable impact on the in-mediumMeV.
properties of the produced secondafi@®stly pions. At the The aim of the present paper is to recalculate the EOS by
Brookhaven Relativistic Heavy lon CollidéRHIC), on the  both employing a realistierm model capable of describing
other hand, baryon densities in the central zone are expectéde vacuum scattering data up to rather high energies and by
to be very small, such that, after hadronization, this zone wiltaking into account the in-medium modifications of single
be populated by a dense pion gas. pions as well as of thers scattering amplitude self-
Many aspects of a hot, interacting pion gas have beeronsistently and to all orders. Our formalism for calculating
studied in the literature, e.g., single-pion “optical” poten- the thermodynamics will be the one used by Bunatian and
tials [4—7], mean free pathE8], in-medium 7= cross sec- Kampfer, but extended beyond the Hartree approximation.
tions [9,10,4, the equation of stat€l1,12, and hydrody- The =& interaction we use is the meson-exchange model
namic propertie$13,14] as well as numerical solutions of a developed by the Jigch group[18] which, on a microscopic
bosonic Boltzmann equatidi5] simulating the dynamics of level, describes therm scattering data in the various partial
URHIC's prior to freeze out. waves up to center-of-mags.m.s) energies of 1.5 GeV.
Our article is organized as follows: In Sec. Il we present
the formalism for calculating the thermodynamic potential
* Also at Department of Physics, University of lllinois at Urbana- Q) (T). In Sec. Il we derive from it the thermodynamic
Champaign, 1110 West Green St., Urbana, IL 61801-3080. state variables, i.e., the pressure, entropy, and energy density,
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and discuss the numerical results within théckur 7 model D (0 ,K2 (w0, ,K)}, 3

with no in-medium modifications applied to the meson-

exchange potentialBrueckner theory In Sec. IV we con-  where f"(w)=[exp@/T)—1] ! is the thermal Bose factor.

sider the possibility of additional medium effects on the ex-The interaction contributiof . .(T) is the sum of all “‘skel-

changed mesons in terms of a droppipigneson mass. In  eton diagrams” arising from a perturbative expansion of the

Sec. V we summarize and make some concluding remarksscattering amplitude. Within the Matsubara formalism the
contribution fromnth-order meson exchange can be written

Il. THERMODYNAMIC POTENTIAL as
OF INTERACTING PIONS

The starting point of our analysis is the well-known ex- Q“‘)(T)— 5 4n( T)f 2 32 D.(z,,k)2"(z, k).
pression for the thermodynamic potential of a gas of inter- 4
acting bosons at finite temperatJrEd]. In case of interact- @

ing pions it reads This can be pictured as closing the two external legs of the

Q(M=0YT)+Q_(T) (1) pion self-energy. The factor Itdcorrects for overcounting

r i [19] induced by the possible ways of regenerating the

where the first term represents the quasiparticle contributiofth-order pion self-energy by cutting a single-pion line in the
while the second term arises from interactions between théiagrams ofQ) . .(T). For the case ofra contact interac-
quasiparticles. For thermodynamic consistency both term#ions as were considered in Refd2,20 the appropriate
have to be considered. counting factor is 1/2 due to the absence ofchannel ex-

In terms of the single-pion propagator change graphs.
Let us first turn to the calculation of the two-body inter-
D (0, K)=(0f —m=k*~3 (0, ,k))"*  (2)  action contribution), (T).

(wy=w+in), where 3 _(w, ,k) denotes the pion self- _—

energy, the quasiparticle contribution is given by A. Lowest-order contributions to € (T)

3¢ & (d To lowest order i=1) Q. .(T) has already been calcu-
w I -

0T)=-= f 2 t7(w)Im{In[ =D @, k)] lated in Ref.[12]. In the context of arm meson-exchange

(2m)3 potential it reads

Q<1T3 d% dspfdf ImD kf f7(w’)ImD My 'k 5

( )_ (277)3 (ZT)G} ((L)) m 77(('0 - (w )m w(w 1p) (w+w ) !p)l ( )
whereM(l) denotes the spin-isospin averaged, first-order forward scattering amplitude. Employing the quasiparticle approxi-
mation (QPA) for the single-pion propagator,

ImD,T(w,k)=—21[5(w—ek)—5(w+ek)], (6)
€k
Eg. (5) can be simplified as
k2dk 2d 1
0= ¢ [ 5[ G dae 2 ME(ert e RAHI(60 1 (e (170 + 1176y +11)
+M P (e—e, K, p){F (e[ F(ey) + 1]+ [f () +1]F™(ep)}), (7

wherex=co®, ® =~ (k,p). The quasiparticle energieg  Pion self-energyX ., as quoted in Secs. Il B and Il B, is

are determined from the self-consistent solution of the Dysoffased on an equivalent definition. The terms in @ywhich
equation are linear in the Bose factofs” would, however, give con-

stant(i.e., temperature-independgibntributions ta> . and
e2=m2+k?+Re> . (e.k). (8)  are therefore removed when calculating the “physical” pion
self-energy entering, e.g., Eq®) and(8) [12,21]. For con-
The right-hand sidérhs) of Eq. (7) diverges due to the vari- sistency these terms also have to be eliminated when evalu-
ous 1's appearing in the occupation factors. However, wheatingQ ..(T). The proper procedure thus consists of simply
the thermodynamic potential is defined relative to the physitremoving the 1's in Eq(7) [12]. We then obtain, for the
cal vacuum by only considering the difference between thghysical(“renormalized”) thermodynamic potential in low-
values aff=0 and finiteT, then it remains finite. The single est order,
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(1) 31 k2dk p2dp equation(LSE), which, in our casd18], results from the
2(T)= f %8 f (27726 2f7(e)f"(ep) Blankenbecler-Sugar reducti¢@2] of the covariant Bethe-

K P Salpeter equation. In a given partial-wave—isospin channel
JI the scattering equation reads

M7 (E,q1,02) =V (E,d1,02)
+M I (e—e, k,p)}. 9 = dqq’

In the following we shall suppress the tilde and always refer 0 (2m)°
to subtractedrenormalized quantities. For practical evalua- MY (E ) (14)
tions, theM amplitude has to be transformed into the c.m.s. w50 G2),

of the two scattered pions, thereby neglectmg the med'””@vhereGm(E,q) denotes the two-pion propagator of the in-
dependence dfl ,., on the total momenturP=K+p of the  termediate state ant,.=M®) are the Born amplitudes

T

-1 N
+1

(EyQLQ)GmT(EaQ)

pion pair. Then the total c.m.s. energy is identified as (pseudopotentialderived from an effective meson Lagrang-
P e a2 (Ca o2 ian. Schematically, the scattering equatid4) can also be
E*=s=(ex*ep)"—(k+p)*, (10 \written as a perturbative expansion
and, by requiring Lorentz invariance, the relative c.m.s. mo- M=V+VGM=V+VGV+VGVGV+- ..
mentum of the pions is obtained as
=MP+ M@ +ME ... (15
N2 Zle—(p2_ 12\ _ _ 2
() 3(4[S (€= k%)~ (&;=p7)] Beyond the Born approximation, i.e., foe=2, theM ampli-
tude acquires an imaginary part due to the intermediate two-
_(eﬁ— k2)(e,2)— pz))_ (12) pion states being on shell. Consequenﬂﬁ{]) also becomes
a complex quantity. In order to evaluate E4) for n=2, we

therefore employ the standard procedure of inserting the

Using ds=—2pkdxwe can rewrite Eq(9) as spectral representations of the single-pion propagator and the

Q<1>( e 3 kdk f pdp o6 self-energy:
= (e )f"(e
(2m)%e ) (2m)%, ¢ P do’ IMD_(w',k)
Dz, K)== | — > —
><[|£3>+I<E3>], (12 T Zmety
with do Im3 M (w,k
Mz, k)=~ @ M7 (0l e MV(0k)

e Z,~wtin
(1) — max (1)
IA/B_ fEA/B E dE M (E!q!q)! dw 1 7)
min =—J—|m2;”>(w,k) —+—.

AIB 2_12_ 2 12 7 Zetln o
Emax:[(ekiep) —k“—p“+2kp]™*, (16)
EA/ [(e +e )2_k2_ 2_2k ]1/2 (13) . o ) ] ) .

min k="%p P P15 According to the findings in Ref21] the dispersion relation
for the pion self-energy has to be supplemented with a sub-
traction at zero energy.

The Matsubara sum in Eq4) can now be performed
analytically. The imaginary part of the pion self-energy has

Within the meson-exchange framework, the I, am-  been derived in Ref21] and we can immediately generalize
plitude is obtained by solving a Lippmann-Schwinger-typethe result to thenth-order contribution:

which is the main result of this subsection.

B. Higher-order contributions to € _.(T)

|mz<,,“>(w+,k)=—f > )3f —ImM(n)(w++w K,p)ImD (o’ ,p)[f (o)~ f(0+w')]. 17

Injecting Eqs.(16), (17) into Eq. (4) results in the following exact expression for th#h-order scattering contribution to the
thermodynamic potential:

gy 3 L[
ww(T)__EE 2n7
« [fT(0")—f(E)][of(w)—(E'—0"){T(E'-0')]

(wi+o'—E')E —w") ’

defdw imD ImD .(w,k)IMM " (E’ K,p
(277)3 _m 77-((1) !p)m W(w )m 7771-( ’ vp)

(18)
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Note that the imaginary part of the RHS, given by #ié&unction part of 1/, + @’ —E'), vanishes due to the simultaneous
disappearance of the second occupation factor, as it should, ing€r) is a real quantity. Applying the QPA, E¢6), and
performing the trivial angular integrations leads to

. 31 Kkdk p4d

ﬁW(T):_EEJ 2W22ekj (277 2ep +1dXJ _ImMﬂ'Tr E"q q)Z[F E’,k,p)-ﬁ*Gﬂ'(E,,k,p)], (19)
where
FW(E,,k’p):[f”(ep)—f”(E’)][ekf”(ek)—(E’—ep)f“(E’—ep)]+[f”(ep)+f”(E’)][ekf“(ek)—(E’+ep)f”(E’+ep)]

(exte,—E')(E'—¢ep) (exte,TE')(E' +ep) ’

[f7(ep) —f7(E")][ef(en) —(E'—ep) f7(E' —ep)]
(—exte,—E')E —¢ep)

G™(E' k,p)=—

+[f’T(eID)-i-f (EN]lexf"(e) —(E'+e,)f7(E’ +ep)]

(ex—e,—E')(E'+ep) (20
|
The second term ifF™ arises from the negative-energy part 0 1
of the E’ integration. It is obtained from the first term when DE)= o3 (23)
; p ) ) . . . E (m;”)
replacinge’ — (—E') and introducing an overall minus sign @
due to the symmetry M (—E'+in)

m&o) being the bare mass of the resonaac&ith spin and
isospinJl. The vertex functions contain coupling constants,
isospin, and form factors as well as kinematic factors specific
to the spin-momentum part of the coupling.

As is well known, the LSE can be solved analytically for
the case of a separable potenfi2B] which yields

—ImM . _(E'+i%). Similarly, the functionG™ is gener-
ated fromF”™ when replacinge,— (—¢€,) with an overall
minus sign due to the antisymmetry of the single-pion spec:
tral function, Eq. (6). Since the four-momenta
(w,k),(w’,p) enter Eq.(18) on equal footing, we obtain an
additional factor of 2 for the negative-energy contributions
of ImD ,(e',p).

MY (E’ g,
It is not to be expected that, evaluatii”) (T) order by +(E".01.02)

order, leads to a convergent series. For the L($H the I (E")y "1
Born series does not converge and, although there appears an vmm((h)D (E")V rrald2) 2 m
additional factor I when summing the thermodynamic po- “«
tential Uﬂwa(ql)vﬂ'ﬂ'a(qZ)

:EIZ_(mEyo))Z_Ia(EI)’ (24)

Q,(T)= 2, QTN (2)  where
— a dq 2 ’

it may not change the convergence behavior of the series. In lo(E")= 2n )ZUWWa(Q) G.(E".Q) (25

particular, thes-channel polegraph§.e., genuiner reso-
nancegturn out to be problematic, since they exhibit nonin-
tegrable singularities in each ordex 2. In the following we
will discuss them in more detail.

is just the intermediaters bubble. In Eq.(24) the summa-
tion index is chosen such that=1 corresponds to the
lowest-orderBorn) term. Apparently theth-order contribu-
tion in Eq. (24) exhibits a pole of orden at E'=m(®,
leading to divergences in tHe' integration of Eq(19). The

In the Jiich model of Lohseet al. [18] a genuine reso- infinite sum ofzra bubbles, on the other hand, simply renor-
nance is characterized by a separable Born term of the forrmalizes the bare propagator, generating a mass shift and a
finite width, given by Re,(E") and Im ,(E'), respectively.
As we shall show now, this implies the possibility of sum-
ming theQ (" (T) contributions to all orders, thereby avoid-
ing any divergences. The evaluation of EQ1) for pure
with the bare resonance propagator resonance scattering involves the following sum:

1. s-channel pole graphs

VI(E',01,02) =V (A1) DUE NV 1o @2),  (22)



53 EQUATION OF STATE OF AN INTERACTING PION GA& . .. 3061
1 where we have added a zero in form of the<(1) term
QWQ(T)mE —ImM(qT”;a(E’,q,q) (Born term), which does not generate any imaginary part.
n=2n Using the identity
“1 | (E) "
— 20 ! — @ __ oo
_vwwa(q) Da(E )Im|:r122 n<E/2_(m(0))2> :| B XrI
“ In(1-x)=-2 —. (27)
n=1

1 S 1 1, ) \"
=l @M T 2 ‘(m) }
“« n= @ we are now able to perform the infinite sum in EB6). The
(26)  resulting thermodynamic potential reads
|
3( kidk p2dp (-1 (=dE’ , [ (=1 | (E")
Qo T)=— gf szZeJ (2,”_)22epf+l deo ——Sl(@)v74(Q) Im{ I (E) In| 1— E'2— (mY)2
X 2[F™(E',k,p)+G™(E' k,p)], (28
|
with mentum ranges in E28) are restricted to a realistic domain

of p,k=A, (e.g.,A,=3.3 GeV in the Jlich mode).
(2J+1)(21+1)

Sl(a)= 553

(29 2. t-channel vector-meson exchange

In the Jilich model the dominant contribution to the low-
generqu-m-r interaction is generated liychannel exchange of
Cthe p meson. The corresponding Born amplitude is of the

nonseparable form

being the spin-isospin weighting factor of the correspondin
7rar resonance channel with an additional factor of 1/2 a
counting for the partial-wave expansion of the,.. ampli-
tude. When numerically evaluating E(R8) in the Jilich
model, one obtains results far too large to be realistic. A/l (g _ / ,

closer inspection shows that, for fixed momentknthe p Avpe*(E 01:02) = Vnmped B, 01.02)D (B, 61, 02), (32
integration dominantly picks up high-momentum compo-yhere

nents. The reason for that can be traced back to the weak

suppression in thédipole) form factors entering the vertex 1
functionsuv ..,.,(q), D,(E",q1,92)= P— (33
P
2A%+m?\2

(30) is the effectivep t-channel propagator with renormalized
(physica) mass,m,=770 MeV, and four-momentum trans-
fer t=(q,—qg;)2. The nonseparability evades both an ana-

In the vacuum the form factors ensure the convergence of thl?tical solution of the scattering, EG14), and a closed sum-

momentum integration in the free scattering, Etf). HOW-  qation of the thermodynamic potential, E@1). Thus we

ever, when transforming the external pion momeptand 46 forced to evaluate thechannel exchange contributions

k, which are integrated over in E8), into the two-pion 15 () __(T) order by order. Fortunately there are two circum-

c.m.s. the suppression of high momenta is much less effegiances that will allow us to get a realistic estimate.

tive: In the limit of Iargep vglues,p>k, the C.m.s. momen- (i) The p t-channel exchange propagator, E83), does

tum g behaves likeq“=p; i.e., one essentially loses four o exhibit any poles in the kinematical region relevant for

; 2 2
powers of momentum ImT“(q) *F(q)". Note that the  cgiculating thenth-order contribution ta),(T), thus en-
occupation factorg&™ andG™, Eq.(20), contain terms inde- suring the absence of divergences order by order.

pendent off "(e,) such that no “thermal” suppression is at  (jj) As it will turn out from the numerical results in Sec.
work. The formal reason for the failure of the form factor | ¢ the series, Eq(21), rapidly converges when summing
F(q) in the context of Eq(28) stems from the fact that it is the closed ladder surte.g., the third-order contribution is
not of a Lorentz-covariant form. To correct for this unrealis-ypically 10% of the second-order contributjon

tic behavior we have decided to replace the form factor at” \yhen evaluating Eq(19) by using the expansion in Eq.
each vertex by (15) with the pseudopotential32) we encounter the same

DAZ4m2 \ [ 2A24+m2 problem as was pointed out at the end of Sec. Il B 1, namely,
_ a a a’l Ta unrealistically large contributions from very high momenta.
@)= VFORP) = 957 7,2 (2A§+4wg (Y

F(a)=

ZAa2 + 4qu

Therefore, as in the case of pole graphs, we replace the form
factor entering the vertex functions in E@2) by

keeping the cutoff parameters, fixed (these were fitted to
the freew scattering data In this way the relevant mo- F(q,9)°—F(K)F(p). (34
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By a slight readjustment of the form factor we made sure that First we make use of the analytic properties of the one-
the exacinth-orderp-exchange amplitude is reasonably well pion propagator to transform the negative energy part of the

reproduced when using this separable approximation. w integration to positive values, namely,
Another characteristic feature of thelidgh model is the .
occurrence of a scalar-isoscalar bound state in the coupled DA(ws K)=D7(w_ k). (35

KK channel, just below th&K threshold. This bound state
is generated by a strong attraction between kaons and aniijsing the identity
kaons, mediated btrchannel exchange of the vector mesons
p(770), w(782), and$(1020). It leads to the characteristic
sharp rise in therm— 7 phase shift$$% in the vicinity of Im[In(z)]= —Im[In(z*)] (36)
the KK threshold and is interpreted as thg980). To in-
corporate this resonancelike feature of the phase shifts in
our calculation ofQ2,.(T) we proceed as follows: Rather for any complex numberz, and removing the infinite
than summing the ladder diagrams involving & inter- ~ vacuum parf(as discussed in Sec. I)Aesults in
mediate states and their direct interaction we simulate the
fy(980) as a genuine resonance; i.e., we choose the reso- =do
nance parameters such that the fﬁﬂ,?w_phase shifts can be QS(T): — _Sf —2f"(w)Im{In[ — D;l(w+ k)]
described without any coupling to tieK channel. The fully 2) (2m)*Jo m
iteratedfy(980) pole graph contribution tQ ..(T) is then _
calculated as outlined in Sec. Il B[Eq. (28)]. D0 )2 (0 K} S
Before ending this section we should point out that we
have neglected any interference terms between th&he first term in the braces can be rewritten by using the
s-channel pole graphg‘bubble” sum) and thet-channel identity
exchange graph€‘ladder” sum). The following two argu-
ments make us believe that this is a reasonable approxima-
tion.
(i) The 77 interaction in the resonant chann¢i., the
JI=11 channel with thep(770) resonance and thH=20 —arctar%
channel with thef,(1270) resonandeis largely driven by
pole graph contributions such that the additional incorpora-
tion of t-channel exchange processes is expected to haveNeglecting the imaginary part o, (which we will call
guantitatively small effect; in the case of tpeandf, chan-  scheme A, Eqg. (37) can be simplified as
nels thep t-channel exchange is attractive and leads to a
rather small change of the resonance when evaluated with
the combined ladder-bubble sum. Our results for the pole
graph contribution$)! _ (T) should therefore be considered
as a lower estimate of the exact contribution; the situation is
less clear for thésimulated f;(980) in theJI =00 channel, _ ifW(ek)Rez (e k)J' (39)
but as will turn out from the numerical results the 2ey e
fo-bubble sum gives a very small contribution by itself.
(ii) As already mentioned in Sec. Il B 2 thet-channel
exchange contribution t9 . _(T) converges rapidly with the
(n+21)th order being typically down to 10% of theh order.
We now turn to the evaluation of the single-pi¢gqua-
sipion) partQS(T) of the thermodynamic potential.

3 d%

Im{In[— D, *(w,k)]}=mO[ReD, }(w,k)]

—Im3 _(w,k)

ReD_Hofo | %9

3
Q3T = ZZJ dka[T In(1—e~&'T)

The first term corresponds to the contribution of “free” qua-
siparticles with modified dispersion relatios,=e(k),
whereas the second term arises from an additional, dynami-
cally generated, mean field. Their qualitative behavior is in
line with the naive expectation that the presspre— is
reduced for heavier particles but increases for a repulsive
mean field and vice versa.

In evaluating the contributions tb)g(T) we shall also One can go one step further by including the imaginary
apply the QPA to the medium-modified single-pion spec-part of the pion self-energy in E§37) (which we will call
trum, given by Eq(6). We essentially follow the steps out- scheme B. ThenQ%(T) receives further contributions and
lined in Ref.[24]. reads

C. Quasiparticle contributions: QS(T)

3 =d Im3. (e, ,k
QS’%T):ﬁfdka[Tm(l_e—em)_fo%W(w)am{wz (e.k) ”

— wi—Re> .(e,k)

3 do M3 (k) (0P )
+ o akie [ 2 (@) 7=+ [ImS (e O

5 (40
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We shall consider both approximations, E(®9) and (40), e(T)=Ts(T)—p(T). (43
in our numerical calculations discussed in the next section.
lIl. THERMODYNAMIC QUANTITIES As elaborated in Ref$24,19 the partial derivative with re-
AND NUMERICAL RESULTS spect toT in Eq. (42) only acts on the explicit temperature
dependence of the occupation factors due to the stationarity
A. Pressure, entropy, and energy condition[24,19

Having the thermodynamic potential at hand, the state
variables of pressure density(T), entropy densitys(T),
and energy density(T) can be calculated by means of the &
standard thermodynamic relations at zero chemical potential: 62

p(T)=—-Q(T), (41)

=0, (44

which holds for a self-consistent treatment as will be per-
90 (T) formed in Sec. Il C. Thus we obtain, for the quasiparticle

s(h=- aT =’ (“42) contributions to the entropy from E¢39),

of ’T(ek)

3
sg'a(T)=ﬁj dki? ReS (&, k)] (45)

[1+17(eg]In[1+F7(ew) = F7(eIn[f7(e ]— 5~

or, when including a finite width for the pions, from E@O0),

3
b _
s2P(T) = —szf dk k2

“dw ¢f"(w) |m27,(ek k)
[1+f7(e ) ]In[1+ (e ) ]— T (e)In[f™(e)]— 07 T arcta o2 _wk RS (e,.K)

“dw f"(w) 1M (&, K)(0?— w)) } (46)

o7 T (w2—e)Z+[Im3 (e.k)]2

which is consistent with the expressions quoted in IR&f]. In our framework of meson-exchange interactions, the skeleton
contributions to the entropgdenoted by—d®/4T in Ref.[24]) arise in lowest order from Ed12),

3 kdk pdp "( &) ”(e)
(1) —__ ( (1) £ ™ P
S’JT’IT(T) 8 (277')28;(] (277)26,)[' I ] (ep) f ( k) ’ (47)
for the t-channelp-exchange graphs from E¢L9),
31 k?dk p2dp JF™(E',k,p) dG™(E'kK,p)
(n) - _ _ o= (n) ’ [N K
Srn(T)="3 4nf 2n%2e,) (2m)? 2epf+1dxf 'mM =(E"0, q)2[ T T } (48)
|
and an analogous expression for #ehannel pole graphs = dp
from Eq. (28) for s,,,.(T). (e, k)= j 22 2e 5o [f7(ep) —fT(ect+ep)]

To check our results with respect to thermodynamic con-
sistency, we will also consider an alternative way of evalu- Emax
ating the pressure density, namely, XJ dEcmsEcmsMaa(Ecms). (50

Emin

p(T)= deT’sW(T’). (490  Here we have neglected the numerically very small contri-
0 butions[21] from thermal excitationgas is usually done in
the literature. The in-medium scattering amplitude, to be
calculated from Eq(14), depends again on the pion self-
B. Self-consistent Brueckner scheme energy3, . through the in-medium two-pion propagator of

As pointed out in Sec. Il A the in-medium pion dispersion the intermediate state:

relation (or pion self-energy has to be determined self-
consistently from the Dyson equatidB). In the QPA the .

) o ; . . 1 1+2f7(e,)
pion self-energy is given in terms of the in-medium and on- G,.(E,q)=— 2—;42
shell o forward scattering amplitude 48] wg E°=4(wy)

(51)
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with (w})?=wg+3 ,(eq.0). Thus Egs(8), (14), (50), and
(51) define a self-consistency problem of the Brueckner type
which we solve(at fixed temperatupeby numerical iteration

as discussed in Ref6].

The converged results for the pion self-energy and the
in-medium M ... amplitude are then used to calculate the
thermodynamic potential and state variables as described in
Secs. Il and Il A, respectively. According to scheme A or B
(see Sec. lll Cwe, respectively, either neglect or include Im
3, . when evaluating the two-pion propagator, Eg).

0.0+
60

C. Numerical results and discussion 1c')o 1§o 15,0 1éo 1éo 200

T (MeV)

80

For given value of the temperature we self-consistently
calculate the in-mediumrzr amplitude as well as the pion
self-energy, which are then further used to evaluate the vari-
ous contributions to the thermodynamic potential, namgly,
the lowest-order skeleton graphs, EtR); (ii) the resonance-
mar-bubble skeleton graphs to all orders, Eg8), for the
resonances a=p(770), f,(1270), and the simulated
f0(980); (iii ) the second- and third-order skeleton graphs for
p t-channel exchange, Eq19); (iv) the single-pion(qua-
sipion contributions given by Eq39) or (40).

Let us first concentrate on scheme A in which we neglect
any imaginary part of the pion self-energy. The full results
for the pressure, entropy, and energy den&@lid lineg are
contrasted in Fig. 1 with the results for free piofdash-
dotted line$ and freep mesongdotted line$. First we note
that the quasiparticle contribution, E@9), coincides at all
temperatures within less than 1% with the EOS of free pions,

100 120 140 160 180 200.
T (MeV)

80

3T
Qf;_ee(T)z ﬁf dkkIn(1—e~ /Ty, (52

The reason for that is an almost exact cancellation between
the mean field contributiofsecond term in Eq:39)] and the
kinematic modification caused by the replacemept- g, in

the exponential of the logarithm in the first term of E§9).

But even the absolute magnitudes of these medium-induced
single-particle modifications do not exceed 3% at any tem-
perature. These findings are at variance with the results of
Ref.[12], where a generalecreasef pressure, entropy, and
energy compared to the free pion gas was found. This de-
crease is due to an increase of the in-medium pion mass
dominantly leading to a suppression of the In term in EQ. FIG. 1. Thermodynamic state variabléscaled by temperature
(39). The increase of the pion mass stems from the net reto dimensionless unitsof an interacting hot pion gas within the

0.0+

100 120 140 160 180 200
T (MeV)

80

pulsion of the low-energg-wave 77 interaction(Weinberg
Lagrangian. In our analysis, however, it turns out that it is
important to include both a higher-energy range of #he
interaction(essentially up to 1 GeV two-pion c.m.s. energy
and higher partial waves. E.g., the resonpswave channel
significantly contributes to Re_ (e, ,k), whereas there are
large cancellations in bothandd waves between the attrac-
tive | =0 and the repulsivé=2 channel§11,25.

Brueckner scheme with no medium modifications applied to the
two-body interaction potentials: upper panel, pressure density;
middle panel, entropy density; lower panel, energy density; solid
lines, interacting pion gas when neglecting the pion width; dashed
lines, interacting pion gas with inclusion of a finite pion width;
dotted lines, freep gas; dash-dotted lines, free pion gas; dash-
double-dotted lines, free-p gas.

Let us now come to the discussion of the skeleton diaenergy contributions represented by B term in Eq.(28).
grams. The effect of the first-order graphs, Exp), is small: ~ Without it the values fop,,(T), S;.,(T), ande,..,(T) lie
Their combined contribution does not exceed 1% ofslightly below the fregp-gas valuesp!®Y(T), si°(T), and
Q‘;:ee(T) in the considered temperature range. The most imegee(T) (dash-double-dotted lines in Fig). This is in agree-
portant role is played by the-channelp pole graphs; see, ment with the findings of Ref[l11], i.e., that thenww
e.g., Table I. It is remarkable that nearly half of the contri-p-wave interaction effect resembles the presence of free

bution top ;,(T), Sz,(T), ande,,(T) is due to negative mesons, the small suppression compared to the drgas
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TABLE I. Contributions from thep pole graph skeleton dia- TABLE lll. Various contributions to the pressure density of an
grams to the thermodynamic state variables in an interacting hanteracting hot pion gas &t=200 MeV within the Brueckner cal-
pion gas within the Brueckner calculations neglecting any width ofculations when neglectin@upper ling and including(lower line) a

the pions. finite pion width.

T [MeV] Py PEC Spmp/Su® Ermp €0 PP AP™ P, /phe pQUpiee plyple
150 26% 41% 45% Im3, =0 9.8% 43% 99.8% 158.4%
200 43% 56% 60% Im2, ., <0 13.3% 46.6% 107.6% 173.7%

values in our case being caused by the finite width ofg¢he pytion to theE’ integral in Egs.(19), (28), accounting for
resonancéwhich is even further broadened in mediuand  5imost the entire difference in comparison to scheme A.
the missingt-channel exchange diagrams. The latter, when \ye end this section by testing our numerical results with
implemented in the pole-graphrsr-bubble sum, would lead  ggpect to thermodynamic consistency. For that we recalcu-
to a slightly stronger renormalization of the bare _ late the total pressure density by integrating the entropy den-
The Effec; o;‘reeother I _resgnanfffes IS _small. sity according to Eq(49), which amounts to an implicit
Prrt,(T)=3.8% Pz, Prrr(T)=0.3% pr= at T=200  cpocy of the stationarity condition, E(4). As can be seen
MeV, and similarly for the entropy and energy density. A from Fig. 2 there is excellent agreement of the so calculated
somewhat larger contribution is generated by skeleton diapW(T) with the “direct” evaluation when neglecting the
grams from secpnd—ordep t-channel exchange; see, e'g"tpion width (scheme A When including a finite I .
Table II. The third-order values are already one order Ofgcheme Bthe values for the pressure density obtained from

magnitude smaller. _ Eq. (49) are slightly suppressed as compared to the direct
The overall picture emerging for the temperature depengiqiation, causing a loss of about half the enhancement
dence of the thermodynamic state variables is quite similag, o <cheme A

for all three: We find an appreciable enhancement of the
self-consistently calculated pressure, entropy, and energy for
the interacting gas compared to free pions for temperatures
T=100 MeV, which even exceeds the values for a free gas
of pions andp mesons. This excess can be traced back to |n the calculations of the previous section no medium
negative energy contributions, naturally arising within oureffects were considered in the interaction kernel of the
formalism, and low-energy-channel exchange of virtual  scattering equation. However, since autr model is based
mesons between two pions. At very high temperaturesn explicit (vecto) meson exchange, one may expect an im-
(T>200 MeV) the thermal broadening of therm reso- pact on the pseudopotentials due to modifications in the
nances, in particular the dominantly contributipg’70, be-  propagator of the exchanged mesons when exposed to finite
comes so large that they no longer resemble the effect of agmperature. The most prominent example for such a modi-
independent particle speciegemember from the Beth- fication is the dropping of the vector meson masses or
Uhlenbeck formalism that a sufficiently sharp two-particle “Brown-Rho scaling” [1,3]. Adami and Brown suggested
resonance thermodynamically acts like an independent spéhe temperature dependence of theneson mass to bi@]

cies corresponding to the quantum numbers of the reso-

nance. When including a finite width I8 . for the quasipi-

ons (= scheme B, as described in Sec. I)l ®e observe a 0.5
slight overall enhancement @ .(T), s,(T), and €,(T)

(dashed lines in Fig.)lcompared to the results when ne-

IV. DROPPING RHO MESON MASSES

glecting Im®, .. The main source for this increase are the 0.44
second-ordep t-channel skeleton graphs, tiepole skel- il
eton graphs, and the quasiparticle contributions,(EQ@); cf. S~
Table 1ll. In case of the skeleton diagrams this increase is e
simply due to the fact that IM . ,(E’) acquires a nonzero 0.31

imaginary part below thén-mediunm) two-pion threshold all
the way down toE’=0. This leads to an additional contri-

0.2 T T T T T
100 120 140 160 180 200

TABLE II. Contributions from the second-ordegr t-channel
T (MeV)

exchange skeleton diagrams to the thermodynamic state variables of
an interacting hot pion gas within the Brueckner calculations, ne-

glecting any width of the pions. FIG. 2. Comparison of two different ways of calculating the

pressure density of an interacting pion gas within the Brueckner

T [MeV] pgrzq)mex/pz:ee Sﬁpeiszee ff%pleiee schemg; the solid lingimX, neglecfe.ai an,c’i the das:h-dotted line
(Im3 . included correspond to the “direct” calculationghe sum

150 7.0% 8.5% 8.9% of Egs.(12), (19), (28), (39), and(40)], whereas the dashed lifken

200 9.8% 11.2% 11.7% 3. . neglected and the dotted lingimZ, , included are obtained

from integrating the entropy density according to E4p).
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(qq) 3 model differ by around 5% from those presented in Sec.
m,(T)~m,(0)| — T) , (53 IIl C, confirming the notion that chiral symmetry has little
(9a)o impact on thew 7 interaction as long as strong threshold

here(qq)+ denotes th k condensate at finite t effects are absent.
whereidq)y denotes the quark condensate at finite tempera- Let us now turn to the scenario with Brown-Rho scaling

ture. TheT dependence was taken as included. For simplicity we will neglect the coupling to the
TN a1 (T/T02 KK channel, which was shown to have a very small effect in
(qa)r=(aa)oV1=(T/Te)" 64 the previous section. Relevant for our model are the decrease

In Ref.[25] such a decrease of themass was implemented Of the (physica) p mass[Eqg. (53)] and the corresponding

in a self-consistent pion gas calculation within thdichu  reduction of the pion decay constant,

model as described in Sec. Il B. Already well beldy a

large accumulation of strength was found in the scalar- f(T)  my(T) 58

isoscalar channel of thew scattering amplitude close to the f.(0) m,(0) (58)

two-pion threshold. It is due to the strong enhancement of

the attractivet-channelp exchange in this channel. However, The latter enters therm contact interactions, whereas the

it has been shown recent[)ZG] that the implementation of physica| massn, is used in thq_channeb_exchange propa-

chiral constraints into therm interaction is crucial to reli- gator, Eq.(33). For given temperature the bage mass

ably calculate in-mediumr s correlations in the vicinity of (0 ysed in thes-channelp pole propagator, Eq23), is

the threshold. On the other hand, sufficiently above the “Noac%usted such that the fully renormalizw}T{T amplitude in

pio‘.‘ threshold Ec . s>400 Mey or Sq chiral con_straint§ free space acquires its maximuiire., p resonance pealat

rapidly cease to have a significant impact on |n-med|umthe corresponding value ah (T) from Egs.(53), (54). For

7o amplitudes. This justifies the use of the nonchirally SYM-t+ ed m,(T), f,(T), and m’(’O)(T) we then perform self-
1 au b p

metric Jilich model in the previous section, where no drop- . :
. . consistent Brueckner calculations for. andM . at several
ping vector meson masses are taken into account and th ; . :
values along exactly the same lines as described in Sec.

only minor threshold effects in therm amplitude are ob- B

served(6]. The resulting EOS for the hot interacting pion gas is dis-

In this section we will employ a chirally improved version laved in Eig. 3. wh h h he critical
of the Jiich 7 interaction[27,21]. It is supplemented with played in Fig. 3, where we have chosen the critical tempera-
' ture of chiral symmetry restoration to B&=170 MeV. For

7rar contact interactions as required from the gauged nonlin: .
ear o model[28]. To ensure the correct chiral limit for the T>100 MeV we observe a strong increase of the pressure,

s-wave scattering lengths a modified off-shell prescriptionemmpy' and energy density as compared to the calculations

for the pseudopotentials has been chosen when iterating te'ftggtuits Igflsuirsrlwo?e ?(fintg:]alﬁ::o(\;vr?ﬁhgssgglr:ngé sMe(()eSnt t?f (t:g?n_
scattering, Eq(14). P gin, y

Because of the additional interaction terms in the La-P2rson to the freer-p gas including the decrease DTP'
grangian of the chirally improved lich model there arise However, fOF temperatures below~150 MeV ther in-
further contributions to the thermodynamic potential teractions stil genoerate.an _enhe_mcelm.ent over the #rge
Q._(T). They are straightforwardly incorporated in the qua- 2S¢ of around 15%, which is quite similar to what we found
siparticle and in the lowest-order contributior@2(T) in the pure Brueckner calculations. Just bel®jvthe free-
and QS},)T(T), respectively. ForQSﬂ}T(T) we take into P93 vaIL_les fOp’T(T)’ .S”(T)’ ande_q,(_T) are close to the
account all contributions up to second order, namely, fro ones of the interacting pion gas. This is due to the fact that

. ; m[hEp pole graph starts acquiring appreciable renormalization
\(,:I)itﬁecond—ordep exchange as given by EGL9) for n=2 contributions especially from the strongly attractive

t-channel exchange of @ meson with massn,(T). How-
§IMM 2 =3V ,6,imG .,V ey, (55  €ver, in our approximation scheme 18, .(T), this kind of
contribution is not accounted fofcf. Sec. 11 B 1, even
where we explicitly indicated the degeneracy factornl/4 though they are certainly not negligible anymore in the vi-
(i) the second-order contact interactions also given by Eccinity of TY.
(19) for n=2, but with the degeneracy factgrreplaced by
3 due_to the absence of exchange diagraofisthe remarks V. SUMMARY AND CONCLUSIONS
following Eq. (4)], i.e.,
L @ _ 1 _ Based on the finite-temperature Green’s-function formal-
2IMMZZ2= 2 VeodMG 77 Veont; (56)  ism we have presented an analysis of the equation of state of
a hot interacting gas of pions at zero chemical potential.
Starting from a realisticrm meson-exchange model ca-
pable of describing the vacuum scattering data over a broad
HimMm 572;=%VconJmGWVpex- (57) range pf energ_ies we have c_alculat_ed the in-medimm
scattering amplitude and the single-pion self-energy. The re-
Numerically it turns out that higher-order contributions in sulting self-consistency problem has been solved by numeri-
p-exchange or contact interactions are again negligible. ~ cal iteration within the quasiparticle approximatitBrueck-
When recalculating the EOS without any dropping of thener scheme [6]. We then proceeded to evaluate the
p mass the results employing the chirally improvediclu  thermodynamic potentidl .(T).

(iii ) the first-orderp-exchange plus first-order contact inter-
action; here the appropriate degeneracy factd is
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(i) For the interaction part of the thermodynamic poten-
tial Q..(T), we have taken into account thk,(980),
p(770), andf,(1270) s-channel pole graphs to all orders as
well as thep t-channel exchange up to third order; higher
orders as well as interference terms between and
t-channel graphs have been estimated to be small and were
neglected; the main contribution stems from thepole
graphs, their magnitude being comparable to what one ex-
pects from an admixture of free mesons.

Special attention has been paid to constraints from ther-
modynamic consistency, and it was shown that our results
60 80 100 120 140 160 180 200 satisfactorily fulfill these constraints.

T (MeV) In total we have found a 10-15% enhancement of
Q.(T) compared to a free gas of and p mesons in the
temperature range 100 MeVT<150 MeV. The pressure,
entropy, and energy density, which were extracted from
Q (T) by means of standard thermodynamic relations, show
a very similar behavior. This is in qualitative agreement with
the results of Welkeet al. [11], who employed empirical
vacuums- and p-wave 77 phase shifts within a relativistic
virial expansion. Our results are, however, at qualitative vari-
ance with the findings of Bunatian and i&afer [12], who
also used the finite-temperature Green’s-function approach
but employed the Weinberg Lagrangian. The latter is known
to account only for the low-energsy-wave 7 interaction,
; : . ; . : resulting in a net repulsion when performing the isospin
60 80 100 120 140 160 180 200 weighted sum for the near-threshotdr amplitude. As a

T (MeV) consequence, their pressure, entropy, and energy density
show an overaldecreasewith temperature as compared to
the free pion gas.

Our conclusion from this is that the higher-energy range
(up to c.m.s. energies close to 1 Geds well as higher
partial waves(especially the resonamt wave in the 7
interaction are important for a reliable description of thermo-
dynamic properties of an interacting gas of pions.

We furthermore investigated the impact of a droppjng
mass according to Brown-Rho scaling. Using a chirally im-
proved Jlich model including contact interactions, arising
from the gauged Weinberg Lagrangian, we find a similar
behavior as before: Even though the pressure, entropy, and
60 80 100 120 140 160 180 200 energy of the interacting pion gas now exhibit a considerable

T (MeV) increase neaf{, the enhancement over the freep-gas
values (dropping p mass includedis not more than 10—
20 %. Very close to the critical temperature, where the

to dimensionless unitsof an interacting hot pion gas within the mass rapidly drops to zero, the interacting pion gas values

Brueckner scheme plus additional medium modifications of the?'® Close to the ones of the freep gas. This feature, how-
two-body pseudopotentials in form of dropping,(T) and f ,(T); ever, |s_due to the breakdown of our approximations; in par-
here, a chirally improved version of thélidh = interaction has  ticular, interference terms betweprs- andt-channel graphs
been employed: upper panel, pressure density; middle panel, eRecome far from negligible.

tropy density; lower panel, energy density; line identification as in
Fig. 1.

FIG. 3. Thermodynamic state variabléscaled by temperature
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