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Equation of state of an interacting pion gas with realisticp-p interactions

R. Rapp and J. Wambach*
Institut für Kernphysik (Theorie), Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 26 October 1995!

Within the finite-temperature Green’s-function formalism we study the equation of state of a hot interac
pion gas at zero chemical potential. Employing realisticpp meson-exchange interactions, we self-consistently
calculate the in-medium single-pion self-energy and thepp scattering amplitude in the quasiparticle approxi-
mation. These quantities are then used to evaluate the thermodynamic potentialVp(T) from which the state
variables of pressure, entropy, and energy density can be derived. In contrast to earlier calculations bas
the low-energy Weinberg Lagrangian we find an overall increase as compared to the free-gas results. We
consider the possibility of a droppingr-meson mass as suggested by the ‘‘Brown-Rho scaling’’ law.@S0556-
2813~96!03406-1#

PACS number~s!: 13.75.Lb, 24.10.Cn, 25.75.2q
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I. INTRODUCTION

In recent years much effort has been put into the study
ultrarelativistic heavy-ion collisions~URHIC’s!. The main
objective of these experiments is to create a new state
hadronic matter, the quark-gluon plasma~QGP!. However, it
is not settled if the current generation of experiments at
BNL AGS and CERN SpS is able to generate sufficien
high energy densities to make the transition. On the ot
hand, lattice gauge calculations, although not yet at the s
of making accurate predictions, suggest the occurrence
different kind of phase transition associated with the resto
tion of chiral symmetry. This ‘‘chiral phase transition’’ is
expected to occur prior to the deconfinement transition a
critical temperature ofTc

x51402170 MeV. Precursors of
chiral symmetry restoration may arise well before that, e
the dropping of vector meson masses as proposed by Br
and Rho@1,2# based on chiral effective Lagrangians and fu
ther corroborated by Hatsudaet al. @3# within the QCD sum
rule approach.

In central collisions at the AGS, the midrapidity region
characterized by highly compressed nuclear matter due t
almost entire stopping of the Lorentz-contracted collidi
nuclei. Even at SpS energies, where the stopping powe
much less, one encounters sizable baryon densities at ce
rapidity, leading to an appreciable impact on the in-medi
properties of the produced secondaries~mostly pions!. At the
Brookhaven Relativistic Heavy Ion Collider~RHIC!, on the
other hand, baryon densities in the central zone are expe
to be very small, such that, after hadronization, this zone w
be populated by a dense pion gas.

Many aspects of a hot, interacting pion gas have b
studied in the literature, e.g., single-pion ‘‘optical’’ poten
tials @4–7#, mean free paths@8#, in-mediumpp cross sec-
tions @9,10,6#, the equation of state@11,12#, and hydrody-
namic properties@13,14# as well as numerical solutions of
bosonic Boltzmann equation@15# simulating the dynamics of
URHIC’s prior to freeze out.

*Also at Department of Physics, University of Illinois at Urban
Champaign, 1110 West Green St., Urbana, IL 61801-3080.
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In this article we want to concentrate on the equilibrium
properties of a thermal pion gas, i.e., the equation of sta
~EOS!. Within the relativistic virial expansion, restricted to
two-body collisions, Welkeet al. @11#. have previously em-
ployed an empirical parametrization of the experiment
vacuumpp scattering phase shifts ins andp waves as their
basic input for calculating the number, energy, pressure, a
entropy densities of an interacting gas of pions. They ha
found that the net effect of thepp interaction stems from the
resonantJI511(r) channel, leading to an increase of th
thermodynamic state variables, relative to the free gas,
temperaturesT*100 MeV. Quantitatively this contribution
is comparable to what one would expect from an admixtu
of free r mesons. In other words, the rather sharpr reso-
nance in thepp interaction resembles the contribution from
free r mesons, a mechanism well known from the Beth
Uhlenbeck formalism@16#. Bunatian and Ka¨mpfer @12# have
pursued a rather different approach, based on fini
temperature Green’s functions in the imaginary time forma
ism. As thepp interaction they employed the Weinberg
Lagrangian@17#, known to account for low-energys-wave
pp scattering. As a result of their self-consistent calcul
tions in the Hartree approximation the pressure, entropy, a
energy density exhibit adecreasefor temperaturesT*150
MeV.

The aim of the present paper is to recalculate the EOS
both employing a realisticpp model capable of describing
the vacuum scattering data up to rather high energies and
taking into account the in-medium modifications of singl
pions as well as of thepp scattering amplitude self-
consistently and to all orders. Our formalism for calculatin
the thermodynamics will be the one used by Bunatian a
Kämpfer, but extended beyond the Hartree approximatio
The pp interaction we use is the meson-exchange mod
developed by the Ju¨lich group@18# which, on a microscopic
level, describes thepp scattering data in the various partia
waves up to center-of-mass~c.m.s.! energies of 1.5 GeV.

Our article is organized as follows: In Sec. II we prese
the formalism for calculating the thermodynamic potenti
Vp(T). In Sec. III we derive from it the thermodynamic
state variables, i.e., the pressure, entropy, and energy den

-
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3058 53R. RAPP AND J. WAMBACH
and discuss the numerical results within the Ju¨lich pp model
with no in-medium modifications applied to the meson
exchange potentials~Brueckner theory!. In Sec. IV we con-
sider the possibility of additional medium effects on the e
changed mesons in terms of a droppingr-meson mass. In
Sec. V we summarize and make some concluding remar

II. THERMODYNAMIC POTENTIAL
OF INTERACTING PIONS

The starting point of our analysis is the well-known ex
pression for the thermodynamic potential of a gas of inte
acting bosons at finite temperature@19#. In case of interact-
ing pions it reads

Vp~T!5Vp
Q~T!1Vpp~T!, ~1!

where the first term represents the quasiparticle contribut
while the second term arises from interactions between
quasiparticles. For thermodynamic consistency both ter
have to be considered.

In terms of the single-pion propagator

Dp~v1 ,k!5„v1
2 2mp

22k22Sp~v1 ,k!…21 ~2!

(v1[v1 ih), where Sp(v1 ,k) denotes the pion self-
energy, the quasiparticle contribution is given by

Vp
Q~T!52

3

2E d3k

~2p!3
E dv

p
f p~v!Im$ ln@2Dp

21~v1 ,k!#
-

x-

s.

-
r-

ion
the
ms

2Dp~v1 ,k!Sp~v1 ,k!%, ~3!

where f p(v)5@exp(v/T)21#21 is the thermal Bose factor
The interaction contributionVpp(T) is the sum of all ‘‘skel-
eton diagrams’’ arising from a perturbative expansion of t
scattering amplitude. Within the Matsubara formalism t
contribution fromnth-order meson exchange can be writte
as

Vpp
~n! ~T!5

3

2

1

4n
~2T!E d3k

~2p!3(zn

Dp~zn ,k!Sp
~n!~zn ,k!.

~4!

This can be pictured as closing the two external legs of
pion self-energy. The factor 1/4n corrects for overcounting
@19# induced by the possible ways of regenerating t
nth-order pion self-energy by cutting a single-pion line in th
diagrams ofVpp(T). For the case ofpp contact interac-
tions as were considered in Refs.@12,20# the appropriate
counting factor is 1/2n due to the absence ofu-channel ex-
change graphs.

Let us first turn to the calculation of the two-body inte
action contributionVpp(T).

A. Lowest-order contributions to Vpp„T…

To lowest order (n51) Vpp(T) has already been calcu
lated in Ref.@12#. In the context of app meson-exchange
potential it reads
pproxi-
Vpp
~1! ~T!5

3

8E d3k

~2p!3
E d3p

~2p!3
E dv

p
f p~v!ImDp~v,k!E dv8

p
f p~v8!ImDp~v8,p!Mpp

~1! ~v1v8,k,p!, ~5!

whereMpp
(1) denotes the spin-isospin averaged, first-order forward scattering amplitude. Employing the quasiparticle a

mation ~QPA! for the single-pion propagator,

ImDp~v,k!52
p

2ek
@d~v2ek!2d~v1ek!#, ~6!

Eq. ~5! can be simplified as

Vpp
~1! ~T!5

3

8E k2dk

2p2 E p2dp

~2p!2
E

11

21

dx
1

2ek

1

2ep
„Mpp

~1! ~ep1ek ,kW ,pW !$ f p~ek! f
p~ep!1@ f p~ek!11#@ f p~ep!11#%

1Mpp
~1! ~ek2ep ,kW ,pW !$ f p~ek!@ f

p~ep!11#1@ f p~ek!11# f p~ep!%…, ~7!
n

lu-
ly
wherex[cosQ, Q5/(kW ,pW ). The quasiparticle energiesek
are determined from the self-consistent solution of the Dys
equation

ek
25mp

21k21ReSp~ek ,k!. ~8!

The right-hand side~rhs! of Eq. ~7! diverges due to the vari-
ous 1’s appearing in the occupation factors. However, wh
the thermodynamic potential is defined relative to the phy
cal vacuum by only considering the difference between t
values atT50 and finiteT, then it remains finite. The single
on

en
si-
he

pion self-energySp , as quoted in Secs. II B and III B, is
based on an equivalent definition. The terms in Eq.~7! which
are linear in the Bose factorsfp would, however, give con-
stant~i.e., temperature-independent! contributions toSp and
are therefore removed when calculating the ‘‘physical’’ pio
self-energy entering, e.g., Eqs.~2! and ~8! @12,21#. For con-
sistency these terms also have to be eliminated when eva
atingVpp(T). The proper procedure thus consists of simp
removing the 1’s in Eq.~7! @12#. We then obtain, for the
physical~‘‘renormalized’’! thermodynamic potential in low-
est order,
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53 3059EQUATION OF STATE OF AN INTERACTING PION GAS . . .
Ṽpp
~1! ~T![

3

8E k2dk

2p22ek
E p2dp

~2p!22ep
2 f p~ek! f

p~ep!

3E
11

21

dx$Mpp
~1! ~ep1ek ,kW ,pW !

1Mpp
~1! ~ek2ep ,kW ,pW !%. ~9!

In the following we shall suppress the tilde and always re
to subtracted~renormalized! quantities. For practical evalua
tions, theM amplitude has to be transformed into the c.m
of the two scattered pions, thereby neglecting the med
dependence ofMpp on the total momentumPW 5kW1pW of the
pion pair. Then the total c.m.s. energy is identified as

E2[s5~ek6ep!
22~kW1pW !2, ~10!

and, by requiring Lorentz invariance, the relative c.m.s. m
mentum of the pions is obtained as

~qW !25
1

s S 14 @s2~ek
22k2!2~ep

22p2!#2

2~ek
22k2!~ep

22p2! D . ~11!

Usingds522pkdxwe can rewrite Eq.~9! as

Vpp
~1! ~T!5

3

8E kdk

~2p!2ek
E pdp

~2p!2ep
f p~ek! f

p~ep!

3@ I A
~1!1I B

~1!#, ~12!

with

I A/B
~1! [E

Emin
A/B

Emax
A/B

E dE Mpp
~1! ~E,q,q!,

Emax
A/B5@~ek6ep!

22k22p212kp#1/2,

Emin
A/B5@~ek6ep!

22k22p222kp#1/2, ~13!

which is the main result of this subsection.

B. Higher-order contributions to Vpp„T…

Within the meson-exchange framework, the fullMpp am-
plitude is obtained by solving a Lippmann-Schwinger-ty
fer
-
.s.
ium

o-

pe

equation~LSE!, which, in our case@18#, results from the
Blankenbecler-Sugar reduction@22# of the covariant Bethe-
Salpeter equation. In a given partial-wave–isospin chan
JI the scattering equation reads

Mpp
JI ~E,q1 ,q2!5Vpp

JI ~E,q1 ,q2!

1E
0

` dqq2

~2p!2
Vpp
JI ~E,q1 ,q!Gpp~E,q!

3Mpp
JI ~E,q,q2!, ~14!

whereGpp(E,q) denotes the two-pion propagator of the in
termediate state andVpp[Mpp

(1) are the Born amplitudes
~pseudopotentials! derived from an effective meson Lagrang
ian. Schematically, the scattering equation~14! can also be
written as a perturbative expansion

M5V1VGM5V1VGV1VGVGV1•••

[M ~1!1M ~2!1M ~3!1•••. ~15!

Beyond the Born approximation, i.e., forn>2, theM ampli-
tude acquires an imaginary part due to the intermediate t
pion states being on shell. Consequently,Sp

(n) also becomes
a complex quantity. In order to evaluate Eq.~4! for n>2, we
therefore employ the standard procedure of inserting
spectral representations of the single-pion propagator and
self-energy:

Dp~zn ,k!52E dv8

p

ImDp~v8,k!

zn2v81 ih

Sp
~n!~zn ,k!52E dv

p

ImSp
~n!~v,k!

zn2v1 ih
2ReSp

~n!~0,k!

52E dv

p
ImSp

~n!~v,k!S 1

zn2v1 ih
1
P
v D .

~16!

According to the findings in Ref.@21# the dispersion relation
for the pion self-energy has to be supplemented with a s
traction at zero energy.

The Matsubara sum in Eq.~4! can now be performed
analytically. The imaginary part of the pion self-energy h
been derived in Ref.@21# and we can immediately generaliz
the result to thenth-order contribution:
ImSp
~n!~v1 ,k!52E d3p

~2p!3
E dv8

p
ImMpp

~n! ~v11v8,kW ,pW !ImDp~v18 ,p!@ f p~v8!2 f p~v1v8!#. ~17!

Injecting Eqs.~16!, ~17! into Eq. ~4! results in the following exact expression for thenth-order scattering contribution to the
thermodynamic potential:

Vpp
~n! ~T!52

3

2

1

4nE d3k

~2p!3
E d3p

~2p!3
E dE8

p E dv

p E dv8

p
ImDp~v8,p!ImDp~v,k!ImMpp

~n! ~E8,kW ,pW !

3H @ f p~v8!2 f p~E8!#@v f p~v!2~E82v8! f p~E82v8!#

~v11v82E8!~E82v8! J . ~18!
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Note that the imaginary part of the RHS, given by thed-function part of 1/(v11v82E8), vanishes due to the simultaneous
disappearance of the second occupation factor, as it should, sinceVpp(T) is a real quantity. Applying the QPA, Eq.~6!, and
performing the trivial angular integrations leads to

Vpp
~n! ~T!52

3

2

1

4nE k2dk

2p22ek
E p2dp

~2p!22ep
E

11

21

dxE
0

`dE8

p
ImMpp

~n! ~E8,q,q!2@Fp~E8,k,p!1Gp~E8,k,p!#, ~19!

where

Fp~E8,k,p!5
@ f p~ep!2 f p~E8!#@ekf

p~ek!2~E82ep! f
p~E82ep!#

~ek1ep2E8!~E82ep!
1

@ f p~ep!1 f p~E8!#@ekf
p~ek!2~E81ep! f

p~E81ep!#

~ek1ep1E8!~E81ep!
,

Gp~E8,k,p!52
@ f p~ep!2 f p~E8!#@ekf

p~ek!2~E82ep! f
p~E82ep!#

~2ek1ep2E8!~E82ep!

1
@ f p~ep!1 f p~E8!#@ekf

p~ek!2~E81ep! f
p~E81ep!#

~ek2ep2E8!~E81ep!
. ~20!
s,
ific

r

r-
d a

-
-

The second term inFp arises from the negative-energy pa
of theE8 integration. It is obtained from the first term whe
replacingE8→(2E8) and introducing an overall minus sig
due to the symmetry ImMpp(2E81 ih)
52ImMpp(E81 ih). Similarly, the functionGp is gener-
ated fromFp when replacingek→(2ek) with an overall
minus sign due to the antisymmetry of the single-pion sp
tral function, Eq. ~6!. Since the four-momenta
(v,kW ),(v8,pW ) enter Eq.~18! on equal footing, we obtain an
additional factor of 2 for the negative-energy contributio
of ImDp(v8,p).

It is not to be expected that, evaluatingVpp
(n) (T) order by

order, leads to a convergent series. For the LSE~15! the
Born series does not converge and, although there appea
additional factor 1/n when summing the thermodynamic po
tential

Vpp~T!5 (
n51

`

Vpp
~n! ~T!, ~21!

it may not change the convergence behavior of the series
particular, thes-channel polegraphs~i.e., genuinepp reso-
nances! turn out to be problematic, since they exhibit noni
tegrable singularities in each ordern>2. In the following we
will discuss them in more detail.

1. s-channel pole graphs

In the Jülich model of Lohseet al. @18# a genuine reso-
nance is characterized by a separable Born term of the f

Va
JI~E8,q1 ,q2!5vppa~q1!Da

0~E8!vppa~q2!, ~22!

with the bare resonance propagator
rt
n
n

ec-

ns

rs an
-

. In

n-

orm

Da
0~E8!5

1

E822~ma
~0!!2

, ~23!

ma
(0) being the bare mass of the resonancea with spin and

isospinJI. The vertex functions contain coupling constant
isospin, and form factors as well as kinematic factors spec
to the spin-momentum part of the coupling.

As is well known, the LSE can be solved analytically fo
the case of a separable potential@23# which yields

Ma
JI~E8,q1 ,q2!

5vppa~q1!Da
0~E8!vppa~q2! (

n51

` F I a~E8!

E822~ma
~0!!2G

n21

5
vppa~q1!vppa~q2!

E822~ma
~0!!22I a~E8!

, ~24!

where

I a~E8!5E q2dq

~2p!2
vppa~q!2Gpp~E8,q! ~25!

is just the intermediatepp bubble. In Eq.~24! the summa-
tion index is chosen such thatn51 corresponds to the
lowest-order~Born! term. Apparently thenth-order contribu-
tion in Eq. ~24! exhibits a pole of ordern at E85ma

(0) ,
leading to divergences in theE8 integration of Eq.~19!. The
infinite sum ofpp bubbles, on the other hand, simply reno
malizes the bare propagator, generating a mass shift an
finite width, given by ReI a(E8) and ImI a(E8), respectively.
As we shall show now, this implies the possibility of sum
ming theVppa

(n) (T) contributions to all orders, thereby avoid
ing any divergences. The evaluation of Eq.~21! for pure
resonance scattering involves the following sum:
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Vppa~T!} (
n52

`
1

n
ImMppa

~n! ~E8,q,q!

5vppa~q!2Da
0~E8!ImF (

n52

`
1

n S I a~E8!

E822~ma
~0!!2

D nG
5vppa~q!2ImF 1

I a~E8! (n51

`
1

n S I a~E8!

E822~ma
~0!!2

D nG ,
~26!
i
a

.

x

f

ff
-

-
a
o

i
r

-

where we have added a zero in form of the (n51) term
~Born term!, which does not generate any imaginary pa
Using the identity

ln~12x!52 (
n51

`
xn

n
, ~27!

we are now able to perform the infinite sum in Eq.~26!. The
resulting thermodynamic potential reads
Vppa~T!52
3

8E k2dk

2p22ek
E p2dp

~2p!22ep
E

11

21

dxE
0

`dE8

p
SI~a!vppa~q!2ImH ~21!

I a~E8!
lnF12

I a~E8!

E822~ma
~0!!2G J

32@Fp~E8,k,p!1Gp~E8,k,p!#, ~28!
n

-
f
he

d
-
a-

s
-

or

.
g

.

ly,
a.
orm
with

SI~a!5
~2J11!~2I11!

233
~29!

being the spin-isospin weighting factor of the correspond
pp resonance channel with an additional factor of 1/2
counting for the partial-wave expansion of theMpp ampli-
tude. When numerically evaluating Eq.~28! in the Jülich
model, one obtains results far too large to be realistic
closer inspection shows that, for fixed momentumk, the p
integration dominantly picks up high-momentum comp
nents. The reason for that can be traced back to the w
suppression in the~dipole! form factors entering the verte
functionsvppa(q),

F~q!5S 2La
21ma

2

2La
214vq

2D 2. ~30!

In the vacuum the form factors ensure the convergence o
momentum integration in the free scattering, Eq.~14!. How-
ever, when transforming the external pion momentap and
k, which are integrated over in Eq.~28!, into the two-pion
c.m.s. the suppression of high momenta is much less e
tive: In the limit of largep values,p@k, the c.m.s. momen
tum q behaves likeq2}p; i.e., one essentially loses fou
powers of momentum invppa(q)

2}F(q)2. Note that the
occupation factorsFp andGp, Eq. ~20!, contain terms inde
pendent off p(ep) such that no ‘‘thermal’’ suppression is
work. The formal reason for the failure of the form fact
F(q) in the context of Eq.~28! stems from the fact that it is
not of a Lorentz-covariant form. To correct for this unreal
tic behavior we have decided to replace the form facto
each vertex by

F~q!→AF~k!F~p!5S 2La
21ma

2

2La
214vk

2D S 2La
21ma

2

2La
214vp

2D , ~31!

keeping the cutoff parametersLa fixed ~these were fitted to
the freepp scattering data!. In this way the relevant mo
ng
c-

A

o-
eak

the

ec-

r

t
r

s-
at

mentum ranges in Eq.~28! are restricted to a realistic domai
of p,k&La ~e.g.,Lr53.3 GeV in the Ju¨lich model!.

2. t-channel vector-meson exchange

In the Jülich model the dominant contribution to the low
energypp interaction is generated byt-channel exchange o
the r meson. The corresponding Born amplitude is of t
nonseparable form

Vrex
JI ~E8,q1 ,q2!5vpprex~E8,q1 ,q2!Dr~E8,q1 ,q2!, ~32!

where

Dr~E8,q1 ,q2!5
1

t2mr
2 ~33!

is the effectiver t-channel propagator with renormalize
~physical! mass,mr5770 MeV, and four-momentum trans
fer t5(q22q1)

2. The nonseparability evades both an an
lytical solution of the scattering, Eq.~14!, and a closed sum-
mation of the thermodynamic potential, Eq.~21!. Thus we
are forced to evaluate thet-channel exchange contribution
to Vpp(T) order by order. Fortunately there are two circum
stances that will allow us to get a realistic estimate.

~i! The r t-channel exchange propagator, Eq.~33!, does
not exhibit any poles in the kinematical region relevant f
calculating thenth-order contribution toVpp(T), thus en-
suring the absence of divergences order by order.

~ii ! As it will turn out from the numerical results in Sec
III C the series, Eq.~21!, rapidly converges when summin
the closed ladder sum~e.g., the third-order contribution is
typically 10% of the second-order contribution!.

When evaluating Eq.~19! by using the expansion in Eq
~15! with the pseudopotential~32! we encounter the same
problem as was pointed out at the end of Sec. II B 1, name
unrealistically large contributions from very high moment
Therefore, as in the case of pole graphs, we replace the f
factor entering the vertex functions in Eq.~32! by

F~q,q!2→F~k!F~p!. ~34!
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3062 53R. RAPP AND J. WAMBACH
By a slight readjustment of the form factor we made sure t
the exactnth-orderr-exchange amplitude is reasonably w
reproduced when using this separable approximation.

Another characteristic feature of the Ju¨lich model is the
occurrence of a scalar-isoscalar bound state in the cou
KK̄ channel, just below theKK̄ threshold. This bound stat
is generated by a strong attraction between kaons and
kaons, mediated byt-channel exchange of the vector meso
r(770), v(782), andf(1020). It leads to the characterist
sharp rise in thepp→pp phase shiftsd00 in the vicinity of
the KK̄ threshold and is interpreted as thef 0(980). To in-
corporate this resonancelike feature of thepp phase shifts in
our calculation ofVpp(T) we proceed as follows: Rathe
than summing the ladder diagrams involving theKK̄ inter-
mediate states and their direct interaction we simulate
f 0(980) as a genuine resonance; i.e., we choose the r
nance parameters such that the fulldpp

00 phase shifts can be
described without any coupling to theKK̄ channel. The fully
iterated f 0(980) pole graph contribution toVpp(T) is then
calculated as outlined in Sec. II B 1@Eq. ~28!#.

Before ending this section we should point out that
have neglected any interference terms between
s-channel pole graphs~‘‘bubble’’ sum! and the t-channel
exchange graphs~‘‘ladder’’ sum!. The following two argu-
ments make us believe that this is a reasonable approx
tion.

~i! Thepp interaction in the resonant channels@i.e., the
JI511 channel with ther(770) resonance and theJI520
channel with thef 2(1270) resonance# is largely driven by
pole graph contributions such that the additional incorpo
tion of t-channel exchange processes is expected to ha
quantitatively small effect; in the case of ther and f 2 chan-
nels ther t-channel exchange is attractive and leads t
rather small change of the resonance when evaluated
the combined ladder-bubble sum. Our results for the p
graph contributionsVppa8 (T) should therefore be considere
as a lower estimate of the exact contribution; the situatio
less clear for the~simulated! f 0(980) in theJI500 channel,
but as will turn out from the numerical results th
f 0-bubble sum gives a very small contribution by itself.

~ii ! As already mentioned in Sec. II B 2 ther t-channel
exchange contribution toVpp(T) converges rapidly with the
(n11!th order being typically down to 10% of thenth order.

We now turn to the evaluation of the single-pion~qua-
sipion! partVp

Q(T) of the thermodynamic potential.

C. Quasiparticle contributions: Vp
Q
„T…

In evaluating the contributions toVp
Q(T) we shall also

apply the QPA to the medium-modified single-pion spe
trum, given by Eq.~6!. We essentially follow the steps ou
lined in Ref.@24#.
at
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First we make use of the analytic properties of the on
pion propagator to transform the negative energy part of t
v integration to positive values, namely,

Dp~v1 ,k!5Dp* ~v2 ,k!. ~35!

Using the identity

Im@ ln~z!#52Im@ ln~z* !# ~36!

for any complex numberz, and removing the infinite
vacuum part~as discussed in Sec. II A! results in

Vp
Q~T!52

3

2E d3k

~2p!3
E
0

`dv

p
2 f p~v!Im$ ln@2Dp

21~v1 ,k!#

2Dp~v1 ,k!Sp~v1 ,k!%. ~37!

The first term in the braces can be rewritten by using t
identity

Im$ ln@2Dp
21~v,k!#%5pQ@ReDp

21~v,k!#

2arctanF2ImSp~v,k!

ReDp
21~v,k! G . ~38!

Neglecting the imaginary part ofSp ~which we will call
scheme A!, Eq. ~37! can be simplified as

Vp
Q,a~T!5

3

2p2E dkk2HT ln~12e2ek /T!

2
1

2ek
f p~ek!ReSp~ek ,k!J . ~39!

The first term corresponds to the contribution of ‘‘free’’ qua
siparticles with modified dispersion relationek5e(k),
whereas the second term arises from an additional, dyna
cally generated, mean field. Their qualitative behavior is
line with the naive expectation that the pressurep52V is
reduced for heavier particles but increases for a repuls
mean field and vice versa.

One can go one step further by including the imagina
part of the pion self-energy in Eq.~37! ~which we will call
scheme B!. ThenVp

Q(T) receives further contributions and
reads
Vp
Q,b~T!5

3

2p2E dkk2H T ln~12e2ek /T!2E
0

`dv

p
f p~v!arctanF ImSp~ek ,k!

v22vk
22ReSp~ek ,k!G J

1
3

2p2E dkk2E
0

`dv

p
f p~v!

ImSp~ek ,k!~v22vk
2!

~v22ek
2!21@ ImSp~ek ,k!#2

. ~40!



rity

r-
e

53 3063EQUATION OF STATE OF AN INTERACTING PION GAS . . .
We shall consider both approximations, Eqs.~39! and ~40!,
in our numerical calculations discussed in the next sectio

III. THERMODYNAMIC QUANTITIES
AND NUMERICAL RESULTS

A. Pressure, entropy, and energy

Having the thermodynamic potential at hand, the st
variables of pressure densityp(T), entropy densitys(T),
and energy densitye(T) can be calculated by means of th
standard thermodynamic relations at zero chemical poten

p~T!52V~T!, ~41!

s~T!52
]V~T!

]T
, ~42!
n.

ate

e
tial:

e~T!5Ts~T!2p~T!. ~43!

As elaborated in Refs.@24,19# the partial derivative with re-
spect toT in Eq. ~42! only acts on the explicit temperature
dependence of the occupation factors due to the stationa
condition @24,19#

dV

dS
50, ~44!

which holds for a self-consistent treatment as will be pe
formed in Sec. III C. Thus we obtain, for the quasiparticl
contributions to the entropy from Eq.~39!,
on
sp
Q,a~T!5

3

2p2E dkk2H @11 f p~ek!# ln@11 f p~ek!#2 f p~ek!ln@ f p~ek!#2
1

2ek

] f p~ek!

]T
ReSp~ek ,k!J ~45!

or, when including a finite width for the pions, from Eq.~40!,

sp
Q,b~T!5

3

2p2E dkk2H @11 f p~ek!# ln@11 f p~ek!#2 f p~ek!ln@ f p~ek!#2E
0

`dv

p

] f p~v!

]T
arctanF ImSp~ek ,k!

v22vk
22ReSp~ek ,k!G

1E
0

`dv

p

] f p~v!

]T

ImSp~ek ,k!~v22vk
2!

~v22ek
2!21@ ImSp~ek ,k!#2 J , ~46!

which is consistent with the expressions quoted in Ref.@24#. In our framework of meson-exchange interactions, the skelet
contributions to the entropy~denoted by2]F/]T in Ref. @24#! arise in lowest order from Eq.~12!,

spp
~1! ~T!52

3

8E kdk

~2p!2ek
E pdp

~2p!2ep
@ I A

~1!1I B
~1!#F] f p~ek!

]T
f p~ep!1 f p~ek!

] f p~ep!

]T G , ~47!

for the t-channelr-exchange graphs from Eq.~19!,

spp
~n! ~T!52

3

2

1

4nE k2dk

2p22ek
E p2dp

~2p!22ep
E

11

21

dxE
0

`dE8

p
ImMpp

~n! ~E8,q,q!2F]Fp~E8,k,p!

]T
1

]Gp~E8,k,p!

]T G , ~48!
i-
and an analogous expression for thes-channel pole graphs
from Eq. ~28! for sppa(T).

To check our results with respect to thermodynamic co
sistency, we will also consider an alternative way of eval
ating the pressure density, namely,

pp~T!5E
0

T

dT8sp~T8!. ~49!

B. Self-consistent Brueckner scheme

As pointed out in Sec. II A the in-medium pion dispersio
relation ~or pion self-energy! has to be determined self-
consistently from the Dyson equation~8!. In the QPA the
pion self-energy is given in terms of the in-medium and o
shellpp forward scattering amplitude as@6#
n-
u-

n

n-

Sp~ek ,k!5
1

kE0
` dp

~2p!2
p

2ep
@ f p~ep!2 f p~ek1ep!#

3E
Emin

Emax
dEc.m.s.Ec.m.s.Mpp~Ec.m.s.!. ~50!

Here we have neglected the numerically very small contr
butions@21# from thermal excitations~as is usually done in
the literature!. The in-medium scattering amplitude, to be
calculated from Eq.~14!, depends again on the pion self-
energySp through the in-medium two-pion propagator of
the intermediate state:

Gpp~E,q!5
1

vq*
112 f p~eq!

E224~vq* !2
, ~51!
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with (vq* )
25vq

21Sp(eq ,q). Thus Eqs.~8!, ~14!, ~50!, and
~51! define a self-consistency problem of the Brueckner typ
which we solve~at fixed temperature! by numerical iteration
as discussed in Ref.@6#.

The converged results for the pion self-energy and t
in-mediumMpp amplitude are then used to calculate th
thermodynamic potential and state variables as described
Secs. II and III A, respectively. According to scheme A or B
~see Sec. III C! we, respectively, either neglect or include Im
Sp when evaluating the two-pion propagator, Eq.~51!.

C. Numerical results and discussion

For given value of the temperature we self-consistent
calculate the in-mediumpp amplitude as well as the pion
self-energy, which are then further used to evaluate the va
ous contributions to the thermodynamic potential, namely,~i!
the lowest-order skeleton graphs, Eq.~12!; ~ii ! the resonance-
pp-bubble skeleton graphs to all orders, Eq.~28!, for the
resonancesa5r(770), f 2(1270), and the simulated
f 0(980); ~iii ! the second- and third-order skeleton graphs f
r t-channel exchange, Eq.~19!; ~iv! the single-pion~qua-
sipion! contributions given by Eq.~39! or ~40!.

Let us first concentrate on scheme A in which we negle
any imaginary part of the pion self-energy. The full result
for the pressure, entropy, and energy density~solid lines! are
contrasted in Fig. 1 with the results for free pions~dash-
dotted lines! and freer mesons~dotted lines!. First we note
that the quasiparticle contribution, Eq.~39!, coincides at all
temperatures within less than 1% with the EOS of free pion

Vp
free~T!5

3T

2p2E dkk2ln~12e2vk /T!. ~52!

The reason for that is an almost exact cancellation betwe
the mean field contribution@second term in Eq.~39!# and the
kinematic modification caused by the replacementvk→ek in
the exponential of the logarithm in the first term of Eq.~39!.
But even the absolute magnitudes of these medium-induc
single-particle modifications do not exceed 3% at any tem
perature. These findings are at variance with the results
Ref. @12#, where a generaldecreaseof pressure, entropy, and
energy compared to the free pion gas was found. This d
crease is due to an increase of the in-medium pion ma
dominantly leading to a suppression of the ln term in E
~39!. The increase of the pion mass stems from the net
pulsion of the low-energys-wavepp interaction~Weinberg
Lagrangian!. In our analysis, however, it turns out that it is
important to include both a higher-energy range of thepp
interaction~essentially up to 1 GeV two-pion c.m.s. energy!
and higher partial waves. E.g., the resonantp-wave channel
significantly contributes to ReSp(ek ,k), whereas there are
large cancellations in boths andd waves between the attrac-
tive I50 and the repulsiveI52 channels@11,25#.

Let us now come to the discussion of the skeleton di
grams. The effect of the first-order graphs, Eq.~12!, is small:
Their combined contribution does not exceed 1% o
Vp

free(T) in the considered temperature range. The most im
portant role is played by thes-channelr pole graphs; see,
e.g., Table I. It is remarkable that nearly half of the contr
bution topppr(T), sppr(T), andeppr(T) is due to negative
e
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energy contributions represented by theGp term in Eq.~28!.
Without it the values forpppr(T), sppr(T), andeppr(T) lie
slightly below the free-r-gas valuespr

free(T), sr
free(T), and

er
free(T) ~dash-double-dotted lines in Fig. 1!. This is in agree-
ment with the findings of Ref.@11#, i.e., that thepp
p-wave interaction effect resembles the presence of freer
mesons, the small suppression compared to the free-r-gas

FIG. 1. Thermodynamic state variables~scaled by temperature
to dimensionless units! of an interacting hot pion gas within the
Brueckner scheme with no medium modifications applied to t
two-body interaction potentials: upper panel, pressure dens
middle panel, entropy density; lower panel, energy density; so
lines, interacting pion gas when neglecting the pion width; dash
lines, interacting pion gas with inclusion of a finite pion width
dotted lines, freer gas; dash-dotted lines, free pion gas; das
double-dotted lines, freep-r gas.
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values in our case being caused by the finite width of ther
resonance~which is even further broadened in medium! and
the missingt-channel exchange diagrams. The latter, wh
implemented in the pole-graph–pp-bubble sum, would lead
to a slightly stronger renormalization of the barer.

The effect of other pp resonances is small:
ppp f2

(T)53.8% pp
free, ppp f0

(T)50.3% pp
free at T5200

MeV, and similarly for the entropy and energy density.
somewhat larger contribution is generated by skeleton d
grams from second-orderr t-channel exchange; see, e.g
Table II. The third-order values are already one order
magnitude smaller.

The overall picture emerging for the temperature depe
dence of the thermodynamic state variables is quite simi
for all three: We find an appreciable enhancement of t
self-consistently calculated pressure, entropy, and energy
the interacting gas compared to free pions for temperatu
T>100 MeV, which even exceeds the values for a free g
of pions andr mesons. This excess can be traced back
negative energy contributions, naturally arising within ou
formalism, and low-energyt-channel exchange of virtualr
mesons between two pions. At very high temperatur
(T.200 MeV! the thermal broadening of thepp reso-
nances, in particular the dominantly contributingr~770!, be-
comes so large that they no longer resemble the effect of
independent particle species~remember from the Beth-
Uhlenbeck formalism that a sufficiently sharp two-partic
resonance thermodynamically acts like an independent s
cies corresponding to the quantum numbers of the re
nance!. When including a finite width ImSp for the quasipi-
ons ~[ scheme B, as described in Sec. III B! we observe a
slight overall enhancement ofpp(T), sp(T), and ep(T)
~dashed lines in Fig. 1! compared to the results when ne
glecting ImSp . The main source for this increase are th
second-orderr t-channel skeleton graphs, ther pole skel-
eton graphs, and the quasiparticle contributions, Eq.~40!; cf.
Table III. In case of the skeleton diagrams this increase
simply due to the fact that ImMpp(E8) acquires a nonzero
imaginary part below the~in-medium! two-pion threshold all
the way down toE850. This leads to an additional contri-

TABLE I. Contributions from ther pole graph skeleton dia-
grams to the thermodynamic state variables in an interacting
pion gas within the Brueckner calculations neglecting any width
the pions.

T @MeV# pppr /pp
free sppr /sp

free eppr /ep
free

150 26% 41% 45%
200 43% 56% 60%

TABLE II. Contributions from the second-orderr t-channel
exchange skeleton diagrams to the thermodynamic state variable
an interacting hot pion gas within the Brueckner calculations, n
glecting any width of the pions.

T @MeV# ppprex
(2) /pp

free spprex
(2) /sp

free epprex
(2) /ep

free

150 7.0% 8.5% 8.9%
200 9.8% 11.2% 11.7%
n
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bution to theE8 integral in Eqs.~19!, ~28!, accounting for
almost the entire difference in comparison to scheme A.

We end this section by testing our numerical results wi
respect to thermodynamic consistency. For that we recalc
late the total pressure density by integrating the entropy de
sity according to Eq.~49!, which amounts to an implicit
check of the stationarity condition, Eq.~44!. As can be seen
from Fig. 2 there is excellent agreement of the so calculat
pp(T) with the ‘‘direct’’ evaluation when neglecting the
pion width ~scheme A!. When including a finite ImSp

~scheme B! the values for the pressure density obtained fro
Eq. ~49! are slightly suppressed as compared to the dire
calculation, causing a loss of about half the enhanceme
over scheme A.

IV. DROPPING RHO MESON MASSES

In the calculations of the previous section no medium
effects were considered in the interaction kernel of thepp
scattering equation. However, since ourpp model is based
on explicit ~vector! meson exchange, one may expect an im
pact on the pseudopotentials due to modifications in t
propagator of the exchanged mesons when exposed to fin
temperature. The most prominent example for such a mo
fication is the dropping of the vector meson masses
‘‘Brown-Rho scaling’’ @1,3#. Adami and Brown suggested
the temperature dependence of ther meson mass to be@2#

ot
of

s of
e-

TABLE III. Various contributions to the pressure density of an
interacting hot pion gas atT5200 MeV within the Brueckner cal-
culations when neglecting~upper line! and including~lower line! a
finite pion width.

ppprex
(2) /pp

free pppr /pp
free pp

Q/pp
free pp

tot/pp
free

ImSp[0 9.8% 43% 99.8% 158.4%
ImSp,0 13.3% 46.6% 107.6% 173.7%

FIG. 2. Comparison of two different ways of calculating the
pressure density of an interacting pion gas within the Brueckn
scheme; the solid line~ImSp neglected! and the dash-dotted line
~ImSp included! correspond to the ‘‘direct’’ calculations@the sum
of Eqs.~12!, ~19!, ~28!, ~39!, and~40!#, whereas the dashed line~Im
Sp neglected! and the dotted line~ImSp included! are obtained
from integrating the entropy density according to Eq.~49!.
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mr~T!'mr~0!S ^q̄q&T

^q̄q&0
D 1/3, ~53!

where^q̄q&T denotes the quark condensate at finite tempe
ture. TheT dependence was taken as

^q̄q&T5^q̄q&0A12~T/Tc
x!2. ~54!

In Ref. @25# such a decrease of ther mass was implemented
in a self-consistent pion gas calculation within the Ju¨lich
model as described in Sec. III B. Already well belowTc

x a
large accumulation of strength was found in the scala
isoscalar channel of thepp scattering amplitude close to the
two-pion threshold. It is due to the strong enhancement
the attractivet-channelr exchange in this channel. However
it has been shown recently@26# that the implementation of
chiral constraints into thepp interaction is crucial to reli-
ably calculate in-mediumpp correlations in the vicinity of
the threshold. On the other hand, sufficiently above the tw
pion threshold (Ec.m.s.>400 MeV or so! chiral constraints
rapidly cease to have a significant impact on in-mediu
pp amplitudes. This justifies the use of the nonchirally sym
metric Jülich model in the previous section, where no drop
ping vector meson masses are taken into account and
only minor threshold effects in thepp amplitude are ob-
served@6#.

In this section we will employ a chirally improved version
of the Jülich pp interaction@27,21#. It is supplemented with
pp contact interactions as required from the gauged non
ears model @28#. To ensure the correct chiral limit for the
s-wave scattering lengths a modified off-shell prescriptio
for the pseudopotentials has been chosen when iterating
scattering, Eq.~14!.

Because of the additional interaction terms in the L
grangian of the chirally improved Ju¨lich model there arise
further contributions to the thermodynamic potenti
Vp(T). They are straightforwardly incorporated in the qu
siparticle and in the lowest-order contributionsVp

Q(T)
and Vpp

(1)(T), respectively. ForVpp
(n) (T) we take into

account all contributions up to second order, namely, fro
~i! second-orderr exchange as given by Eq.~19! for n52
with

1
8 ImMpp

~2!5 1
8 VrexImGppVrex, ~55!

where we explicitly indicated the degeneracy factor 1/4n;
~ii ! the second-order contact interactions also given by E
~19! for n52, but with the degeneracy factor18 replaced by
1
4 due to the absence of exchange diagrams@cf. the remarks
following Eq. ~4!#, i.e.,

1
4 ImMpp

~2!5 1
4 VcontImGppVcont; ~56!

~iii ! the first-orderr-exchange plus first-order contact inter
action; here the appropriate degeneracy factor is1

6:

1
6 ImMpp

~2!5 1
6 VcontImGppVrex. ~57!

Numerically it turns out that higher-order contributions i
r-exchange or contact interactions are again negligible.

When recalculating the EOS without any dropping of th
r mass the results employing the chirally improved Ju¨lich
ra-
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model differ by around 5% from those presented in Se
III C, confirming the notion that chiral symmetry has little
impact on thepp interaction as long as strong threshol
effects are absent.

Let us now turn to the scenario with Brown-Rho scalin
included. For simplicity we will neglect the coupling to the
KK̄ channel, which was shown to have a very small effect
the previous section. Relevant for our model are the decre
of the ~physical! r mass@Eq. ~53!# and the corresponding
reduction of the pion decay constant,

fp~T!

f p~0!
5
mr~T!

mr~0!
. ~58!

The latter enters thepp contact interactions, whereas the
physical massmr is used in thet-channelr-exchange propa-
gator, Eq. ~33!. For given temperature the barer mass
mr
(0) used in thes-channelr pole propagator, Eq.~23!, is

adjusted such that the fully renormalizedMpp
11 amplitude in

free space acquires its maximum~i.e., r resonance peak! at
the corresponding value ofmr(T) from Eqs.~53!, ~54!. For
fixed mr(T), f p(T), and mr

(0)(T) we then perform self-
consistent Brueckner calculations forSp andMpp at several
T values along exactly the same lines as described in S
III B.

The resulting EOS for the hot interacting pion gas is di
played in Fig. 3, where we have chosen the critical tempe
ture of chiral symmetry restoration to beTc

x5170 MeV. For
T>100 MeV we observe a strong increase of the pressu
entropy, and energy density as compared to the calculatio
without inclusion of the Brown-Rho scaling. Most of the
effect is of simple kinematic origin, as can be seen by com
parison to the freep-r gas including the decrease ofmr .
However, for temperatures belowT'150 MeV thepp in-
teractions still generate an enhancement over the freep-r
case of around 15%, which is quite similar to what we foun
in the pure Brueckner calculations. Just belowTc

x the free-
p-r-gas values forpp(T), sp(T), andep(T) are close to the
ones of the interacting pion gas. This is due to the fact th
ther pole graph starts acquiring appreciable renormalizati
contributions especially from the strongly attractiv
t-channel exchange of ar meson with massmr(T). How-
ever, in our approximation scheme forVpp(T), this kind of
contribution is not accounted for~cf. Sec. II B 1!, even
though they are certainly not negligible anymore in the v
cinity of Tc

x .

V. SUMMARY AND CONCLUSIONS

Based on the finite-temperature Green’s-function forma
ism we have presented an analysis of the equation of state
a hot interacting gas of pions at zero chemical potential.

Starting from a realisticpp meson-exchange model ca
pable of describing the vacuum scattering data over a bro
range of energies we have calculated the in-mediumpp
scattering amplitude and the single-pion self-energy. The
sulting self-consistency problem has been solved by nume
cal iteration within the quasiparticle approximation~Brueck-
ner scheme! @6#. We then proceeded to evaluate th
thermodynamic potentialVp(T).
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~i! The single-pion self-energy was used for calculat
the quasiparticle contributionVp

Q(T); the latter turned out to
be very close to the values for free pions due to a canc
tion between the mean field term and the free quasipion t
~only when including a finite width for the pions a;5%
enhancement was found!.

FIG. 3. Thermodynamic state variables~scaled by temperatur
to dimensionless units! of an interacting hot pion gas within th
Brueckner scheme plus additional medium modifications of
two-body pseudopotentials in form of droppingmr(T) and f p(T);
here, a chirally improved version of the Ju¨lich pp interaction has
been employed: upper panel, pressure density; middle panel
tropy density; lower panel, energy density; line identification as
Fig. 1.
ng

lla-
erm

~ii ! For the interaction part of the thermodynamic poten
tial Vpp(T), we have taken into account thef 0(980),
r(770), andf 2(1270) s-channel pole graphs to all orders a
well as ther t-channel exchange up to third order; highe
orders as well as interference terms betweens- and
t-channel graphs have been estimated to be small and w
neglected; the main contribution stems from ther pole
graphs, their magnitude being comparable to what one e
pects from an admixture of freer mesons.

Special attention has been paid to constraints from the
modynamic consistency, and it was shown that our resu
satisfactorily fulfill these constraints.

In total we have found a 10–15 % enhancement
Vp(T) compared to a free gas ofp and r mesons in the
temperature range 100 MeV<T<150 MeV. The pressure,
entropy, and energy density, which were extracted fro
Vp(T) by means of standard thermodynamic relations, sho
a very similar behavior. This is in qualitative agreement wit
the results of Welkeet al. @11#, who employed empirical
vacuums- andp-wavepp phase shifts within a relativistic
virial expansion. Our results are, however, at qualitative va
ance with the findings of Bunatian and Ka¨mpfer @12#, who
also used the finite-temperature Green’s-function approa
but employed the Weinberg Lagrangian. The latter is know
to account only for the low-energys-wavepp interaction,
resulting in a net repulsion when performing the isosp
weighted sum for the near-thresholdpp amplitude. As a
consequence, their pressure, entropy, and energy den
show an overalldecreasewith temperature as compared to
the free pion gas.

Our conclusion from this is that the higher-energy rang
~up to c.m.s. energies close to 1 GeV! as well as higher
partial waves~especially the resonantp wave! in the pp
interaction are important for a reliable description of thermo
dynamic properties of an interacting gas of pions.

We furthermore investigated the impact of a droppingr
mass according to Brown-Rho scaling. Using a chirally im
proved Ju¨lich model including contact interactions, arising
from the gauged Weinberg Lagrangian, we find a simila
behavior as before: Even though the pressure, entropy, a
energy of the interacting pion gas now exhibit a considerab
increase nearTc

x , the enhancement over the free-p-r-gas
values ~dropping r mass included! is not more than 10–
20 %. Very close to the critical temperature, where ther
mass rapidly drops to zero, the interacting pion gas valu
are close to the ones of the freep-r gas. This feature, how-
ever, is due to the breakdown of our approximations; in pa
ticular, interference terms betweenr s- andt-channel graphs
become far from negligible.
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