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Mean field calculations of nucleon-nucleus scattering
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Corrections to the first order term of the multiple scattering expansion of the nucleon-nucleus optical
potential due to the propagation of the projectile nucleon in the target nucleus mean field are estimated. The
effects of nonlocalities of the nucleon-nucleon transition amplitude are included. Calculations are performed
for nucleon scattering frot®0 and?°%b at 100, 200, and 400 MeV incident energies. We show that the mean
field effect is repulsive and reduces the strength of the local representation of the impulse approximation
potential by approximately 25% in the nuclear interi@®0556-28186)04605-5

PACS numbd(s): 24.10.Ht, 21.30.Fe, 25.40.Cm

I. INTRODUCTION the first order term of the optical potential have been evalu-
ated in detail in[6] and[7,8]. The essential difference be-
The nucleon-nucleus optical potential is an important tookween these two sets of calculations is the use of starting
finding widespread application in the analysis of nuclearenergy in the evaluation of thidN transition amplitude. A
scattering and reaction data. In its own right, nucleon-full treatment of this starting energy, which includes the
nucleus elastic scattering is a basic reaction from which it idinding of the struck nucleof®,10], is still needed to assess
hoped we can identify underlying reaction mechanisms. the importance of off-shell effects associated with the mo-
The nucleon optical potential is expected to have an enmenta of the interacting nucleon pair. The energy depen-
ergy dependence which arises from a number of differentlence from Pauli blocking effects in the nuclear medium is
sources. Multiple scattering theories generate a nonlocal exaken into account by the second order term of the multiple
pression for the optical potential. Prescriptions which replacecattering expansiofll]. Local phase-equivalent interac-
this nonlocal expression by an equivalent local potential usutions to the nonlocal Kerman-McManus-Thal&MT ) opti-
ally introduce an energy dependence. The free nucleorcal potential[1] show that these Pauli blocking effects pri-
nucleon (NN) scattering amplitude also has an intrinsic en-marily modify the imaginary part of the optical potential in
ergy dependence as well as being a nonlocal operator. Athe nuclear interior and that the real and imaginary central
additional energy dependence arises from exchange effectsrms are essentially of volume shape.
in theNN amplitude and also from the effects of Pauli block- NN information can also be input into nucleon-nucleus
ing in the nuclear medium. Calculations which include all of calculations through ag-matrix effective interaction
these effect§l] predict that the real and imaginary central gy,(p), appropriate for two nucleons interacting in infinite
terms of the optical potential have a radial dependence simnuclear matter of density [12]. Such an interaction takes
lar to that of the target density. An additional source of en-account of Pauli blocking effects within timfinite) nuclear
ergy dependence results from the projectile, propagating benedium. For intermediate energy protons, the imaginary
tween scatterings in the mean field generated by the targeentral term of the resulting nucleon-nucleus optical poten-
nucleons[2]. It is the effect of this mean field that is the tial exhibits an essentially volume form. The real part of the
subject of the present work. potential has a surface-peaked component that becomes in-
Phenomenological analyses of nucleon-nucled$sA)  creasingly important as the proton incident energy increases,
scattering in the energy region from 150 and 400 MeV showbecoming repulsive at incident energies of 400 MeV and
[3] that the real central potential deviates considerably fromabove. A qualitative explanation of this phenomenon is pre-
the Fermi distribution shape associated with the target dersented by Feshbadi 3] based on local density ideas. The
sity. The imaginary central term of the optical potential has eelastic scattering observables are very sensitive to these fea-
volume form. The need for such an unorthodox real centratures of theg-matrix-based calculations. A basic problem of
potential shape in this energy region was first noted by Eltonhe nuclear matter basegmatrix approach is that the local
[4]. A convincing microscopic theory needs to incorporate ardensity approximatiofLDA) has to be applied in going to
energy dependence which can predict this behavior of théne finite nucleus case. The validity of the LDA for the de-
optical potential. scription of the Pauli blocking terms of the microscopic op-
In this work we analyze the energy dependence present itical potential has been studied recerjtly]. An artifact of
multiple scattering formalism2,5]. Detailed calculations of the approximations made in the LDA is to induce a surface
the multiple scattering optical potential have been performegbeaking in the imaginary component of the optical potential
in the absence of the above-mentioned mean field effect. Tharising from the Pauli blocking mechanism.
effects of the nonlocality in th&N transition amplitude on Phenomenological nucleon-nucleus optical potentials
have also been deduced from Dirac phenomenological analy-
ses of proton-nucleus elastic scattering ddt&]. The de-
“On leave from Departamento déskia, Instituto Superior Te  duced Schrdinger-equivalent potentials are found to have
nico, Lisboa, Portugal. real central terms with a characteristic “wine bottle bottom”
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shape and which become repulsive at nucleon incident enebeen discussed elsewh¢B11]. TheNN transition operator
gies of 400 MeV and above. The potentials have a weaR,,(&,) is a three-body operator and satisfies the integral
attractive tail whose magnitude decreases as the energy iaguation
creases. The origin of the wine bottle bottom shape, within

this relativistic framework, is the result of delicate cancella-

tions between the large Lorentz scalar and vector compo-

4

T01(@4) =v01+ 010D 0) s @),

nents of the relativistic optical potential.

whereuv g, is the freeNN interaction. The intermediate states

In this work our aim is to shed new light on the origin of propagator is
this repulsion in the real central component of the optical

potential within the nonrelativistic framework. The first or-
der term of the multiple scattering optical potential is evalu-
ated taking into accour(t) the mean field generated by the

target nucleons on the propagation of the projectile @nd
the nonlocalities of th&IN transition amplitude. To compare

the calculations with and without the mean field term we

1
o —Kog—Ki—V;'

9(@,)= ®

with K, the kinetic energy of the struck nucleon avg its
binding potential to the core dk—1 nucleons.
In the impulse approximation, in the treatment of

make use of a local representation of the nonlocal optica(; ), the struck nucleon is assumed fi@e8]. Thus, both

potentials[14] following the formulation of Horiuch[16].

Il. MULTIPLE SCATTERING FORMALISMS

its binding energy, and binding potentiaV/; are neglected.
A consideration of these binding effects, which included
both the binding energy and binding potential effects,
showed them to be smdl]. The three-body operatdg, is

In the multiple scattering approach, the optical potential istnen replaced by the fre®N transition amplitudety, that

expanded in terms of an effectiweN transition amplitude.

We discuss briefly the multiple scattering formalisms of

Watson[2] and KMT [5]. In the KMT formalism the optical
potential for elastic scattering I8 =(®y| 77| P,) whered,
is the target ground state and

%=(A—1)70y(Eo) (1

1+ =Qo|.

Here.Z is the antisymmetrization operator for tietarget
nucleons ands=Ej —Ko—H, with Eo(=%2k3/2uy,) the
proton incident energy in the proton-targél4) center of
mass frame andey, is the NA reduced massH, is the
internal Hamiltonian of the targek, the kinetic energy op-
erator of the incident nucleon, afg is its on-shell momen-
tum. The Pauli blocking operatdp, projects off the target
ground state, i.eQy=1— Py wherePy=|®){(®,|. The an-
tisymmetrized effectiveNN transition operatorry,(E,) de-

satisfies the integral equation

toi(@o) =v o1t vorg(wo)tor(wo), (6)
where the intermediate states propagator is
g(wo) = (7)

v
0y — Koz

with Ko, the NN relative motion kinetic energy operator. The
energy parameter is nowy=Eq— #272/4m with - the mo-
mentum operator for the motion of the center of masm)

of the interactingNN pair [11].

The first order KMT potential is represented diagrammati-
cally in Fig. 1(a). Here the projectile scatters from a target
nucleon, assumed free, and the core Af(1) target nucle-
ons are assumed to remain in their occupied states. In Fig.
1(b) the NN transition amplitude is drawn so as to show
explicitly the intermediateNN states in which the active

scribes the scattering of the projectile from any one of theyycleons interact as free particles.

target nucleongdlabeled “1"), and satisfies the integral equa-

tion

)

701(Eo) =v o1t Vory 701(Eo)-

A multiple scattering expansion of the optical potential, in
terms of an effectivéNN transition amplituder{y) , has also
been derived by Watsdi2]. To first order in7{,

olafs afe).  w

The effects of the antisymmetrization operator are relevant to . . o
the discussion of second and higher order terms only, an@here the effectivéNN amplitude satisfies
means only physical states of the nucleus appear as interme-

diate states. If the target ground state is a single Slater deter-

minant of occupied single-particle statgs), with single-
particle energie%,, then the first order term of the optical
potential can be writtef5,11]

A-1 A
U =—2=2 (afto(@,)]@). 3

The sum in a« runs over all

TW:UOi+UOiQomTW-

€)

In first order all multiple scattering interactions that involve
the projectile and the struck nucleon are taken into account.
In this formalism the projectile propagates, between scatter-
ings, in the presence of the mean field created by the target
nucleons. It is the importance of this mean field on the opti-
cal potential and the elastic scattering observables that is the

occupied states and subject of the present work. As discussed in relation to the

w,=Egte€,. The corresponding second order term hasKMT potential, we will neglect binding effects. Following
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FIG. 2. Diagrammatic representation of the first order term of
the mean field optical potential showing the “dressed” intermediate
states propagation of the projectile nucleon in the mean field of the
core nucleons.

+ ...
§ % § is a function only of the three scalar variabigs r’?, and
(b) r-r’ or, alternatively, of f+r’)2 (r—r’)2 and
(r+r")-(r—r").
Following Horiuchi[16], we define a local Wigner trans-
form [17] potential in terms of the nonlocal potential by

A A-l A

FIG. 1. Diagrammatic representation of the single scattering ap-
proximation to the KMT optical potential expansion, indicatifay é(F, K)= J dsexp(is-K)G(r —s/2,r +s/2), (12)
the first ordert-matrix vertex, andb) showing explicitly the free
intermediate states propagation of the actid pair.

and rotational invariance implies thatG(r,K)=

the arguments of Ref2], the projection operatd®, in Eq. Q(r.z,kz,(r.- k)?). The local potential, acting in partial wave
(9) can also be neglected to the extent that we neglect ternfs: 1S obtained from the Wigner transform upon making the
of order 1A. Terms of this order are already neglected inSubstitutiong16]

terminating the multiple scattering series to first order. In this

limit the optical potential, including the mean field effects, 2pNA

reads k?— 2 [Eo=Vi(n],
UY=A(D|toy 0)| o) =A(Po|toy( wo—UM)[@g), (10 o, 2pnar? K2/ +1/2)2
(rk) ‘}T EO—V,_(r)— m— , (13)

represented diagrammatically in Fig. 2, where the projectile

now appears “dressed” due to the mean field of the targevith the result that
nucleons. We refer to this model as the Watson or mean field
(MF) theory. 2
vL<r>=G(r2,$[Eo—vL<r>],
I1l. LOCAL EQUIVALENT POTENTIAL

2unar?

hZ

ﬁ%/+ﬂ31)
— 7 (14

To display the(nonloca) effects of the mean field in the 5
2Nl

projectile propagator of thislN amplitude, we will calculate

a local equivalentv (r) to the nonlocal optical potential. Th val ial is | Al d q hich
The general procedure is as follows. For a nonlocal optical e equivalent potential Is in general dependent, whic

. - - . . arises from the dependence on the angle between the position
potential G(r,r’), the Schrdinger equation assumes the - ~
r and the momenturk.

Eo—Vi(r)—

form
IV. TARGET NUCLEUS MODEL
2
_ VZ‘I’NL(F)‘FJ dF' G(F,F )W () =EgWy (F), We will discuss the optical potential for &80 and
2una 20%pp target. We assume the target matter densities for

(1) 180, in momentum space, to be of the form

and, if the nonlocal potential satisfies the normal symmetry

242
. . . . S - exp—a“q-/4), 1
and rotational invariance requirements, thea(r,r’) XQ( a-/4) (19

(£-2) 5,
1- 67 a“q

p(d)=
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with Z the target charge. The range parametés taken as
1.77 fm [18]. For ?°%°b we use a two-parameter—Fermi-

density distributiorf 19] with radius parameteR,= 6.624 fm
and diffusenesa=0.549 fm.

V. IMPULSE APPROXIMATION

The MF theory, Eq.(10), involves the folding of the
NN transition amplitudeto(wo—UY) with the target
nucleus wave function. TheNN energy parameter is
wo=Eqo—#%27%/4m with ” the momentum operator for the

motion of the center of mas&.m,) of the interactingNN

pair [11]. In the impulse approximation the potential is not

3025

=[1-A™P(r)]" Uo(Eo/2,1), (23

whereUy(#,r) is a local, energy-dependent potential,

Uo(ef,r)=Af dg exp(—iq-1)p(q)te;
X (£,0,[ unalBi21M2, o).

In the impulse approximation optical potential, Eg3), the
factor A™P arises from the nonlocality of the fré¢N tran-
sition operator. If the latter were local, the matrix element of

t o, entering Equatiori19) would depend only o and not

(29)

taken into account in the intermediate states propagator, i.€Q- Equation(22) then givesA™"=0.

Vo=A(Do|to1( wo)| o). (16)

In addition, in the evaluation ab,, we neglect the momen-
tum of the struck nucleon and take the momentum of the

projectile to be the incident on-shell value, obtaining

7
Using the definition of the Wigner transform, Ed.2), and

U'MP= A(D |t o1 Eo/2)| o).

VI. MEAN FIELD OPTICAL POTENTIAL
A. Local potential representation

In the MF theory, due to the presence of the potential in
the intermediate states propagator, we have
UW=A(Dq|toy )P o) =A(Poltoy wo—U")|Dy). (25

For the purpose of solving the implicit equation 10" we

the results outlined in the Appendix for the momentum spacgyill assume that/" in the NN propagator is independent of
matrix elements of thé&lN transition amplitude in the target the position of the projectile nucleon in the nucleus. This is

nucleus ground state, then the local representation is
UImP(r)= Lf ds exmsi-lZ)f f dqdQ exp(—iq-r)
L (2,”.)3

X exp(—iQ - S)p(A)toy Ee/2,0,Q/2,0),

with p(q) the target density normalized such thgD)=1.
Upon carrying out the integral i,

(18

UL"‘"(r>=Af dg exp(—iq-1)p(a)texEo/2,0,Q*/2,¢0),
(19

Whereﬁl is to be evaluated at effective moment@t given
by

2NA

7 [Eo—U™(n)].

Q*ZZ

(20

Equation(19) is evaluated by expandin@* to first order in

UI™(r) aboutQo=\2unaEo/#2, i.e.,

UIMP(r)=Uq(Eg/2,r)+UMP(r)A ™P(r), (22)
where
1/2
Aimf’(r>=—A(2’,§§E’*o) fdaexq—ia-ap(q)
7
X %tm(Eo/z:Q:Q/zy(f’o) (22

Q=Q0
It follows that

U™(r)=7"P(Eq,r)Uo(Eof2,r)

clearly an approximation which will be best in the nuclear
interior of a heavy nucleus. Expanding thNN amplitude
about the energy parametep, then

UW=A(Dy|toy o) | Do) = UVA(D |ty o) Do)+ - - -
=Vo— UMW+, (26)
with

Vo=A(D|tg(wo)| Do), V6:A<q)o|t61(wo)|q)o>:(
2

and wheret);, denotes the differential df,; with respect to

the energy parameter, i.e.,

Itoi(w)
Jw

toi( wo) = (28)

=wy

ComparingU%W and V,, the leading MF correction term
UWV{ involves a product of the foldings of theN ampli-
tude and its energy derivative in the target ground state.
The (local) Wigner transfornU‘[V of the (nonloca) U% is

therefore written

UV=Vo- UMW+ -, (29
where the carets denote the Wigner transforms/gfand
V. For the purpose of estimating the mean field effects, we
evaluate the local representatiol”, Eq. (29), of the MF
potential by replacing

UV~Vo— UM+ - - - (30)
Using the definition of the Wigner transform, Ed.2), and
the results in the Appendix, then
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A (. .. - -
U‘ﬁv(r)zwfdsexp(isk)fqudQ exp(—iq-r)

X exp(—iQ-9)p(Q)toy wo, 9, Q/2, o)

—UM(Nthy(0,9,Q/2,0) + - - - 1. (31)

Evaluating the integral irs, and resumming the expansion,
this can be rewritten as

U =A [ dd ext—id-1)p(aTToi " a0.0* 2,60,
32

with an effective energy paramete® and momentunQ*
given by

w* =Eq—UM(r)—£2Q*2/4m,

*2_2MNA

Q*2=—7-[Eo—U/'(n)], (33

or, assuming thatuya~m,
w* =Eq—UM(r)—%2Q*2/4m=[E,—UM(r)1/2, (34

1/2

Q*= =2

2m w * 1/2
F[EO_UL(r)] 7| - (35

With w* given by Eq.(34), we note that
U(r)=Ug(w*,1), (36)

with Uy given by Eq.(24). Expanding the potentidl,, to
first order about the on-shell ener@y/2, the local equiva-
lent potential reads

UM =Uo(Eg/2,r) + UM (r)AW(r)

=7Y(Eq,rUg(Eo/2,1), (37)
with
1. dUqy(Z,r)
AV(r)=—5 ——— ,
") 2 dZ Z=Eqyl2
TVE,N=[1-AYr] L (39

Equations(37) and(38) should be compared with EgR2),
(23), and (24). Both involve corrections to the potential
Uo(Eo/2,r). The factor7" includes effects due to the mean
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FIG. 3. Calculated reala) and imaginary(b) central terms of
Uo(Eo/2,r) (solid curve, and the on-shell, Eq(41), (dashed
curves optical potentials at 100 and 400 MeV nucleon energy.

with S(Eq,r)=7"(Eq,r)/.7™P(Ey,r). Some general fea-
tures of the potential are discussed below.

B. Qualitative features of the optical potential

We anticipate that the shapes of the local potentials
UY(r) and U™(r) are primarily determined by
Uo(Eo/2,r), with modifications in the nuclear interior due to
the multipliers7*" and.7"™". The magnitude of7V(Eg,r)
is essentially determined by the energy derivative of the
NN transition amplitude and, for the purpose of estimating
this effect, we can take tHgN transition amplitude on shell.

It is well known that, on shell, the imaginary part of the
spin-isospin-averaged central term of theN amplitude,
‘toy, varies only slowly as a function of energy. The real
part is negative and its magnitude decreases somewhat more
rapidly with energy, the scattering amplitude becoming
mainly absorptive. We expect therefore that the energy de-
rivative of Uy(Z,r) will have a positive real component and

field in the NN propagator as well as the nonlocal effectshence that the function”V(E,,r) will take the form of a

included in.7™P. Different partial derivatives of thé&NN
transition amplitude are involved in the two cases.

real suppression factor in the nuclear interior.
Since the nonlocal effects due to tN&N operator and the

The numerical calculations of the MF optical potential mean field have been expressed as correctigif$ and
presented in the following sections are obtained by directZ7 ™" to the local interactionUy(Eq/2,r), it is useful to

evaluation of Eq(24) at #=Ey/2 and neighboring energies
to calculateUq(Ey/2,r) and its energy derivative. We note,
from Eqgs.(37) and(23), that the mean field corrections to the
impulse approximation can now be written

UM(r)=“(Eq,r)U™(r), (39)

clarify the nature of this potential. If the activdN pair
interacts on the energy shell, thesee Appendix
Q%+ q?/4=Kkg, (40

and hence we can define the on-shell local potential as
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FIG. 4. As for Fig. 3 but for the nucleof®®b system. FIG. 5. Calculated reala) and imaginary(b) central terms of

the Wigner transform of the impulse approximation interaction for
nucleon?%0 scattering in the absence of the Coulomb interaction.

Uon(r):Af da exq_i(i. r The potentials at 100, 200, and 400 MeV are shown by the solid,
dashed, and dash-dotted curves, respectively.

X p(Q)tos(Eo/2,0,[K5—a?/41Y212,0). (42) VIl NUMERICAL RESULTS

A. NN scattering amplitude

It TOHQWS that atq=0, Q=ko, _the on-shell potent_lal_ will In all calculations theNN scattering amplitudes are cal-
coincide withUo(Eo/2,r) and, in the zero range limit for ¢ 15104 exactly, both on and off the energy shell, from the
to1, Uo(Eo/2,r)=Uo(r). We see, however, that for a real- paris[20,21 NN potential. What is actually required for the
istic finite-rangedNN amplitude and nonzero momentum mean field calculations is the spin-isospin-averaged central
transfers the calculation dfio(Eq/2,r) requires knowledge \wolfenstein amplitudeZo(Eo/2,9,ko/2, ) for the calcula-
of the NN transition amplitude off the energy shell. The tion of Uy(Ey/2,r) and the on-shell variant
potentialsUy(Eq/2,r) andU,(r) are thus expected to differ ./ZO(EO/Z,q,[kS—q2/4]1’2/2,¢0) for the calculation of
at the nuclear surface due to the finite range of Xh¢ in- Uon(r), above.
teraction. We note, however, that at high incident energies
the on-shell potential might be expected to provide a reason- B. Energy dependence of the potentials
able representation ofUy(Ey/2,r) to the extent that
[k3—q?/4]—k3 in Eq. (41) in this limit. In addition, for
heavier targets with short-ranged momentum space densityimp : T .
distributionsU o(E/2,r) is expected to be well described by EJ.I]Le nﬁncrgsnl?gu;flgt:&pr;xlr;: t;%r;é?]tféagp?hné gﬁiﬁoﬁg in-
the. on-shell interactioJo,(r) in the intermediate energy teraction. The potential,s at 100, 200, and 400 MeV incident
region. _ . energy are presented by the solid, dashed, and dash-dotted
In Fig. 3 we compare the calculated réa) and imagi-  ¢rves, respectively. We note that on this energy interval the
nary (b) central terms ofJ, (solid curves and the on-shell, eq| central term of the impulse approximation potential has
Eq. (41) (dashed curvesoptical potentials for nucleon scat- an essentially volume shape at 200 MeV, developing the
tering from %0 at 100 and 400 MeV. Figure 4 shows the “wine bottle bottom” shape at the higher energy. The real
corresponding calculations for #%b target. As discussed potential becomes repulsive at 400 MeV and above. The vol-
above,U, and the on-shell interaction are essentially indis-ume form for the impulse approximation interaction at 200
tinguishable in this energy range, particularly for the heavieMeV is contrary to the expectations of phenomenological
target. analyses which show evidence of a wine-bottle-bottom-

In Fig. 5 we present the reéh) and imaginaryb) central
terms of the local Wigner transforrfNT) approximation
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FIG. 6. As for Fig. 5 but for the nucleof®Pb system.

shaped central term even at the lower of these enefgies

This effect appears not to be correctly reproduced by the

impulse approximation optical potential. Figure 6 shows the 0.1

results for a?%%b target, with qualitatively similar results.
Before showing the results for the mean field interaction,

we clarify the nature of the modulating functioV(E,,r)

which multipliesUq(Ey/2,r) in the local mean field interac-

tion of Eq. (37), and the mean field correction factor 00 | 200 Mev =

Z(Egp,r) which multiplies the WT of the impulse approxi- B e R -7

mation interaction in Eq(39). Figures Ta) and 1b) show " aoomey T

the real(solid curve$ and imaginarydashed curvesarts of .

the calculated”(E,,r) for the nucleont®0 and?°%b sys-

tems, respectively, d&,=100, 200, and 400 MeV incident

energies. What is actually plotted is-17"(E,,r). As ex- 010 20 40 60 80 100

pected from the earlier qualitative discussion, A&’ are ' r (fm)

essentially real. Their effect is to redutly(Ey/2,r) by an

.order. of 10% in the nuclear ”.‘Fe“or- Ay = 100. MeV, the FIG. 7. Calculated reafsolid curve$ and imaginary(dashed

imaginary part becomes significant due to the increase of thgurves) parts of 1-.7"(Eq 1) for (a) the nucleon®O and(b) the

energy derivative of th&IN transition amplitude. nucleon?%®b system at incident energi& =100, 200, and 400
Parts(a) and(b) of Fig. 8 show the realsolid curvegand oy

imaginary (dashed curvesparts of the calculate@(E,,r),
presented as 1 %(Eq,r), for the nucleont®0 and 2°%b  that the radial distribution af”" in Eq. (38) is that of the
system, respectively, &,= 100, 200, and 400 MeV incident target nucleus density. Thus, while Pauli blocking medium
energy. We note that the strength of the real part of thesffects follow the square of the target density and modify the
correction term is essentially constant with energy and domiimpulse approximation potential in the nuclear intefibyl 1]
nates the imaginary part at energies of 200 MeV and abovehe present mean field effect estimates essentially follow the
Z(Eq,r), the mean field correction factor to the impulse target density.
approximation, is such as to reduce the strength of the im- Figure 9 shows the calculated rega) and imaginary(b)
pulse approximation potentials by approximately 25% in thecentral terms of the mean field optical potential, given by Eq.
nuclear interior. These corrections fall rapidly at the nuclear37), for nucleon scattering from®0. The potentials at 100,
surface. 200, and 400 MeV incident energy are presented by the
In the following, we present the local mean field interac-solid, dashed, and dash-dotted curves, respectively. Figure
tions without further reference t&V or &. We note, how- 10 shows the results for scattering froftfPb. As was clari-
ever, that the range of these modifications is essentially thdied by reference to th&(E,,r) factors in Fig. 8, the mean
of the target density. In fact, for heavier systems with shorfield effects have reduced the central terms of the optical
range momentum space density distributions, we can, to potential in the nuclear volume with respect to those of the
good approximation, replace tieN transition amplitude in ~ WT (local) equivalent for the impulse approximation inter-
Eq. (24) by that at zero momentum transfer. It then follows actions, Figs. 5 and 6.

100 MeV

1-F"(Eqr)
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00 p WIUTEeITEE
400 MeV 0.0
-0.1 - L
0.0 2.0 4.0 6.0 -
v (fm) g
= 200 =
0.3 F—— §
i -40.0 L L
0.2 0.0 2.0 4.0 6.0
r (fm)
= FIG. 9. Calculated reala) and imaginary(b) central terms of
('35'/ 0.1 the mean field optical potential, given by Eg7), for proton scat-
X tering from 0. The potentials at 100, 200, and 400 MeV incident
energy are presented by the solid, dashed, and dash-dotted curves,
—————————— respectively.
00 |
400 Mev o relatively insensitive. This latter approximation results in the
calculated mean field corrections to the optical potential es-
o1 . . . . sentially following the target density and thus the surface
700 20 40 60 80 10.0 behavior of the mean field interaction is not well determined

r (fm) in the present work. The calculated elastic cross section an-
gular distributions do not show particular sensitivity to the
) ) ) mean field corrections to the central potentials, which were
FIG. 8. Calculat(e)d realsolid curves and mggmary(dashed supplemented by a spin-orbit interaction derived from the
curves F;f;‘g;f of 1= 7(Eo,r) for (a) the nucleon™O and(b) the  ersion analysis of the exact momentum space calcula-
'Ic/luec\l/eon' b system at incident energiés =100, 200, and 400 tions. The calculated vector analyzing powers do show some
' sensitivity to the changes, producing a deeper first minimum
at 200 MeV, a trend shared by the experimental data.
We have chosen to represent the nonlocal effects associ-
ated with the projectile nucleon moving in the nuclear mean
field by calculating Wigner transform local equivalents to the VIil. CONCLUDING REMARKS
nonlocal mean field and impulse approximation interactions.
We will not present calculations of scattering observables for Our aim in this work was to clarify the origin of addi-
two reasons. First, while the Wigner transform local repre-ional repulsion in the real central component of the optical
sentations are a useful approximation for evaluating and agotential within the nonrelativistic framework. We have es-
sessing the modifications induced by the mean field, the nuimated the corrections to the first order term of the multiple
merical potentials do not agree precisely with those derivedcattering expansion of the optical potential due to the effects
from an inversion analysi$22] of the exact(momentum of the mean field generated by the target nucleons on the
space impulse approximation calculations. Second, in esti-propagation of the projectile nucleon. The nonlocalities of
mating the mean field effects we have assumed, in solvinghe NN transition amplitude are included. Calculations are
the implicit Eq.(25) for UY, thatU" is independent of the presented for nucleon scattering frof0 and 2°%Pb at 100,
position of the projectile nucleon in the nucleus. This ap-200, and 400 MeV incident energy.
proximation clearly favors the nuclear interior of a heavy We have chosen to represent the nonlocal effects by cal-
nucleus, a region to which elastic scattering observables amulating Wigner transform local equivalents to the nonlocal
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1 1 1 1 - N 1 _,, N
0.0 <kq)o|t01(wo)|q)0k>zzz (k" altos(wokar)
s _1 3 I
2 200 ‘K% fd P(a|P—q/2)
4 400 X(K'[tor(wo) [K)(P+a/2|a),
(A1)
-60.0 1 . 1
0.0 2.0 4.0 6.0 8.0 10.0 s s N
r (fm) with P=(p+p’')/2 andQ=(k+k’)/2 the mean values of
the struck and scattered nucleon momenta,
0.0 T T T T T T O N 1 . N
K=§(k—P—q/2), K/:E(k/—P‘f‘Q/Z), (A2)
3 4
2 500k /// i and the energy parameter is
= G
z 7 2
.7 7 fL = =0
_________ ‘/‘/ (b) wo—EO_ H(Q‘F P) . (A3)
-40.0 [ L 1 1
0.0 2.0 4.0 6.0 8.0 10.0

r (fm) The product of target single-particle wave functions is
strongly peaked abolR=0. Thus, the potential matrix ele-

ments sample thédN amplitude at and neaP=0. The

smooth variation of th&NN amplitude over the range of rel-

mean field and impulse approximation optical interactionsevant momenta leads to the optimal factorization form of the
optical potential and, for a closed shell nucl¢ds3],

We have shown that real central terms of the lo¥sligner P P ¢uss]

transform representation of the impulse approximation opti- R AP
cal potential are attractive at energies in the region of 200 (K' @oltoi(@o)|Pok)=p(q)(z (k' +a/2)]
MeV, becoming repulsive at 400 MeV and above. Our esti- — 22 e =

mate of the mean field effects is approximate and does not Xtoi(Eo—h°Q%/4m)|z(k—q/2)),
provide a realistic description of the associated corrections in (A4)
the nuclear surface. We do not therefore compare our predic-

tions with scattering data. Our calculated mean field effect%thﬁl the spin-isospin average of theN transition ampli-
essentially follow the target nucleus density and are mosfye. p(q) is the Fourier transform of the target density,

reliable at the nuclear center. They are found to reduce thgymalized top(0)= 1. Reexpressing thdN amplitude
strength of the impulse approximation interactions by 25% in

the nuclear volume, providing an additional repulsive effect
at low energies.

FIG. 10. As for Fig. 9 but for the nucleoff®Pb system.

(k' [tor( @0)| €Y =tos wg, k", K) =tos( @,q,2), (A5)
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where ¢ is the angle between vecto@s andq. Systematic
studies of theNN transition amplitude have shown that the
central and spin-orbit components depend only very weakly
The matrix elements of the N transition amplitude in the upon the anglep [21]. We thus calculate thelN amplitude
target nucleus ground state are, in momentum space, using the on-shell value of ¢, i.e., ¢o=/2.

APPENDIX
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