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In the light of the recent discovery that different forms of theS matrix produce equally good fits to
heavy-ion scattering data, we use the simple Ericson parametrization of the phase shifts to analyze the
mental data and apply the Glauber approximation to evaluate the corresponding optical potential.@S0556-
2813~96!02206-6#

PACS number~s!: 24.10.Ht, 25.70.Bc
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The recent literature shows a revival of interest in th
determination of the optical potential describing elastic sc
tering of heavy ions. This is a consequence of the availabi
of techniques for solving the inverse scattering problem
fixed energy as well as advanced computer codes@1#. In this
‘‘phenomenology by inversion,’’ the choice of a smoothl
l -dependent scattering matrix is used as basic input. T
five-parameter McIntyre form@2# provides the best fit to the
data. TheS matrix, thus specified, is used to determine th
local, l -dependent optical potential by an inversion proc
dure. The inversion is performed either with a full quant
calculation@3# or by means of a semiclassical WKB inver
sion scheme@4#. However, the problem of parameter amb
guity in the determination of theS matrix by fitting the ex-
perimental angular distribution has been a subject of seve
debates@5#. In particular, Stewardet al. @6# have recently
shown that elastic-scattering cross-section data of 1449-M
12C on 208Pb and 1503-MeV16O on 12C can be equally well
fitted by assuming several different forms for the dependen
of the S matrix on angular momentum. The correspondin
extracted optical potentials would have a diverse behav
which would have ‘‘a decisive influence on conclusion
about the physics involved.’’ Indeed, different parametriz
tions of the S matrix have already been applied in th
diffraction-model analysis of experimental data@7#.

In this work, we hope to draw attention towards a simp
parametrization suggested by Ericson@8# in the early stages
of development of the diffraction model. It has the addition
advantage of providing an analytical expression for t
elastic-scattering cross section. This parametrization
volves only three parameters, each one reflecting a spec
aspect of the data. Therefore, the parameter values
‘‘unique’’ in the sense that a slight variation in any of them
produces a different quality of agreement with the expe
mental data. The inversion procedure applied to Ericso
parametrized phase shifts can be performed analytically
ing Glauber’s expression@9# for the scattering amplitude,
which has been successfully applied to analyze similar da
This formalism is used to deduce local potentials describi
the angular distributions of the elastic scattering of12C by
12C at incident energies ranging from 139.6 up to 2400 Me
@10# and of 16O by 12C at an incident energy of 608 MeV
@11#. These data are interesting, since, as emphasized
Brandan, Fricke, and McVoy@12#, they are extensive, offer a
smooth scattering matrix as a function ofl according to pre-
vious analyses, and display both the Fraunhofer and Fres
diffraction patterns.
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We start the proposed version of ‘‘phenomenology by in
version of phase shifts’’~PIPS! with Ericson’s parametriza-
tion of the nuclearSmatrix @8#:

exp~2id l !5F11expS l 02 l2 il

D D G21

, ~1!

where l 0 is the angular momentum of the surface grazin
trajectory, D measures the smoothness of transition fro
complete absorption to complete transmission, andl charac-
terizes the reflection and refraction in the nuclear surfa
region. It has been shown@13# that the ratiol/D is propor-
tional to the ratio of the real to imaginary parts of the optica
potential at the nuclear surface.

The advantages of the Ericson parametrization are the f
lowing.

~i! The S matrix given by Eq.~1! satisfies the unitarity
condition uSl u<1 for all values of l as far asl/D<p/2.
Therefore, there is no need to add a spline correction as do
in Ref. @10#.

~ii ! Using the Watson-Sommerfeld transformation@8,14#
and keeping only the two poles of theSmatrix nearest to the
real axis in the complexl plane, one obtains the following
analytical expression for the elastic scattering differenti
cross section@15#:

s~u!5N cscu exp~22pDu!H cos2F S l 01 1

2D u1
p

4

1arctan
pD

l 01
1

2
G1sinh2~pDuc2lu!J , ~2!

where

N58pS D

k D 2A~ l 011/2!21~pD!2 exp~2luC!,

k is the incident wave number, anduC is the Coulomb de-
flection angle:

uC52 arctan
n

l 011/2
, n5Z1Z2e

2/\v
2973 © 1996 The American Physical Society



ge

2974 53N. M. ELDEBAWI AND M. H. SIMBEL
FIG. 1. Angular distributions of elastic scattering of12C and16O by 12C. The dots are the data of Refs.@10,11#. The dashed curves are
calculated using Eq.~2! with the best-fit parameter sets~columns 2–4 of Table I!. The solid curves are calculated using the avera
parameter sets~columns 10–12 of Table I!.
a

with Z1,2 being the projectile and target atomic numbers,v
their relative velocity, ande the electron charge. Comparison
between the values ofs~u! calculated by means of this ex-
pression with those obtained by the exact summation of p
 r-

tial waves withS( l ) given by Eq.~1! suggests@13# that this
expression is accurate for scattering anglesu.uC .

~iii ! The approximate expression fors~u! given by Eq.
~2! has the following features which allow a ‘‘unique’’ de-



g
f
s.

.75

.92

.56

.74

.26

.25

.99

53 297512C112C AND 16O112C POTENTIALS BY INVERSION
TABLE I. Three-parameter sets of parameters used to fit the angular distribution data for scattering of12C and 16O by 12C in Fig. 1.
Columns 2–4 are the best-fit parameters extracted as explained in items~a!–~c! in the text. Columns 5–7 give the values of the stron
absorption radiusR0 , refraction coefficientr, and surface diffusenessa as given by Eqs.~4!. Columns 8 and 9 give the average values o
R0 and a calculated using Eqs.~5!. Columns 10–12 report the corresponding three-parameter sets obtained by substitution in Eq~4!.
Columns 13–16 give the valuesl 0 andD obtained by McEwanet al. @10# and by Charagi and Gupta@16#.

12C112C
E ~MeV! l 011/2 l D R0 r a R̄0 ā l 011/2 l̄ D̄ l g Dg l eff Deff

139.5 26.50 2.60 2.00 6.29 0.58 0.45 6.28 0.45 26.48 2.69 2.02 27.56 3.25 26.0 1
158.8 28.20 2.79 2.20 6.22 0.58 0.46 6.23 0.46 28.25 2.87 2.18 29.64 3.25 27.6 1
161.1 28.50 3.00 2.30 6.23 0.62 0.48 6.23 0.46 28.48 2.90 2.21 28.98 3.47
240.0 34.50 3.63 3.02 6.08 0.62 0.51 6.06 0.48 34.38 3.53 2.80 34.37 3.21 33.1 2
288.6 38.40 3.98 3.25 5.96 0.60 0.49 5.94 0.49 38.25 3.98 3.25 38.10 5.55 35.7 2
360.0 39.50 4.60 3.60 5.62 0.64 0.50 5.85 0.50 41.10 4.33 3.50 38.29 6.03 39.1 3
1016 60.00 7.00 6.40 5.00 0.58 0.53 5.06 0.59 60.72 7.27 7.13 59.29 7.23 56.9 6
1449 69.70 8.40 8.80 4.85 0.58 0.61 4.68 0.63 67.27 8.68 9.12 68.56 9.05 64.4 7
2400 72.00 10.5 14.3 3.89 0.56 0.77 4.02 0.71 74.47 11.18 13.2 75.80 13.8

16O112C
608.0 53.50 6.40 4.80 5.10 0.60 0.45
gy.
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termination of the parametersl 0 , l, andD involved in the
Ericson model.

~a! The cosine function in Eq.~2! is responsible for the
oscillation pattern of the differential cross section. The ‘‘av
erage’’ period of oscillation is equal toQ5p/( l 011/2).

~b! The heights of the diffraction minima are proportiona
to the quantity sinh2(pDuC2lu). The deepest pair of
minima thus occurs near the angleumin5pDuC/l.

~c! At large values ofu, the contribution of the oscillating
cosine function decreases compared to that of the mono
nously increasing hyperbolic sine, which can be approx
mated by an exponential function. Therefore, whe
u@pDuC/l,

s~u!sin u'
N

4
exp~22pDuC!exp@2~l2pD!u#. ~3!

Thus, the slope of the exponential decay of the different
cross section at large angles is approximately equal to 2~l
2pD!.

We have used expression~2! to analyze the elastic scat-
tering of 12C by 12C at incident energies ranging from 139.
up to 2400 MeV@10# and of 16O by 12C at an incident
energy of 608 MeV@11#. The quality of agreement of this
expression with the experimental data of Refs.@10,11# is
illustrated in Fig. 1. The parameters used in the fitting a
listed in Table I. These parameters are also expressed
terms of the strong-absorption radiusR0 , surface diffuseness
a, and refraction coefficientr by means of the following
semiclassical relations@7#:

kR05n1An21~ l 011/2!2,

ka5D, ~4!

kr5
l

An21~ l 011/2!2
.
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We see from the table that whiler is varying very little
around an average value ofr̄50.6 fm, the parametersR0 and
a show a systematic dependence upon the incident ener
This behavior encouraged us to introduce the following un
fied ‘‘three-parameter set’’ that would fit the12C112C scat-
tering angular distribution at all energies:

R̄057.020.16k fm,

ā50.3710.018k fm, ~5!

r50.6 fm.

Figure 1 also shows the quality of fits achieved with thos
parameters obtained by substituting the three-parameter
~5! into Eqs.~4! and reported in Table I. We have then com
pared our values ofl̄ 011/2 and ā with the corresponding
values obtained by McEwanet al. ~Tables 3 and 4 in@10#!
and by Charagi and Gupta@16# by applying a Coulomb-
modified Glauber model and using the strength of the effe
tive nucleon-nucleon interaction as fitting parameters. Tab
I shows that our average parameters are in close agreem
with those obtained by means of both the PIPS method
Ref. @10# and by the Coulomb-modified Glauber model@16#.

Now, we consider theS( l )→V(r ) inversion procedure
using Glauber’s eikonal approximation@9,17#. In the Glauber
theory, the scattering amplitude is given by

f ~u!52 ikE
0

`

J0~2kb sin u!@exp$2ix~b!%21#bdb,

~6!

whereJ0(x) is the Bessel function,b the impact parameter,
andx(b) the thickness profile defined by

x~b!5
1

\v E
0

` V~r !rdr

Ar 22b2
. ~7!

HereV(r ) is the optical potential andv the relative velocity.
Using the semiclassical relationl'kb and regardingl as a
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FIG. 2. Real~left column! and imaginary~right column! parts of the optical potential. The solid lines are calculated using Eq.~9!. The
dashed and dotted lines are taken from Refs.@10,11# and from Ref.@19#, respectively.
a-
continuous variable, we identifyx(b) with the phase
shifts d l . Once a functional form is adopted for the
phase shift, and we do this by means of Ericson’s parame
zation (1), andsimplifying Eqs. ~4! for the parameters to
yield l 0'kR0 andl'kr, the functionx(b) becomes
tri-

x~b!5
i

2
lnF l1expSR02b2 ir

a D G . ~8!

Equation~7! can then be regarded as an Abel integral equ
tion @18# whose solution is given by
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V~r !5
\v
2p

1

r

d

dr Er
` x~b!bdb

Ab22r 2
5

\v
pai E0

` du

Ar 21u2
F11expSAr 21u22R01 ir

a D G21

. ~9!
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The integration in Eq.~9! has been carried out numer
cally using the parameters reported in Table I. A comparis
of the real and imaginary parts ofV(r ) with those of the
Woods-Saxon potentials obtained in optical-model analy
and the potentials previously deduced using the PIPS mo
is shown in Fig. 2. We notice the following.

~1! The potentials obtained in the present paper ag
with those obtained in Refs.@10,11# as well as the phenom
enological Woods-Saxon potentials@19# near the strong-
absorption radius. This can only be understood by recog
ing the strong-absorption nature of the reactions un
consideration, which renders the scattering insensitive to
value of the potential at small impact parameters. Satc
@5#, for example, was able to fit theS-matrix data with both
shallow and deep real optical potentials.

~2! While the real potentials obtained in Refs.@10,11#
agree better with the real parts of the phenomenolog
Woods-Saxon potentials, our potential provides a be
agreement with the imaginary parts.

~3! From the previous arguments, one may suggest
Eq. ~9! provides a reasonable description for the imagina
optical potential beyond the strong-absorption radius.
r>R01a, the integral in Eq.~9! can be carried out approxi
mately, and one obtains

Im V~r !'2
\v cos~r/a!exp~R0 /a!

4aA2p

exp~2r /a!

Ar /a
.

~10!

This expression suggests the strength of the imaginary
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tential increases with energy roughly asAE while its radial
dependence enters through the ratior /a. The latter sugges-
tion leads to the identification of the diffuseness of th
imaginary optical potential with the diffuseness parameter
the diffraction model as given by Eq.~4!.

We finally note that the potential obtained in Eq.~9! is
derived from Glauber’s expression for the phase shifts. It
well known that the Glauber approximation for potentia
scattering can be obtained by using the WKB approximati
with the additional assumption thatuV(r )u!E. Both approxi-
mations are fairly valid beyond the strong-absorption radi
and both break down for small values ofr which influence
low partial waves and where the phenomenological optic
potentials are comparable in magnitude with the incident e
ergy.

In summary, the present formalism calculates the optic
potential of strongly absorbed projectiles starting with a p
rametrizedSmatrix as already done by the authors of Ref
@10,11#. However, it presents a method of determining th
parameters of the phase shifts ‘‘uniquely.’’ The analytica
formula~2! for the elastic-scattering differential cross sectio
deduced by assuming Ericson’s parametrization of theSma-
trix allows one to couple each parameter with a specific fe
ture of the angular distribution. The average ‘‘three
parameter set’’~5! could fairly well fit all the nine curves of
the 12C112C scattering angular distribution. The inversio
procedureS( l )→V(r ) is then carried out analytically, yield-
ing a simple expression for the local optical potential i
terms of these uniquely defined parameters.
l.
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