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12c+12C and %0 +'%C potentials by inversion
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In the light of the recent discovery that different forms of tBematrix produce equally good fits to
heavy-ion scattering data, we use the simple Ericson parametrization of the phase shifts to analyze the experi-
mental data and apply the Glauber approximation to evaluate the corresponding optical pd®0O&ia6-
281396)02206-§

PACS numbds): 24.10.Ht, 25.70.Bc

The recent literature shows a revival of interest in the We start the proposed version of “phenomenology by in-
determination of the optical potential describing elastic scatversion of phase shifts{PIPS with Ericson’s parametriza-
tering of heavy ions. This is a consequence of the availabilitgion of the nucleaiS matrix [8]:

of techniques for solving the inverse scattering problem at

fixed energy as well as advanced computer cddgdn this lo—1—in|]7?
“phenomenology by inversion,” the choice of a smoothly exp2id)= 1+ex;{ T” , (1)
I-dependent scattering matrix is used as basic input. The

five-parameter Mcintyre fori2] provides the best fit to the , )
data. TheS matrix, thus specified, is used to determine theWherel, is the angular momentum of the surface grazing
local, I-dependent optical potential by an inversion proce_trajectory,A measures the smoothness of transition from
dure. The inversion is performed either with a full quantalcomplete absorption to complete transmission, actiarac-
calculation[3] or by means of a semiclassical WKB inver- terizes the reflection and refraction in the nuclear surface
sion schemé4]. However, the problem of parameter ambi- region. It has been showi3] that the ratioA/A is propor-
guity in the determination of th& matrix by fitting the ex-  tional to the ratio of the real to imaginary parts of the optical
perimental angular distribution has been a subject of severglotential at the nuclear surface.

debateq5]. In particular, Stewardet al. [6] have recently The advantages of the Ericson parametrization are the fol-
shown that elastic-scattering cross-section data of 1449-Mebwing.
'2C on ?%®Pb and 1503-MeV*°0 on **C can be equally well (i) The S matrix given by Eq.(1) satisfies the unitarity

fitted by assuming several different forms for the dependenceondition |S|<1 for all values ofl as far asNA</2.

of the S matrix on angular momentum. The correspondingTherefore, there is no need to add a spline correction as done
extracted optical potentials would have a diverse behaviojy Ref.[10].

which would have “a decisive influence on conclusions (") Using the Watson-Sommerfeld transformat[@fy}lzﬂ
about the phySiCS involved.” Indeed, different parametriza-and keeping Only the two poles of tlBematrix nearest to the
tions of the S matrix have already been applied in the rea| axis in the complex plane, one obtains the following

diffraction-model analysis of experimental d4d. ~analytical expression for the elastic scattering differential
In this work, we hope to draw attention towards a simplecross sectiofi15]:

parametrization suggested by Ericd@&h in the early stages
of development of the diffraction model. It has the additional
advantage of providing an analytical expression for the o(68)=N cscé exp(—2mwAd)| cos
elastic-scattering cross section. This parametrization in-

volves only three parameters, each one reflecting a specific

aspect of the data. Therefore, the parameter values are

“unique” in the sense that a slight variation in any of them +arctan
produces a different quality of agreement with the experi-

mental data. The inversion procedure applied to Ericson’s

parametrized phase shifts can be performed analytically us-

ing Glauber's expressiof9] for the scattering amplitude, where

which has been successfully applied to analyze similar data.

This formalism is used to deduce local potentials describing A\ 2

the angular distributions of the elastic scatteringé€ by NZSW(F) V(lo+1/2)%+ (7A)? exp(2N 6c),
12C at incident energies ranging from 139.6 up to 2400 MeV

[10] and of 10 by '%C at an incident energy of 608 MeV
[11]. These data are interesting, since, as emphasized
Brandan, Fricke, and McVo}l2], they are extensive, offer a
smooth scattering matrix as a functionlodiccording to pre-
vious analyses, and display both the Fraunhofer and Fresnel
diffraction patterns.
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is the incident wave number, art} is the Coulomb de-
ection angle:

n
= - 2
0c=2 arctan—loJr 172" n=2,Z,e“/hv
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FIG. 1. Angular distributions of elastic scattering BE and 0 by '*C. The dots are the data of Ref40,11]. The dashed curves are
calculated using Eq(2) with the best-fit parameter sefsolumns 2—4 of Table)l The solid curves are calculated using the average
parameter setecolumns 10-12 of Table).l

with Z, , being the projectile and target atomic numbers, tial waves withS(l) given by Eq.(1) suggest$13] that this
their relative velocity, an@ the electron charge. Comparison expression is accurate for scattering anglesé.. .

between the values af(6) calculated by means of this ex- (i) The approximate expression fot(6) given by Eq.
pression with those obtained by the exact summation of par2) has the following features which allow a “unique” de-
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TABLE I. Three-parameter sets of parameters used to fit the angular distribution data for scattefi@gaati 10 by '2C in Fig. 1.
Columns 2-4 are the best-fit parameters extracted as explained in(#eris) in the text. Columns 5-7 give the values of the strong
absorption radiuR, refraction coefficienp, and surface diffusenessas given by Eqs(4). Columns 8 and 9 give the average values of

R, anda calculated using Eq95). Columns 10-12 report the corresponding three-parameter sets obtained by substitution (#).Egs.
Columns 13-16 give the valuég and A obtained by McEwaret al. [10] and by Charagi and Gupfa6].

Hoi e _
E (MeV) Iy+1/2 A A Ro p a Ry @ l1o+1/2 A A g Ag jeff - peff

139.5 26.50 2.60 200 6.29 058 045 6.28 045 26.48 2.69 2.02 27.56 325 260 1.75
158.8 28.20 2.79 220 6.22 058 046 6.23 046 2825 2.87 218 2964 325 276 192
161.1 28.50 3.00 230 6.23 0.62 048 6.23 046 2848 2.90 221 28.98 3.47

240.0 34.50 3.63 3.02 6.08 062 051 6.06 048 34.38 3.53 2.80 34.37 321 331 256
288.6 38.40 3.98 325 596 060 049 594 049 3825 3.98 3.25 38.10 555 357 274
360.0 39.50 4.60 3.60 562 064 050 585 050 41.10 4.33 3.50 38.29 6.03 39.1 3.26

1016 60.00 7.00 6.40 500 0.58 053 506 059 60.72 727 713 5929 723 569 6.25
1449 69.70 840 880 485 058 061 468 063 67.27 868 9.12 6856 905 644 7.99
2400 72.00 105 143 3.89 056 0.77 4.02 071 7447 1118 132 7580 13.8

60+12c

608.0 53.50 6.40 480 510 0.60 0.45

termination of the parametetg, A, and A involved in the  We see from the table that whilg is varying very little
Ericson model. around an average value @f 0.6 fm, the parameteiR, and

(@ The cosine function in Eq(2) is responsible for the a show a systematic dependence upon the incident energy.
oscillation pattern of the differential cross section. The “av- This behavior encouraged us to introduce the following uni-
erage” period of oscillation is equal © = 7/(15+1/2). fied “three-parameter set” that would fit thE#C+1%C scat-

(b) The heights of the diffraction minima are proportional tering angular distribution at all energies:
to the quantity sinf(wA6:.—\6). The deepest pair of —
minima thus occurs near the andlg;,=mA 6/\. Ro=7.0-0.1& fm,

(c) Atlarge values of, the contribution of the oscillating 2=0.37+0.01& fm )
cosine function decreases compared to that of the monoto- ' ' '
nously increasing hyperbolic sine, which can be approxi- p=0.6 fm.
mated by an exponential function. Therefore, when
6>mAOc/IN, Figure 1 also shows the quality of fits achieved with those

parameters obtained by substituting the three-parameter set
) N (5) into Egs.(4) and_reported in Table I. We have then com-
o(0)sin o=, exp(—2mAfc)exd2(N—7A)0].  (3)  pared our values ofy+1/2 anda with the corresponding
values obtained by McEwaet al. (Tables 3 and 4 if10])

Thus, the slope of the exponential decay of the differentiaf"lnd _by Charagi and GuptgL6] _by applying a Coulomb-
cross section at large angles is approximately equal(Xo 2 modified Glauber model and using the strength of the effec-
— ). tive nucleon-nucleon interaction as fitting parameters. Table

I shows that our average parameters are in close agreement
with those obtained by means of both the PIPS method of
Ref.[10] and by the Coulomb-modified Glauber mo{i&6].

Now, we consider theS(I)—V(r) inversion procedure

We have used expressi@f) to analyze the elastic scat-
tering of 1°C by '2C at incident energies ranging from 139.6
up to 2400 MeV[10] and of %0 by '°C at an incident

energy of 608 MeV[11]. The quality of agreement of this . o A
expression with the experimental data of Rdf80,11] is using Glaubersen.(onal approxmat@ﬁ,l?]. In the Glauber
theory, the scattering amplitude is given by

illustrated in Fig. 1. The parameters used in the fitting are
listed in Table I. These parameters are also expressed in %
terms of the strong-absorption radilg, surface diffuseness f(6)= —ikf Jo(2kb sin 6)[ exp{2i x(b)} —1]bdb,

a, and refraction coefficienp by means of the following 0 ©6)
semiclassical relations]:

whereJy(x) is the Bessel functiory the impact parameter,

kRy=n+ n?+(1o+1/2)?, and y(b) the thickness profile defined by
Ka=A, @) 1 (> V(r)rdr @

X(b):% 0 m

kp= ; HereV/(r) is the optical potential and the relative velocity.
Vn?+ (1g+1/2)2 Using the semiclassical relatidr=kb and regarding as a
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FIG. 2. Real(left column and imaginary(right columr) parts of the optical potential. The solid lines are calculated using®qThe
dashed and dotted lines are taken from REIS,11] and from Ref[19], respectively.

continuous variable, we identifyy(b) with the phase
shifts 6. Once a functional form is adopted for the

phase shift, and we do this

by means of Ericson’s parametri-

yield l;~kRy; and\~kp, the functiony(b) becomes tio

i
X(b)zim

n [18] whose solution is given by

o )|

zation (1), andsimplifying Egs. (4) for the parameters to Equation(7) can then be regarded as an Abel integral equa-

8
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_hvld (=x(bbdb #v (= du

T 2mrdr ), Jp2—r2 maiJo 22

V(r) 1+ex 9

\Jr<+u _Ro+|p
a

The integration in Eq(9) has been carried out numeri- tential increases with energy roughly d& while its radial
cally using the parameters reported in Table I. A comparisolependence enters through the ratta. The latter sugges-
of the real and imaginary parts &f(r) with those of the tion leads to the identification of the diffuseness of the
Woods-Saxon potentials obtained in optical-model analysegnaginary optical potential with the diffuseness parameter of
and the potentials previously deduced using the PIPS modehe diffraction model as given by E¢4).
is shown in Fig. 2. We notice the following. We finally note that the potential obtained in HE) is

(1) The potentials obtained in the present paper agre@eriyved from Glauber's expression for the phase shifts. It is
with those obtained in Ref§10,1] as well as the phenom- \ye|| known that the Glauber approximation for potential
enological Woods-Saxon potentiald9] near the strong- geauering can be obtained by using the WKB approximation

absorption radius. This can only be understood by recogniz; i the additional assumption that(r)|<E. Both approxi-

ing the strong-absorption nature of the reactions under _.. : : . .
) . ) L - mations are fairly valid beyond the strong-absorption radius
consideration, which renders the scattering insensitive to the .
nd both break down for small values ofwhich influence

value of the potential at small impact parameters. Satchlel?’ ial d wh the ph loaical optical
[5], for example, was able to fit th&-matrix data with both ow partial waves and wnere heé phenomenological optica

shallow and deep real optical potentials. potentials are comparable in magnitude with the incident en-

(2) While the real potentials obtained in Refd0,1] €9y _ ,
agree better with the real parts of the phenomenological In summary, the present formalism calculates the optical

Woods-Saxon potentials, our potential provides a bettePotential of strongly absorbed projectiles starting with a pa-
agreement with the imaginary parts. rametrizedS matrix as already done by the authors of Refs.
(3) From the previous arguments, one may suggest thdfl0,11. However, it presents a method of determining the
Eg. (9) provides a reasonable description for the imaginaryparameters of the phase shifts “uniquely.” The analytical
optical potential beyond the strong-absorption radius. Aformula(2) for the elastic-scattering differential cross section
r=R,+a, the integral in Eq(9) can be carried out approxi- deduced by assuming Ericson’s parametrization of3nea-

mately, and one obtains trix allows one to couple each parameter with a specific fea-
ture of the angular distribution. The average “three-
v cogpla)expRqy/a) exp(—r/a) parameter set'(5) could fairly well fit all the nine curves of
Im V(r)~— day2n Jiia the °C+%C scattering angular distribution. The inversion

(10) procedureS(l)—V(r) is then carried out analytically, yield-
ing a simple expression for the local optical potential in
This expression suggests the strength of the imaginary pderms of these uniquely defined parameters.

[1] H. Leeb, H. Fiedeldey, and R. Lipperheide, Phys. ReB2C [9] R. J. Glauber, inectures in Theoretical Physicsdited by W.

1223(1989; A. A. loanmides and R. S. MclIntosh, Nucl. Phys. E. Britten and L. G. Dunharinterscience, New York, 1959

A 438 354 (1985; 467, 482 (1987; S. G. Cooper, M. W. p. 1.

Kermode, and L. J. Allen, J. Phys. 2, L291 (1986. [10] M. A. McEwan, S. G. Cooper, and R. S. Mackintosh, Nucl.
[2] J. A. Mclntyre, K. H. Wang, and L. C. Becher, Phys. R&{7, Phys. A552 401 (1993.

1337(1960. [11] S. G. Cooper, M. A. McEwan, and R. S. Mackintosh, Phys.

[3] H. Leeb, C. Steward, K. A. Amos, and L. J. Allen, Phys. Rev. Rev. C45, 770(1992.
C 45, 2919 (1992; L. J. Allen, L. Berge, C. Steward, K. [12] M. E. Brandan, S. Fricke, and K. W. McVoy, Phys. Rev3&
Amos, H. Fiedeldey, H. Leeb, R. Lipperheide, and P. Frobrich, 673(1988.

Phys. Lett. B298 36 (1992. [13] A. Y. Abul-Magd and M. H. Simbel, Nucl. Phys. A48, 449
[4] L. J. Allen, K. Amos, and H. Fiedeldey, J. Phys.18, L179 (1970.

(1992; H. Fiedeldey, S. A. Sofianos, K. Amos, and C. Stew- [14] E. V. Inopin, Sov. Phys. JETP1, 1090(1965.

ard, Phys. Rev. @4, 1606(1991. [15] A. Y. Abul-Magd and M. H. Simbel, Nucl. Phy#\111, 216
[5] G. R. Satchler, Nucl. Phys. B74, 575(1994). (1968.
[6] C. Steward, H. Fiedeldey, K. Amos, and L. J. Allen, Phys.[16] S. K. Charagi and S. K. Gupta, Phys. Rev4C 1610(1990.

Rev. C51, 836(1995. [17] A. Y. Abul-Magd, M. EI-Nadi, and M. H. Simbel, Phys. Lett.
[7] W. E. Frahn, inTreatise on Heavy lon Reactipadited by A. 34B, 566 (197).

D. Bromley (Plenum, New York, 1988 Vol. 1, p. 135. [18] T. Y. Wu and T. OhmuraQuantum Theory of Scattering
[8] T. E. O. Ericson, inPreludes in Theoretical Physidiorth- (Prentice-Hall, Englewood Cliffs, NJ, 1962

Holland, Amsterdam, 1965p. 321. [19] M. E. Brandan, Phys. Rev. Lef0, 784 (1988.



