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The analysis used to determine the rms parity violating matrix eleMeinbm the longitudinal asymmetries
measured by the TRIPLE Collaboration is described. The likelihood method is used to analyze the limited
number of experimental data points available for each target nuclide. Much spectroscopic information is
required to determin#, including resonance parametéspins, neutron widths, resonance energafshe s-
and p-wave resonances which mix to cause the parity violation, (fordtargets withl #0) p-wave neutron
partial decay amplitudes. We have developed statistical techniques to detdfniinsituations where incom-
plete spectroscopic information is available. Methods are described that can be applied when different amounts
of partial spectroscopic information are available. The use of the methods is illustrated by examples.

PACS numbe(s): 25.40.Ny, 11.30.Er, 24.86y

[. INTRODUCTION resonancesd, ando_ are the resonance parts of the total
cross section for positive and negative helicity neutjons
The observation by the Dubna grolip] of large parity ~ Since the parity violation ifweak p-wave resonances is
violating (PV) longitudinal asymmetries in compound caused by mixing withstrong s-wave resonances, clearly
nuclear resonances excited by polarized neutrons demoine needs the spectroscopic parameters for botls-tlaad
strated that weak interaction effects are enhanced by marny-wave states, including the total angular momentinthe
orders of magnitude in complex nuclei. Following these pio-resonance enerdy,, and the neutron widtlr,,. We derive
neering measurements, the TRIPLE Collaboration used thgrobability density functions for a number of circumstances,
pulsed epithermal neutron beam from the spallation source &rresponding to the wide range of spectroscopic knowledge
the Los Alamos Neutron Scattering Cent&ANSCE) to  yailable for different nuclides. Given the probability density
measure many PV asymmetries in a single nucli2eS].  nctions, the likelihood method can be used to determine

This group developed alstat|st|cal method to thMctthe the relevant parameters from the experimental results.
root-mean-squared matrix element of the PV interaction be- It is convenient to consider target spir=0 and |0
tween compound nuclear states, from the measured asymme-

tries. In this new approach the symmetry breaking matrixseparately. Thd =0 case is much simpler. Fdr=0, al

elements are assumed to be random variables. The status of 2 ¢ 'Sonances must have 1/2, thep-_wave resonances
the earlier measurements was summarized by Bowgbah ~ NaveJ=1/2 or 3/2, and the correspondimgwave neutron
[6]. More recent results are discussed by el [7]. The amplitudes are pur¢=1/2 or 3/2(where] is the neutron
rms matrix elemeni/ can be related to the coupling strength total angular momentumUsually thes-wave andp-wave
of the weak nucleon-nucleon interaction. This relationship ig’€utron widths and resonance energies are known, but the
described in several papers which present theories of syngPins(particularly of the much weakes-wave resonances
metry breaking in the compound nucldi@-10]. often are not known. Bowmast al.[2] showed that fot =0
In this paper we describe the statistical procedures used target nuclides, knowledge of the resonance energies and
extract values and uncertainties for the rms PV matrix eleheutron widths of the- and p-wave resonances is sufficient
mentM from the experimental data. In practice, the preci-to extract values oM from a set of measured PV asymme-
sion with which this rms matrix element can be determinedries.
is governed by the status of the relevant nuclear spectro- More spectroscopic information is needed to characterize
scopic information. With all spectroscopic information avail- p-wave resonances for targets wit# 0. The p-wave states
able, the fractional error iM is determined by the number with J=1+1/2 can be formed with both,,, and p5/, neu-
of resonances for which asymmetries are measured wittfons, and thus there are two entrance channel neutron am-
small statistical errors. However, in most cases there is inplitudes. We use the following coupling scheme: the neutron
complete information available for some or all of the rel- orbital angular momentur’ and the neutron spinare first
evant spectroscopic quantities, and the erroMiris larger  coupled to form the projectile spip=I+i, andj is then
than the sampling error discussed above. We discuss thmupled to the target spinto form the total spirJ=I+j of
methods of analysis appropriate under various circumthe target-projectile system. Ferwave resonances the pro-
stances, and attempt to clarify and codify the general analyjectile spin isj=1/2, while for p-wave resonances=1/2 or
sis approach that our collaboration has adopted. 3/2. Very few projectile-spin neutron decay amplitudes have
In these experiments the longitudinal asymmetrybeen measured. In addition, the spins of the resonances often
p=(o,—0c_)lo,+0_) is measured fop-wave neutron are unknown. For these cases we derive expressions for the
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probability density function of the longitudinal asymmetry Gaussian probability density functions can be used. The PDF
by averaging over unknown spectroscopic parameters. Thier the asymmetry is still Gaussian, but with variance
assumptions used to determine thepriori distribution of  M?2A%+ o2

these spectroscopic parameters are discussed.

The outline of the paper is as follows: in Sec. Il we derive PY(pIMA,0)=G(p,M?A2+0?). (4)
the probability density functions and in Sec. Ill the appropri-
ate likelihood expressions. In Sec. IV level densities and B. Target spin | #0

strength functions are considered. Section V provides ex- , . ,
amples of the application of these methods to experimental FOr @ target with spin and parity” (1+0) the s-wave
data. In Sec. VI we discuss the current status of the relevagVe!S can havel(=1/2)7, while thep-wave levels can have
spectroscopic information, summarize the physical motivall *1/2) ™ and (1 £3/2)"7. The expression fop,, is now
tion for our analysis approach, and briefly review other work

on the analysis of parity violation data. The last section pro- D= 2 Vi vy Y1 ®)
vides a brief summary. wo o~ — T [q2 2z
y vd=3, BBy Ly, \/gM1/2+ sz

Il. PROBABILITY DENSITY FUNCTIONS where (P and Oy, are the projectile-spinj&1/2 and

A. Target spin 1 =0 3/2) neutron amplitudes. Note that only the, amplitude

o contributes to the parity violation. An important difference
Forwa targ+et nucleus with"=0", thes-wave resonances peqyeen this expression and that for0 is that the sum
havel "=1/2" and thep-wave resonances hav€=1/2" or  gyends only over thoss-wave levelsy having the same

3/2". The 3/2 p-wave levels cannot mix with the 1/2 spin as thep-wave levelu. This difference leads to compli-
s-wave levels through d=0 PV interaction and therefore 5tions when the spins of the levels are not known.

show no parity violation. The PV asymmetry was obtained
in the two-level approximation by a number of authors 1. All level spins and projectile-spin amplitudes known
[1,11-13. In general the observed PV asymmetry for a
given p-wave levelu has contributions from mang-wave
levelsv. The PV asymmetry in this case is

If there is complete knowledge of the spectroscopic prop-
erties of thep-wave level and the nearlsywave levels, then
the PDF is similar to that for the=0 case. Assume that one

V 9,0, knows the total neutron widths and spins for thevave
=2 — e 2 E (1)  resonance and tlewave resonances, and the projectile-spin
v BE,-E, Fun amplitudesgy;, and gs,. Then the asymmetryp has a

Gaussian distribution with variandd >A?R?
whereg, ~andg,  are the neutron decay amplitudes of
| — 2pA2R2
levels u and v (92=T, andg’=T, ), E, andE, are the Po(pIMAR)=G(p,M?A°R?), (6)
corresponding resonance energies, ®hg is the matrix el-
ement of the PV interaction between levglandv. Accord-
ing to the statistical model of the compound nucleus, the

where

2
(signed quantitiesv,,, g,,, andg, are statistically indepen- A2 = ( 2 ) & and R= usarz _
dent random variables and have mean-zero Gaussian distri- * 3=, \E,—E,] T, NCRE
butions. The common variandé? of the PV matrix ele- : 7

ments is the mean square matrix element of the PV
interaction. In most cases the neutron decay Widfh;n @nd If the asymmetry is measured with an experimental error

I',) and the resonance energielS (andE,) are known 0. then

from previous experiments. We assume hereafter that the to-
tal neutron widths and resonance energies are known.

The quantityp,, is a sum of Gaussian random variables,
theV,,’s, and is itself a Gaussian random variafld]. The
variance ofp,, is A2M?, where The quantityp is the product ofR and Q, whereR is

given by Eq.(7) and the Gaussian random varialeis

PL(PIMAR, o) =G(p,M?A?R?+ ¢?). (8)

2. All level spins known, projectile-spin amplitudes not known

2 \°T, "
E,—E, T, @ Vv

Aizzy A%, and Ai;( ;

vp g9,
= . 9
Q= &, -, T ©)

The probability density functiodPDF) of p, is given by

(unless confusion results we suppress the indgx The quantityR also must be treated as a random variable,
and the probability density function @fis no longer Gauss-
PO(PIMA)=G(p,M?A?), (3)  ian. In order to obtain the PDF qf, one needs the PDF of

R, which is a function of the projectile-spin amplitudes. Ac-
where G(x,/?) is a mean-zero Gaussian distribution of thecording to the extreme statistical moddl5] of the com-
variablex with variance/?. If there is an experimental error pound nucleus, the projectile-spin amplitudgs, and gz,

o in the measurement gb, the convolution theorem for are statistically independent Gaussian random variakies.
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FIG. 1. Plots oTP'p(p\ MA,a,o) for several values of the param- - ' T T
etera, wherea? = Y?/X?, the ratio of theps, and pyj, strength ¢ p=0.9
functions.(a) a = 0.01,(b) a = 0.5,(c) a = 1.0,(d) a = 5.0. See ~
text for discussion. er .
5 '/\
fact the extreme statistical model does not always hold — * - '°‘._
see the review on amplitude correlations by Mitchetllal. = | k ]
[16]. We first assume that tiggs are independent and obtain
the PDF under this assumption. Then we consider the case = o o ' L
where the projectile-.spi_n amplitudes are correlated. _ = —0.02 0.00 0.02
The standard definition for the neutron strength function
for spinJ is [17] P
V. FIG. 2. Plots ofP'p(p|MA,a,p,cr) for the 29.67-eV resonance
/_ (9(II'y) 9(d)= 2J+1 10 i 338n for several values of the linear correlation coefficignt
ﬁ_i L . . . .
(274+1)D”(J) 2(21+1) with the strength function ratia fixed at 0.7.(@) p = 0.0,(b) p =

0.45,(c) p = 0.9. Even for extremely large values of the correlation
coefficient, the maximum likelihood estimate fit is essentially

where g(J) is the spin statistical weight factol;, is the unchanged. See text for discussion,

average reduced neutron width, aBd(J) is the average

level spacing. It is conventional in neutron physics to nor- 91

malize the widths to 1 eV,l“g= vleVIET,/P,, where R= —=—===sind (12
P, is the neutron penetrability. V9121 93
In Sec. IV B we explicitly consider the dependence of thezng
strength functionS on the projectile-spirj. Here we need
only the relative value of thp-wave strength functiondor 1 rdrdé¢
a given resonance spih for the projectile-sping=1/2 and Pry(r,0)rdrd o= 20 XY
j=3/2. After canceling common terms, the ratio of the 2 gir? 2
j=3/2 toj=1/2 strength functions is simply the ratio of the xex;{ —r (S' 0 Lo ‘9” (13
average values of the reduced neutron widths. If we Xall 2 | x? Y2 |

the variance ofg,;, and Y2 the variance ofys;,, then this
ratio is simplyY?/X2. The PDF’s for the projectile-spin am-
plitudes are 1 a

Po(0)= 21 a%sinff+coLo’

Integrating with respect to yields

(14)

- 2 _ 2
P(912 =G(12,X%) and P(gz2)=G(Gz2,Y"). (11 wherea®=Y?/X?, the ratio of theps, andpy/, strength func-
tions. Strength functiongand their experimental determina-
tion) are discussed in Sec. IV. The PDF of the product of the
two independent random variablBsandQ is

It is convenient to convert the expression fro polar
coordinatesg,,,=r sing andgs,=r cosd. Then
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| 2 a p! (pIMA,a,0) for large values op is sharper than Gauss-
P(p|MA,a)=—f e P - . .
P m)o a’sirff+coso ian whenever the contribution of the, amplitude is impor-
oo tant, but is still similar(for large values of) to the distri-
X G(p,M?A%sir?6)do. (159 pution for1 =0.

As noted above, the extreme statistical model does not
always hold: amplitudesand widths in different channels
may be correlated. In fact this is predicted for doorway states
[18] and for direct reactions. For example, for a fragmented

| 2 (w2 a isobaric analog state, there is a definite phase relation be-
Po(PIMA,a,0) = ;fo 2SI 0+ co20 tween the fine structure statgs If the doorway(analog is
common to two or more channels, say ¢ and then the
XG(p,M?A%si?9+0?)ds. (16)  uc anduc’ amplitudes will be correlated. These predictions
| for doorway states were confirmed by Mitchell al. [16].

Plots of P,(p|MA,a,0) for a = 0.01, 05, 1, and 5 are They also observed large correlations under circumstances
shown in Fig. 1. The plot fom=0.01 is approximately \here the statistical model worked well for other observ-
(_Baussmn and is essentially the same ad th@ case. FOR 5105 Since there is a very limited amount of data available
;s?éii:‘rczgtlsggitl)(l:gbnf Oml;g?asiarlptiretrﬁg :nGea:/uesnSIIZ?ée\zAr”t%n such correlations, spt_ecific predictions for the §ize or fre-
spike neap = 0, while fdra — 5 the distribution is domi. 9U€NCY of these correlations cannot be made reliably. How-

¢ ever, formally the problem is straightforward — on the basis

nated by the spike = 0. The effect of increasing the o . "
paramet)(/ara (anpd th??efore the relative magnitude gof the of the central limit theorem one expects the joint probability

D, amplitude versus thp,/, amplitude is to produce a peak d€nsity function ofy,,, , andg,,, to be a bivariate Gaussian
nearp = 0 at the expense of large valuesmpfThe shape of form with some linear correlation coefficiept The result is

The experimental error- in the asymmetryp can be in-
cluded by using the convolution theorem for Gaussian prob
ability density functions, yielding

P.(p|MA = 1f2ﬁ e G(p,M?A%sirf9)d g 1
plPl ’a’p)_ZTr o a‘sinfd—2apsindcosh+ cos ¢ (P, sim6)dé, (a7

which reduces to Eq15) for p = 0. The effect of the cor-  which we have studiedg’In, the spins of all but seven of the
relation is to distort the shape of the PDF, as illustrated ins-wave resonances are known from threshold to 400 eV. In

Fig. 2. However, what is important for the analysis is thepractice we add terms in the likelihood expressions to ac-
effect of the correlation on the maximum likelihood estimate o nt for these uncertainties.

for M, not the effect on the shape of the PDF. Our calcula- Next consider the case where the spins of fheave

tions indicate thaM is insensitive even to large correlations, states are unknown. The PV experimental results provide in-

i.e., to the shape of the distribution for small valuepofor ‘ " ina th in of th This is si
example, changing from 0.0 to 0.9, as done in Fig. 2, only ormation concerning the spin of theé resonance. This IS sim-
0. Clearly a resonance with a large PV effect

changesV from 1.41 to 1.38 meV. In any event large corre- Plest forl= : Ol
lations are expected only for special cases such as fraglust with very high probability havé=1/2. A resonance
mented common doorways or when direct reactions are im¥ith zero(within erron PV effect is more likely to have spin
portant. The additional uncertainty due to lack of informationJ=3/2. The argument is similar fdr#0, except there are
about channel correlations seems small compared to the uRoW two allowed spins and two spitigrobably disallowed.
certainty arising from lack of information about the ratio of For example, a resonance with a strong parity violation must
the projectile-spin amplitudes. Therefore we assume in th@aveJ=1x1/2, and notl=1=3/2. As we spell out below,
following that the projectile-spin amplitudes are uncorre-these issues are dealt with by the choice of likelihood func-
lated. tion.

C. Level spins not known lIl. LIKELIHOOD FUNCTIONS

Assume that all of the resonance parameters are known
for the p-wave levels, and that the resonance parameters of
the s-wave levels are known except for the spins. Our ap- The next step is to develop expressions for the likelihood
proach is to deal explicitly with the uncertain level spins in functions forM [14]. Likelihood formalism can be summa-
formulating the likelihood function. For largl, this gives rized as follows: assume that one has a set of theoretical
many terms in the sum in the likelihood expression. How-expressions that predict the outcomes of experiments given
ever, in the specific applications that we are consideringsome theoretical parameters. These theoretical expres-
there is always at least partial information on the spins of thesions are combined with the known statistical er@ns the
s-wave resonances, and the total number of resonances wigixperiments to develop a joint probability density function
uncertain spin is not very large. For example, for one nuclidepy(x|m,o) for the outcome of an experiment to measure

A. Review of likelihood analysis
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guantitiesx with errorso involving parametersn. Assume  [In order to obtain a normalizable function, we might assume
that the actual outcome of an experiment yields vapésr  that Py (M) is constant fromM = 0 to M., and zero
the quantitiesx. Then the likelihood functiori(m) is de-  elsewherd.
fined as Here and in the following we assume that the values of
asymmetries measured for differgmwave resonances have
L(m)=P,(y[o,m)Pr(m), (18 mean zero and are statistically independent. It follows that
o - ) ) the likelihood function for several resonances is the product
where thea priori probability densityPr(m) describes our  of the likelihood functions for the individual resonances. We
knowledge of the parameters before the new experimentgpte that the resonance strengths are assumed to be known,
information y was availableL(m) can be considered the ang that this information is included explicitly in the formu-
(un-normalizedl probability density that describes our |ation of the likelihood function. For this reason, the value of
knowledge of the parametens. In most cases of interest we 1 s not systematically altered if wegk-wave resonances

wish to determine some but not all of the parameters inyre excluded from the analysis. This result holdsl 80 as
volved in L(m). Suppose that the parameters are dividedye|| as forl =0 targets.

into two setsm; andm,. Then the likelihood function for
the parameterm,, L,(m;), can be obtained by integrating
(summing L(m) over the parametens,.

Having constructed the appropriate likelihood function, We next develop expressions for the likelihood functions

an estimate ofn, the maximum likelihood estimateVLE), when there is incomplete information on the spins of the
orm,_, is obtained by finding the value of that maximizes resonances. As noted in the review of the likelihood method

L(m). The maximum likelihood estimatm, is a random @above, when one wishes to determine only a subset of the

variable in the sense that if the experiment that gave th®arameters involved, the complete likelihood function is
valuesy is repeated, a different value of_ will be obtained. ~Summed over the unwanted parameters. Clearlyptheave
As the number of measurements used to fdogm) in-  fesonances have= 1/2 or 3/2. Thep-wave resonances with
creases the distribution ofi_ tends to a Gaussian. The esti- J = 1/2 can display parity violation, with the PDF for the
mation of confidence intervals fon, is discussed by Eadie asymmetryp given by Eq.(20), and the likelihood function

et al.[14]. A confidence interval fom, can be estimated by 0Y Ed.(21). For ap-wave resonance with = 3/2, the PDF
solving the equation for the asymmetry also is Gaussian, but does not involve the

rms matrix elemenM. Since thel = 0 PV interaction can

2. p-wave spins not known

1 only mix states of the samk the matrix element betweeh
=5 (19 = 1/2 s-wave states and = 3/2 p-wave states vanishes
identically. Therefore a measurement of the PV asymmetry

. . . . for J = 3/2 p-wave resonances cannot yield any information
For a Gaussian distribution ofi_ this error estimate corre- on the matrix element .

sponds to the standard deviation of the Gaussian distribution. .
: If the spins of thep-wave levels are not known, then the
Bowman and Sharapoy19] demonstrated by numerical ., . . ;
likelihood function for a single level also depends on the

simulation that this approach accurately estimafieand its spin of thep-wave level. The PDF of the asymmefnyis the

error. Notg that in this approach the normalizabilityLgim) sum of two terms, and the likelihood function is
iS not an issue.
Of course the whole notion of a confidence interval, par-

In

L(mi)}
L(my)

ticularly for a strongly non-normal distribution, is considered L(M,J)=[p(1/2) 6(J,1/2G(q,M2A%+ ¢?)
by many to be outdated. As H4[R0] notes “more sophisti- )
cated technique. . .convey more information in an equally +p(3/2)6(3,3/2G(q,0%) IPu(M),  (22)

palatable form. One such device is a confidence picture, by

means of which one may present empirical evidence ab_o%here p(1/2) andp(3/2) are the probabilities that=1/2

the relative likelihood of the true parameter value lying in 43— 312 respectively. The evaluation of the relative prob-
different regions.” Since our present focus is on formulatingpjjities of resonances with different spins is discussed in

the appropriate likelihood function, here we simply quote thegac v, For several resonances, the likelihood function is the

standard interval given by E¢19). product of the individual likelihood functions. If onM is to
be determined, then one integraieamg L(M,J) overJ to
B. Target spin | =0 obtain
1. p-wave spins known
First we consider the likelihood function for the situation L(M)=[p(1/2G(q,M?A*+0?)
where | =0 and the spins of the-wave resonances are +p(32)G(q,02) Py (M). (23)
known. Then for ong,, level
Pg(p| MA,o)=G(p,M2A2+ ¢?). (200  Note that forN=2, the likelihood function fod = 1/2 states
is normalizable, but the likelihood function in E@3) is not
If the experimental asymmetry &5, then unlessPy (M) tends to zero for larg®. This difference is

due to thel = 3/2 terms, which are independent lf and
L(M)=G(q,M?A%+ )P (M). (21) lead to a divergent normalization integral
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o w N The rms PV matrix element may be different for
f L(M)dM> H p(3/2)G(pM,a'i)dM=OC. J=1=1/2 states. Clearly the average size of the matrix ele-
0 0 n=1 ment depends on the level density, and thus one should in-
(24 ¢lude this effect. The spreading width of the parity violating
interaction is defined by'\y=27M?/D(J), which approxi-
ately removes the density dependence. It is unlikely that
éhere is any other dependence of the parity violatiodone
assume thaff', is independent od. We also assume that the

In practice we resolve the normalization issue by settin
Pu(M) equal to a constant up to some valuehf,,, and
zero otherwise. In the Bayesian spirit, one could adopt th

view that all resonances that display a parity violation W'thlevel spacingd(J) has the) dependence given by EB3).

greater than some given statistical significance,rsaymust S ; ;
haveJ=1/2. One could then analyze this set of resonancesThe likelihood function can be expressed as a function of the

The resulting likelihood curve could then be used asahe Vi/(i?k D(S\?)r/ezad)'?,g width  through  the ~ relatioM(J)
priori distribution Py,(M). This new function is normaliz- ~— ~ W )
able.

L(Tw)= Pm(M)( P()PLLAIMDAL),a,0]

C. Target spin | #0 J=1%1/2
1. All level spins and projectile-spin amplitudes known
pine ané projeetierepin ampraees 1 D> p(J)G(q,az)). (28)
More parameters are involved in the expressions for the J=1=32
likelihood functions for target spih+#0, and there are more
cases to consider. First assume that the spin ofptheve 4. s-wave spins, p-wave spins,
level, the spins of als-wave levels, and all of the projectile- and projectile-spin amplitudes not known

spin neutron amplitudes are known. Then the asymmetry has
the distribution ofp = QR, whereQ is a Gaussian random
variable with standard deviatidvl A and is given by Eq(9),
andR is a known constant given by E(). The result is the
same as fot =0 except that the PDF fqy has the variance
Q?R?=M2A?R?. Including the experimental uncertainty
yields a Gaussian with variandd?A’R?+ o2

It is very difficult to evaluate the likelihood function if
only the level energies and neutron widttad theirs- or
p-wave charactgrare known. The quantitie& ,(J) depend
on theJ values of all nearbys-wave levels. To emphasize
this fact we writeA ,(J,%), where2, denotes which possible
sequence of spin assignments is assumed for some niNnber
of the nearbys-wave levels. There are two possible spin

P! (p)=G(p,M2A2R?+ ¢2). (25)  assignments I(+1/2) for eachs-wave level and R spin
P sequencesY). The likelihood function is an average over
If q is the experimental outcome, then the likelihood functions for the different spin sequences,
L(M)=G(q,M?A%R2+ 02)Py(M). (26)

L(Tw) =2 WEIPW(M)| | 3 p()G(g0%)
2. All level spins known, projectile-spin amplitudes not known S

Next suppose that the projectile-spin mixing amplitudes T DPTAMDA (13 a 29
are not known, but that the spins of thpewave resonance J=I§t:1/2 POIPLAMDNALI2) 0] (29
and of alls-wave resonances are known. The factoy is

then known, buR is not. The likelihood function is given by ¢ quantityW(3) is a weighting factor which gives the
probability of differents-wave spin sequences occurring.
L(M)=Py(alMA,a,0)Py(M). (27) [An alternate approach is to adopt a Monte Carlo proce-
dure. Consider the case of unknowswave spins. From the
statistical model one knows the relative density of states with
| +1/2. Therefore one can sample the seNog-wave levels
4t random and arbitrarily designate the appropriate fraction
of the levels with the proper spin. Théfor each spinone
can obtain the quantith defined above. Repeating this pro-
cess many times yields a distribution Afvalues for eachd
value. These distributions provide mean value®\ais well
as the appropriatehumerical PDF for A for each spin. Of
Next suppose that neither the spin of fh@vave level nor course a more probable circumstance is that some of the
its projectile-spin amplitudes are known, but that the spins o6-wave spins are known, but not all of them. Then one fol-
all s-wave resonances are known. If the spin of fhevave  lows the same procedure, but the sampling is only applied to
level is assumed, then the factér, can be evaluated, but the states with unknown spin.
A, = A,(J) depends on the spin sequence assumed because For more than ong-wave levelL(I'y) is a product of the
only s-wave levels with the same spin as thavave level likelihood functions for the individual resonances. The PV
mix to produce parity violation. The likelihood function is data for a target nucleus typically consists of PV asymme-
then obtained by summing overwave level spins as in the tries for over twentyp-wave levels and thé ,(J,%) terms
corresponding situation whdnr=0. involve a larger number af-wave resonances. The numeri-

Recall thata? is the ratio ofp,, to py/, Strength functions for
levels of the same total angular momentdras thep-wave
resonance. As discussed in Sec. IV.B., we use average e
perimental propertiesthe strength functionsto obtain a
value fora.

3. s-wave spins known, p-wave spins
and projectile-spin amplitudes not known
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TABLE I. Spin cutoff parameters for target nuclei measured in  TABLE lll. Spin densitiesf(J) and relative probabilitiep(J)

the TRIPLE parity violation studies. of p-wave resonances with spidsfor 32n (1=9/2).
Nucleus Spin cutoff parametef, J e (I+12%0? (23+1)/202 f(J) p(J)

107
fgg:g igg 3 0.666 0.232 0.155 0.283
a7 @g - o6 4 0.510 0.299 0152  0.278
o 85 5 0.366 0.365 0134  0.245
i ' 6 0.246 0.432 0.106  0.194
51 3.99
= Th 4.76
ad 4.79 energies suggests that does not depend strongly on exci-

tation energy. Ther.-values for specific nuclei that we have
studied experimentally are listed in Table I.

cal evaluation ofL(T'yy) in this circumstance seems to be The spin distribution can be approximated 4]

intractable. This emphasizes the need for spectroscopic infor-

mation in order to evaluat® (or I'\y).
2J +21 o+ 1/2)2/20§_ (33)

f(3)= e—lezaﬁ_ e*(J+l)2/20'(2;E
IV. LEVEL DENSITIES AND STRENGTH FUNCTIONS 20'0

A. Level densities 3
For thep-wave resonances o0 targets(such ags°U and

The spin-dependent level density p¢E,J)=1(J)p(E),  z21), the ratio of f(J=3/2) to f(J=1/2) is close to two
wherep(E) is the nuclear level density arielis the excita-  pecause the exponential factor is approximately the same for
tion energy. The spin distribution depends on the spin cutof 4 3 (see Table . The exponential term must be in-

parameteio, through[21,22 cluded in order to obtain the correct ratio of spin densities for
CPe? o (341)2202 resonances with large spins. As an example, the values of
f(J)=e 7"7c—e c. (30 £(J) and the relative probabilities(J) are listed in Table Iil

or the | =9/2 target nucleuggn.

These considerations assume that all resonances are ob-
served. In practice, resonances weaker than some experimen-
tal lower limit are not observed. Since the strength functions
and the level densities are not the same for resonances with

: . different spinsJ, the resulting average strengths are not
rameter andy wer rmined from a | res fi . ' ; e
parameterx andy were dete ed from a least squares tequal in general. Therefore with a finite threshold for obser-

of the calculated numbem.,4{J) of levels with spinJ in vlation, resonancessuch as)—1/2- andJ=3/2") will not

ﬁa?\])nul??# Z’ stgintsheraﬁggifgr?; dltr:)g Jexpzﬁgn;;rétt?(l)nngp b%e observed with the ratio of densities predicted by B8§).
eX| . 1 21 . 23 .
levels with spinJ can be calculated for each nucleus from For (_example(see_[_S]), in the 902Th experiment the observed
fraction of densities for the 172and 3/Z states was 0.45
s (3 and 0.55, instead of the values of 0.35 and 0.65 listed in
J nexp( )
! Table Il.
J (31
> Jif(‘])

The spin cutoff parameter was determined by von Egid
et al.[23] by counting low-lying levels with given spins and
fitting the spin distribution to experimental data. They as-
sumed that for low energies. depends only on the mass
numberA, and adopted the empirical form.=xAY. The

NeadJ) = f(J)

o _ B. p1;» and psj, strength functions
This fit was repeated for 75 selected nuclidés=€ 20 —

250) with the result The standard strength function definition for spin 1/2 pro-

jectiles[17], given in Eq.(10), with D' the observed spacing
o.=(0.98+0.23 A(0-29-0.06, (32)  for thep-wave resonances with all spids does not consider
the possible dependence of the strength function on &pin
This formula givess values of 3.1 for Fe and 3.9 for Sb, in or on the projectile-spirj. For p-wave neutrons the spin-
agreement with previous experimental val(i2d] for exci-  orbit coupling clearly leads to pdependence o8*. There-
tation energies 4 to 6 MeV in this mass region. This agreefore a more suitable strength function definiti@5] for our
ment for the spin cutoff parameter determined at differenpurposes is

TABLE IlI. Spin densitiesf(J) and relative probabilitiep(J) of p-wave resonances with spidgor | =0

targets.
Nucleus J e~ (I+12%0? (23+1)/20°2 f(J) p(J)
232Th 1/2 0.987 0.0441 0.0435 0.35
27T 312 0.916 0.0882 0.0809 0.65
2z 1/2 0.978 0.0436 0.0426 0.35

z5y 3/2 0.917 0.0872 0.0800 0.65
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3/2

Sl_l 32 (g(TE) 34 @ . . .
35 -2 D)
M = 0552 mev
For target nuclei with =3/2 there are four terms in the St o .
sum over J, corresponding toJ;=1-3/2, J,=1-1/2,
J;=1+1/2, andJ,=1+3/2. Both j=1/2 andj=3/2 can
contribute to the neutron widths o, and J; resonances, % It g
while only j=1/2 contributes taJ; and onlyj = 3/2 contrib-
utes toJ,. If the strength functionS!=(I';;(J) )/D*(J)
does not depend of, then St -
1[(Thi-1AJ)) i
S'=31 By 1900 +9(32) +9(Js)] N R e
3 D (J) =
0.0 0.5 1.0 1.5 2.0
<F%j=3/2(~])> M (mev)

DI(J) [9(J2) +9(J3) +9(Ja)]
FIG. 3. The likelihood curveL(M) versusM for 33U, with

I 1 +1 the p-wave resonances all assumed to have unknown spins. The
=2 +1Sj=1/2+ 21 +1Sj=3/2- (35 values of the relative probabilitieg(J) are p(1/2) = 0.45 and
p(3/2) = 0.55.

For the 1=1/2 case there are three possilllevalues ) )
(J=0,1,2), and there is a contribution from two valuesj of calculation the spins of the resonances are assumed to be

only for J=1. Therefore unknown. The ratio of observed 1/2 and 3/2 resonances is
estimated to be 0.45 to 0.55. The likelihood estimate for
S{(1=1/2=5S/_1,T 5 S_ap- (36)  M=0.55*313 meV. Next we consider only the seven reso-

nances withl = 1/2.(Corvi et al.[30] recently obtained spin

The strength functionS;_ 1, andS;_ 3, have been deter- assignments for many of thewave resonances §U.) The
mined in the mass regiof~ 100 from measurements of the resulting likelihood curve is shown in Fig. 4, witd = 0.56
angular dependence of the average differential elastic scatezmeV. This result illustrates that knowledge of the spins of
tering cross sectiori26]. These measurements were per-the p-wave resonances is not very important for the0
formed at the Dubna pulsed reactor; results for manyase. This was also demonstrated by Cetval. [30], who
samples have been reportg2l7,28. For some nuclides of ysed these spin assignments in an analysis of the earlier
interest theS;_,, and §—3,; strength functions have been TRIPLE data set or#U and found thatM was essentially
measured. For these nuclides the value of the paramet@fchanged, and that the range of uncertainty was only
a®=(Y?/X?) can be taken directly from the data. slightly reduced from the values obtained assuming all spins

For other nuclides the value af can be obtained by the ynknown. On the other hand, information about theave
following procedure. The B strength function is fragmented resonances is crucial — one cannot perform the analysis
into two peaks with a spin-orbit splitting aAA=13*4  jthout thes-wave resonance parameters. Thus the key piece
mass units: thepy, peak is located neah = 94 and the of spectroscopic information fok=0 targets is the parity

P32 peak neah = 107. Lorentzian fits of the form of the resonances. Of course a major limitation on the preci-
5 I‘i,zl4 sion of the determination o1 is the number ofp,,, reso-
X =Sl/2(A_Al/2)z+F§/2,4 nances. Bowman and Sharap¢®9] show that in the
and
34
Y?=§; (37)
(A= Agp)+ T34
© M= 05677, meV
to the measured strength functions yiedg,=6.0x 104, of i
A,,=107, T'1,=45, and S;,=5.3x10 % Ay,=94,
I'3,=40. The quantities, X?, andY? can be estimated for -
nuclei in this mass region using these parameters. Sol T
Values of the parametex [either obtained from the direct
measurements or estimated with Eg7)] were then used to N
characterize the projectile-spin amplitudes in the likelihood o i
analysis.
o . /4 1yt T
V. RESULTS 0.0 0.5 1.0 1.5 2.0
A. 1 =0 targets . M (meV)
The likelihood curvel (M) versusM for 33U is shown in FIG. 4. The likelihood curvé (M) versusM for U consider-

Fig. 3. The data consist of 22wave resonancd®9]; in this  ing only the seven knowp,,, resonances.
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© © 4
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0 1 2 3 4 5 3 4 5
M (meV) M (meV)

FIG. 5. The likelihood curve (M) versusM for the 29.67-eV FIG. 6. The likelihood curve.(M) versusM for the 29.67-eV
resonance inin. The spin of the resonance is assumed to be unfésonance ifgin. All parameters are the same as for Fig. 5, except
known, and the ratio of the neutron projectile-spin amplitudes isthat the spin of th@-wave resonance is now assumed to be known.
assumed to have an average valuact 0.7.

projectile-spin amplitudes, the resulting likelihood function
ideal case when all spins are known and with errorss much narrower. The maximum likelihood estimate fdr
o?<M?, the relative uncertainty inM is given by also has changed significantly. In Fig. 7 the likelihood func-
AM/M=(2N) "2 whereN is the number of resonances. tion is shown for the same resonance assuming a fixed value

As discussed in Sec. IV, the predicted ratio of 3/&o  of R = 0.82; i.e., that Eq(8) applies.(For values of the
1/2~ resonances fa&3U is close to two(the 2J+1 depen- parameteR ranging from~ 0.1 to 1.0,M varies approxi-
dencg. Since thel=3/2 andJ=1/2 resonance strengths are Mmately as IR, as does the relative uncertaintyhis again
not equal(the J=1/2 resonances are twice as strong if theillustrates the need for the relevant spectroscopic informa-
two strength functions are eqlighnd we do not observe all tion.
of the resonance&here is some experimental threshold for
observation, the values fop(3/2) andp(1/2) to be used in
Eq. (23) must be determined empirically. The procedure fol-
lowed to determine this ratio is described in Sec. VI of Ref.
[5]. (One scales from the-wave density to obtain the frac-
tion of all p-wave levels observed, and d(_atermines the Weakaata onggz'l'h [3,5,32. In the latestimproved data set on
est level observed from the data. Assuming a Porter-Thomas,r) 351" aight of eight statistically significant longitudinal
distribution for the widths, one can determine the probability® . " L
that thep-wave resonances observed hdve 1/2) In prac- asymmetries are positive. AIthoggh this raises a number.of
. ery interesting theoretical questions, here we deal only with
tice M shows only weak dependence on the values o

0(1/2) andp(3/2). For example, when the data set used tohe practical i§sye of extracting a value Mf from the data
obtain the results shown in Fig. 3 was reanalyzed WithWhen nonstatistical effects are present.
p(1/2) = 0.33 andp(3/2) = 0.67, the result wasM

= 0.58" 322 meV. This is almost the same as the valugvbf Y

obtained forp(1/2) = 0.45 andp(3/2) = 0.55.

C. Nonstatistical effects

Although the central theme of our entire analysis is the
statistical model of the compound nucleus, there was an un-
expected nonstatistical result observed in the experimental

0.6

B. | #0 targets

As an example considggn. The likelihood function is
shown in Fig. 5 for a sample resonan@9.67 eV in 1¢n
[31]. The parities of the resonances are knaitinat is, one
knows which resonances asaevave and which ar@-wave),
but the spins of thg-wave resonances are unknown. The
spins of thes-wave resonances are known. In addition, the
ratio of the neutron projectile-spin amplitudes for= 1/2
andj = 3/2 is assumed to have the valae= 0.7 (see Sec.
IV B) with the PDF given by Eq(16). The corresponding
distribution is extremely broad, illustrating the impact of the M (meV)
lack of spectroscopic information.

In Fig. 6 the likelihood function is shown for the same  FIG. 7. The likelihood curve (M) versusM for the 29.67-eV
resonance assuming that all of the spins are known. Althougfesonance irtin. All parameters are the same as for Fig. 6, except
the same average value and distribution is assumed for thiat the ratio of the projectile-spin amplitudes is fixed.
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M= 1.62
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FIG. 8. The likelihood curvé (M) versusM for 2Th, with the
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FIG. 9. The two-parameter analysis for thewave resonances

spins of thep-wave resonances all assumed to be unknown. Thén gozTh The spins of the resonances are all assumed to be unknown

values of the parametep{1/2) = 0.44 andp(3/2) = 0.56.

We assume that the longitudinal asymmetry has two

terms, one statistical and one non-statistithis latter term
is sometimes called the regular or direct terfithe following
form was obtained by Bowmaet al,, [33] Husseinet al.
[34], and Auerbactet al. [35]:

V
_ uy 112
=2 E E,—E, g  + B(1eV/IE)™7, (38

and the values for the relative probabilitip€l) arep(1/2) = 0.44
and p(3/2) = 0.56. The solid lines indicate constant probability
contours, with the numbers in units of the standard deviation.

additional uncertainty irM. Therefore additional spectro-
scopic information forl =0 targets is interesting, but not
crucial.

The situation fol # 0 targets is quite different. There lack
of knowledge(particularly of the resonance spjnigads to
large increases in the uncertaintyM. Since it is important
to know the spins of the-wave resonances, it fortunate that
the spins of theses-wave resonances are relatively well
known. Determining the spins of the wegkwave reso-

whereE is the energy of the neutron in eV. Note that both nances is much harder; in general there is little information
terms have the same energy dependence. Empirically one figsh the spins op-wave resonances. Significant experimental
the longitudinal asymmetries to this functional form and de-efforts on obtaining thd values for thes- andp-wave reso-
terminesM and B from the data. For example, when the nances would be valuable and reduce the erroMon

238 data used to construct the likelihood curve in Fig. 3  The other missing spectroscopic information FerQ tar-
were fit to this two-parameter expression, the resulting valgets involves the projectile-spin amplitudes. This mixture is

ues forM andB wereM = 0.58 2% meV (unchangeplandB
= —0.041% %.

1.78

effect for 2.

known only for a few resonances. At present the procedure

There is no evidence for a nonstatistical that was described in Sec. Il — estimating an average value

for the ratioR from the experimental strength functions, and

On the other hand, fog’Th the one- and two-parameter averaging over a range of possitievalues — is the only
results are quite different, as shown in Figs. 8 and 9. Thé@ractical approach. Measurement of the projectile-spin am-

result for the one-parameter analysi§Fig. 8 is
M =1.62-24 meV, while the two-parameter analysisig. 9

0.32

with p(1/2)=0.44 and p(3/2)=0.56 yields the values

M=1.23"33% meV and B=+13.57:53 %. Note that the
value ofM is relatively insensitive to changes B even for

this huge offsef13.6% the value ofM changes only 24%.

Repeating the latter calculation witp(1/2)=0.33 and
p(3/2)=0.67 leads to M=1.2633% mev and
B=+14.47"25%. Thus thep(1/2)/p(3/2) ratio has little
effect on the maximum likelihood estimate fivt.

VI. DISCUSSION

A. Comments on incomplete spectroscopic information

plitudes would significantly reduce the uncertaintiesvin

B. Comments on physical motivation for likelihood functions

The maximum likelihood approach seems the most appro-
priate method to determine the rms PV matrix element. This
approach seems ideally suited for the limited data sets avail-
able, and provides a convenient framework for incorporating
partial information. Most of the issues are illustrated by the
=0 case.

One issue is the normalizability @f(M). As noted ear-
lier, if we take thea priori distribution ofM, Py (M), to be
a constant, theh (M) is not normalizable if the spins of the
resonances are not known. However, we can maie)
normalizable if we také®\,(M) to be a constant up to some
large value oM (0.01 eVj and setP,,(M) to zero for larger

For 1 =0 targets the only missing spectroscopic informa-values ofM. Our estimate foM is insensitive to the choice
tion is the spin of the-wave resonances. Although aestheti- of a priori distribution.

cally it would be preferable to know the spins of these reso-

Another issue is the appropriate expression for the likeli-

nances, in practice this lack of information causes littlehood function when there is incomplete information for the
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spins of thep-wave resonances. We have assumed that all aftatistically significant results. He also covers the issues of
the spins are unknown, and that the likelihood function isunknown projectile-spin amplitudes and unknown spins.
given by Eq.(23). Bowman and Sharapdt9] and Bunakov However, for the practical analysis of experimental parity
[36] present contrasting views on the use of the likelihoodviolation data it is crucial to incorporate partial information.
method to extracM values. Bowman and Sharapov essen-Including this information minimizes the uncertainties in the
tially give an earlier version of the views adopted in thedetermination ofM. This incorporation of partial informa-
present paper. They demonstrated the reliability of the liketion is the focus of the present paper, which provides explicit
lihood method developed here using Monte Carlo techprescriptions for the analysis of parity violation data with
niques. Bunakov argues that one can only obtain an uppgrovision for inclusion of such information.

limit for M from data when the spins are unknown, and takes

exception to the result by Coret al. [30] that determining VII. SUMMARY
the spins of thg-wave resonances led to very little change . o , i
in M. As noted in Sec. V, we agree with Corvi's results. Analysis of the longitudinal asymmetries measured in the

The different conclusions result from different assump-Parity violation experiments by the TRIPLE Collaboration
tions for thea priori probability density function fod and has been described. The likelihood method is well suited for
M, Py,(M,J). Bowman and Sharapov assume thatanalysis of these limited data sets. In practice one rarely has
P,\;.J(M J) is, a product of a function of and a function of all of the relevant spectroscopic information, but normally
M eqL'JivaIent to assuming that and M are statistically has some of this information. Therefore a key consideration
independent. The measurement bffor a particular level N choosing an analysis approach is the convenience of in-
does not affect the knowledge of the distribution of matrix orPorating this partial information. For the=0 case most
elements forJ=1/2 levels. Bunakov's assumptions are of the required spectroscopic information is available, except

equivalent to assuming differeatpriori distributions forM ~ fOr resonance spins. Fortunately the ansatz of treating the
for the J=1/2 andJ=3/2 levels. spin of each resonance as unknoggee Sec. Il B 2works

Reliable estimates fol can be obtained even when the Well in practice. _
spins are unknown: The levels with small values of parity FOr!#0 targets there are often several unknown quanti-
violation (either spin 1/2 resonances with accidentally smalli€S: s- andp-wave resonance spins and projectile-spin neu-
PV asymmetries or resonances with spin 3/2 and consdl©on @mplitudes. However, usually one has partial informa-
quently no PV asymmetyydo not strongly distort the distri- 10N conceming the spins; the analysis is formulated to
bution for those resonances with large asymmetries. The didacilitate incorporation of this partial knowledge. The
tinct maximum in the likelihood function, which arises from Projectile-spin neutron amplitudes at present are known only
the resonances with statistically significant parity violations N @n average sens# the p,, andps, strength functions are
remains even in the presence of many small or zero value§nOWn); there is also the possibility of correlations between
The additional information on the spins of the resonances hd§€ entrance channel amplitudes. The analysis is formulated
limited impact because of the relative statistical significancd® Permit explicit inclusion of these effects. _
of the asymmetries for the different resonances. Some of the We conclude that given the relevant spectroscopic param-

resonances are much more strongly weighted than others bLers; one can obtain reliable and fairly precise values for the
cause they should be. rms parity violating matrix elemeni from longitudinal

asymmetry data. With partial information, the rms matrix
elementM still can be obtained, but with increased uncer-
tainty. Measurements to improve the level of spectroscopic
Other than in papers published by the TRIPLE collaborainformation by determining thes- and p-wave resonance
tion, and those discussed in Sec. V[B,36 there has been spins and the projectile-spin amplitudes would significantly
little discussion about the effect of incomplete spectroscopigeduce the uncertainties in the determination of the effective
information. Bunakov, Davis, and Weidenhtau [37] discuss  neutron-nucleus weak interaction. Such measurements are
some of these issues both for parity violation and time reverstrongly encouraged.
sal mvanapce_wolayon tes'ts. They con&dey the issue of un- ACKNOWLEDGMENTS
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