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Analysis of parity violation in neutron resonances
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The analysis used to determine the rms parity violating matrix elementM from the longitudinal asymmetries
measured by the TRIPLE Collaboration is described. The likelihood method is used to analyze the lim
number of experimental data points available for each target nuclide. Much spectroscopic informatio
required to determineM , including resonance parameters~spins, neutron widths, resonance energies! of thes-
andp-wave resonances which mix to cause the parity violation, and~for targets withIÞ0) p-wave neutron
partial decay amplitudes. We have developed statistical techniques to determineM in situations where incom-
plete spectroscopic information is available. Methods are described that can be applied when different am
of partial spectroscopic information are available. The use of the methods is illustrated by examples.

PACS number~s!: 25.40.Ny, 11.30.Er, 24.80.2y
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I. INTRODUCTION

The observation by the Dubna group@1# of large parity
violating ~PV! longitudinal asymmetries in compound
nuclear resonances excited by polarized neutrons dem
strated that weak interaction effects are enhanced by m
orders of magnitude in complex nuclei. Following these pi
neering measurements, the TRIPLE Collaboration used
pulsed epithermal neutron beam from the spallation sourc
the Los Alamos Neutron Scattering Center~LANSCE! to
measure many PV asymmetries in a single nuclide@2–5#.
This group developed a statistical method to extractM , the
root-mean-squared matrix element of the PV interaction b
tween compound nuclear states, from the measured asym
tries. In this new approach the symmetry breaking mat
elements are assumed to be random variables. The statu
the earlier measurements was summarized by Bowmanet al.
@6#. More recent results are discussed by Yenet al. @7#. The
rms matrix elementM can be related to the coupling strengt
of the weak nucleon-nucleon interaction. This relationship
described in several papers which present theories of s
metry breaking in the compound nucleus@8–10#.

In this paper we describe the statistical procedures use
extract values and uncertainties for the rms PV matrix e
mentM from the experimental data. In practice, the prec
sion with which this rms matrix element can be determin
is governed by the status of the relevant nuclear spec
scopic information. With all spectroscopic information avai
able, the fractional error inM is determined by the number
of resonances for which asymmetries are measured w
small statistical errors. However, in most cases there is
complete information available for some or all of the re
evant spectroscopic quantities, and the error inM is larger
than the sampling error discussed above. We discuss
methods of analysis appropriate under various circu
stances, and attempt to clarify and codify the general ana
sis approach that our collaboration has adopted.

In these experiments the longitudinal asymmet
p5(s12s2)/s11s2) is measured forp-wave neutron
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resonances (s1 ands2 are the resonance parts of the tota
cross section for positive and negative helicity neutrons!.
Since the parity violation in~weak! p-wave resonances is
caused by mixing with~strong! s-wave resonances, clearly
one needs the spectroscopic parameters for both thes- and
p-wave states, including the total angular momentumJ, the
resonance energyE0 , and the neutron widthGn . We derive
probability density functions for a number of circumstances
corresponding to the wide range of spectroscopic knowled
available for different nuclides. Given the probability densit
functions, the likelihood method can be used to determin
the relevant parameters from the experimental results.

It is convenient to consider target spinI50 and IÞ0
separately. TheI50 case is much simpler. ForI50, all
s-wave resonances must haveJ51/2, thep-wave resonances
haveJ51/2 or 3/2, and the correspondingp-wave neutron
amplitudes are purej51/2 or 3/2 ~where j is the neutron
total angular momentum!. Usually thes-wave andp-wave
neutron widths and resonance energies are known, but
spins ~particularly of the much weakerp-wave resonances!
often are not known. Bowmanet al. @2# showed that forI50
target nuclides, knowledge of the resonance energies a
neutron widths of thes- andp-wave resonances is sufficient
to extract values ofM from a set of measured PV asymme
tries.

More spectroscopic information is needed to characteri
p-wave resonances for targets withIÞ0. Thep-wave states
with J5I61/2 can be formed with bothp1/2 and p3/2 neu-
trons, and thus there are two entrance channel neutron a
plitudes. We use the following coupling scheme: the neutro
orbital angular momentuml and the neutron spini are first
coupled to form the projectile spinj5 l1 i, and j is then
coupled to the target spinI to form the total spinJ5I1j of
the target-projectile system. Fors-wave resonances the pro-
jectile spin isj51/2, while forp-wave resonancesj51/2 or
3/2. Very few projectile-spin neutron decay amplitudes hav
been measured. In addition, the spins of the resonances of
are unknown. For these cases we derive expressions for
285 © 1996 The American Physical Society
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probability density function of the longitudinal asymmetr
by averaging over unknown spectroscopic parameters. T
assumptions used to determine thea priori distribution of
these spectroscopic parameters are discussed.

The outline of the paper is as follows: in Sec. II we deriv
the probability density functions and in Sec. III the approp
ate likelihood expressions. In Sec. IV level densities a
strength functions are considered. Section V provides
amples of the application of these methods to experimen
data. In Sec. VI we discuss the current status of the relev
spectroscopic information, summarize the physical motiv
tion for our analysis approach, and briefly review other wo
on the analysis of parity violation data. The last section pr
vides a brief summary.

II. PROBABILITY DENSITY FUNCTIONS

A. Target spin I50

For a target nucleus withIp501, thes-wave resonances
haveIp51/21 and thep-wave resonances haveIp51/22 or
3/22. The 3/22 p-wave levels cannot mix with the 1/21

s-wave levels through aJ50 PV interaction and therefore
show no parity violation. The PV asymmetry was obtaine
in the two-level approximation by a number of autho
@1,11–13#. In general the observed PV asymmetry for
given p-wave levelm has contributions from manys-wave
levelsn. The PV asymmetry in this case is

pm52(
n

Vnm

En2Em

gn1/2
gm1/2

Gmn

, ~1!

where gm1/2
and gn1/2

are the neutron decay amplitudes o

levelsm andn (gm
25Gmn

andgn
25Gnn

), Em andEn are the

corresponding resonance energies, andVnm is the matrix el-
ement of the PV interaction between levelsm andn. Accord-
ing to the statistical model of the compound nucleus, t
~signed! quantitiesVnm , gm , andgn are statistically indepen-
dent random variables and have mean-zero Gaussian di
butions. The common varianceM2 of the PV matrix ele-
ments is the mean square matrix element of the P
interaction. In most cases the neutron decay widths (Gmn

and

Gnn
) and the resonance energies (Em and En) are known

from previous experiments. We assume hereafter that the
tal neutron widths and resonance energies are known.

The quantitypm is a sum of Gaussian random variable
theVnm’s, and is itself a Gaussian random variable@14#. The
variance ofpm is Am

2M2, where

Am
25(

n
Anm
2 and Anm

2 5S 2

En2Em
D 2 Gn

Gm
. ~2!

The probability density function~PDF! of pm is given by
~unless confusion results we suppress the indexm)

Pp
0~puMA!5G~p,M2A2!, ~3!

whereG(x,z2) is a mean-zero Gaussian distribution of th
variablex with variancez2. If there is an experimental error
s in the measurement ofp, the convolution theorem for
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Gaussian probability density functions can be used. The P
for the asymmetry is still Gaussian, but with varianc
M2A21s2:

Pp
0~puMA,s!5G~p,M2A21s2!. ~4!

B. Target spin IÞ0

For a target with spin and parityIp (IÞ0) the s-wave
levels can have (I61/2)p, while thep-wave levels can have
(I61/2)2p and (I63/2)2p. The expression forpm is now

pm5 (
n:Jn5Jm

Vnm

En2Em

gn1/2

AGmn

gm1/2

Agm1/2

2 1gm3/2

2
, ~5!

where gm1/2
and gm3/2

are the projectile-spin (j51/2 and

3/2) neutron amplitudes. Note that only theg1/2 amplitude
contributes to the parity violation. An important differenc
between this expression and that forI50 is that the sum
extends only over thoses-wave levelsn having the same
spin as thep-wave levelm. This difference leads to compli-
cations when the spins of the levels are not known.

1. All level spins and projectile-spin amplitudes known

If there is complete knowledge of the spectroscopic pro
erties of thep-wave level and the nearbys-wave levels, then
the PDF is similar to that for theI50 case. Assume that one
knows the total neutron widths and spins for thep-wave
resonance and thes-wave resonances, and the projectile-sp
amplitudesg1/2 and g3/2. Then the asymmetryp has a
Gaussian distribution with varianceM2A2R2

Pp
I ~puMAR!5G~p,M2A2R2!, ~6!

where

Am
25 (

n:Jn5Jm
S 2

En2Em
D 2 Gn

Gm
and R5

gm1/2

Agm1/2

2 1gm3/2

2
.

~7!

If the asymmetry is measured with an experimental err
s, then

Pp
I ~puMAR,s!5G~p,M2A2R21s2!. ~8!

2. All level spins known, projectile-spin amplitudes not known

The quantityp is the product ofR andQ, whereR is
given by Eq.~7! and the Gaussian random variableQ is

Q5 (
n:Jn5Jm

Vnm

En2Em

gn

AGmn

. ~9!

The quantityR also must be treated as a random variabl
and the probability density function ofp is no longer Gauss-
ian. In order to obtain the PDF ofp, one needs the PDF of
R, which is a function of the projectile-spin amplitudes. Ac
cording to the extreme statistical model@15# of the com-
pound nucleus, the projectile-spin amplitudesg1/2 and g3/2
are statistically independent Gaussian random variables.~In
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fact the extreme statistical model does not always hold
see the review on amplitude correlations by Mitchellet al.
@16#. We first assume that theg’s are independent and obtain
the PDF under this assumption. Then we consider the c
where the projectile-spin amplitudes are correlated.!

The standard definition for the neutron strength functio
for spin J is @17#

Sl 5
^g~J!Gn

l &

~2l 11!D l ~J!
, g~J!5

2J11

2~2I11!
, ~10!

where g(J) is the spin statistical weight factor,Gn
l is the

average reduced neutron width, andDl(J) is the average
level spacing. It is conventional in neutron physics to no
malize the widths to 1 eV,Gn

l 5A1eV/E Gn /Pl , where
Pl is the neutron penetrability.

In Sec. IV B we explicitly consider the dependence of th
strength functionS on the projectile-spinj . Here we need
only the relative value of thep-wave strength functions~for
a given resonance spinJ! for the projectile-spinsj51/2 and
j53/2. After canceling common terms, the ratio of th
j53/2 to j51/2 strength functions is simply the ratio of th
average values of the reduced neutron widths. If we callX2

the variance ofg1/2 andY
2 the variance ofg3/2, then this

ratio is simplyY2/X2. The PDF’s for the projectile-spin am-
plitudes are

P~g1/2!5G~g1/2,X
2! and P~g3/2!5G~g3/2,Y

2!. ~11!

It is convenient to convert the expression forR to polar
coordinates:g1/25r sinu andg3/25r cosu. Then

FIG. 1. Plots ofPp
I (puMA,a,s) for several values of the param

etera, wherea2 5 Y2/X2, the ratio of thep3/2 and p1/2 strength
functions.~a! a 5 0.01,~b! a 5 0.5, ~c! a 5 1.0, ~d! a 5 5.0. See
text for discussion.
—
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R5
g1/2

Ag1/22 1g3/2
2

5sinu ~12!

and

Pru~r ,u!rdrdu5
1

2p

rdrdu

XY

3expF2r 2

2 S sin2uX2 1
cos2u

Y2 D G . ~13!

Integrating with respect tor yields

Pu~u!5
1

2p

a

a2sin2u1cos2u
, ~14!

wherea25Y2/X2, the ratio of thep3/2 andp1/2 strength func-
tions. Strength functions~and their experimental determina
tion! are discussed in Sec. IV. The PDF of the product of th
two independent random variablesR andQ is

-

FIG. 2. Plots ofPp
I (puMA,a,r,s) for the 29.67-eV resonance

in 49
116In for several values of the linear correlation coefficientr,

with the strength function ratioa fixed at 0.7.~a! r 5 0.0, ~b! r 5
0.45,~c! r 5 0.9. Even for extremely large values of the correlatio
coefficient, the maximum likelihood estimate forM is essentially
unchanged. See text for discussion.
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Pp
I ~puMA,a!5

2

pE0
p/2 a

a2sin2u1cos2u

3G~p,M2A2sin2u!du. ~15!

The experimental errors in the asymmetryp can be in-
cluded by using the convolution theorem for Gaussian pro
ability density functions, yielding

Pp
I ~puMA,a,s!5

2

pE0
p/2 a

a2sin2u1cos2u

3G~p,M2A2sin2u1s2!du. ~16!

Plots ofPp
I (puMA,a,s) for a 5 0.01, 0.5, 1, and 5 are

shown in Fig. 1. The plot fora50.01 is approximately
Gaussian and is essentially the same as theI50 case. Fora
5 0.5 the distribution is much sharper than a Gaussian, w
a significant spike atp 5 0. Fora 5 1 there is an even larger
spike nearp 5 0, while for a 5 5 the distribution is domi-
nated by the spike atp 5 0. The effect of increasing the
parametera ~and therefore the relative magnitude of th
p3/2 amplitude versus thep1/2 amplitude! is to produce a peak
nearp 5 0 at the expense of large values ofp. The shape of
b-

ith

e

Pp
I (puMA,a,s) for large values ofp is sharper than Gauss-

ian whenever the contribution of thep3/2 amplitude is impor-
tant, but is still similar~for large values ofp! to the distri-
bution for I50.

As noted above, the extreme statistical model does n
always hold: amplitudes~and widths! in different channels
may be correlated. In fact this is predicted for doorway stat
@18# and for direct reactions. For example, for a fragmente
isobaric analog state, there is a definite phase relation
tween the fine structure statesm. If the doorway~analog! is
common to two or more channels, say c and c8, then the
mc andmc8 amplitudes will be correlated. These prediction
for doorway states were confirmed by Mitchellet al. @16#.
They also observed large correlations under circumstan
where the statistical model worked well for other obser
ables. Since there is a very limited amount of data availab
on such correlations, specific predictions for the size or fr
quency of these correlations cannot be made reliably. Ho
ever, formally the problem is straightforward — on the bas
of the central limit theorem one expects the joint probabili
density function ofgm1/2

andgm3/2
to be a bivariate Gaussian

form with some linear correlation coefficientr. The result is
Pp
I ~puMA,a,r!5

1

2pE0
2p a~12r2!1/2

a2sin2u22arsinucosu1cos2u
G~p,M2A2sin2u!du, ~17!
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which reduces to Eq.~15! for r 5 0. The effect of the cor-
relation is to distort the shape of the PDF, as illustrated
Fig. 2. However, what is important for the analysis is th
effect of the correlation on the maximum likelihood estima
for M , not the effect on the shape of the PDF. Our calcu
tions indicate thatM is insensitive even to large correlations
i.e., to the shape of the distribution for small values ofp. For
example, changingr from 0.0 to 0.9, as done in Fig. 2, only
changesM from 1.41 to 1.38 meV. In any event large corre
lations are expected only for special cases such as fr
mented common doorways or when direct reactions are
portant. The additional uncertainty due to lack of informatio
about channel correlations seems small compared to the
certainty arising from lack of information about the ratio o
the projectile-spin amplitudes. Therefore we assume in
following that the projectile-spin amplitudes are uncorr
lated.

C. Level spins not known

Assume that all of the resonance parameters are kno
for the p-wave levels, and that the resonance parameters
the s-wave levels are known except for the spins. Our a
proach is to deal explicitly with the uncertain level spins
formulating the likelihood function. For largeN, this gives
many terms in the sum in the likelihood expression. How
ever, in the specific applications that we are considerin
there is always at least partial information on the spins of t
s-wave resonances, and the total number of resonances
uncertain spin is not very large. For example, for one nucli
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which we have studied,49
115In, the spins of all but seven of the

s-wave resonances are known from threshold to 400 eV.
practice we add terms in the likelihood expressions to a
count for these uncertainties.

Next consider the case where the spins of thep-wave
states are unknown. The PV experimental results provide
formation concerning the spin of the resonance. This is si
plest for I50. Clearly a resonance with a large PV effec
must with very high probability haveJ51/2. A resonance
with zero~within error! PV effect is more likely to have spin
J53/2. The argument is similar forIÞ0, except there are
now two allowed spins and two spins~probably! disallowed.
For example, a resonance with a strong parity violation mu
haveJ5I61/2, and notJ5I63/2. As we spell out below,
these issues are dealt with by the choice of likelihood fun
tion.

III. LIKELIHOOD FUNCTIONS

A. Review of likelihood analysis

The next step is to develop expressions for the likelihoo
functions forM @14#. Likelihood formalism can be summa-
rized as follows: assume that one has a set of theoreti
expressions that predict the outcomes of experiments giv
some theoretical parametersm. These theoretical expres-
sions are combined with the known statistical errorss in the
experiments to develop a joint probability density functio
px(xum,s) for the outcome of an experiment to measur
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quantitiesx with errorss involving parametersm. Assume
that the actual outcome of an experiment yields valuesy for
the quantitiesx. Then the likelihood functionL(m) is de-
fined as

L~m!5Px~yus,m!Pm~m!, ~18!

where thea priori probability densityPm(m) describes our
knowledge of the parameters before the new experimen
information y was available.L(m) can be considered the
~un-normalized! probability density that describes ou
knowledge of the parametersm. In most cases of interest we
wish to determine some but not all of the parameters
volved in L(m). Suppose that the parameters are divid
into two setsm1 andm2 . Then the likelihood function for
the parametersm1 , L1(m1), can be obtained by integrating
~summing! L(m) over the parametersm2 .

Having constructed the appropriate likelihood functio
an estimate ofm, the maximum likelihood estimate~MLE!,
ormL , is obtained by finding the value ofm that maximizes
L(m). The maximum likelihood estimatemL is a random
variable in the sense that if the experiment that gave
valuesy is repeated, a different value ofmL will be obtained.
As the number of measurements used to formL(m) in-
creases the distribution ofmL tends to a Gaussian. The est
mation of confidence intervals formL is discussed by Eadie
et al. @14#. A confidence interval formL can be estimated by
solving the equation

lnFL~m6!

L~mL! G5
1

2
. ~19!

For a Gaussian distribution ofmL this error estimate corre-
sponds to the standard deviation of the Gaussian distribut
Bowman and Sharapov@19# demonstrated by numerica
simulation that this approach accurately estimatesM and its
error. Note that in this approach the normalizability ofL(m)
is not an issue.

Of course the whole notion of a confidence interval, pa
ticularly for a strongly non-normal distribution, is considere
by many to be outdated. As Hall@20# notes ‘‘more sophisti-
cated techniques . . .convey more information in an equally
palatable form. One such device is a confidence picture,
means of which one may present empirical evidence ab
the relative likelihood of the true parameter value lying
different regions.’’ Since our present focus is on formulatin
the appropriate likelihood function, here we simply quote t
standard interval given by Eq.~19!.

B. Target spin I50

1. p-wave spins known

First we consider the likelihood function for the situatio
where I50 and the spins of thep-wave resonances are
known. Then for onep1/2 level

Pp
0~puMA,s!5G~p,M2A21s2!. ~20!

If the experimental asymmetry isq, then

L~M !5G~q,M2A21s2!PM~M !. ~21!
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@In order to obtain a normalizable function, we might assum
that PM(M ) is constant fromM 5 0 to Mmax, and zero
elsewhere.#

Here and in the following we assume that the values
asymmetries measured for differentp-wave resonances have
mean zero and are statistically independent. It follows th
the likelihood function for several resonances is the produ
of the likelihood functions for the individual resonances. W
note that the resonance strengths are assumed to be kno
and that this information is included explicitly in the formu
lation of the likelihood function. For this reason, the value o
M is not systematically altered if weakp-wave resonances
are excluded from the analysis. This result holds forIÞ0 as
well as for I50 targets.

2. p-wave spins not known

We next develop expressions for the likelihood function
when there is incomplete information on the spins of th
resonances. As noted in the review of the likelihood meth
above, when one wishes to determine only a subset of
parameters involved, the complete likelihood function
summed over the unwanted parameters. Clearly thep-wave
resonances haveJ 5 1/2 or 3/2. Thep-wave resonances with
J 5 1/2 can display parity violation, with the PDF for the
asymmetryp given by Eq.~20!, and the likelihood function
by Eq. ~21!. For ap-wave resonance withJ 5 3/2, the PDF
for the asymmetry also is Gaussian, but does not involve t
rms matrix elementM . Since theJ 5 0 PV interaction can
only mix states of the sameJ, the matrix element betweenJ
5 1/2 s-wave states andJ 5 3/2 p-wave states vanishes
identically. Therefore a measurement of the PV asymme
for J 5 3/2 p-wave resonances cannot yield any informatio
on the matrix elementM .

If the spins of thep-wave levels are not known, then the
likelihood function for a single level also depends on th
spin of thep-wave level. The PDF of the asymmetryp is the
sum of two terms, and the likelihood function is

L~M ,J!5@p~1/2!d~J,1/2!G~q,M2A21s2!

1p~3/2!d~J,3/2!G~q,s2!#PM~M !, ~22!

where p(1/2) andp(3/2) are the probabilities thatJ51/2
andJ53/2, respectively. The evaluation of the relative prob
abilities of resonances with different spins is discussed
Sec. IV. For several resonances, the likelihood function is t
product of the individual likelihood functions. If onlyM is to
be determined, then one integrates~sums! L(M ,J) overJ to
obtain

L~M !5@p~1/2!G~q,M2A21s2!

1p~3/2!G~q,s2!#PM~M !. ~23!

Note that forN>2, the likelihood function forJ 5 1/2 states
is normalizable, but the likelihood function in Eq.~23! is not
unlessPM(M ) tends to zero for largeM . This difference is
due to theJ 5 3/2 terms, which are independent ofM and
lead to a divergent normalization integral
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E
0

`

L~M !dM.E
0

`

)
m51

N

p~3/2!G~pm ,sm
2 !dM5`.

~24!

In practice we resolve the normalization issue by setti
PM(M ) equal to a constant up to some value ofMmax and
zero otherwise. In the Bayesian spirit, one could adopt
view that all resonances that display a parity violation wi
greater than some given statistical significance, sayns, must
haveJ51/2. One could then analyze this set of resonanc
The resulting likelihood curve could then be used as thea
priori distribution PM(M ). This new function is normaliz-
able.

C. Target spin IÞ0

1. All level spins and projectile-spin amplitudes known

More parameters are involved in the expressions for t
likelihood functions for target spinIÞ0, and there are more
cases to consider. First assume that the spin of thep-wave
level, the spins of alls-wave levels, and all of the projectile-
spin neutron amplitudes are known. Then the asymmetry
the distribution ofp 5 QR, whereQ is a Gaussian random
variable with standard deviationMA and is given by Eq.~9!,
andR is a known constant given by Eq.~7!. The result is the
same as forI50 except that the PDF forp has the variance
Q2R25M2A2R2. Including the experimental uncertaintys
yields a Gaussian with varianceM2A2R21s2:

Pp
I ~p!5G~p,M2A2R21s2!. ~25!

If q is the experimental outcome, then

L~M !5G~q,M2A2R21s2!PM~M !. ~26!

2. All level spins known, projectile-spin amplitudes not known

Next suppose that the projectile-spin mixing amplitud
are not known, but that the spins of thep-wave resonance
and of all s-wave resonances are known. The factorAm is
then known, butR is not. The likelihood function is given by

L~M !5Pp
I ~quMA,a,s!PM~M !. ~27!

Recall thata2 is the ratio ofp3/2 to p1/2 strength functions for
levels of the same total angular momentumJ as thep-wave
resonance. As discussed in Sec. IV.B., we use average
perimental properties~the strength functions! to obtain a
value fora.

3. s-wave spins known, p-wave spins
and projectile-spin amplitudes not known

Next suppose that neither the spin of thep-wave level nor
its projectile-spin amplitudes are known, but that the spins
all s-wave resonances are known. If the spin of thep-wave
level is assumed, then the factorAm can be evaluated, but
Am 5 Am(J) depends on the spin sequence assumed beca
only s-wave levels with the same spin as thep-wave level
mix to produce parity violation. The likelihood function is
then obtained by summing overp-wave level spins as in the
corresponding situation whenI50.
ng
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The rms PV matrix element may be different fo
J5I61/2 states. Clearly the average size of the matrix e
ment depends on the level density, and thus one should
clude this effect. The spreading width of the parity violatin
interaction is defined byGW52pM2/D(J), which approxi-
mately removes the density dependence. It is unlikely th
there is any other dependence of the parity violation onJ; we
assume thatGW is independent ofJ. We also assume that the
level spacingD(J) has theJ dependence given by Eq.~33!.
The likelihood function can be expressed as a function of t
weak spreading width through the relationM (J)
5„GWD(J)/2p…1/2,

L~GW!5PM~M !S (
J5I61/2

p~J!Pp
I @quM ~J!Am~J!,a,s#

1 (
J5I63/2

p~J!G~q,s2! D . ~28!

4. s-wave spins, p-wave spins,
and projectile-spin amplitudes not known

It is very difficult to evaluate the likelihood function if
only the level energies and neutron widths~and theirs- or
p-wave character! are known. The quantitiesAm(J) depend
on theJ values of all nearbys-wave levels. To emphasize
this fact we writeAm(J,S), whereS denotes which possible
sequence of spin assignments is assumed for some numbN
of the nearbys-wave levels. There are two possible spi
assignments (I61/2) for eachs-wave level and 2N spin
sequences (S). The likelihood function is an average ove
the likelihood functions for the different spin sequences,

L~GW!5(
S

W~S!PM~M !S (
J5I63/2

p~J!G~q,s2!

1 (
J5I61/2

p~J!Pp
I @quM ~J!Am~J,S!,a,s# D . ~29!

The quantityW(S) is a weighting factor which gives the
probability of differents-wave spin sequences occurring.

@An alternate approach is to adopt a Monte Carlo proc
dure. Consider the case of unknowns-wave spins. From the
statistical model one knows the relative density of states w
I61/2. Therefore one can sample the set ofN s-wave levels
at random and arbitrarily designate the appropriate fracti
of the levels with the proper spin. Then~for each spin! one
can obtain the quantityA defined above. Repeating this pro
cess many times yields a distribution ofA values for eachJ
value. These distributions provide mean values ofA as well
as the appropriate~numerical! PDF forA for each spin. Of
course a more probable circumstance is that some of
s-wave spins are known, but not all of them. Then one fo
lows the same procedure, but the sampling is only applied
the states with unknown spin.#

For more than onep-wave levelL(GW) is a product of the
likelihood functions for the individual resonances. The P
data for a target nucleus typically consists of PV asymm
tries for over twentyp-wave levels and theAm(J,S) terms
involve a larger number ofs-wave resonances. The numeri
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cal evaluation ofL(GW) in this circumstance seems to b
intractable. This emphasizes the need for spectroscopic in
mation in order to evaluateM ~or GW).

IV. LEVEL DENSITIES AND STRENGTH FUNCTIONS

A. Level densities

The spin-dependent level density isr(E,J)5 f (J)r(E),
wherer(E) is the nuclear level density andE is the excita-
tion energy. The spin distribution depends on the spin cut
parametersc through@21,22#

f ~J!5e2J2/2sc
2
2e2~J11!2/2sc

2
. ~30!

The spin cutoff parameter was determined by von Egi
et al. @23# by counting low-lying levels with given spins and
fitting the spin distribution to experimental data. They a
sumed that for low energiessc depends only on the mass
numberA, and adopted the empirical formsc5xAy. The
parametersx andy were determined from a least squares
of the calculated numberncalc(J) of levels with spinJ in
each nucleus to the corresponding experimental num
nexp(J). If the spins range fromJ1 to J2 , the fraction of
levels with spinJ can be calculated for each nucleus from

ncalc~J!5 f ~J!
(J1

J2nexp~J!

(J1

J2f ~J!
. ~31!

This fit was repeated for 75 selected nuclides (A 5 20 –
250! with the result

sc5~0.9860.23!A~0.2960.06!. ~32!

This formula givessc values of 3.1 for Fe and 3.9 for Sb, in
agreement with previous experimental values@24# for exci-
tation energies 4 to 6 MeV in this mass region. This agre
ment for the spin cutoff parameter determined at differe

TABLE I. Spin cutoff parameters for target nuclei measured
the TRIPLE parity violation studies.

Nucleus Spin cutoff parametersc

47
107Ag 3.80

47
109Ag 3.82

48
113Cd 3.86

49
115In 3.88

53
127I 3.99

90
232Th 4.76

92
238U 4.79
e
for-

off

dy

s-

fit

ber

e-
nt

energies suggests thatsc does not depend strongly on exci
tation energy. Thesc-values for specific nuclei that we have
studied experimentally are listed in Table I.

The spin distribution can be approximated by@21#

f ~J!5e2J2/2sc
2
2e2~J11!2/2sc

2
>
2J11

2sc
2 e2~J11/2!2/2sc

2
. ~33!

For thep-wave resonances ofI50 targets~such as92
238U and

90
232Th!, the ratio of f (J53/2) to f (J51/2) is close to two
because the exponential factor is approximately the same
small J ~see Table II!. The exponential term must be in-
cluded in order to obtain the correct ratio of spin densities f
resonances with large spins. As an example, the values
f (J) and the relative probabilitiesp(J) are listed in Table III
for the I59/2 target nucleus49

115In.
These considerations assume that all resonances are

served. In practice, resonances weaker than some experim
tal lower limit are not observed. Since the strength functio
and the level densities are not the same for resonances w
different spinsJ, the resulting average strengths are n
equal in general. Therefore with a finite threshold for obse
vation, resonances~such asJ51/22 and J53/22) will not
be observed with the ratio of densities predicted by Eq.~33!.
For example~see@5#!, in the 90

232Th experiment the observed
fraction of densities for the 1/22 and 3/22 states was 0.45
and 0.55, instead of the values of 0.35 and 0.65 listed
Table II.

B. p1/2 and p3/2 strength functions

The standard strength function definition for spin 1/2 pro
jectiles@17#, given in Eq.~10!, with Dl the observed spacing
for thep-wave resonances with all spinsJ, does not consider
the possible dependence of the strength function on spinJ,
or on the projectile-spinj . For p-wave neutrons the spin-
orbit coupling clearly leads to aj dependence ofS1. There-
fore a more suitable strength function definition@25# for our
purposes is

in TABLE III. Spin densitiesf (J) and relative probabilitiesp(J)
of p-wave resonances with spinsJ for 49

115In (I59/2).

J e2(J11/2)2/sc
2 (2J11)/2sc

2 f (J) p(J)

3 0.666 0.232 0.155 0.283
4 0.510 0.299 0.152 0.278
5 0.366 0.365 0.134 0.245
6 0.246 0.432 0.106 0.194
TABLE II. Spin densitiesf (J) and relative probabilitiesp(J) of p-wave resonances with spinsJ for I50
targets.

Nucleus J e2(J11/2)2/sc
2 (2J11)/2sc

2 f (J) p(J)

90
232Th 1/2 0.987 0.0441 0.0435 0.35

90
232Th 3/2 0.916 0.0882 0.0809 0.65

92
238U 1/2 0.978 0.0436 0.0426 0.35

92
238U 3/2 0.917 0.0872 0.0800 0.65
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S15
1

3 (
j51/2

3/2

(
uJ5I23/2u

I13/2
^g~J!Gn j

1 ~J!&
D1~J!

. ~34!

For target nuclei withI>3/2 there are four terms in the
sum over J, corresponding toJ15I23/2, J25I21/2,
J35I11/2, andJ45I13/2. Both j51/2 and j53/2 can
contribute to the neutron widths ofJ2 and J3 resonances,
while only j51/2 contributes toJ1 and only j53/2 contrib-
utes to J4 . If the strength functionSj

15^Gn j
1 (J) &/D1(J)

does not depend onJ, then

S15
1

3 H ^Gn j51/2
1 ~J!&
D1~J!

@g~J1!1g~J2!1g~J3!#

1
^Gn j53/2

1 ~J!&
D1~J!

@g~J2!1g~J3!1g~J4!#J
5

I

2I11
Sj51/2
1 1

I11

2I11
Sj53/2
1 . ~35!

For the I51/2 case there are three possibleJ values
(J50,1,2), and there is a contribution from two values ofj
only for J51. Therefore

S1~ I51/2!5 1
3 Sj51/2

1 1 2
3 Sj53/2

1 . ~36!

The strength functionsSj51/2 andSj53/2 have been deter-
mined in the mass regionA'100 from measurements of the
angular dependence of the average differential elastic s
tering cross section@26#. These measurements were pe
formed at the Dubna pulsed reactor; results for ma
samples have been reported@27,28#. For some nuclides of
interest theSj51/2 and Sj53/2 strength functions have been
measured. For these nuclides the value of the param
a25(Y2/X2) can be taken directly from the data.

For other nuclides the value ofa can be obtained by the
following procedure. The 3p strength function is fragmented
into two peaks with a spin-orbit splitting ofDA51364
mass units: thep1/2 peak is located nearA 5 94 and the
p3/2 peak nearA 5 107. Lorentzian fits of the form

X25S1/2
G1/2
2 /4

~A2A1/2!
21G1/2

2 /4
and

Y25S3/2
G3/2
2 /4

~A2A3/2!
21G3/2

2 /4
~37!

to the measured strength functions yieldS1/256.031024,
A1/25107, G1/2545, and S3/255.331024, A3/2594,
G3/2540. The quantitiesa, X2, andY2 can be estimated for
nuclei in this mass region using these parameters.

Values of the parametera @either obtained from the direct
measurements or estimated with Eq.~37!# were then used to
characterize the projectile-spin amplitudes in the likelihoo
analysis.

V. RESULTS

A. I50 targets

The likelihood curveL(M ) versusM for 92
238U is shown in

Fig. 3. The data consist of 22p-wave resonances@29#; in this
cat-
r-
ny

eter

d

calculation the spins of the resonances are assumed to
unknown. The ratio of observed 1/2 and 3/2 resonances
estimated to be 0.45 to 0.55. The likelihood estimate f
M50.55 20.12

10.19 meV. Next we consider only the seven reso
nances withJ 5 1/2. ~Corvi et al. @30# recently obtained spin
assignments for many of thep-wave resonances in

92
239U.! The

resulting likelihood curve is shown in Fig. 4, withM 5 0.56

20.12
10.20meV. This result illustrates that knowledge of the spins
the p-wave resonances is not very important for theI50
case. This was also demonstrated by Corviet al. @30#, who
used these spin assignments in an analysis of the ear
TRIPLE data set on92

238U and found thatM was essentially
unchanged, and that the range of uncertainty was on
slightly reduced from the values obtained assuming all sp
unknown. On the other hand, information about thes-wave
resonances is crucial — one cannot perform the analy
without thes-wave resonance parameters. Thus the key pie
of spectroscopic information forI50 targets is the parity
of the resonances. Of course a major limitation on the pre
sion of the determination ofM is the number ofp1/2 reso-
nances. Bowman and Sharapov@19# show that in the

FIG. 3. The likelihood curveL(M ) versusM for 92
238U, with

the p-wave resonances all assumed to have unknown spins. T
values of the relative probabilitiesp(J) are p(1/2) 5 0.45 and
p(3/2) 5 0.55.

FIG. 4. The likelihood curveL(M ) versusM for 92
238U consider-

ing only the seven knownp1/2 resonances.
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ideal case when all spins are known and with erro
s2!M2, the relative uncertainty inM is given by
DM /M5(2N)21/2, whereN is the number of resonances.

As discussed in Sec. IV, the predicted ratio of 3/22 to
1/22 resonances for92

239U is close to two~the 2J11 depen-
dence!. Since theJ53/2 andJ51/2 resonance strengths ar
not equal~the J51/2 resonances are twice as strong if th
two strength functions are equal!, and we do not observe al
of the resonances~there is some experimental threshold fo
observation!, the values forp(3/2) andp(1/2) to be used in
Eq. ~23! must be determined empirically. The procedure fo
lowed to determine this ratio is described in Sec. VI of Re
@5#. ~One scales from thes-wave density to obtain the frac-
tion of all p-wave levels observed, and determines the wea
est level observed from the data. Assuming a Porter-Thom
distribution for the widths, one can determine the probabil
that thep-wave resonances observed haveJ 5 1/2.! In prac-
tice M shows only weak dependence on the values
p(1/2) andp(3/2). For example, when the data set used
obtain the results shown in Fig. 3 was reanalyzed w
p(1/2) 5 0.33 and p(3/2) 5 0.67, the result wasM
5 0.5820.13

10.21meV. This is almost the same as the value ofM
obtained forp(1/2) 5 0.45 andp(3/2) 5 0.55.

B. IÞ0 targets

As an example consider49
115In. The likelihood function is

shown in Fig. 5 for a sample resonance~29.67 eV! in
49
116In

@31#. The parities of the resonances are known~that is, one
knows which resonances ares-wave and which arep-wave!,
but the spins of thep-wave resonances are unknown. Th
spins of thes-wave resonances are known. In addition, th
ratio of the neutron projectile-spin amplitudes forj 5 1/2
and j 5 3/2 is assumed to have the valuea 5 0.7 ~see Sec.
IV B ! with the PDF given by Eq.~16!. The corresponding
distribution is extremely broad, illustrating the impact of th
lack of spectroscopic information.

In Fig. 6 the likelihood function is shown for the sam
resonance assuming that all of the spins are known. Althou
the same average value and distribution is assumed for

FIG. 5. The likelihood curveL(M ) versusM for the 29.67-eV
resonance in49

116In. The spin of the resonance is assumed to be u
known, and the ratio of the neutron projectile-spin amplitudes
assumed to have an average value ofa 5 0.7.
rs
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projectile-spin amplitudes, the resulting likelihood functio
is much narrower. The maximum likelihood estimate forM
also has changed significantly. In Fig. 7 the likelihood fun
tion is shown for the same resonance assuming a fixed v
of R 5 0.82; i.e., that Eq.~8! applies.~For values of the
parameterR ranging from; 0.1 to 1.0,M varies approxi-
mately as 1/R, as does the relative uncertainty.! This again
illustrates the need for the relevant spectroscopic inform
tion.

C. Nonstatistical effects

Although the central theme of our entire analysis is t
statistical model of the compound nucleus, there was an
expected nonstatistical result observed in the experime
data on90

232Th @3,5,32#. In the latest~improved! data set on

90
232Th @32#, eight of eight statistically significant longitudina
asymmetries are positive. Although this raises a number
very interesting theoretical questions, here we deal only w
the practical issue of extracting a value ofM from the data
when nonstatistical effects are present.

n-
is

FIG. 6. The likelihood curveL(M ) versusM for the 29.67-eV
resonance in49

116In. All parameters are the same as for Fig. 5, exce
that the spin of thep-wave resonance is now assumed to be know

FIG. 7. The likelihood curveL(M ) versusM for the 29.67-eV
resonance in49

116In. All parameters are the same as for Fig. 6, exce
that the ratio of the projectile-spin amplitudes is fixed.
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We assume that the longitudinal asymmetry has tw
terms, one statistical and one non-statistical~this latter term
is sometimes called the regular or direct term!. The following
form was obtained by Bowmanet al., @33# Husseinet al.
@34#, and Auerbachet al. @35#:

pm52(
n

Vmn

En2Em

gn

gm
1B~1 eV/E!1/2, ~38!

whereE is the energy of the neutron in eV. Note that bo
terms have the same energy dependence. Empirically one
the longitudinal asymmetries to this functional form and d
terminesM and B from the data. For example, when th

92
238U data used to construct the likelihood curve in Fig.
were fit to this two-parameter expression, the resulting v
ues forM andB wereM 5 0.58

20.13
10.21meV ~unchanged! andB

5 20.04
21.78
11.61 %. There is no evidence for a nonstatistic

effect for 92
238U.

On the other hand, for90
232Th the one- and two-paramete

results are quite different, as shown in Figs. 8 and 9. T
result for the one-parameter analysis~Fig. 8! is
M51.62

20.32
10.46 meV, while the two-parameter analysis~Fig. 9!

with p(1/2)50.44 and p(3/2)50.56 yields the values
M51.2320.27

10.36 meV and B5113.57
25.23
15.34 %. Note that the

value ofM is relatively insensitive to changes inB; even for
this huge offset~13.6%! the value ofM changes only 24%.
Repeating the latter calculation withp(1/2)50.33 and
p(3/2)50.67 leads to M51.2620.26

10.39 meV and
B5114.4725.43

15.51%. Thus thep(1/2)/p(3/2) ratio has little
effect on the maximum likelihood estimate forM .

VI. DISCUSSION

A. Comments on incomplete spectroscopic information

For I50 targets the only missing spectroscopic inform
tion is the spin of thep-wave resonances. Although aesthe
cally it would be preferable to know the spins of these res
nances, in practice this lack of information causes litt

FIG. 8. The likelihood curveL(M ) versusM for 90
232Th, with the

spins of thep-wave resonances all assumed to be unknown. T
values of the parametersp(1/2) 5 0.44 andp(3/2) 5 0.56.
o
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additional uncertainty inM . Therefore additional spectro-
scopic information forI50 targets is interesting, but not
crucial.

The situation forIÞ0 targets is quite different. There lack
of knowledge~particularly of the resonance spins! leads to
large increases in the uncertainty inM . Since it is important
to know the spins of thes-wave resonances, it fortunate tha
the spins of theses-wave resonances are relatively wel
known. Determining the spins of the weakp-wave reso-
nances is much harder; in general there is little informatio
on the spins ofp-wave resonances. Significant experiment
efforts on obtaining theJ values for thes- andp-wave reso-
nances would be valuable and reduce the error onM .

The other missing spectroscopic information forIÞ0 tar-
gets involves the projectile-spin amplitudes. This mixture
known only for a few resonances. At present the procedu
that was described in Sec. II — estimating an average va
for the ratioR from the experimental strength functions, an
averaging over a range of possibleR values — is the only
practical approach. Measurement of the projectile-spin a
plitudes would significantly reduce the uncertainties inM .

B. Comments on physical motivation for likelihood functions

The maximum likelihood approach seems the most app
priate method to determine the rms PV matrix element. Th
approach seems ideally suited for the limited data sets av
able, and provides a convenient framework for incorporatin
partial information. Most of the issues are illustrated by th
I50 case.

One issue is the normalizability ofL(M ). As noted ear-
lier, if we take thea priori distribution ofM , PM(M ), to be
a constant, thenL(M ) is not normalizable if the spins of the
resonances are not known. However, we can makeL(M )
normalizable if we takePM(M ) to be a constant up to some
large value ofM ~0.01 eV! and setPM(M ) to zero for larger
values ofM . Our estimate forM is insensitive to the choice
of a priori distribution.

Another issue is the appropriate expression for the like
hood function when there is incomplete information for th

he
FIG. 9. The two-parameter analysis for thep-wave resonances

in 90
232Th. The spins of the resonances are all assumed to be unkno

and the values for the relative probabilitiesp(J) arep(1/2) 5 0.44
and p(3/2) 5 0.56. The solid lines indicate constant probabilit
contours, with the numbers in units of the standard deviation.
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spins of thep-wave resonances. We have assumed that al
the spins are unknown, and that the likelihood function
given by Eq.~23!. Bowman and Sharapov@19# and Bunakov
@36# present contrasting views on the use of the likelihoo
method to extractM values. Bowman and Sharapov esse
tially give an earlier version of the views adopted in th
present paper. They demonstrated the reliability of the lik
lihood method developed here using Monte Carlo tec
niques. Bunakov argues that one can only obtain an up
limit for M from data when the spins are unknown, and tak
exception to the result by Corviet al. @30# that determining
the spins of thep-wave resonances led to very little chang
in M . As noted in Sec. V, we agree with Corvi’s results.

The different conclusions result from different assum
tions for thea priori probability density function forJ and
M , PMJ(M ,J). Bowman and Sharapov assume th
PMJ(M ,J) is a product of a function ofJ and a function of
M , equivalent to assuming thatJ and M are statistically
independent. The measurement ofJ for a particular level
does not affect the knowledge of the distribution of matr
elements for J51/2 levels. Bunakov’s assumptions ar
equivalent to assuming differenta priori distributions forM
for the J51/2 andJ53/2 levels.

Reliable estimates forM can be obtained even when th
spins are unknown: The levels with small values of pari
violation ~either spin 1/2 resonances with accidentally sm
PV asymmetries or resonances with spin 3/2 and con
quently no PV asymmetry! do not strongly distort the distri-
bution for those resonances with large asymmetries. The
tinct maximum in the likelihood function, which arises from
the resonances with statistically significant parity violation
remains even in the presence of many small or zero valu
The additional information on the spins of the resonances
limited impact because of the relative statistical significan
of the asymmetries for the different resonances. Some of
resonances are much more strongly weighted than others
cause they should be.

C. Other approaches

Other than in papers published by the TRIPLE collabor
tion, and those discussed in Sec. VI B@19,36# there has been
little discussion about the effect of incomplete spectrosco
information. Bunakov, Davis, and Weidenmu¨ller @37# discuss
some of these issues both for parity violation and time rev
sal invariance violation tests. They consider the issue of u
known projectile-spin amplitudes. They derive an express
~when the amplitudes are unknown! for the corresponding
distribution forDs 5 s12s2 . Their results are similar to
those obtained in the present work, but are not identical. T
difference arises because we consider the distribution for
longitudinal asymmetry, or in their notationDs/s, instead of
Ds. They do not consider unknown spins.

Davis @38# considers the parity violation case explicitly
and focuses on the minimum sample size required to obt
l of
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statistically significant results. He also covers the issues
unknown projectile-spin amplitudes and unknown spin
However, for the practical analysis of experimental pari
violation data it is crucial to incorporate partial information
Including this information minimizes the uncertainties in th
determination ofM . This incorporation of partial informa-
tion is the focus of the present paper, which provides expli
prescriptions for the analysis of parity violation data wit
provision for inclusion of such information.

VII. SUMMARY

Analysis of the longitudinal asymmetries measured in th
parity violation experiments by the TRIPLE Collaboration
has been described. The likelihood method is well suited f
analysis of these limited data sets. In practice one rarely h
all of the relevant spectroscopic information, but normal
has some of this information. Therefore a key considerati
in choosing an analysis approach is the convenience of
corporating this partial information. For theI50 case most
of the required spectroscopic information is available, exce
for resonance spins. Fortunately the ansatz of treating
spin of each resonance as unknown~see Sec. III B 2! works
well in practice.

For IÞ0 targets there are often several unknown quan
ties: s- andp-wave resonance spins and projectile-spin ne
tron amplitudes. However, usually one has partial inform
tion concerning the spins; the analysis is formulated
facilitate incorporation of this partial knowledge. The
projectile-spin neutron amplitudes at present are known on
in an average sense~if the p1/2 andp3/2 strength functions are
known!; there is also the possibility of correlations betwee
the entrance channel amplitudes. The analysis is formula
to permit explicit inclusion of these effects.

We conclude that given the relevant spectroscopic para
eters, one can obtain reliable and fairly precise values for t
rms parity violating matrix elementM from longitudinal
asymmetry data. With partial information, the rms matri
elementM still can be obtained, but with increased unce
tainty. Measurements to improve the level of spectroscop
information by determining thes- and p-wave resonance
spins and the projectile-spin amplitudes would significant
reduce the uncertainties in the determination of the effecti
neutron-nucleus weak interaction. Such measurements
strongly encouraged.
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