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Ground-state properties of exotic even-even nuclei with extreme neutron-to-proton ratios are described in
framework of self-consistent mean-field theory with pairing formulated in coordinate space. This theory pro
erly accounts for the influence of the particle continuum, which is particularly important for weakly boun
systems. The pairing properties of nuclei far from stability are studied with several interactions emphasiz
different aspects, such as the range and density dependence of the effective interaction. Measurable c
quences of spatially extended pairing fields are presented, and the sensitivity of the theoretical prediction
model details is discussed.@S0556-2813~96!04406-8#

PACS number~s!: 21.10.2k, 21.30.Fe, 21.60.Jz
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I. INTRODUCTION

One of the most exciting challenges in today’s nucle
structure studies is the physics of exotic nuclei far from
line of b stability. What makes this subject particularly in
teresting~and difficult! is the unique combination of wea
binding and the proximity of the particle continuum, bo
implying the large diffuseness of the nuclear surface a
extreme spatial dimensions characterizing the outerm
nucleons@1–4#.

For weakly bound nuclei the decay channels have to
considered explicitly. Because of the virtual scattering
nucleons from bound orbitals to unbound scattering sta
the traditional shell-model technology becomes inappro
ate. The proper tool is the continuum shell model@5,6# which
correctly accounts for the coupling to resonances; the sin
particle basis of the continuum shell model consists of b
bound and unbound states. The explicit coupling betw
bound states and the continuum and the presence of
lying low-l scattering states invites a strong interplay b
tween various aspects of nuclear structure and reac
theory.

Particularly exciting are new phenomena on the neutr
rich side. Because neutrons do not carry an electric cha
the neutron drip line is located very far from the valley
b stability. Consequently, neutron drip-line systems~i.e.,
those close to the neutron drip line! are characterized by
unusually largeN/Z ratios. The outer zone of these nuclei
expected to constitute essentially a new form of a many-b
system: low-density neutron matter~neutron halos and
skins!.

Except for the lightest nuclei, the bounds of neutron s
bility are not known experimentally. Theoretically, becau
of their sensitivity to various theoretical details~e.g., ap-
proximations used, parameter values, interactions!, predicted
drip lines are strongly model dependent. The placemen
53/96/53~6!/2809~32!/$10.00
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the one-neutron drip line, defined by the conditio
Sn(Z,N)5Bn(Z,N)2Bn(Z,N21)50, is solely determined
by the binding energy difference between two neighborin
isotopes. Analogously, the vanishing two-neutron separat
energyS2n(Z,N)5Bn(Z,N)2Bn(Z,N22) defines the posi-
tion of the two-neutron drip line. Since experimental mass
~binding energies! near the neutron drip lines are unknown
in order to extrapolate far from stability, the large-scale ma
calculations are usually used~see, e.g.,@7–11#!. However,
since their techniques and parameters are optimized to rep
duce known atomic masses, it is by no means obvio
whether the particle number dependence obtained from g
bal calculations at extreme values ofN/Z is correct. Apart
from strong theoretical and experimental interest in nucle
physics aspects of exotic nuclei, calculations for nuclei f
from stability have strong astrophysical implications, esp
cially in the context of ther -process mechanism@12,13#.

In previous work@14# several aspects of nuclear structur
at the limits of extreme isospin were discussed by means
the macroscopic-microscopic approach. In the present stu
the ground-state properties of drip-line systems and the s
sitivity of predictions to effective forces are investigated b
means of the self-consistent Hartree-Fock-Bogoliub
~HFB! approach. Even though this method is not restricted
spherical nuclei, in the present work we decided to stick
this very special geometry. This restriction largely facilitate
the discussion of basic principles and allows presenting illu
trations for one-dimensional~radial! dependence of all rel-
evant physical quantities.

The paper is organized as follows. Section II discusses
effective interactions employed in this study. Since pairin
correlations are crucial for the behavior of drip-line system
particular attention is paid to the particle-particle~p-p, pair-
ing! component of the interaction. After a short review of th
general properties of effective pairing interactions, with em
2809 © 1996 The American Physical Society
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2810 53J. DOBACZEWSKIet al.
phasis on the density dependence, the pairing forces inv
gated in our work, namely, contact forces~delta interaction,
density-dependent delta interaction, and Skyrme interact!
and the finite-range Gogny force, are described.

The basic ingredients of the HFB formalism in the coo
dinate representation~single-quasiparticle orbitals, time
reversal symmetry, canonical states, and various densi!
are defined in Sec. III. In contrast to single-quasiparti
wave functions which often contain a scattering~outgoing!
component, canonical states~Sec. III A! are always local-
ized, even if they have positive average energy. The in
pretation of particle and~especially! pair densities in terms
of single-particle and correlation probabilities is given
Sec. III B. This interpretation is essential when relating
calculated HFB densities and fields to various experime
observables.

The structure of the HFB equations is analyzed in Sec.
Here, various functions entering the equations of mot
~i.e., mass parameters and mean-field potentials! are intro-
duced for both particle-hole~p-h! and p-p channels~Secs.
IV A and IV B!.

The advantage of using the coordinate-space HFB form
ism for weakly bound systems is that in this method
particle continuum is treated properly. This important po
is discussed in detail in Sec. V. In particular, the differen
between the single-particle Hartree-Fock~HF! spectra and
canonical HFB spectra~Sec. V B!, the asymptotic propertie
of the HFB states~Sec. V E! and densities~Sec. V F!, and
the effect of the pairing coupling to positive-energy sta
~Sec.V G! are carefully explained.

The robust predictions of the formalism for various e
perimental observables~pairing gaps and pair transfer amp
tudes, masses and separation energies, radii, shell gaps
shell structure! are reviewed in Sec. VI, where experimen
fingerprints of the surface-peaked pairing fields and
quenching of shell effects far from stability are also give
Section VII contains the main conclusions of the paper. T
technical details~i.e., the form of a mean-field Gogny Hami
tonian and the discussion of the energy cutoff in the Skyr
model! are collected in the Appendixes.

II. EFFECTIVE INTERACTIONS IN THE p-p CHANNEL

The uniqueness of drip-line nuclei for studies of effecti
interactions is due to the very special role played by
pairing force. This is seen from approximate HFB relatio
between the Fermi levell, pairing gapD, and the particle
separation energyS @15#:

S'2l2D. ~2.1!

Since for drip-line nucleiS is very small,l1D'0. Conse-
quently, the single-particle field characterized byl ~deter-
mined by the p-h component of the effective interaction! and
the pairing fieldD ~determined by the p-p part of the effe
tive interaction! are equally important. In other words, co
trary to the situation encountered close to the line of b
stability, the pairing component can no longer be treated
residual interaction, i.e., a small perturbation important on
in the neighborhood of the Fermi surface.

Surprisingly, rather little is known about the basic pro
erties of the p-p force. In most calculations, the pairi
sti-
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Hamiltonian has been approximated by the state-indepen
seniority pairing force, or schematic multipole pairing inte
action @16#. Such oversimplified forces, usually treated
means of the BCS approximation, perform remarkably w
when applied to nuclei in the neighborhood of the stabil
valley ~where, as pointed out above, pairing can be cons
ered as a small correction!. As a result, considerable effor
was devoted in the past to optimizing the p-h part of t
interaction, while leaving the p-p component aside.

Up to now, the microscopic theory of the pairing intera
tion has only seldom been applied in realistic calculations
finite nuclei ~see Ref.@17# for a recent example!. A ‘‘first-
principles’’ derivation of the pairing interaction from th
bare NN force using the renormalization procedu
(G-matrix technique! still encounters many problems suc
as, e.g., treatment of core polarization@18,19#. Hence, phe-
nomenological pairing interactions are usually introduc
Two important open questions asked in this context are~i!
the role of finite range, and~ii ! the importance of density
dependence. Since realistic effective interactions are
lieved to have a finite range, the first question seems pu
academic. However, the remarkable success of zero-ra
Skyrme forces suggests that, in many cases, the finite-ra
effect can be mocked up by an explicit velocity dependen
To what extent this is true for the pairing channel remains
be seen. One obvious advantage of using finite-range fo
is the automatic cutoff of high-momentum components;
the zero-range forces this is solved by restricting the p
scattering to a limited energy range and by an appropr
renormalization of the pairing coupling constant~see Appen-
dix B!.

The answer to the question of the density dependenc
much less clear. Early calculations@20,21# for nuclear matter
predicted a very weak1S0 pairing at the saturation poin
(kF51.35 fm21). Consequently, it was concluded th
strong pairing correlations in finite nuclei had to be due
interactions at the nuclear surface. This led to the surf
delta interaction~SDI! @22#, a highly successful residual in
teraction between valence nucleons. Of course, the SDI i
extreme example of a surface interaction. More realis
density-dependent pairing forces are variants of the dens
dependent delta interaction~DDDI! introduced in the Migdal
theory of finite Fermi systems@23#.

Since the effective interactions commonly used in the
calculations are bound to be density dependent in orde
reproduce the compressibility of the infinite nuclear mat
@24# ~an explicit density dependence is also said to acco
for three- and higher-body components of the interaction!, it
seems natural to introduce the density dependence in the
channel as well@25#.

Interestingly, the presence~absence! of the density depen-
dence in the pairing channel has consequences for the sp
properties of pairing densities and fields. As early recogni
@26#, the density-independent p-p force gives rise to a pair
field that has a volume character. For instance, the c
monly used contact delta interaction

Vd~r,r8!5V0d~r2r8! ~2.2!

leads to volume pairing. By adding a density-depend
component, the pairing field becomes surface peaked
simple modification of force~2.2! is the DDDI @25,27,28#
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Vdr~r,r8!5V0d~r2r8!$12@r~r!/rc#
g%, ~2.3!

wherer(r) is the isoscalar nucleonic density, andV0 , rc ,
andg are constants. Ifrc is chosen such that it is close to th
saturation density,rc'r(r50), both the resulting pair den-
sity and the pairing potentialD(r) ~see Secs. III B and IV A!
are small in the nuclear interior. By varying the magnitude
the density-dependent term, the transition from volume pa
ing @rc@r(0) to surface pairing can be probed.

What are the experimental arguments in favor of surfa
pairing? Probably the strongest evidence is the odd-ev
staggering in differential radii, explained in terms of the d
rect coupling between the proton density and the neutr
pairing tensor @29–32#. Other experimental observable
which strongly reflect the spatial character of pairing are t
particle widths and energies of deep-hole states@33,34#,
strongly influenced by the pairing-induced coupling to th
particle continuum, and the pair transfer form factors, d
rectly reflecting the shape of the pair density. Because
strong surface effects, the properties of weakly bound nuc
are sensitive to the density dependence of pairing. In parti
lar, the same type of force is used to describe the spa
extension of loosely bound light systems@35–38#. ~The mea-
surable fingerprints of surface pairing in neutron-rich sy
tems are further discussed in Sec. VI! In this context, it is
also worth mentioning that the self-consistent model with t
DDDI has recently been used to describe the nuclear cha
radii @39# and the moments of inertia of superdeformed n
clei @40#. In the latter case, the inclusion of a density depe
dence in the p-p channel turned out to be crucial for t
reproduction of experimental data around194Hg.

In a series of papers@41–43# the quasiparticle Lagrangian
method~QLM! @44# based on the single-particle Green func
tion approach in the coordinate representation@45# has been
applied to the description of nuclear superfluidity. The resu
ing pairing interaction, based on the Landau-Migdal ans
@23#, has zero range and contains two-body and three-bo
components, thus leading to a density-dependent con
force similar to that of Eq.~2.3!. Note that in the approxima-
tions of Ref.@41#, theneutronpairing interaction is propor-
tional to theproton density and vice versa.! However, in
practical QLM calculations @41–43#, a pure density-
independent delta force was used.

A better understanding of the density dependence of
nuclear pairing interaction is important for theories of supe
fluidity in neutron stars. As pointed out in Ref.@46#, it is
impossible at present to deduce the magnitude of the pair
gaps in neutron stars with sufficient accuracy. Indeed, cal
lations of 1S0 pairing gaps in pure neutron matter, or sym
metric nuclear matter, based on bareNN interactions@47#
suggest a strong dependence on the force used; in gen
the singlet-S pairing is very small at the saturation point. O
the other hand, nuclear matter calculations with an effect
finite-range interaction, namely, the Gogny force@48#, yield
rather large values of the pairing gap at saturati
(D.0.7 MeV!. ~For relativistic HFB calculations for sym-
metric nuclear matter, see Ref.@18#. The pairing properties
of the Skyrme force in nuclear matter were investigated
Ref. @49#. See also Ref.@50# for schematic calculations of
pairing properties in nuclear matter based on the Green fu
tion method with a contact interaction, and Ref.@51# for a
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semiclassical description of neutron superfluidity in neutro
stars using the Gogny force.!

In this study, several self-consistent models based up
the HFB approaches are used. The effective interactions e
ployed, and other model parameters, are briefly discus
below.

The spherical HFB-Skyrme calculations have been carr
out in spatial coordinates following the method introduced
Ref. @52# and discussed in detail in Secs. III–V. Several e
fective Skyrme interactions are investigated. These are~i! the
Skyrme parametrization SkP introduced in Ref.@52# @SkP
has exactly the same form in the particle-hole~p-h! and pair-
ing channels#; ~ii ! Skyrme interaction SkPd of Ref. @53# @in
the p-h channel, this force is the SkP Skyrme parametri
tion, while its pairing component is given by delta interac
tion, Eq. ~2.2!#; ~iii ! the Skyrme interaction SkPdr of Ref.
@53# @in the p-h channel, this force is the SkP Skyrme para
etrization, while its pairing component is given by Eq.~2.3!#;
~iv! the force SIIId ~in the p-h channel, this is the SIII
Skyrme parametrization@54#; its pairing component is given
by the delta force of Ref.@53#!; ~v! the force SkMd ~in the
p-h channel, this is the SkM* Skyrme parametrization@55#,
and its pairing part is given by the delta force with the p
rameters of Ref.@53#!.

Apart from other parameters, the above Skyrme forc
differ in their values of the effective mass for symmetri
nuclear matter,m* /m. Namely,m* /m is 0.76, 0.79, and 1
for SIII, SkM* , and SkP, respectively. All HFB-Skyrme re
sults have been obtained using the pairing phase space
determined in Ref.@52# ~see also discussion in Appendix B!.

A set of spherical HFB calculations has also been pe
formed using the finite-range density-dependent Gogny
teraction D1S of Ref.@56#. In this effective interaction@57#
the central part consists of four terms parametrized w
finite-range Gaussians~see Appendix A!. Spin-orbit and
density-dependent terms of zero range are also included a
the Skyrme parametrizations. The pairing field is calculat
from the D1S force; i.e., the same interaction is used for
microscopic description for both the mean field and the pa
ing channels. However, by a specific choice of the exchan
contribution, the pairing component of the D1S is densi
independent. It is also interesting to note that the pairi
component of the D1S is repulsive at short distances a
attractive at long ranges@18,58#. For the D1S force, the ef-
fective mass for infinite nuclear matter ism* /m50.70.

The parameters of the D1S interaction were chosen
reproduce certain global properties of a set of spherical n
clei and of nuclear matter@59#. The HFB1Gogny results
presented here were obtained by expanding the HFB wa
functions in a harmonic oscillator basis containing up to 1
shells.

III. INDEPENDENT-QUASIPARTICLE STATES

The HFB approach is a variational method which us
independent-quasiparticle states as trial wave functio
These states are particularly convenient when used in
variational theory, because, due to the Wick theorem@60#,
one can easily calculate for them the average values of
arbitrary many-body Hamiltonian. Even if the exact eige
states of such a Hamiltonian can be rather remote from a
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2812 53J. DOBACZEWSKIet al.
one of the independent-quasiparticle states, one can a
@61# that one may obtain in this way fair estimates of at le
one-body observables.

An independent-quasiparticle state is defined as a vacu
of quasiparticle operators which are linear combinations
particle creation and annihilation operators. This linear co
bination is called the Bogoliubov transformation@62–64#.
According to the Thouless theorem@65#, every independent-
quasiparticle stateuC&, which is not orthogonal to the
vacuum stateu0&, i.e., ^0uC&Þ0, can be presented in th
form

uC&5expH 2
1

2(mn
Zmn

1 am
1an

1J u0&, ~3.1!

where the Thouless matrixZ is antisymmetric,Z152Z* ,
and in general complex. The phase of state~3.1! is fixed by
the condition ^0uC&51; the norm is given bŷ CuC&5
det(11Z1Z)1/2. In the following, stateuC& will represent
the Ip501 ground state of the even-even system.

We refer to standard textbooks@24# for a discussion of the
properties of the Bogoliubov transformation. Here we st
our discussion from the trial wave function~3.1! which is
parametrized by the matrix elements ofZ. This form of the
independent-quasiparticle state is very convenient in va
tional applications because variations with respect to all m
trix elementsZmn52Znm are independent of one another.

Instead of using the matrix representation correspond
to a set of single-particle creation operatorsam

1 numbered by
the discrete indexm, one may use the spatial coordina
representation. This is particularly useful when discuss
spatial properties of the variational wave functions and
coupling to the particle continuum. Therefore, in the follow
ing, we shall consider the operators creating a particle in
space pointr and having the projection of spins56 1

2,

ars
1 5(

m
cm* ~rs!am

1 , ~3.2!

wherecm(rs) is the wave function of themth single-particle
state. To simplify the following expressions, we consid
only one type of particle. A generalization to systems d
scribed by a product of neutron and proton wave function
straightforward, while that involving the mixing in the iso
spin degree of freedom is discussed in Ref.@66#.

The inverse relation with respect to~3.2! is given by

am
15E d3r(

s
cm~rs!ars

1 . ~3.3!

Equations~3.2! and ~3.3! assume that the wave function
cm(rs) form an orthonormal and complete set. In practic
calculations, the basis has to be truncated and the comp
ness is realized only approximately. The choice of the sing
particle wave functions used~size of the set and, in particu
lar, the asymptotic behavior! is of crucial importance to the
phenomena discussed in this study.

In coordinate space, the Thouless state~3.1! has the form
gue
st

um
of
-

rt

ia-
a-

ing

e
ng
he
-
he

er
e-
is
-

al
ete-
le-

uC&5expH 2
1

2E d3rd3r8(
ss8

Z1~rs,r8s8!ars
1 ar8s8

1 J u0&

~3.4!

and is defined by the antisymmetric complex functio
Z1(rs,r8s8)5 2Z* (rs,r8s8) of the space-spin coordi-
nates. Already, at this point, we see that any variation
method employing an attractive effective interaction for
bound finite systemmust lead to functions which are local
ized in space,

lim
uru→`

Z~rs,r8s8!50 for anyr8, s8, ands. ~3.5!

Recall that in coordinate space, values of the functi
Z(rs,r8s8) at different space-spin points are the variation
parameters, and that any arbitrarily small value of this fun
tion at large distance,uru→`, would create at this point a
nonzero probability density. Whether this would be energe
cally favorable depends upon the number of particles in t
system and on the interaction used in the variational meth
Apart from exotic phenomena such as halos, and apart fr
infinite matter such as in the neutron-star crust, we assu
that the attractiveness of the interaction always favors co
pact, localized probability densities, and hence we requ
the localization condition~3.5! for the variational parameters
Z(rs,r8s8).

An expansion of the variational functionZ(rs,r8s8) in
terms of the single-particle wave functions is a straightfo
ward consequence of transformations~3.2! and ~3.3!,

Z~rs,r8s8!5(
mn

cm* ~rs!Zmncn* ~r8s8!. ~3.6!

The localization condition, Eq.~3.5!, can, therefore, be guar-
anteed in the most economic way by requiring thatall single-
particle wave functionscm(rs) vanish at large distances. O
course, this is only a matter of convenience and managea
ity, because any localized function can be expanded in a
complete basis. It is, however, obvious that such an exp
sion converges very slowly if the basis has inappropria
asymptotic properties. For example, one can expect tha
plane-wave expansion ofZ(rs,r8s8) would require an infi-
nite number of basis statescm(rs), and in practice, any
reduction to a finite basis would lead to serious errors.
discussion pertaining to asymptotic properties of functions
spatial coordinates, and the choice of an appropriate sing
particle basis, will be a pivotal point in our study.

A. Time-reversal and canonical basis

The present study is entirely restricted to an analysis
ground-state phenomena, and therefore, we use only tim
even variational independent-quasiparticle wave functio
The time-reversal operator can be represented as a produ
the spin-flip operator and the complex conjugation, i.e.,T̂5

2 i ŝyK̂ @67#. The explicit time-reversed creation operato
then have the form

T̂1ars
1 T̂522sar,2s

1 , ~3.7a!
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T̂1am
1T̂5E d3r(

s
@2scm* ~r,2s!#ars

1 . ~3.7b!

We now suppose that the set of basis states represente
the creation operatorsam

1 is closed with respect to time re
versal, and that the stateT̂1am

1T̂ is actually proportional~up
to a phase factorsm̄52sm , usmu51! to another basis stat
denoted by a bar over the Greek symbol, i.e.,

T̂1am
1T̂5sm̄am̄

1 , ~3.8a!

sm̄cm̄~rs!52scm* ~r,2s!. ~3.8b!

In this way, the single-particle basis is assumed to be c
posed of pairs of time-reversed states denoted by indicem
and m̄. In what follows, we use the convention thatm% [m,
and that the sums over eitherm or m̄ are always performed
overall basis states. The phase factorssm depend on relative
phases chosen for themth andm̄th states of the basis; it i
convenient to keep them unspecified in all theoretical form
las and to make a definite suitable choice of the phase
vention only in a specific final application.

A requirement of the time-reversal symmetry of the qu
siparticle vacuum~3.1! or ~3.4!, T̂uC&5uC&, leads to the
following conditions:

Zmn5sm* sn*Zm̄ n̄
* , ~3.9a!

Z~rs,r8s8!54ss8Z* ~r,2s,r8,2s8!. ~3.9b!

These properties allow the introduction of more suita
forms ofZmn andZ(rs,r8s8); namely,

Z̃mn :5smZm̄n , ~3.10a!

Z̃~rs,r8s8!:52sZ~r,2s,r8s8!. ~3.10b!

The matrix Z̃mn and the functionZ̃(rs,r8s8) are both
time even and Hermitian, Z̃mn* 5Z̃nm , Z̃* (rs,r8s8)
5Z̃(r8s8,rs), and therefore they can be considered as us
operators in the corresponding Hilbert spaces. In particu
the functionZ̃* (rs,r8s8) can be diagonalized by solving th
following integral eigenequation:

E d3r8(
s8

Z̃~rs,r8s8!c̆m~r8s8!5zmc̆m~rs!, ~3.11!

wherezm are real eigenvalues,zm5zm̄ . The eigenfunctions
c̆m(rs) form the single-particle basis, usually referred to
the canonical basis. Canonical states, together with the e
genvalueszm , completely define the quasiparticle vacuu
uC&. ~Here and in the following we use the checked sy
bols, e.g.,c̆m and ăm

1 , to denote objects pertaining to th
canonical basis.!

Two important remarks concerning the canonical ba
are now in order. First, the localization condition~3.5! di-
rectly results in the fact thatall canonical-basis single
particle wave functionsc̆m(rs) are localized in space, i.e
vanish at large distancesuru→`. Second, sinceZ̃(rs,r8s8)
d by
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and Z̃mn are related by Eq.~3.6!, a diagonalization of

Z̃(rs,r8s8), Eq. ~3.11!, is equivalent to a diagonalization of

Z̃mn ,

(
n

Z̃mnDnt5ztDmt . ~3.12!

Therefore, in the canonical basis, the Thouless state~3.1!
acquires the well-known separable BCS-like form@24#.

B. Density matrices and the correlation probability

According to the Wick theorem@60,24# for the
independent-quasiparticle state, Eq.~3.1! or ~3.4!, an average
value of any operator can be expressed through average
ues of bifermion operators,

r~rs,r8s8!5^Cuar8s8
1 arsuC&, ~3.13a!

r̃~rs,r8s8!522s8^Cuar8,2s8arsuC&. ~3.13b!

The functionsr(rs,r8s8) and r̃(rs,r8s8) are called the
particle and pairing density matrices, respectively. For
time-reversal invariant stateuC&, both density matrices are
time even and Hermitian:

r~rs,r8s8!54ss8r~r2s,r82s8!* , ~3.14a!

r̃~rs,r8s8!54ss8r̃~r2s,r82s8!* . ~3.14b!

Therefore, the pairing density matrixr̃(rs,r8s8) is more
convenient to use than the standard pairing tensor@24#
k(rs,r8s8)52s8r̃(rs,r8,2s8), which is an antisymmetric
function of the space-spin arguments.

The formulas expressingr(rs,r8s8) and r̃(rs,r8s8) in
terms of the functionZ̃(rs,r8s8) can be easily derived from
those for the density matrix and the pairing tensor which a
given in @24#, and they read

r5~11Z̃2!21Z̃2, ~3.15a!

r̃5~11Z̃2!21Z̃. ~3.15b!

Local HFB densities, i.e., the density matrices for equa
spatial argumentsr85r, have very well-defined physical in-
terpretations. To see this, let us assume thatcxs(rs) is a
normalized single-particle wave function~wave packet! con-
centrated in a small volumeVx around the pointr5x and
having the spins5s. The corresponding creation operator

axs
15E d3r(

s
cxs~rs!ars

1 , ~3.16!

together with its Hermitian conjugate, defines the operato

N̂xs5axs
1axs , ~3.17!

which measures the number of particles in the vicinity of th
point x. Since

N̂xs
2 5N̂xs , ~3.18!
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N̂xs can be regarded as a projection operator which proje
out the component of the many-body wave function that co
tains one spin-s fermion in the volumeVx . Therefore, its
average value givesthe probability to find a particle with
spin s in this volume:

P1~xs!5^CuN̂xsuC&5Vxr~xs,xs!. ~3.19!

In a very similar way, the probability of finding a fermion
in Vx having opposite spin can be obtained by consideri
the time-reversed wave function 2scxs* (r,2s), cf. Eq.
~3.7b!. This gives

P1~x,2s!5^CuN̂x,2suC&5Vxr~x,2s,x,2s!. ~3.20!

Because of time-reversal symmetry, probabilities~3.19! and
~3.20! are equal.

We may now ask the question, what isthe probability of
finding a pair of fermions with opposite spin projectionsin
the volumeVx , P2(x)? If one considers twoindependent
measurements, where in the first one is found the spis
fermion and in another one the spin-(2s) fermion,P2(x) is
equal to the product of individual probabilities, i.e
P1(x,s)P1(x,2s). On the other hand, if one wants to find in
Vx both fermionssimultaneously, one should project out
from uC& a corresponding two-fermion component. In th
case,P2(x) becomes the expectation value of the product
the projection operators N̂xs and N̂x,2s , i.e.,
P2(x)5^CuN̂xsN̂x,2suC&. Using the Wick theorem, this av-
erage value is

P2~x!5Vx
2r~xs,xs!r~x,2s,x,2s!

1Vx
2r̃~xs,xs!r̃~x,2s,x,2s! ~3.21!

or, in terms of the time-even spin-averaged densities,

P2~x!5
1

4
Vx
2r~x!21

1

4
Vx
2r̃~x!2 ~3.22!

for

r~r!5(
s

r~rs,rs!, ~3.23a!

r̃~r!5(
s

r̃~rs,rs!. ~3.23b!

Since the first terms in Eqs.~3.21! and ~3.22! describe the
probability of finding the two fermions in independent me
surements, the second terms in these equations should
interpreted as the probability of findingthe correlated pairat
point x.

The above arguments allow us to give a transparent phy
cal interpretation to the local HFB densities. Namely,
usual, r(r) represents the probability density of finding
particle at the given point. On the other hand,r̃(r)2 gives the
correlation probability density, i.e., the probability of findin
a pair of fermionsin excessof the probability of finding two
uncorrelated fermions.
cts
n-
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It is important to note that the kinematic condition

r̃ •r5r• r̃ and r•r1 r̃• r̃5r, which result from the fact
that uC& is an independent-quasiparticle state, Eq.~3.4!, do
not directly constrain the local values of the particle a
pairing density matrices. This is so because these condit
involve in coordinate space an integration of nonlocal den
ties over space@52#. In particular, there is no obvious kine
matic relation between the probability of finding two ind
pendent particles at a given point of space, and
probability of finding a correlated pair at the same point. F
example, the first one can be small, while the second can
large ~see discussion in Secs. III B 1 and V F!. This result
means that in such a situation the experiments probing
presence of two particles will always find these two partic
as correlated pairs without a ‘‘background’’ characteristic
two independent particles.

Relations ~3.15! imply that all three functions

Z̃(rs,r8s8), r(rs,r8s8), and r̃(rs,r8s8) are diagonal in
the canonical basis; cf. Eq.~3.11!. Using the standard nota
tion for the eigenvalues ofr and r̃, one obtains

E d3r8(
s8

r~rs,r8s8!c̆m~r8s8!5vm
2 c̆m~rs!, ~3.24a!

E d3r8(
s8

r̃~rs,r8s8!c̆m~r8s8!5umvmc̆m~rs!, ~3.24b!

where the real factorsvm and um are given by
vm5v m̄5zm /(11zm

2 )1/2 and um5um̄51(11zm
2 )1/2 . Equa-

tion ~3.24a! represents the traditional definition of the c
nonical states as the eigenstates of the HFB density matri
also shows that the canonical states are thenatural states
@68–73# for the density matrix corresponding to th
independent-quasiparticle many-body stateuC&, Eq. ~3.13a!,
and the eigenvaluesvm

2 are the corresponding natural occ
pation numbers.

One may now easily repeat the previous analysis of pr
abilities of finding a particle, or a pair of particles, in th
canonical-basis single-particle statec̆m(rs). The result,
analogous to Eqs.~3.21! and ~3.22!, is P1(m)5vm

2 , and
P2(m)5um

2vm
21vm

4 . In this case, due to the normalizatio
conditionum

21vm
251,P1(m)5P2(m). This result means tha

the particles in the canonical states with indicesm andm̄ are
extremely correlated spatially; i.e., the probability of findin
the canonical pairum

2vm
2 is directly dependent on the prob

ability of finding two independent canonical fermionsvm
4 .

However, as discussed above, a similar direct relation
tweenP1(x) andP2(x) does not exist. In particular,P1(x)
ÞP2(x).

1. Examples of particle and pairing densities

Figures 1 and 2 display the particle and pairing loc
spherical neutron HFB densitiesr(r ) and r̃(r ), Eq. ~3.23!,
as functions of the radial coordinater5uru. Results are
shown for several tin isotopes across the stability valley.
particle densities, the results obtained with the SkP a
SkPd interactions are almost indistinguishable. Therefo
Fig. 1 ~middle panel! shows results for the SIIId interaction.
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For pairing densities, compared in Fig. 2 are results for Sk
SkPd, and D1S effective interactions.

The particle densities obtained with these three effecti
interactions are qualitatively very similar. One can see th
adding neutrons results in a simultaneous increase of the c
tral neutron density and of the density in the surface regio
The relative magnitude of the two effects is governed by
balance between the volume and the surface asymmetry
ergies of effective interactions. Since all three forces cons
ered have been fitted in a similar way to bulk nuclear pro
erties, including the isospin dependence, the resulti
balance between the volume and the surface isospin effec
similar. Of course, this does not exclude some differenc
which are seen when a more detailed comparison is carr
out.

The pairing densities shown in Fig. 2 reflect differen
characters of the interactions used in the p-p channel. T
contact force~the SkPd results! leads to the pairing densities
which are, in general, largest at the origin and decrease
wards the surface.~This general trend is slightly modified by
shell fluctuations resulting from contributions from orbital
near the Fermi level.! At the surface, the isospin dependenc
of SkPd is fairly weak. For example, there is very little dif-
ference between the pairing densities in150Sn and 172Sn.
These results are characteristic for volume-type pairing c
relations.

A different pattern appears for the SkP results, where t
density dependence renders the p-p interaction stron

FIG. 1. Self-consistent spherical neutron densitiesrN(r ) calcu-
lated with the SkP, SIIId, and D1S interactions for selected tin
isotopes across theb-stability valley.

FIG. 2. Self-consistent spherical neutron pairing densiti

r̃N(r ) calculated with the SkP, SkPd, and D1S interactions for
selected tin isotopes across theb-stability valley.
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peaked at the surface. In this case, the pairing densities
to increase when going from the center of the nucleus
wards its surface. Again, shell fluctuations are superimpo
on top of this general behavior. In particular, the cent
bump in the pairing density in120Sn is due to a contribution
from the 3s1/2 state. A more pronounced dependence on
neutron excess is seen in the surface region. Especially
the drip line, the pairing density develops a long tail exten
ing towards large distances.

The results obtained for the finite-range interaction D
exhibit intermediate features between the surface and
volume type of pairing correlations. In particular, in th
nuclear interior one observes a fairly large region of re
tively constant pairing density. The overall magnitude of t
pairing densities is very similar in all three approaches.
particular, it is interesting to see that at the nuclear surf
(r;5 fm! all three pairing densities in120Sn are very close
to 0.018 fm23.

IV. HARTREE-FOCK-BOGOLIUBOV EQUATIONS

We begin this section by presenting basic definitions a
equations of the HFB approach. HFB theory is discussed
many textbooks and review articles~see Refs.@74,24#, for
example!, while its aspects pertaining to the coordinate re
resentation have been presented in Ref.@52#. An earlier dis-
cussion of the coordinate-representation HFB formalism
been given by Bulgac, whose work is available only in u
published form@33#. Recently, similar methods have als
been applied to a description of light nuclei@37,38#. It is also
worth mentioning that the Green function approach in t
coordinate representation~the Gor’kov method@75#! is for-
mally equivalent to HFB; cf. discussion in Refs.@41,42#. The
only difference between the methods lies in the explicit e
ergy dependence of the quasiparticle mass operator, an
log to the p-h single-particle HF Hamiltonian~see below!.

A. HFB energy and HFB potentials

The two-body effective Hamiltonian of a nuclear syste
can be written as the sum of kinetic energy and two-bo
interaction. The corresponding average energy in a tim
even HFB vacuum~3.4! reads

EHFB5
1

2E d3rd3r8(
ss8

@T~rs,r8s8!r~r8s8,rs!

1h~rs,r8s8!r~r8s8,rs!

1h̃~rs,r8s8!r̃~r8s8,rs!#. ~4.1!

The last two terms are the interaction energies in the parti
hole ~p-h! and in the particle-particle~p-p! channels, respec-
tively. They are given by the p-h and p-p single-partic
Hamiltonians, h(rs,r8s8) 5 T(rs,r8s8) 1 G(rs,r8s8)
and h̃(rs,r8s8), respectively:

G~rs,r8s8!5E d3r2d
3r28 (

s2s28
V~rs,r2s2 ;r8s8,r28s28!

3r~r28s28 ,r2s2!, ~4.2a!

s
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h̃~rs,r8s8!5E d3r18d
3r28 (

s18s28
2s8s28

3V~rs,r8,2s8;r18s18 ,r28 ,2s28!

3 r̃~r18s18 ,r28s28!, ~4.2b!

where we assume thatV(r1s1 ,r2s2 ;r18s18 ,r28s28) includes the
exchange terms.

Additional terms coming from the density dependence
the two-body interactionV have been for simplicity omitted
in Eqs.~4.2a!, ~4.2b!, and~4.1!. The last term in Eq.~4.1!,

Epair5
1

2E d3rd3r8(
ss8

h̃~rs,r8s8!r̃~r8s8,rs!, ~4.3!

represents the pairing energy. We also define the ave
magnitude of pairing correlations by the formula@52#

^D&52
1

NtE d3rd3r8(
ss8

h̃~rs,r8s8!r~r8s8,rs!,

~4.4!

whereNt is the number of particles~neutrons or protons!.
The p-h and p-p mean fields~4.2! have particularly simple

forms for the Skyrme interaction@52#. In Appendix A we
present the form of the p-h and p-p mean-field Hamiltonia
in the case of a local two-body finite-range Gogny intera
tion.

1. Examples of the p-h and p-p potentials

In this section we aim at comparing the self-consiste
potentials obtained with the Skyrme and Gogny forces. S
a comparison cannot be carried out directly, because the
responding integral kernelsh(rs,r8s8) and h̃(rs,r8s8)
have different structure. For the Skyrme interaction, they
proportional tod(r2r8) and depend also on the differentia
operators~linear momenta! @52#, while for the Gogny inter-
action they are sums of terms proportional tod(r2r8) and
terms which are functions ofr and r8 ~Appendix A!.

Therefore, for the purpose of the present comparison
introduce operational prescriptions to calculate the lo
parts of the integral kernels:

U~r!5 loc@G~rs,r8s8!#, ~4.5a!

Ũ~r!5 loc@ h̃~rs,r8s8!#. ~4.5b!

These formal definitions in practice amount to~i! disregard-
ing the momentum-dependent terms of the kernels,~ii ! con-
sidering only terms withs5s851/2 ~which by time-reversal
symmetry are equal to those withs5s8521/2!, and ~iii !
taking into accountonly the term proportional tod(r2r8), if
such a term is present. The expressions forU(r) and Ũ(r)
can be found in Appendix A of Ref.@52# ~Skyrme interac-
tion! and in Appendix A~Gogny interaction!. In the Skyrme
calculations, the contribution of the Coulomb interaction
Ũ(r) has been neglected since it is estimated to be sma

In the case of finite-range local interactions~such as
Gogny or Coulomb!, the corresponding nonlocal pairin
field h̃(rs,r8s8) does not contain the term proportional
of
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d(r2r8) ~see Appendix A!. Consequently, the local field
Ũ(r) cannot be extracted in a meaningful way. For instanc
the diagonal~i.e., r85r) part of of the D1S pairing field is
positive; i.e., it is dominated by the short-range repulsiv
component rather than the long-range attractive part@18,58#.

In the spherical case, the potentialsU(r) andŨ(r) depend
on only one radial coordinater5uru. This facilitates the
qualitative comparison between different forces. Figure
displays the self-consistent spherical local p-h potentia
U(r ), Eq.~4.5!, for several tin isotopes, calculated with SkP
SIII d, and D1S interactions~the results with SkPd are very
close to those with SkP!. The terms depending on the angula
momentum, which result from a reduction to the radial co
ordinate, are not included.~The general behavior of the self-
consistent p-h potentials has already been discussed m
times in the literature, e.g.@76–78#, and we include these
results only for completeness and for a comparison with th
corresponding p-p potentials, for which the detailed analys
does not exist.!

Qualitatively, the results forU(r ) obtained with different
effective forces are quite similar, which reflects the fact tha
all these interactions correctly describe global nuclear pro
erties. In particular, one sees that with increasing neutro
excess the neutron potentials become more shallow in t
interior and more wide in the outer region. Interestingly, fo
each of these three forces there exists a pivoting point
which the potential does not depend on the neutron exce
For the three forces presented, this occurs atr55.9, 4.6, and
5.4 fm, respectively. The differences in the overall depths
the average potentials reflect the associated effective mas
~i.e., the nonlocal contributions of the two-body interac
tions!.

The analogous results for the p-p potentialsŨ(r ) calcu-
lated for the SkP and SkPd interactions are shown in Fig. 4.
On can see that the different character of pairing interactio
is directly reflected in the form of the p-p potentials. Particu
larly noteworthy is the fact that the density-dependent pai
ing interaction in SkP yields a very pronounced surface
peaked potential@the behavior ofŨ(r ) at large distances is
further discussed in Sec. V G#. One can easily understand its
form by recalling that this potential is equal to the product o
the pairing densityr̃(r ) ~Fig. 2! and the function which
roughly resembles the behavior of the DDDI of Eq.~2.3!,
i.e., small in the interior and large in the outer region. O
course, values ofr̃(r ) andŨ(r ) depend on each other by the

FIG. 3. Self-consistent spherical local neutron potentia
UN(r ) calculated with the SkP, SIIId, and D1S interactions for
selected tin isotopes across theb-stability valley.
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fact that they both result from a self-consistent solution
the complete HFB equation in which the p-h and p-p cha
nels are coupled together~see Sec. IV C!. Similar results
were also obtained in Refs.@79# ~in the HFB1SkP model!
and @80# ~in the QLM! for the proton-rich rare-earth nuclei.

Since the p-h channel provides the bulk part of the inte
action energy, the particle densitiesr(r ) closely follow the
pattern of the p-h potentials~i.e., the density is large where
the potential is deep!. An analogous relation is only partly
true for r̃(r ) andŨ(r ); i.e., even the dramatic surface cha
acter of the SkP p-p potential~Fig. 4! does not result in the
pairing density being similarly peaked at the surface. Rec
that the contributions tor̃(r ) come mainly from a few wave
functions near the Fermi surface, and that the form of the
wave functions is mainly governed by the p-h channel. Sin
these wave functions must have significant components
the interior, the resulting pairing densities cannot exactly
into the surface-peaked p-p potentials. Nevertheless, a c
tendency towards surface localization is evident in Fig. 2.

In the case of the pure contact interaction~SkPd calcula-
tions! the p-p potential is exactly proportional to the pairin
density@52# with the proportionality constantV0/2 equal to
280 MeV fm3 @53#. Therefore, the resulting potential is
concentrated at the origin and increases towards the surf
@Early calculations of p-p potentials in the QLM with the
density-independent delta interaction can be found in R
@43#. The general behavior ofŨ(r ), denoted asD(r ) therein,
is very similar to our SkPd results.#

B. HFB equations in the coordinate representation

The variation of the HFB energy with respect to indepe
dent parametersZ(rs,r8s8) leads to the HFB equation
@24,52#

E d3r8(
s8

S h~rs,r8s8! h̃~rs,r8s8!

h̃~rs,r8s8! 2h~rs,r8s8!
D S f1~E,r8s8!

f2~E,r8s8!
D

5S E1l 0

0 E2l D S f1~E,rs!

f2~E,rs!
D , ~4.6!

wheref1(E,rs) andf2(E,rs) are upper and lower compo-

FIG. 4. Self-consistent spherical local neutron pairing potenti
ŨN(r ) calculated with the SkP and SkPd interactions for selected
tin isotopes across theb-stability valley.
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nents of the two-component single-quasiparticle HFB wa
function, andl is the Fermi energy.

Properties of the HFB equation in the spatial coordinat
Eq. ~4.6!, have been discussed in Ref.@52#. In particular, it
has been shown that the spectrum of eigenenergiesE is con-
tinuous for uEu.2l and discrete foruEu,2l. Since for
E.0 andl,0 the lower componentsf2(E,rs) are local-
ized functions ofr, the density matrices

r~rs,r8s8!5 (
0,En,2l

f2~En ,rs!f2* ~En ,r8s8!

1E
2l

`

dn~E!f2~E,rs!f2* ~E,r8s8!

~4.7a!

r̃ ~rs,r8s8!52 (
0,En,2l

f2~En ,rs!f1* ~En ,r8s8!

2E
2l

`

dn~E!f2~E,rs!f1* ~E,r8s8!,

~4.7b!

are always localized.
For the case of a discretized continuum, Sec. V A, t

integral over the energy reduces to a discrete sum@52# but
one should still carefully distinguish between contributio
coming from the discrete (En,2l) and discretized
(En.2l) states. Neither upper nor lower components a
normalized. The norms of the lower components,

Nn5E d3r(
s

uf2~En ,rs!u2, ~4.8!

define the total number of particles,

N5E d3rr~r!5(
n

Nn . ~4.9!

In HFB theory, the localization condition~3.5! discussed
in Sec. III is automatically guaranteed for any system w
negative Fermi energyl. This allows studying nuclei which
are near the particle drip lines where the Fermi energy
proaches zero through negative values.

For the Skyrme interaction, the HFB equation~4.6! is a
differential equation in spatial coordinates@52#. If the spheri-
cal symmetry is imposed, which is assumed in the followin
this equation reads

F2
d

dr SM M̃

M̃ 2M
D d

dr
1SU2l Ũ

Ũ 2U1l
D G S rf1~E,r !

rf2~E,r !
D

5ES rf1~E,r !

rf2~E,r !
D , ~4.10!

M andM̃ are p-h and p-p mass parameters, respectively,
U andŨ are defined in Sec. IV A. Because of the spheric
symmetry, Eq.~4.10! is solved separately for each partia
wave (j ,l ). The potentials include also the centrifugal an

als
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spin-orbit terms, and the p-h mass parameterM is expressed
in terms of the effective massm* , i.e.,M5\2/2m* ; see Ref.
@52# for details.

Before discussing the properties of the HFB wave fun
tions, we analyze the structure of the spherical HFB Ham
tonian of Eq.~4.10!. Figure 5 shows the behavior ofM (r )
andM̃ (r ), andU(r ) andŨ(r ) ~central parts only! obtained
for neutrons in120Sn in the HFB1SkP model. The p-h func-
tionsM (r ) andU(r ) are similar to those obtained in othe
mean-field theories.M (r ) has values close to\2/2m.20
MeV fm2, which corresponds to the value of the fre
nucleon massm. In the nuclear interior, this function has
slightly smaller values, because the effective massm* is
here slightly larger thanm. This effect is due to the nonzero
isovector effective mass of the Skyrme SkP interaction; r
call that for this interaction the nuclear-matter value of th
isoscalar effective mass ism*5m. The central potential
U(r ) has the standard depth of about 40 MeV and disappe
aroundr57.5 fm.

The form of the p-p functionsM̃ (r ) andŨ(r ) character-
izes the pairing properties of the system. One may note t
both these functions are essentially peaked at the nuc
surface. In 120Sn they also exhibit central bumps resultin
from the fact that in this nucleus the neutron 3s1/2 orbital is
located near the Fermi surface. Values ofM̃ (r ) are ~in the
chosen units! an order of magnitude smaller than those o
Ũ(r ). This should be compared with the results obtained f
the p-h channel, where the values ofM (r ) are only about a
factor of 2 smaller than those ofU(r ). It means that, for the
SkP parametrization, the kinetic term in the p-p chann
~which simulates finite-range effects! is relatively less impor-
tant than the kinetic energy term in the p-h channel.

C. Single-quasiparticle wave functions

This section contains the discussion of the HFB wa
functions f1(E,r ) and f2(E,r ) ~Sec. IV C 1!, canonical-
basis wave functionsc̆m(r ) ~Sec. IV C 2!, and HF1BCS
wave functions~Sec. IV C 3!. In the following, the HFB
equation~4.10! was solved in the spherical box of the radiu
Rbox520 fm for the j51/2 and l 50 (s1/2) neutron states,

FIG. 5. The self-consistent HFB1SkP mass parametersM and
M̃ , and potentialsU and Ũ ~central parts only!, for neutrons in
120Sn.
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i.e., for vanishing centrifugal, Coulomb, and spin-orbit po
tentials. The calculations were performed for120Sn.

1. Examples of the single-quasiparticle wave functions

The neutron single-quasiparticle wave functions are pr
sented in Fig. 6. The upper componentsrf1(En ,r ) and the
lower componentsrf2(En ,r ) are plotted in the left and right
columns, respectively. Because a box of a finite radius w
used, the particle continuum is discretized. The positive qu
siparticle eigenenergiesEn are in increasing order numbered
by the indexn, and their values are tabulated in the le
portion of Table I, together with the norms of the lowe
components ~4.8!, Nn54p*r 2druf2(En ,r )u2. Since the
lower components define the particle density matrix@Eq.
~4.7a!#, the numbers (2j11!Nn ~i.e., 2Nn for the j51/2 case
considered! constitute contributions of a given quasiparticl
state to the total number of neutrons@see Eq.~4.9!#.

The wave functions in Fig. 6 and the entries in Table
have been ordered from the bottom to the top, not accord
to the excitation-energy indexn, but rather according to
numbers of nodes of thelarge component.~The large com-
ponent is the lower component for hole states and the up
component for particle states; see Fig. 6.! The lower compo-
nent of then58 state is large, and it has zero nodes; ther
fore it is plotted at the bottom of the figure. Next comes th
n55 state, whose lower component has one node, and

FIG. 6. The HFB1SkP radial wave functionsrf i(En ,r ) of the
neutrons1/2 single-quasiparticle states in120Sn. Upper (i51! and
lower (i52! components are plotted in the left and right column
respectively. The numbers preceded by a times (3) sign indicate
the scaling factors for the small wave function components.
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n51 state with two nodes. Lower components of these th
states are larger than their upper components and they
tribute almost two particles each to the total number of n
trons. Consequently, these quasiparticle states should b
sociated with the 1s1/2, 2s1/2, and 3s1/2, single-hole states.

For all other calculateds1/2 states the upper componen
are larger than the lower ones, and these states contri
small fractions to the particle number; see Table I. Con
quently, these quasiparticle states should be associated
the s1/2 single-particle states. The behavior of these wa
functions differs in the nuclear interior~i.e., for r,R where
R;7 fm is the nuclear radius! and outside (r.R). Since the
wavelength of the upper component is roughly proportio
to 1/AEn1l2U(r ), the ratio of the corresponding wave
lengths behaves as

lout

l in
'A11

uU~0!u
En1l

, ~4.11!

whereU(0) is the depth of the neutron potential well. F
the s1/2 neutron states in120Sn the excitation energyEn1l
can be found from Table I (l527.94 MeV!, and
U(0);245 MeV ~see Fig. 5!.

The upper component of then52 state has three nodes
However, for r.R the exterior part of the wave function
corresponds to a half-wave; i.e., it represents the lowe
energy discretized continuum state. SinceEn1l is only
0.97 MeV, the wavelength in the nuclear interior is;6.5
times shorter thanlout. The next two wave functions hav
four and five nodes in their upper components. Compare
then52 state, they exhibit shorter wavelengths both outs
and inside the nucleus~the corresponding excitation energie
are larger!, and the ratiolout/l in decreases according to Eq
~4.11!.

The quasiparticle states withn52, 3, and 4 should be
associated with the 4s1/2, 5s1/2, and 6s1/2 states in the par-
ticle continuum. Of course, the values of their quasiparti

TABLE I. Results of the HFB calculations with SkP force fo
thes1/2 neutrons in

120Sn. For thenth quasiparticle state,En
HFB and

Nn are the quasiparticle energy and the norm of the lower com
nent, respectively. For themth canonical-basis state,vm

2 is the oc-
cupation probability,em andDm are, respectively, the average va
ues of the p-h and p-p mean-field Hamiltonians@Eq. ~4.15!# and
Em
can is the BCS-like quasiparticle energy defined in Eq.~4.17!. All

energies are in MeV.

Quasiparticle states Canonical-basis states
n En

HFB Nn m Em
can vm

2 em Dm

11 54.27 0.0001 11 47.27 0.0 39.3220.37
10 44.38 0.0001 10 78.07 0.0 70.1220.03
9 35.44 0.0006 9 73.14 0.0 65.2020.81
7 27.49 0.0008 8 54.84 0.0 46.89 0.1
6 20.82 0.0019 7 55.22 0.000003 47.27 0.0
4 15.58 0.0008 6 62.46 0.00003 54.5120.76
3 11.61 0.0006 5 38.44 0.0001 30.48 0.7
2 8.92 0.0002 4 20.50 0.0005 12.54 0.9
1 1.54 0.8372 3 2.36 0.8362 29.88 1.35
5 17.60 0.9942 2 20.06 0.9990 227.96 1.27
8 31.64 0.9992 1 29.94 0.9999 237.88 0.45
ree
on-
u-
as-

s
ute
e-
with
ve

al
-

r

.

st-

to
de
s
.

le

energies strongly depend on the size of the box, because
wavelength of their exterior parts will increase with increa
ing Rbox ~is roughly proportional toRbox).

From the above discussion, one can see that the struc
of large components resembles very much that of the
wave functions. Moreover, the small components are v
small compared to the large ones; in order to plot both
them in the same scale~Fig. 6! they have to be multiplied by
factors from 10 to 25. Only the lowest quasiparticle sta
(n51!, which corresponds to the 3s1/2 state near the Ferm
surface, has two components of a similar magnitude. It is
be noted, however, that the detailed structure of small co
ponents is decisive for a description of the pairing corre
tions. Indeed, both components are coupled in the HFB eq
tions by the pairing fieldsh̃(rs,r8s8) or Ũ.

In agreement with general asymptotic properties of t
upper and lower components@33,52#, one sees in Fig. 6 tha
the lower components vanish at large distances for all q
siparticle states, regardless of the excitation energy. Con
quently, the resulting density matrix is localized. It is inte
esting to observe~Table I! that the norms of the lower
componentsNn do not behave monotonically with quasipa
ticle energy. Namely,Nn is about 0.0002 forn52; then it
increases to 0.0019 atn56, and only then does it decrease
about 0.0001 atn511. This means that the pairing correla
tions couple states with very high quasiparticle excitatio
and short-wavelength upper components, i.e., located h
up in the particle continuum. In the considered example, o
by going to the energy region of as high as 50 MeV is t
pairing coupling to the continuum states exhausted.

Apart from then51 state which has the quasiparticle e
ergyE smaller than2l, for all other quasiparticle states th
upper components oscillate at large distances; i.e., th
states belong to the HFB continuum. This seems natural
the 4s1/2, 5s1/2, and 6s1/2 states discussed above, but it als
holds for the deep-hole states 1s1/2 and 2s1/2. This illustrates
the physical property of the deep-hole states that, once s
a state is excited, it is coupled to the particle continuum a
acquires some particle width. Of course, before such a ho
created~e.g., one-quasiparticle excitation in the neighbori
nucleus! the nucleus~i.e., quasiparticle vacuum! is perfectly
particle bound and the contributions from deep-hole-li
quasiparticle states to the density matrix are localized
space.

2. Examples of the canonical-basis wave functions

By solving the integral eigenequation for the density m
trix ~3.24a!, one obtains the canonical-basis wave functio
c̆m(r ). Actually, when the HFB equation~4.10! is solved by
a discretization method on a spatial mesh, as is done h
the density matrix is represented by a matrix and the integ
eigenequation becomes the usual matrix eigenproblem
the present application to120Sn, a mesh of equally space
points withDr50.25 fm was used and then the canonica
basis wave functions were obtained on the same mesh
points. These wave functions are plotted in Fig. 7, wh
other characteristics of the canonical states are listed on
right-hand side portion of Table I. Here the states are orde
from bottom to top according to their occupation probabi
ties vm
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2820 53J. DOBACZEWSKIet al.
Whenm increases from 1 to 5, the number of nodes of
canonical-basis wave functions increases from 0 to 4. Th
fore, these states represent the 1s1/2 to 5s1/2 single-particle
states. The first three of them have large occupation p
abilities vm

2 , negative average valuesem of the p-h Hamil-
tonian, and positive pairing gapsDm @see Eq.~4.15!#. These
states have all the characteristics of bound single-par
states, and their wave functions strongly resemble the la
components of then58, 5, and 1 quasiparticle states show
in Fig. 6. It is interesting to note that the two statesm54 and
5 follow exactly the same pattern of localized wave fun
tions, despite thepositivevalues ofem . Therefore, these two
states can be understood as the representatives of
positive-energy spectrum in the ground-state of120Sn. We
purposely avoid using the term ‘‘particle continuum,’’ b
cause these orbitals represent discrete and localized e
states of the density matrix.

Table I shows that the occupation probabilities of t
canonical-basis states withm54, . . . ,7 decrease very rap
idly. In fact only states withm54 and 5 have tangible occu
pation probabilities; one can say that the remaining orbi
are entirely empty. This feature has to be compared with
sequence of the norms of the lower HFB componentsNn ,
which do not fall down to zero at even a nearly similar pa
This demonstrates that even if the convergence of the H
eigenproblem requires high quasiparticle energies, the n
ber of physically important single-particle states is very
strained. Unfortunately, as discussed below in Sec. IV D,
cannot obtain the canonical-basis states without actu
solving the HFB equations up to high energies. Form56 and

FIG. 7. The HFB1SkP radial canonical-basis wave functio
r f̆m(r ) of the neutrons1/2 single-particle states in120Sn.
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higher, the occupation probabilities are so small that the nu
merical procedure used to diagonalize the density matrix re
turns accidental mixtures of almost degenerate eigenfun
tions. This is seen in Fig. 7, where the wave function with
m56 has six nodes instead of five, expected from the regul
sequence. Also the energiesem are for these nearly empty
states randomly scattered between 40 and 70 MeV, while th
pairing gapsDm are scattered around zero.

3. Examples of the BCS quasiparticle wave functions

The BCS quasiparticle wave functions can be obtained b
enforcing the BCS approximation on the HFB equations
This is done by setting the pairing Hamiltonianh̃ to a con-
stant, i.e., by usingM̃ (r )50 andŨ(r )521.232 MeV. This
value ofŨ is equal to minus the HFB average neutron pair
ing gap, as defined in Eq.~4.4!. As seen in Fig. 8, the pattern
of large components follows closely that obtained in the
HFB method, while the shapes of small components are e
tirely different. Indeed, since in the BCS approximation
lower and upper components are simply proportional, sma
and large components have the same asymptotic properti
This leads to serious inconsistencies, because the small low
componentsare not localized any more, and introduce an
unphysical particle gas in the density matrix, while the sma
upper componentsare localized and the corresponding deep-
hole states have no particle width.

D. HFB equations in the canonical basis

It is seen in Eq.~4.2! that the two-body interaction enters
the p-h and p-p channels in a different way. This is particu
larly conspicuous when the canonical basis~3.24! is used,
i.e.,

EHFB5(
n

T̆mmvm
21

1

2(mn
F̆mnvm

2vn
2

2
1

4(mn
Ğmnumvmunvn , ~4.12!

where

F̆mn5
1

2
~V̆mnmn1V̆m n̄ m n̄ !, ~4.13a!

Ğmn52sm* snV̆mm̄n n̄ . ~4.13b!

Since we include inV(r1s1 ,r2s2 ;r18s18 ,r28s28) the exchange
term, the matrixVmnm8n8 is antisymmetric inmn and in
m8n8. Because of the Hermiticity and the time-reversal sym
metry of the interaction, the matricesF̆mn andĞmn obey the
symmetry relations F̆mn5F̆mn* 5F̆nm5F̆m n̄ 5F̆ m̄n and
Ğmn5Ğmn* 5Ğnm5Ğm n̄ 5Ğm̄n .

The matrix F̆ is defined by different matrix elements of
the interaction than the matrixĞ. Namely, the matrix ele-
ment F̆mn represents a ‘‘diagonal’’ scattering of pairs of
statesmn→mn ~or mn̄→mn̄). This type of scattering con-
cernsall pairs of states. The resulting contributions to the
energy, Eq.~4.12!, involve the occupation probabilities of
the single-particle states constituting each pair. On the oth
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hand, the matrix elementsĞmn represent a ‘‘nondiagonal’
scattering of pairs oftime-reversedstatesnn̄→mm̄. This
scattering concerns only a very special subset of all pair

In principle, an effective interaction should describe bo
channels of interaction at the same time. This is, for
ample, the case for the Gogny interaction@57# and for the
Skyrme SkP interaction@52#. However, the fact that both
channels of interaction play a different role in HFB theo
allows the use of different forms of interaction to model t
p-h and p-p channels. Such an approach is additionally
tivated by the fact that the interaction in the p-h chann
which defines, e.g., the saturation properties, is much be
known than the p-p interaction. Moreover, the p-h chan
provides a two-orders-of-magnitude larger interaction
ergy.

Since the canonical-basis wave functionsc̆(rs) are all
localized, it is instructive to consider the HFB equations
this particular basis. They read

~ h̆2l!mnhmn1 h̆̃mnjmn50, ~4.14a!

~ h̆2l!mnjmn2 h̆̃mnhmn5Ĕmn , ~4.14b!

wherehmn :5umvn1unvm and jmn :5umun2vnvm . Equa-
tion ~4.14a! is equivalent to the variational condition that th
HFB energy be minimized, while Eq.~4.14b! defines the
energy matrixĔmn . ~The matrix Ĕmn represents the HFB
Hamiltonian in the canonical basis.!

FIG. 8. Same as in Fig. 6, but for the HF1BCS approach.
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The occupation probabilitiesvm are solely determined by
the diagonal matrix elements of the p-h and p-p Hamilto
nians,

em :5h̆mm , ~4.15a!

Dm :52 h̆̃mm , ~4.15b!

and the result is

vm5sgn~Dm!A1

2
2

em2l

2Em
, ~4.16a!

um5A1

2
1

em2l

2Em
, ~4.16b!

whereEm are the diagonal matrix elements of the matri
Ĕmn :

Em :5Ĕmm5A~em2l!21Dm
2 . ~4.17!

In this representation, the average pairing gap~4.4! is given
by the average value ofDm in the occupied states,

^D&5
(mDmvm

2

(mvm
2 5

1

Nt(
m

Dmvm
2 . ~4.18!

Equations~4.16! and ~4.17! misleadingly resemble those
of simple BCS theory@24#. However, in HFB theory,em is
not the single-particle energy~i.e., the eigenvalue ofh) but
the diagonal matrix element ofh in the canonical basis.
Similarly, Dm does not represent the pairing gap in the sta
c̆m , and Em is not the quasiparticle energyE. However,
since these quantities define the occupation probabilitie
they play a very important role in an interpretation of th
HFB results, and many intuitive, quantitative, and useful fe
tures of BCS theory can be reinterpreted in terms of th
canonical representation~cf. Sec. V C!.

In particular, the average values of single-particle p-h an
p-p Hamiltonians fulfill the following self-consistency equa
tions:

em5Tmm1
1

2(n
F̆mnS 12

en2l

En
D , ~4.19a!

Dm5
1

4(n
Ğmn

Dn

En
. ~4.19b!

For a given interactionF̆mn andĞmn , Eqs.~4.19! represent a
set of nonlinear equations which determineem and Dm .
Equations forem ~4.19a! and forDm ~4.19b! are coupled by
the values ofEn ~4.17!, which depend on bothem andDm .
However, it is clear that the interaction in the p-h chann
mainly influences the values ofem , while that in the p-p
channel,Dm .

Unfortunately, Eqs.~4.19! cannot replace the original
HFB equations, because they require knowledge of the c
nonical basis to determine theF̆mn and Ğmn matrices. The
only way to determine the canonical basis is to solve th
original HFB equation~4.6!, and then to diagonalize the den-
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2822 53J. DOBACZEWSKIet al.
sity matrix ~4.7a!. Moreover, solving Eqs.~4.19! ensures that
only them5n subset of the variational equation~4.14a! is
met, the minimum of energy being obtained by solving th
whole set~i.e., for all indicesm andn).

The diagonalization of the energy matrixĔmn gives the
spectrum of HFB eigenenergiesEn :

(
n

ĔmnUnn5EnUnm . ~4.20!

The matrixUnm represents the unitary transformation from
the canonical to the quasiparticle basis@24#. Its matrix ele-
ments provide the link between the quasiparticle energ
En and the diagonal matrix elementsEm which define the
occupation probabilities, i.e.,

Em5(
n

EnuUnmu2. ~4.21!

V. COUPLING TO THE POSITIVE-ENERGY STATES

For weakly bound nuclei one may expect that the partic
continuum influences the ground-state properties in a sign
cant way. As discussed in Sec. IV C 2, the phase space c
responding to positive single-particle energies should not
confused with the continuum of scattering states whic
asymptotically behave as plane waves, and are significant
genuine scattering phenomena.

A. Boundary conditions

Properties of the continuum scattering states are in
itively well understood in terms of unpaired single-particl
orbits. Shown in Fig. 9 are the self-consistent HF1SkP neu-
tron single-particle energies in150Sn, enl j

HF , as functions of

FIG. 9. Weakly bound and unbound self-consistent singl
neutron HF1SkP energiesenl j

HF for 150Sn as function ofRbox. Top
and bottom panels show states of positive and negative parity,
spectively.
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the radiusRbox of the spherical box in which the HF equa
tions are solved. It is assumed that the following bounda
condition holds for all single-particle wave functions:

cm~Rbox!50. ~5.1!

For bound single-particle statesenl j
HF ,0, the effect of in-

creasingRbox beyond 10 fm is insignificant. As seen in Fig
9, the energies of the least bound 3p, 2f , 1h9/2, and 1i 13/2
states, which form the 82<N<126 shell, are independent of
Rbox.

The boundary condition~5.1! leads to a discretization of
the continuum by selecting only those states which have
node atr5Rbox. WhenRbox increases, the density of the
low-energy continuum states increases asRbox

3 . This effect is
very well visible in Fig. 9. Among those states whose ene
gies decrease withRbox, one may easily distinguish some
quasibound states, which have energies fairly independen
Rbox. In Fig. 9 these are the high-l states i 11/2, j 13/2,
j 15/2, andk15/2. However, at some values ofRbox they are
crossed by, and they interact with, the real continuum sta
~plane waves! of the same quantum numbers, and their pr
cise determination is, in practice, very difficult.

A solution of the HFB equation~4.10! in the spherical
box amounts to using the analogous boundary conditions

f1~E,Rbox!5f2~E,Rbox!50 ~5.2!

for both components of the HFB wave function. As a resu
the quasiparticle continuum of states withuEu.2l is dis-
cretized and becomes more and more dense with increas
Rbox. However, as discussed in Sec. IV C, the density mat
depends only on the localized~lower! components of the
quasiparticle wave functions and, therefore, is very stab
with increasingRbox. By the same token, the properties o
the canonical-basis states, which are the eigenstates of
density matrix, are also asymptotically stable. Of course, t
bigger the value ofRbox, the larger is the numerical effort
required to solve the HFB equations. Consequently, it is im
portant to optimize the value ofRbox, i.e., to use the smallest
box sizes which reproduce all interesting physical properti
of the system.

Apart from ours, there are also other possible approach
to solving the HFB eigenproblem, in particular~i! the diago-
nalization in the large harmonic oscillator basis and~ii ! the
two-step diagonalization. Scheme~i! has been used, e.g., in
the HFB1Gogny calculations or in the deformed HFB1SkP
calculations of Ref.@79#. Its limitations, due to the incorrect
asymptotics, are discussed in Sec. V G below. In method~ii !
one first solves the HF problem and then diagonalizes t
full HFB Hamiltonian in the HF basis. Such a strategy ha
been suggested in Ref.@42# and recently adopted in Ref.
@81#.

B. Canonical single-particle spectrum

As discussed in Sec. IV D, quantities which determine th
p-h properties of the system are the canonical energiesem
@Eq. ~4.15a!#. The neutron canonical energies in150Sn are
shown in Fig. 10 as functions of the box sizeRbox. In this
figure, the single-particle indexm is represented by the
spherical quantum numbersnl j ; only the states with occu-
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pation probabilitiesvnl j
2 .0.0001 are presented. The canon

cal states belonging to the shell 82<N<126 have negative
enl j ’s, and they are very close to the HF single-particle e
ergies displayed in Fig. 9. They do not depend on the valu
of Rbox for Rbox.10 fm.

At positive values ofenl j , there are several orbitals
which do not depend on the box size even atRbox,15 fm.
These states correspond to the high-l quasibound states
i 11/2, j 13/2, j 15/2, and k15/2, already identified in the HF
spectrum of Fig. 9. The values ofenl j for these states are
only slightly higher than the corresponding values ofenl j

HF .
However, these quasibound canonical-basis states are no
companied by the sea of plane-wave scattering states~cf. the
j 13/2, and thek15/2 states in Figs. 9 and 10!. One can thus say
that the canonical-basis states represent the quasibound s
well decoupled from the scattering continuum.

Many other canonical-basis states, especially those w
low orbital angular momental , significantly depend on the
box size up to aboutRbox518 fm, and then stabilize. There
fore, in all subsequent calculations we use a ‘‘safe’’ value
Rbox520 fm, unless stated otherwise.

Above 20 MeV there appear states with canonical en
gies fluctuating withRbox. These states have very small oc
cupation probabilities close to the limiting value o
vnl j
2 50.0001, and their determination as eigenstates of

density matrix is prone to large numerical uncertainties~see
Sec. IV C 2!. One should note that the physical observabl
are calculated directly by using the HFB density matrice
and the above numerical uncertainties do not affect the
sults obtained within HFB theory.

As pointed out in Ref.@77#, the canonical spectrum pre
sented in Fig. 10 can be used to analyze shell effects far fr
stability. In particular, the size of theN5126 gap is very
small ~a 2 MeV gap between the 1i 13/2 and 4s1/2 states!, and
hence it cannot yield any pronounced shell effect~seen, e.g.,
in the behavior of the two-neutron separation energies, S

FIG. 10. Same as in Fig. 9, but for the canonical energ
enl j , Eq. ~4.15a!.
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VI C!. This shell-gap quenching is not a result of a too sm
value of the spin-orbit splitting. Indeed, a larger spin-orb
strength would push the 1i 13/2 level down in energy, without
affecting the size of theN5126 shell gap~several negative-
parity states are nearby!. TheN5126 gap, which is equal to
about 4 MeV atRbox510 fm, closes up with increasing
Rbox due to the several low-l states whose energies steadil
decrease. This effect can be attributed to the pairing-induc
coupling with the positive-energy states~see Sec. V G!.

In the energy window between 0 and 20 MeV, the dens
of single-particle canonical energies is fairly uniform and n
pronounced shell effects are visible. Since the Fermi ene
must stay at negative values, this region of phase space c
not be reached. However, one may say that the influence
the positive-energy spectrum on the bound states~had we
analyzed it in terms of, e.g., the Strutinsky averaging! is
characterized by a rather structureless distribution of sta
Above 20 MeV, the occupation probabilities rapidly de
crease~cf. Table I!, and this part of phase space can safely
disregarded, provided one stays in the canonical basis.

C. Single-quasiparticle spectrum

The eigenvalues of the HFB equation~4.10! ~single-
quasiparticle energies! carry information on the elementary
modes of the system. The lowest single-quasineutron en
gies Enl j

HFB in tin isotopes betweenN550 andN5126 are
shown in Fig. 11~top panel!. Apart from the magic shell
gaps atN550 andN582, where the single-quasiparticle en

ies

FIG. 11. Self-consistent single-quasineutron HFB1SkP ener-
giesEnl j

HFB ~top panel! compared with the BCS-like canonical single
quasineutron energiesEnl j

can @Eq. ~4.17!# ~bottom panel! for the tin
isotopes.
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2824 53J. DOBACZEWSKIet al.
ergies exhibit sudden jumps, they depend rather smoothly
neutron number. For a given orbitalnl j , the minimum of
Enl j
HFB is attained in the isotope where the correspondi

single-particle state is closest to the Fermi energy. Hen
from Fig. 11 one can infer the order of single-particle ene
gies in the beginning of the 50<N<82 shell as 2d5/2,
3s1/2, 2d3/2, 1g7/2, and 1h11/2. Similarly, the predicted or-
der at the bottom of the next major shell is 2f 7/2, 3p3/2,
3p1/2, 2f 5/2, 1h9/2, and 1i 13/2. The order of spherical
single-particle states does vary withN. For instance, accord-
ing to the HFB1SkP calculations of Fig. 11, the 1g7/2 shell
never becomes lowest in energy, as it should have done,
the single-particle energies beenN independent.

Noteworthy is the fact that, due to the strong interactio
with the low-l continuum~cf. Sec. V B!, the 4s1/2 excitation
becomes lowest atN.114. Above the 4s1/2 state there ap-
pear several quasiparticle states with excitation energies r
idly decreasing withN. These orbitals represent the low
energy continuum states. They are very close in ener
exhibit small spin-orbit splitting, and the lowest of them a
the low-l states: 4p1/2, 4p3/2, 3d3/2, and 3d5/2. All these
features are characteristic of the continuum states@82#. Still
higher in energy, one may distinguish a similar doublet
the 3f 5/2 and 3f 7/2 states, as well as the 2g9/2 state which
represents a high-l resonance.

The bottom panel of Fig. 11 shows similar results for th
BCS-like canonical energiesEm defined in Eq.~4.17!, and
denoted here byEnl j

can . A comparison betweenEnl j
HFB and

Enl j
can illustrates the fact that thelowestelementary excitations

of the nucleus are equally well described by both these qu
tities. Indeed, a general pattern and, in most cases, also
values ofEnl j

HFB andEnl j
can are very similar. The differences

mainly concern thes1/2 states, and also the low-l states in
the continuum, which in the canonical representation app
higher in energy~see Table I for the direct comparison fo
s1/2 states!. On the other hand, the position of the high-l

2g9/2 resonance is almost identical in both representatio
Such a similarity supports the supposition~Ref. @77# and Sec.
V B! that the canonical single-particle energies, which a
the main ingredients ofEnl j

can , constitute a fair representation
of single-particle and single-quasiparticle properties of t
system.

D. Relation between canonical
and single-quasiparticle wave functions

The canonical states constitute a basis in which t
independent-quasiparticle stateuC& has the form of a prod-
uct of correlated pairs@24#. Therefore, these states can b
considered as fundamental building blocks describing
pairing correlations in a many-fermion system. On the oth
hand, the canonical states are determined by a solution of
HFB equation, the single-quasiparticle states.

Since the canonical states constitute an orthonormal
semble, the lower and upper HFB components can be
panded as

f1~En ,rs!5(
m
Anm

~1!c̆m~rs!, ~5.3a!
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f2~En ,rs!5(
m
Anm

~2!c̆m~rs!, ~5.3b!

where

Anm
~ i ! [E d3r(

s
c̆m* ~rs!f i~En ,rs! ~ i51,2! ~5.4!

are the associated overlaps. In order to find the relation
tweenAnm

(1) andAnm
(2) one can employ Eqs.~3.24! and ~4.7!

for the HFB densities. This gives the canonical wave fun
tions expressed as linear combinations of thelower HFB
components:

vm
2 c̆m~rs!5(

n
Anm

~2!f2~En ,rs!, ~5.5a!

2umvmc̆m~rs!5(
n
Anm

~1!f2~En ,rs!. ~5.5b!

One should note that the expansions~5.5! are valid regard-
less of the fact that the lower componentsf2(En ,rs) do not
constitutean orthogonal ensemble of wave functions. B
multiplying both sides of Eqs.~5.5a! and ~5.5b! with
c̆n* (rs) and taking the scalar product, one arrives at the o
thogonality relations:

(
n
Anm

~2!Ann
~2!*5vm

2dmn , ~5.6a!

(
n
Anm

~1!Ann
~2!*52umvmdmn . ~5.6b!

The above identities express the fact that bothAnm
(2) and

Anm
(1) are related to the transformation matrixUnn defined in

Eq. ~4.20!,

Anm
~2!5vmUnm , Anm

~1!52umUnm , ~5.7!

and Eqs.~5.6! reflect the unitarity ofUnn . Equations~5.7!
can be easily derived by inserting expansions~5.3! into the
HFB equation~4.6!, and then expressing the matrixĔmn

~4.14b! in its eigensystem~4.20!.
It is instructive to express the upper HFB component in

form similar to that of Eq.~5.3b!:

f1~En ,rs!52(
m

um

vm
Anm

~2!c̆m~rs!. ~5.8!

For En.2l, the upper componentf1(En ,rs) is the scat-
tering wave function. It can be formally expanded in th
localized canonical wave functions according to Eq.~5.8!,
but the main contribution comes from the particlelike stat
with very small values ofvm

2 . Hence, this relation is not too
useful in practical applications.

E. Spectral distribution for the canonical-basis wave functions

In order to discuss the importance of the particle co
tinuum on the structure of canonical states, it is interesting
see how a given canonical state is distributed among
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single-quasiparticle states. For this, it is convenient to
write Eq. ~5.5a! in the following way:

c̆m~rs!5 (
0,En,Emax

Snm

ANn

f2~En ,rs!. ~5.9!

The spectral amplitudesSnm define the distribution of the
canonical states among the single-quasiparticle states.
important to recall at this point that the sum in Eq.~5.9!
represents in fact the discrete (En,2l) states and the dis
cretized (En.2l) continuum states, i.e.,

c̆m~rs!5 (
0,En,2l

Snm

ANn

f2~En ,rs!

1E
2l

`

dn~E!
SE,m
ANE

f2~E,rs!, ~5.10!

with the spectral amplitudesSnm andSE,m pertaining to the
discrete and continuous HFB spectrum, respectively.

The spectral amplitudes can be expressed in terms of
matricesAnm

(2) or Unm introduced in Sec. V D:

Snm5
ANn

vm
2 Anm

~2!5
ANn

vm
Unm . ~5.11!

We have included inSnm the normsNn of the lower compo-
nents, Eq.~4.8!. In this way, the values of spectral ampl
tudes measure the influence of quasiparticle states irres
tive of the overall magnitude of their lower components.

Before discussing the properties of the spectral am
tudes, let us write down the two sum rules

15(
m

uSnmu2
vm
2

Nn
5(

n
uSnmu2

vm
2

Nn
, ~5.12!

15(
m

uSnmu2
vm
4

Nn
2 . ~5.13!

The first two sum rules, Eq.~5.12!, come from the unitarity
of Unm . The last one, Eq.~5.13!, expresses the condition
defining the norm of the lower HFB component.

In Fig. 12 are shown the spectral amplitudes for thes1/2
canonical states in120Sn ~cf. Secs. IV C 1 and IV C 2!. The
phases of the single-quasiparticle wave functions have b
fixed in such a way that all the amplitudesSnm for m51 are
positive ~some of these amplitudes are too small to be d
played in the figure!. This defines the relative phases of th
spectral amplitudes form.1. Then, the positive and negativ
amplitudes are in Fig. 12 shown by bars hashed in oppo
directions. Results shown in this figure pertain to the sa
single-quasiparticle and canonical states as those show
Figs. 6 and 7, respectively, and in Table I.

The lowest panel in Fig. 12 shows that the 1s1/2 canonical
state (m51! is composed mainly of two components corr
sponding to the two deep-hole quasiparticles
E8531.64 MeV andE5517.60 MeV. Similarly, them52
and m53 canonical states are mixtures of th
re-
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E5517.60 MeV andE151.54 MeV quasiparticles. For all
three of these canonical states, the diagonal amplitud
dominate.

Another pattern appears for the positive-energy canonic
states, i.e., form54 andm55. These two canonical states
contain large components of the holelike quasiparticles
E5517.60 MeV andE151.54 MeV, but in addition, they
also acquire large components of the particle-type quasip
ticles belonging to the continuum. These continuum comp
nents are centered around 15 and 20 MeV form54 and
m55, respectively. This illustrates the fact that a correct d
scription of the positive-energy canonical states requir
solving the HFB equation to rather high energies. The width
of the corresponding distributions are rather large, which i
dicates that there is not a single resonance in the parti
continuum which would alone describe the high-energys1/2
canonical states. This can be well understood by recalli
that thel 50 resonances have usually very large widths.

For the drip-line nucleus150Sn, the spectrals1/2 ampli-
tudes are shown in Fig. 13. Similarly to the case of120Sn, the
three lowest canonical states form51, 2, and 3 are mainly
composed of the three holelike quasiparticles atE9534.27,

FIG. 12. The HFB1SkP spectral amplitudesSnm ~5.9! of the
canonicals1/2 states in

120Sn withm51–5. The corresponding ca-
nonical energyem is given in MeV and the occupation probability
vm
2 is displayed in parentheses. All the amplitudesSnm for m51

have been assumed to be positive. This defines the relative pha
of the spectral amplitudes form.1 ~shown by bars hashed in op-
posite directions!. For E,2l the quasiparticle spectrum is dis-
crete, while forE.2l it is represented by the discretized con
tinuum.
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2826 53J. DOBACZEWSKIet al.
E7522.12, andE357.24 MeV with dominating diagona
amplitudes. On the other hand, the low-lying positive-ene
canonicalm54 state has large and almost equal compone
coming from the particlelike quasiparticles atE152.40,
E254.84, andE458.93 MeV. The followingm55 canonical
state has dominant amplitudes from the holelike and parti
like quasiparticles atE357.24 and 8.93 MeV, respectively
One should note that them54 andm55 canonicals1/2 states
in 150Sn have rather large occupation factors as compare
those in 120Sn. Both of them require including the single
quasiparticle statesat least up to 10 MeV. The following
m56 state~not shown in the figure! has the occupation prob
ability of v6

250.0003 and the spectral amplitudes extend
up to 25 MeV.

The spectral amplitudes allow also for a determination
the asymptotic properties of canonical states.~See Ref.@69#
for a discussion of the the asymptotic properties of natu
orbits.! The lower componentsf2(En ,rs) behave asymp-
totically as exp@2rA2m(En2l)/\2# @33,52#. Therefore, as
seen from Eq.~5.10!, the asymptotic properties of canonic
states are governed by the lowest discrete quasiparticle,
vided the corresponding spectral amplitudeS1m is not equal
to zero. However, if such a spectral amplitude is nonzero
very small, the corresponding asymptotic behavior will
attained only at very large distances. In practice, the low
discrete quasiparticle dominates the asymptotic beha
only if the corresponding spectral amplitude has a sign
cantly large value. For thes1/2 states in

120Sn ~Fig. 12! such
a situation occurs for the canonical states withm52–5. On

FIG. 13. Same as in Fig. 12, but for150Sn. No discrete states
appear forE,2l.
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the other hand, since the value ofuS1,1u is very small, the
asymptotic behavior of them51 canonical state is dominated
by the hole-like quasiparticle atE5517.60 MeV.

An entirely different property can occur in drip-line nu
clei, where the Fermi energy is close to zero and there m
be no quasiparticle excitations in the discrete spectrum b
tween 0 and2l. In such a situation, shown in Fig. 13, the
canonical states are represented by superpositions of lo
quasiparticle components belonging to the particle co
tinuum. Consequently, it is the integral over the lowest co
tinuum quasiparticle states just above theE.2l threshold
that determines the asymptotic properties of the canoni
states. In other words, the profile of the level densi
dn(E)/dE aroundE52l becomes a crucial factor. Good
examples of a very strong coupling to the particle continuu
are them54 and 5 canonicals1/2 states in

150Sn, where the
quasiparticle strength is distributed in a very wide energ
interval ranging from 1.5 to 20 MeV.

An analysis of the spectral distribution, analogous the o
presented above, has recently been performed@73# for the
natural orbits in16O determined within the Green function
method using theNN interaction. This method accounts for a
much more general class of correlations as compared to
HFB correlations of the pairing type studied here. Howeve
the general features of the spectral distributions remain
sentially the same. Namely, the low-occupation-numb
natural orbits are determined mostly through high-ener
continuum contributions, and large box sizes~15–20 fm! and
large single-particle bases~20 states perl j block! have to be
used to stabilize the solutions. This is so even if the studi
nucleus (16O! is b stable, well bound, and light; one can
expect that for drip-line nuclei the aforementioned featur
can only be more pronounced.

F. Asymptotic properties

In the limit of weak binding, radial dimensions of atomic
nuclei increase and it becomes exceedingly important to co
trol the radial asymptotics of many-body wave functions, n
only in reaction studies, but also in nuclear structure app
cations. Figure 14~upper panel! displays the radial depen-
dence of the neutron densityr(r ) in 150Sn calculated with
the values ofRbox between 10 and 30 fm. It is seen that, fo
every value ofRbox, r(r ) follows its asymptotic behavior up
to aboutRbox23 fm and then falls down to zero as a result o
the boundary conditions~5.2!. That is, these boundary con-
ditions affect the density only in a narrow spherical layer o
the thickness equal to about 3 fm, while inside this lay
r(r ) behaves independently of the value ofRbox. Analogous
results for the pairing densityr̃(r ) are shown in the lower
panel of Fig. 14.

At very large distances the asymptotic behavior of th
particle density is governed by the square of the lower co
ponent of the single-quasiparticle wave function correspon
ing to the lowest quasiparticle energyEmin . Similarly, the
asymptotic behavior of the pairing densityr̃(r ) is deter-
mined by the product of the upper and the lower compone
of quasiparticleEmin . Using the asymptotic properties of the
HFB wave functions derived in@33,52#, one obtains
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r~r ! ——→
large r

;
exp~2xr !

r 2
, x52k2 , ~5.14a!

r̃ ~r ! ——→
large r

;
exp~2x̃r !

r 2
, x̃5k11k2 , ~5.14b!

where

k15A2m~2Emin2l!

\2 , k25A2m~Emin2l!

\2 .

~5.15!

In the considered example of150Sn the calculated values ar
l521.46 MeV andEmin5 1.07 MeV ~a p1/2 state!. Conse-
quently, x.0.70 fm21 and x̃.0.49 fm21. In Fig. 14 the
asymptotic dependences given by Eq.~5.14! are shown as
shaded lines. One can see that forr(r ) the asymptotic re-
gime is reached only at distances as large as 25 fm, w
means that the contributions from other quasiparticle st
and/or from the next-to-leading-order terms in the Han
functions still influence the particle density at rather lar
values ofr . Interestingly, the pairing density approaches
asymptotic limit already atr;10 fm.

A rough estimate ofx and x̃ can be obtained by subst
tuting the value of a typical pairing gap (D51 MeV! for the
lowest quasiparticle energyEmin . For stable nuclei
(l.28 MeV! one obtainsx.1.32 fm21, while for the
one-neutron drip nuclei, defined by a vanishing separa
energySn.D1l.0, the result isx.0.62 fm21. This dif-
ference illustrates the increase in the spatial extension of
particle densities when going towards the neutron drip lin
On the other hand, for thepairing densities the correspond
ing numbers arex̃.1.24 fm21 and x̃5x/2.0.31 fm21.

FIG. 14. Self-consistent HFB1SkP single-neutron densit
rN(r ) ~top!, and neutron pairing densityr̃N(r ) ~bottom! in 150Sn
calculated with different values ofRbox. The insets show the sam
data in linear scale. The shaded lines illustrate the asymptotic
havior given by Eqs.~5.14!.
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Therefore, in stable nuclei both types of densities have ra
similar asymptotic behavior, while in drip-line nuclei th
pairing densities have much longer tails.

In this context, it is instructive to recall the discussio
from Sec. III B regarding the probabilistic interpretation
the HFB densities. The probabilityP1(x) orP2(x) of finding
a particle or a pair of particles atr5x is proportional to
r(x) or r2(x)1 r̃2(x), respectively. Consequently, in stab
nuclei P2(x) decays much faster thanP1(x) at large dis-
tances. This is not true for drip-line nuclei, where the asym
totics ofP1(x) andP2(x) is the same.

As discussed above, static pairing correlations can in
ence dramatically the asymptotic behavior of density dis
butions in drip-line nuclei. In addition, a significant modifi
cation of the density tails comes from the dynamic
coupling to collective modes through the particle continuu
Such a coupling can be treated in terms of the continu
quasiparticle random phase approximation~QRPA! and has
been shown to be very important for light systems@83,84#.
An analysis of the asymptotic behavior of the particle dens
r(r ) has recently been performed@85# by finding theexact
solutions for weakly bound two particles interacting throu
a contact force. In that study, the role of one-particle re
nant states on the density asymptotics has been discuss

G. Pairing coupling to positive-energy states

As illustrated in Sec. V A, the density of the scatterin
continuum states increases withRbox. In the limit of very
large values ofRbox, the set of discretized continuum stat
can be considered as a fair approximation of the real c
tinuum, and the sums over the positive-energy states
correctly represent integrals over the continuous energy v
able. Therefore, we may consider this limit in order to stu
the dynamical coupling between the bound single-part
states and the positive-energy states. In the language of
ing correlations, one may think of this coupling in terms o
virtual scattering of pairs of fermions from the bound sta
to positive-energy states, and back. Such a pair scatte
gives rise to the additional pairing energy to the ground-s
energy.

To illustrate the stability of results with increasing bo
size, in Fig. 15 we show the neutron p-p potentialsŨ(r ) in
150Sn and172Sn calculated in the HFB1SkP model for sev-
eral values ofRbox. In these two nuclei, the values ofŨ(r )
do not change whenRbox is larger than 20 and 22 fm, respe
tively, but at smaller values ofRbox, one observes significan
variations. A rather unexpected result of this analysis is t
the overall magnitude of pairing correlations, represented
the average pairing gap̂D&, decreaseswith increasing
Rbox. This occurs in spite of the fact that the actual dens
of scattering states dramaticallyincreaseswith increasing
Rbox.

This effect can be understood by noting that the pair
correlations produced by a density-dependent p-p interac
~and hence for the SkP force used here! are concentrated a
the nuclear surface, i.e., at a fixed location in space.
small values ofRbox, the boundary conditions~5.2! have a
tendency to push the continuum wave functions towa
smaller distances, and into the surface region. This incre
the magnitude of the pairing correlations. On the other ha
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2828 53J. DOBACZEWSKIet al.
with increasingRbox, the scattering states spread out un
formly outside the nucleus and effectively leave the surfa
region. Hencê D& decreases. As a consequence, with i
creasingRbox the self-consistent attractive pairing potentia
Ũ(r ) decreases in magnitude and significantly spreads
towards large distances.

The importance of allowing the pairing interaction t
couple properly to the particle continuum is illustrated
Fig. 16, where the neutron rms radius, the average pair
gap, and the Fermi energy are shown as functions ofRbox.

FIG. 15. Self-consistent HFB1SkP neutron pairing potentials
Ũ(r ) in 150Sn ~top panel! and 172Sn ~bottom panel! calculated with
four values ofRbox. The corresponding average gap values^D&
@Eq. ~4.4!# are indicated.

FIG. 16. Neutron rms radiusr N ~top panel!, average pairing gap
^DN& ~middle panel!, and the Fermi energylN ~bottom panel! cal-
culated in the HFB1SkP model for 150Sn ~solid circles! and
172Sn ~open circles! as functions ofRbox.
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The two upper plots confirm that a stability of results
attained beyond 20 or 22 fm, while the bottom plot indicat
that the pairing coupling to the positive-energy states can
a decisive factor influencing the nuclear binding. Indeed,
low Rbox.20 fm the nucleus172Sn is unbound, and it be-
comes bound only when its ground state is allowed to g
an additional binding from the pairing correlations at lar
distances. This indicates that, for the surface-type pair
interaction, one has to consider a rather dense particle c
tinuum before the pairing coupling to positive-energy sta
is exhausted.~For a similar discussion in a schematic mod
see Ref.@34#. There, it has been pointed out that because
strong coupling to the continuum,l is significantly lowered
in the case of surface pairing as compared to the case
volume pairing.!

Since, for the Gogny interaction, the HFB equations a
solved by expansion in the harmonic oscillator basis, one
test the coupling to the positive-energy states by increas
the numberNsh of the oscillator shells used in the basis.
practice, calculations must be restricted toNsh<20, which
allows one to describe wave functions up to abo
Rmax.A2Nsh\/mv0, wherev0 is the frequency of the har-
monic oscillator@14#. ForNsh520 this corresponds to abou
Rmax514 fm.

Figure 17 compares the asymptotic behavior of the n
tron particle densities in three neutron-rich tin isotopes c
culated in the spatial coordinates~SkP! or in the harmonic-
oscillator basis~D1S!. In the former case one obtains a clea
region of the asymptotic dependence governed by
~5.14a!, which aroundr518 fm is perturbed by the box
boundary conditions~5.2! at Rbox520 fm. In the latter case,
the region of proper asymptotic behavior becomes pertur
by the exp(2mv0r

2/\) dependence characteristic of th
harmonic-oscillator-basis wave functions. Thev0 values, ob-
tained by minimizing the total energy for theNsh517 basis,
are equal to 13.4, 6.6, and 6.3 MeV in132Sn, 150Sn, and

FIG. 17. Neutron densitiesrN(r ) ~in logarithmic scale! calcu-
lated in the HFB1SkP and HFB1D1S models for132Sn, 150Sn, and
172Sn.
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53 2829MEAN-FIELD DESCRIPTION OF GROUND-STATE . . .
172Sn, respectively. Because of this, a study of the c
tinuum influence using such a basis can be performed o
up to densities of scattering states corresponding to a
Rbox514 fm in the heavier isotopes and onlyRbox510 fm in
132Sn, as can be seen in Fig. 9. Let us note, however, tha
neutron densities beyondr510 fm are typically smaller than
1024 fm23, which explains the stability of the HFB calcu
lations with increasing size of the basis.

This is illustrated in Fig. 18 which is analogous to th
similar study presented for the SkP interaction in Fig.
Here, for each value ofNsh and for each nucleus, the value
v0 was optimized so as to minimize the total energy. As c
be seen, one obtains a nice stability of results by us
Nsh517. This test corresponds to testing the coordina
representation solutions~Fig. 16! in the range of box sizes
between 12 fm<Rbox<14 fm. In this rather narrow region
the SkP results are not stable because of the domi
surface-type character of its pairing interaction. Since the
Gogny interaction is more of the volume type~Sec. III B 1!,
it requires much smaller distances to saturate.

H. BCS approximation

When inspecting Fig. 9, it is obvious that by applying t
BCS approximation to the state-independent pairing fo
and by allowing the BCS-type pairing correlations to d
velop in such a dense spectrum, the result can be disast
The seniority force gives rise to thenonlocalized pairing
field @52#

h̃BCS~rs,r8s8!52DBCSd~r2r8!dss8, ~5.16!

i.e., to a constant pairing gap, identical for all states. T
high density of single-particle states in the particle co
tinuum immediately results in an unrealistic increase of B
pairing correlations@14#. One may, in principle, artificially
readjust the pairing strength constant to avoid such an
crease, but then the predictive power of the approach is

FIG. 18. Same as Fig. 16 for the D1S interaction, but a
function of the number of oscillator shellsNsh. For everyNsh the
oscillator-basis frequencyv0 is adjusted as described in the text.
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and, moreover, the spatial asymptotic properties of the so
tions are still going to be incorrect.

To illustrate the latter point, Fig. 19~top panel! shows the
neutron densities in150Sn calculated for several values o
Rbox within the HF1BCS approximation. In order to avoid
the increase of pairing correlations with increasing density
states, the calculations have been performed by fixing
values of the pairing gap. For every box sizeRbox, the value
of DBCS has been set equal to the average pairing gap^D&
obtained within the HFB method. The corresponding^D&
values are quoted in Fig. 15.

It is not too surprising to see that the asymptotic behav
of the density calculated in the HF1BCS1^D& method~top
panel! is entirely different than that shown in Fig. 14. Be
cause of a nonzero occupation probability of quasibou
states, there appears an unphysical gas of neutrons surro
ing the nucleus. In Fig. 19 this gas has a constant density
r.631025 fm23, independent ofRbox. This result means
that an external pressure would have been necessary to k
the neutrons inside the box. Namely, had the box bound
condition been released, one would have observed a stre
of neutrons escaping the nucleus. This is a completely a
ficial ~and unwanted! feature of the BCS approximation, be
cause for a negative value of the Fermi energy, neutro
cannot be emitted.

In the above example the density of the neutron gas
Rbox525 fm corresponds to about four neutrons uniform
distributed in the sphere ofR5Rbox. Needless to say, by
increasing the box radius, the number of neutrons in the g

a

FIG. 19. Same as in Fig. 14, but for the single-neutron densit
calculated within~i! the HF1BCS1^D& approach with the con-
stant pairing gaps as listed in Fig. 15~top panel!, ~ii ! the
HF1BCS1SkPd model ~middle panel!, and ~iii ! the HF1BCS
1SkP model~bottom panel!. In all these calculations the same pair
ing space~i.e., energy cutoff! was used as in Fig. 14.
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2830 53J. DOBACZEWSKIet al.
grows at the expense of the number of neutrons constitut
the nucleus in the center of the box. Since the total avera
number of neutrons is conserved, by changingRbox one ac-
tually performs an unphysical study ofdifferentnuclei, sur-
rounded by a neutron gas of a fixed density. Another con
quence of the presence of a gas of particles is that the
nuclear radius cannot be calculated in BCS theory, beca
the results strongly depend on the box size~see discussion in
Refs.@52,11#!.

It has been suggested in the literature@86# that the above
deficiencies of the BCS approximation can be cured by a
plying to them the state-dependent-pairing-gap versio
where the pairing gap is calculated for every single-partic
state using an interaction which is not of the seniority typ
@The corresponding BCS equations resemble the canoni
basis relations~4.19!.# In such an approach one hopes th
the majority of continuum states would neither contribute
the pairing field~e.g., because of their very different spatia
character! nor result in the appearance of the unphysical g
This conjecture is tested in Fig. 19~middle and bottom
panel! where the neutron densities obtained within the sta
dependent version of the BCS approximation using t
SkPd and the SkP interactions are presented. It is seen th
reduced coupling of some continuum states to the pair
field does indeed decrease the gas density; however,
asymptotic behavior of the density is still incorrect.

In the above plots, the shaded lines represent the asy
totic behavior given by Eq.~5.14a! assumingEmin50, i.e.,
that of a single-particle state at the Fermi energy. It is se
that a surplus density above this asymptotic limit appears
large distances. However, the deficiencies of the sta
dependent BCS approximation, as used for example in R
@86,36,87#, are certainly less acute than those of th
seniority-pairing BCS. For example, in this type of approa
one may probably calculate radii of nuclei much nearer
the drip line.

It is clear that the neutron gas appears in the BCS so
tions because of the nonzero occupation probabilities of sc
tering states. Therefore, one may think that excluding t
scattering states from the pairing phase space could b
decisive solution to the problem. However, for drip-line nu
clei, where the Fermi energy is by definition close to zer
the remaining phase space would then be small, and
would lead to an artificial quenching of pairing correlation
Moreover, even if the density obtained in a such meth
would vanish asymptotically, the corresponding factorx
would not be governed byD2l.2 MeV, as discussed in
Sec. V F, but by the single-particle energye.0 of the
highest-energy single-particle state considered in BCS cal
lations. This again would lead to densities vanishing at
much slower pace than is required by HFB theory.

VI. PHYSICAL OBSERVABLES FAR FROM STABILITY

In this section are discussed some experimental con
quences of HFB theory, particularly important for weak
bound nuclei.

A. Pairing gaps

Pairing gaps are p-p analogs of single-particle energi
They carry the information about the energies of noncolle
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tive excitations, level occupations, odd-even mass diffe
ences, and other observables. The average neutron canon
pairing gaps~4.15b! are shown in Figs. 20 (120Sn! and 21
(150Sn! as functions of the canonical single-particle energie
~4.15a!.

As seen in the middle part of Fig. 20, pairing gaps ob
tained with the volume-type pairing interaction exhibit a
very weak configuration dependence. In120Sn they decrease
slightly with em but remain confined between 1.0 and
1.5 MeV. In general, the values ofDm for the s1/2 states are
slightly larger than for other orbitals, which is again relate
to the volume character of volume delta interaction.

The results presented in the bottom part of Fig. 20 nice
illustrate the surface character of the SkP pairing interactio
Indeed, here the pairing gaps increase from 0.5 MeV~deep-
hole states! to about 1.25–1.5 MeV when the single-particle
energies increase towards the Fermi energy, and then th
decrease again to about 1.0 MeV for positive single-partic
energies. This is related to the fact that orbitals near th
Fermi level are concentrated in the surface region.

Still another type of behavior is obtained for the finite
range Gogny interaction~top part of Fig. 20!. Here, the pair-
ing gaps decrease steadily with single-particle energy.
120Sn the values ofDm decrease from about 2.5 MeV for
deep-hole states to about 0.75 MeV for positive-energ
states.~A similar energy dependence of pairing gaps wa
obtained in the BCS calculations of Ref.@17# with the renor-
malized Paris potential.! Interestingly, the values obtained
for the high-l , j5l 2 1

2 orbitals ~antiparallelL-S coupling!
are significantly larger than those for other orbitals. The di

FIG. 20. Average values of the neutron p-h and p-p potentia
enl j andDnl j @Eqs. ~4.15!# in the canonical states calculated for
120Sn in HFB1D1S ~top!, HFB1SkPd ~middle!, and HFB1SkP
~bottom! models. Only the states withvnl j

2 .0.0001 are displayed.
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ferent ranges ofem values for SkP and D1S in Fig. 20 reflec
the different effective masses in both models. A rather l
effective mass in D1S,m* /m50.70, gives rise to a reduce
level density and a more bound 1s1/2 ground state as com
pared with the SkP model (m* /m51!. In fact, due to the
nonlocal exchange contributions to the p-h mean field~Ap-
pendix A!, the 1s1/2 state in the Gogny model has a canonic
energy lower than the bottom of the local potential we
shown in Fig. 3.

In 120Sn, the HFB1D1S pairing gaps at the Fermi energ
are of the order of 1.75 MeV, which slightly overestimat
the values corresponding to the odd-even mass staggerin
this region. However, one should bear in mind that the pa
ing gaps at the Fermi energy are rather rough approximat
to the odd-even mass difference. A more accurate descrip
can be obtained by performing blocked HFB calculations
odd-mass isotopes. In the vicinity of120Sn this method
yields the odd-even mass staggering of 1.6 MeV@56# for the
D1S interaction and of 1.3 MeV@52# for the SkP interaction.
Another contribution to the odd-even mass difference com
from the coupling to the low-lying collective modes. Ther
fore, the D1S parameters have been adjusted@56# to give the
pairing gap in tin to be 0.3 MeV larger than the experimen
one. On the other hand, such a margin has not been ta
into account for the SkP and SkPd forces. Clearly, a detailed
comparison of the values of pairing gaps for the interactio
discussed in Fig. 20 is delicate. Much more information c
actually be derived from the comparison of their depende
on the single-particle energies, which is markedly differe

The general pattern ofDm remains very similar when go
ing to the neutron-rich nucleus150Sn ~Fig. 21!. In particular,
the magnitude of the average pairing gap in deep-hole st

FIG. 21. Same as in Fig. 20, but for150Sn.
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depends strongly on the range and density dependence
pairing interaction.

Figure 22 shows the average neutron pairing gaps@Eqs.
~4.4! and ~4.18!# for SkP, SIIId, and D1S interactions. The
large values of̂D& obtained in HFB1D1S can be explained
by ~i! an overall larger magnitude of pairing correlations i
tin nuclei and~ii ! strong pairing correlations in deep-hole
states which strongly contribute to the average, Eq.~4.18!. It
is to be noted, however, that despite the stronger pairing
D1S, the HFB1D1S pairing gaps vanish atN5126 ~near the
two-neutron drip line!, in contrast to the HFB1SkP result.
This difference may be traced back to a much larger co
tinuum phase space taken into account in our HFB1SkP
calculations~Sec. V G! which are performed in the coordi-
nate representation, and to a largerN5126 shell gap~4.2
MeV in 168Sn! obtained with D1S.~The increase of proton
pairing gaps when approaching the proton drip line has be
calculated previously in Ref.@79# with the HFB1SkP model
and explained in a similar way.! The disappearance of the
neutron pairing atN5126 in the HFB1SIII d model is partly
due to the volume character ofh̃ ~a weaker coupling to the
particle continuum! and partly due to a largerN5126 shell
gap @53#.

B. Shell effects

As discussed in Sec. IV A, diffused nucleonic densitie
and very strong, surface-peaked, pairing fields obtained w
the density-dependent pairing interaction are expected
lead to very shallow single-particle potentials in drip-line
nuclei. Because of a very diffuse surface~no flat bottom!, the
resulting single-particle spectrum resembles that of a ha
monic oscillator with a spin-orbit term~but with a weakened
l 2 term! @77#. Schematically, this effect is illustrated in the
left panel of Fig. 23. By comparing with the situation char
acteristic of stable nuclei~right panel of Fig. 23!, a new shell
structure emerges with a more uniform distribution o
normal-parity orbits and a unique-parity intruder orbit whic
reverts towards its parent shell. Such a new shell structu
with no pronounced shell gaps, would give rise to differen
kinds of collective phenomena@14,88#.

The effect of the weakening of shell effects in drip-line
nuclei, first mentioned in the astrophysical context@89#, was
further investigated in Refs.@10,77,53#. First analyses of its

FIG. 22. Average neutron pairing gaps^DN& @Eq. ~4.4!# calcu-
lated for SkP~solid!, SIII d ~dashed!, and D1S~dotted! interactions
for the series of tin isotopes.
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consequences for the nucleosynthesis have also been
formed @13,90#. Microscopically, it can be explained by~i!
the changes in the mean field itself due to weak binding~see
above! and ~ii ! a strong pairing-induced coupling betwee
bound orbitals and the low-l continuum.

C. Separation energies

Weakening of shell effects with neutron number ma
fests itself in the behavior of two-neutron separation en
gies. This is illustrated in Fig. 24 which displays the tw
neutron separation energies for theN580, 82, 84, and 86
spherical even-even isotones. The largeN582 magic gap,
clearly seen in the nuclei close to the stability valley and
the proton drip line, gradually closes down when approa
ing the neutron drip line. The quenching of the neutron sh
structure withN is not a generic property of all effective

FIG. 23. Sequences of nuclear single-particle levels for vari
potentials. Orbitals are labeled by the spherical quantum numb
From left to right:~i! shell structure for a potential with spin-orb
term but with a very diffuse surface,~ii ! theNosc54 and 5 shells of
the harmonic oscillator potential,~iii ! no spin-orbit term, leading to
a degenerate spin-orbit pattern as observed in, e.g., hypernuclei
~iv! shell structure characteristic of nuclei near the stability valle

FIG. 24. Two-neutron separation energies for theN580, 82, 84,
and 86 spherical even-even isotones calculated in the HFB1SkP
model as a function ofN̄/Z ~lower scale,N̄583! or Z ~upper scale!.
The arrows indicate the proximity of neutron and proton drip lin
per-
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interactions. As seen in the plot ofS2n and lN for the tin
isotopes~Fig. 25! this effect is seen in the SkP and SkPdr

models, and, to some degree, also in the SkPd model. ~A
weak irregularity atN5126 reflects the weaker coupling t
continuum for the volume pairing@34#.! The strong shell
effect seen in the SIII and SkM* results has been discusse
in Ref. @53#; it can be attributed to the low effective mass
these forces. The result of the D1S model, both forS2n and
lN , is close to that of the SkPd model. It is interesting to
point out that the QLM calculations of Ref.@42# ~with
m* /m51) for the Sn isotopes yield very similar results
those of HFB1SkP.

The very neutron-rich nuclei, as those shown in Fig. 2
cannot be reached experimentally under present labora
conditions. On the other hand, these systems are the buil
blocks of the astrophysicalr process; their separation ene
gies, decay rates, and cross sections are the basic quan
determining the results of nuclear reaction network calcu
tions. Consequently, one can learn about properties of v
neutron-rich systems by studying element abundan
@12,91#. The recentr -process network calculations@13#,
based on several mass formulas, indicate a quenching o
shell effect atN582 in accordance with the results of HF
1SkP model.

D. Deep hole states

The pairing interaction between bound orbitals and t
particle continuum is partly responsible for the appearance
particle widths of deep-hole states and the term-repuls
phenomenon~strong repulsion between single-particle le
els! @33,34#. In the distorted-wave Born approximatio
~DWBA! and for the local pairing fieldŨ the particle width
is given by

ous
ers.
it

, and
y.

es.

FIG. 25. Two-neutron separation energiesS2n ~top! and Fermi
energieslN ~bottom! for the Sn isotopes, calculated in the HF
approach with several Skyrme interactions and the Gogny-D1S
teraction.
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G i52pU E d3rw i~r!Ũ~r!we~r!U2. ~6.1!

Here,w i(r ) is the HF wave function of the bound deep-hol
statei with the single-particle energyl2Ei in the absence
of pairing, whilewe(r ) is the HF wave function of the un-
bound state with the energyl1Ei .

Equation~6.1! is obtained by assuming that the p-p field
of the HFB Hamiltonian can be treated perturbatively. A
more consistent way would be to estimateG i based on self-
consistent HFB solutions containing pairing correlation
The proper formulation of the nonperturbative HFB-base
theory of deep-hole states and one-particle transfer proces
still needs to be developed.

As discussed in Ref.@34#, G i is sensitive to the type of the
pairing force. In general, the widths are larger for surfac
pairing than for volume pairing. However, the result for a
individual state strongly depends on its angular momentu
and excitation energy.

Experimentally, total widths of deep-hole states,G tot , are
of the order of MeV’s~see, e.g., Refs.@92–95#!. That is, the
partial width ~6.1!, of the order of 10–100 keV, constitutes
an extremely small fraction ofG tot . Consequently, the ex-
perimental determination ofG i alone is very unlikely.

E. Pair transfer form factors

There are many interesting aspects of the physics of u
stable nuclei which are related to reaction mechanism stu
ies: weak binding, large spatial dimensions, skins~see, e.g.,
Refs. @2,96,97#!. Below, we discuss some consequences
surface-peaked pairing fields for pair transfer studies.

An experimental observable that may probe the charac
of the pairing field is the pair transfer form factor, directly
related to the pairing densityr̃. The difference in the asymp-
totic behavior of single-particle densityr and pair density

r̃ in a weakly bound system~see Secs. III B 1 and V F! can
be probed by comparing the energy dependence of o
particle and pair-transfer cross sections. Such measureme
when performed for both stable and neutron-rich nuclei, c
shed some light on the asymptotic properties of HFB den
ties and hence on the character of pairing field.

Figure 26 displays the pair transfer form factorsr 2r̃(r )
calculated in120Sn, 150Sn, and172Sn with the SkP interac-
tion. These microscopic results are compared with the ma
roscopic form factorsr 2dr(r ) @98# which are determined by
using the derivative of the particle density with respect to th
neutron number:

dr~r !52
2Epair

^D&

dr~r !

dN
, ~6.2!

whereEpair is given by Eq.~4.3!. This expression can be
motivated by the fact that only the orbitals near the Ferm
surface make significant contributions to the pair density.
BCS theory, the normalization constant indr(r ) is usually
chosen@99# as D/G52Epair/D. Here, we use neither the
BCS approximation nor the constant pairing strengthG.
Therefore, the normalization2Epair/^D& is employed. The
derivative in Eq.~6.2! is calculated from the finite difference
between the self-consistent results for the HFB vacuum c
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responding to particle numbersN11 andN21. In these cal-
culations, in order to explore the smooth dependence on
particle numberN, the odd-average-particle-number vacu
have been calculated without using the blocking approxim
tion. It should be mentioned at this point that the furthe
approximation@98,100# of the derivativedr(r )/dN by the
spatial derivativedr(r )/dr is not justified, because the
volume-conservation condition is not valid for the neutro
density distribution~see Fig. 1!.

The pair transfer form factors in Fig. 26 clearly show tha
this process has a predominantly surface character. The m
roscopic form factors have smaller widths and highe
maxima than the microscopic ones. On the other hand, th
are smaller in the interior of the nucleus as well as in th
asymptotic region. Inb-stable nuclei the macroscopic ap
proximation works fairly well, while in drip-line nuclei the
differences between the two form factors are marked
larger. In general, the corresponding differences are mu
larger than those obtained within the BCS and the particl
number-projected BCS approaches for the seniority intera
tion @101#.

A comparison of the results obtained for different isotope
conspicuously shows a significant increase in the pair tran
fer form factors in the outer regions of drip-line nuclei. In
120Sn, the form factors vanish around 9 fm, while in150Sn
and 172Sn they extend to much larger distances. This effect
particularly pronounced for the microscopic pair transfe
form factors.

F. Other observables

The importance of the HFB treatment for calculations o
nuclear radii has been discussed in several pap
@52,79,31,11#. As mentioned in Sec. II, odd-even staggerin

FIG. 26. Pair transfer form factor,r 2r̃(r ), calculated directly
from the HFB pairing densityr̃(r ) ~solid lines!, compared with the
macroscopic form factor calculated from the derivative of the pa
ticle densitydr(r ) ~dashed lines!.
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of rms charge radii is one of the best experimental indicat
of the density-dependent pairing. The proper treatment of
pairing effect on radii is especially important for weak
bound systems which exhibit halo or skin effects@35,79,11#
~cf. discussion in Sec. V G!.

Apart from information on the nuclear rms radii, one m
also gain some experimental insight into the ratios of neut
and proton densities at large distances from the center of
nucleus@102,103#. This is possible due to experiments o
antiproton annihilation from atomic orbits, which leads
different reaction products depending on whether the proc
involves a proton or a neutron.

The role of deformation in neutron drip-line nuclei sti
needs to be investigated. One can anticipate that due t~i!
very diffused surfaces and~ii ! strong pairing correlations, the
geometric concept of collective deformation~defined as a
deviation of nuclear surface from sphericity! should be revis-
ited. In this context, symmetry-unrestricted HFB calculatio
in coordinate space are called for.

VII. SUMMARY AND CONCLUSIONS

The advent of radioactive nuclear beams provides m
exciting opportunities to create and study unstable nuclei
from theb-stability valley. One of the unexplored areas f
from stability is the physics of nuclear pairing in weak
bound nuclei, especially near the neutron drip line. Contr
to the situation characteristic of stable nuclei, the coupl
between the p-h field and the p-p field in nuclei with extrem
N/Z ratios is dramatic; i.e., no longer can pairing be trea
as a residual interaction.

The main objective of this study was to perform a detail
analysis of various facets of pairing fields in atomic nucl
The first part contains the comprehensive summary of
HFB formalism, with particular attention on the physical in
terpretation of the underlying densities and fields. Very lit
is known about the p-p component of the nuclear effect
interaction; its structure is of considerable importance
only for nuclear physics, but also for nuclear astrophys
and cosmology. Therefore, the second part of this work
cuses on the differences between various pairing interacti
In particular, the role of the density dependence and fin
range of the p-p force has been illuminated, and the imp
tance of the coupling to the particle continuum has be
emphasized. Finally, the third part of our study relates
theoretical formalism to experimental observables, i.e.,
ergy spectra, masses, radii, and pair transfer form factor
is demonstrated that these observables carry invaluable in
mation that can pin down many basic questions regarding
effectiveNN force, and its pairing component in particula
It should be stressed, however, that in order to see cle
some of the predicted effects, an excursion far from the v
ley of b stability is necessary.

The analysis presented in this paper should be viewed
useful starting point for future investigations. One of them
the coupling between collective surface modes~e.g., defor-
mation! and pairing fields in weakly bound nuclei. Anothe
interesting avenue of exploration is the role of dynami
e.g., the importance of particle number conservation and
coupling to pair vibrations. A fascinating and difficult re
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search program is the microscopic description of excit
states, especially those lying above the particle emiss
threshold, for which the boundary conditions used in th
study ~an impenetrable box! have to be modified to accoun
explicitly for outgoing waves. We are only beginning to ex
plore the many unusual aspects of the nuclear many-bo
problem offered by systems with extremeN/Z ratios.
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APPENDIX A: THE p-h AND p-p MEAN-FIELD
HAMILTONIANS FOR A LOCAL TWO-BODY

FINITE-RANGE GOGNY INTERACTION
The Gogny force@57,56# is composed of the central, spin

orbit, density-dependent, and Coulomb interactions. T
spin-orbit and density-dependent terms have zero range,
their contributions to the p-h and p-p mean fields are iden
cal to those of the Skyrme interaction. The correspondi
expressions can be found in several papers, e.g., R
@104,52#, and will not be repeated here. In the following w
only consider the central finite-range and Coulomb term
The central components read

V̂cen5(
j51

2

e2~r2r8!2/m j
2
~Wj1BjPs2HjPt2M jPsPt!,

~A1!

wherePs and Pt are the exchange operators for spin an
isospin variables, respectively. This interaction is local; i.e
it should be multiplied byd(r12r18)d(r22r28) before it is
inserted in the integrals~4.2! defining the mean fields. More-
over, it should also be multiplied by the antisymmetrizin
operator (12PrPsPt), wherePr is the exchange operator
for space variables. One usually calls the term involvingPr
the exchange term, while the term involving no space e
change is called the direct term.

The space, spin, and isospin variables are denoted br,
s56 1

2, andt56 1
2, respectively. The parametersm j , Wj ,

Bj , Hj , andM j belong to the set called D1S@105# which
has been used in this paper. Since the expressions given
the j51 and 2 components are identical, in what follows w
drop the indexj to increase the legibility of the formulas.
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1. Contribution of the central direct interaction to the p-h mean field

Since the interaction~1.1! is local, the direct term gives the p-h mean field~4.2a! which is also local, i.e.,

Gdir
t ~rs,r8s8!5d~r2r8!dss8E d3r1e

2~r2r1!2/m2

(
t1

@~W2Hdtt1
!rt1~r1!1~B2Mdtt1

!rt1~r1s,r1s!#

1d~r2r8!ds2s8E d3r1e
2~r2r1!2/m2

(
t1

~B2Mdtt1
!rt1~r1s,r12s!, ~A2!

wherert(r) is the density of nucleons~3.23a! of type t.
Assuming that we consider only the states which are even with respect to the time reversal, the density matrix~3.13a! obeys

the relation~3.14a!. Consequently, the densitiesrt(rs,rs) for s56 1
2 are equal to12r

t(r), and the densitiesrt(rs,r2s)
vanish. Therefore, the term in~A2!, which is proportional tods2s8, vanishes, and the contribution of the direct term to the
mean field is the local, spin-independent potential

Gdir
t ~rs,r8s8!5d~r2r8!dss8U~r!, ~A3!

where

U~r!5E d3r1e
2~r2r1!2/m2

@~W1B/2!r~r1!2~H1M /2!rt~r1!#. ~A4!

One should note that due to the locality of the interaction, the direct term depends only on the local densities.

2. Contribution of the central exchange interaction to the p-h mean field

Because of the locality of the interaction, the contribution of the exchange term to the p-h mean field invol
integration:

Gexc
t ~rs,r8s8!5e2~r2r8!2/m2

(
t1

Fdss8S ~M2Bdtt1
!(

s1

rt1~rs1 ,r8s1!1~H2Wdtt1
!rt1~rs,r8s! D

1ds2s8~H2Wdtt1
!rt1~rs,r82s!G . ~A5!

Here the time-reversal symmetry does not bring any simplification. However, a simpler formula is obtained in case
rt1(rs,r8s8) is real. It follows from Eq.~3.14a! that the densitiesrt1(rs,r8s) are equal to12(srt1(rs,r8s), which finally
leads to

Gexc
t ~rs,r8s!5e2~r2r8!2/m2

(
t1

@M1H/22~B1W/2!dtt1
#(

s1

rt1~rs1 ,r8s1!, ~A6!

Gexc
t ~rs,r82s!5e2~r2r8!2/m2

(
t1

~H2Wdtt1
!rt1~rs,r82s!. ~A7!
.
ns

-

3. Contribution of the Coulomb interaction
to the p-h mean field

Derivation of the direct and exchange Coulomb fields
similar to the one of the finite range term~A1! with several
additional simplifications. When the nuclear state is tim
reversal invariant, one obtains the following contributions
the proton p-h mean field in terms of the proton densities

GCoul-dir
p ~rs,r8s8!5d~r2r8!dss8E d3r1

e2

ur2r1u
rp~r1!,

~A8!

GCoul-exc
p ~rs,r8s8!5

e2

ur2r8u
rp~rs,r8s8!. ~A9!
is

e-
to
:

4. Contribution of the central interaction to the p-p mean field

The general form of the pairing field is given by Eq
~4.2b!. In this case the direct and the exchange contributio
are equal. For the local central force~A1!, the total contri-
butions to the p-p mean field have the form:

h̃t~rs,r8s!5e2~r2r8!2/m2
@~W2H !r̃ t~rs,r8s!

2~B2M !r̃ t~r8s,rs!#, ~A10!

h̃t~rs,r82s!5e2~r2r8!2/m2
~W1B2H2M !

3 r̃ t~rs,r82s!. ~A11!

Again it is to be noted that due to the locality of the interac
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tion, the corresponding p-p mean fields do not involve a
integration but are proportional to the pairing density ma
ces. In the case considered in this study~time-even densi-
ties!, the contribution~A11! vanishes.

Since the exchange parameter of the zero-range den
dependent term of the Gogny D1S interaction is fixed
x051, this term does not contribute to the p-p mean fie
Moreover, the spin-orbit and Coulomb terms usually g
small contributions as compared to those of the central fo
~A1!.

5. Numerical methods used for the calculation
of the mean fields

Computation of the exchange p-h mean fields, Eqs.~A6!,
~A7!, and~A9!, and the pairing fields, Eqs.~A10! and~A11!,
is straightforward. It only requires the knowledge of the sp
tial spin-dependent nonlocal particlert(rs,r8s8) and pair-
ing r̃ t(rs,r8s8) densities.

Computation of the direct p-h mean field, Eq.~A3!, and
the direct Coulomb mean field, Eq.~A8!, is more compli-
cated since it requires the evaluation of three-dimensio
integrals of the form

Im~r!5E d3r8e2~r2r8!2/m2
r~r8!, ~A12!

I C~r!5E d3r8
1

ur2r8u
r~r8!. ~A13!

In order to computeIm(r) of Eq. ~A12! we use the standar
Gauss-Hermite quadrature. The computation of the Coulo
integral ~A13! is more difficult due to the infinite range o
the Coulomb force. The method we have used consist
expressing the Coulomb force as a sum of Gaussians:

1

ur2r8u
5

2

Ap
E
0

`dm

m2 e
2~r2r8!2/m2

, ~A14!

and therefore reducing the calculation ofI C(r) to that of
Im(r). In order to perform the remaining one-dimension
integration over m, we change this variable to
j5b/Ab21m2, whereb is the largest of the three harmoni
oscillator lengthsb1 , b2 , andb3 . This change of variable is
convenient since the range of integration becomes@0,1# and
the integral can be very accurately computed using
Gauss-Legendre quadrature.

APPENDIX B: THE ENERGY CUTOFF

Calculations which are based on the schematic pai
interaction or on the contact force@Eq. ~B2!# require a finite
space of states in the p-p channel. For such interacti
when this space is increased, the pairing energy diverge
any fixed strength of the interaction. This divergence is
well-known effect@23# related to the fact that for the conta
interactions the matrix elements do not~or too slowly! de-
crease with the excitation energy. This is not a case
finite-range interactions, such as the Gogny, interaction
which the pairing energy converges to a finite value.

Since it is considerably easier to use zero-range inte
ny
tri-

sity-
at
ld.
ive
rce
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nal
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al
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the

ring
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s for
a

ct

for
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rac-

tions than finite-range interactions, one applies the form
ones in a limited configuration space determined by a cut
in the single-particle energy or in the single-quasiparticle e
ergy. This can be understood as a phenomenological int
duction of the finite range@35#. There are two other argu-
ments in favor of such a procedure. First, the scattering
particles in the nuclear medium at very high energies~or at
very small distances! is very little known, and the particular
form offered by any phenomenological finite-range force
very uncertain. Second, the single-particle wave functio
are primarily determined by the p-h channel of the intera
tion, and they, in general, spread throughout distances wh
are much larger than the range of the p-p interaction. The
fore, physical differences between the zero- and short-ran
p-p forces cannot be expected to be very pronounced.

Within the BCS approximation, and assuming a consta
density of the single-particle states at large energies, one
derive @23,106# a prescription to renormalize the strength o
the p-p interaction in such a way that the pairing gapD does
not depend on the energy cutoff. Suppose that the sing
particle states with energies2e l<e2l<eu are used to
solve the BCS equations for the force of strengthV0 . Then,
within the specified approximations, the following relatio
holds:

V052
C0

ln~2Ae leu/D!
, ~B1!

whereC0.300 MeV fm3 is a constant inversely proportiona
to the density of single-particle states near the Fermi ener
In other words, for given values ofC0 andD, Eq. ~B1! gives
values ofV08 for any other choice of the cutoff energiese l8
andeu8.

Since in the present study we use the HFB method inste
of the BCS approximation, and since the density of states c
hardly be considered to be independent of energy~actually
for fixed Rbox it increases asAe), formula ~B1! cannot be
directly used. However, the question as to what extent t
pairing strengths can be renormalized for a zero-range p
interaction can be addressed by analyzing the numerical
lutions of the HFB equations.

Figure 27~top panel! shows the neutron pairing energie
Epair @Eq. ~4.3!# calculated for the SkPd interaction which
uses the contact p-p interaction~B2! with V052160
MeV fm3. It should be recalled at this point that for al
coordinate-space HFB calculations presented in this stu
the cutoff energyEmax depends on the quantum number
l j ~cf. Ref. @52#!. In the tin nuclei,Emax decreases from
about 40 MeV for thes1/2 states to zero for thek17/2 states. In
Figs. 27–29 different curves correspond to different cuto
energiesEmax8 5Emax1DEmax (DEmax varied between 0 and
40 MeV!. Hence,DEmax540 MeV corresponds to the cutoff
energyEmax8 of 80 MeV for thes1/2 states and 40 MeV for
the largest values ofl .

As expected, pairing energies depend significantly on t
cutoff energy. Comparing results forDEmax540 MeV with
those forDEmax50, one obtains differences ofEpair of the
order of 10–20 MeV in the midshells. Because of the se
consistent readjustment of the p-h and p-p energies, the c
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responding differences in the total energies~Fig. 28! are
much smaller, 2–4 MeV, but still significant.

In the bottom panels of Figs. 27 and 28 are shown simil
results for the renormalized strengths of the contact for
~B2!. The values ofV0 , quoted in the caption of Fig. 27,
have been obtained by requiring that the average neutr
pairing gap in 120Sn, ^DN&51.245 MeV, not depend on
DEmax. With such renormalized interactions, one obtain
very small changes of total energies~Fig. 28, bottom panel!.
The largest deviations do not exceed 200 keV and 800 ke
in stable and exotic isotopes, respectively, and can be saf
disregarded when compared to all other uncertainties
methods used to extrapolate to unknown nuclei, or whe
studying the separation energies.

Figure 29 shows the effective pairing-interaction strength
defined schematically asGeff52^D&2/Epair. The top panel
presents the results obtained forV052160 MeV fm3 and
for different values ofDEmax. One can see that the depen
dence on the cutoff energy is very weak, and theDEmax
dependence of̂ D&2 and Epair cancels out inGeff . ~At
N582 the pairing gap and the pairing energy both vanis

FIG. 27. Pairing energiesEpair in the tin isotopes calculated
within the HFB1SkPd model. Top panel shows the results for the
fixed interaction strengthV052160 MeV fm3 and for several cut-
off energiesDEmax addedto the usuall j -dependent cutoff energy
Emax @52#. Bottom panel shows similar results when the values o
V0 are renormalized to2158.64, 2149.57, 2145.41, and
2142.01 MeV fm3 for DEmax510, 20, 30, and 40 MeV, respec-
tively.
ar
ce

on

s

V
ely
of
n

s

-

h,

and hence theGeff values cannot be calculated.! A fixed
value of V0 gives, therefore, a well-defined, cutoff-
independent value of the effective pairing strength for eve
isotope. This result, together with the analysis of pairing ga

f

FIG. 28. Same as in Fig. 27, but for the total energy relative t
that obtained withDEmax50.

FIG. 29. Same as in Fig. 27, but for the effective pairing
strength defined asGeff52^D&2/Epair . The inset shows the renor-
malized strengthV0 compared with that given by Eq.~B1!.
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distributions in Sec. VI A, demonstrates that calculatio
employing the volume contact p-p interaction are, in ma
respects, similar to those with the schematic seniority-pair
force ~cf., however, Sec. V F!.

The values ofGeff monotonically decrease with increasin
neutron numberN. The obtained dependence can be ve
well described by the simple Madland-Nix formula@107#
G511 MeV/~111N), while the Jensen-Miranda formula
@108# G50.18 MeV @121.2I22.8I 2] @I5(N2Z)/A# gives
a much faster decrease ofGeff with N. ~In a recent study
@109#, based on a schematic finite-range force, the isos
dependence ofG has been discussed. The authors found
sign of theI 2 term suggested in Ref.@108#. This probably
explains the disagreement seen in Fig. 29.! In both expres-
ns
ny
ing

g
ry

pin
no

sions we have normalized the multiplicative constants to
tainG50.18 MeV atN5Z550.

The bottom panel of Fig. 29 shows similar results, but
the renormalized values ofV0 , quoted in the caption of Fig
27. The inset shows the values ofV0 ~dots! as function of
DEmaxcompared with the simple fit by the formula~B1! with
eu5e l1DEmax, for e l540 MeV, C05430 MeV fm3, and
D55.58 MeV ~solid line!. One can see that the generic d
pendence of the renormalized values ofV0 onDEmax is fairly
well reproduced, although the numerical constantsC0 and
D obtained from the fit do not exactly correspond to t
values inferred from BCS theory with a constant density
single-particle states.
t

d

-

f

,
-
-

.

nd
@1# E. Roeckl, Rep. Prog. Phys.55, 1661~1992!.
@2# A. Mueller and B. Sherril, Annu. Rev. Nucl. Part. Sci.43,

529 ~1993!.
@3# P.-G. Hansen, Nucl. Phys.A553, 89c ~1993!.
@4# W. Nazarewicz, J. Dobaczewski, and T.R. Werner, Phy

Scr. T56, 9 ~1995!.
@5# U. Fano, Phys. Rev.124, 1866~1961!.
@6# R.J. Philpott, Nucl. Phys.A289, 109 ~1977!.
@7# P.E. Haustein, At. Data Nucl. Data Tables39, 185 ~1988!.
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