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Ground-state properties of exotic even-even nuclei with extreme neutron-to-proton ratios are described in the
framework of self-consistent mean-field theory with pairing formulated in coordinate space. This theory prop-
erly accounts for the influence of the particle continuum, which is particularly important for weakly bound
systems. The pairing properties of nuclei far from stability are studied with several interactions emphasizing
different aspects, such as the range and density dependence of the effective interaction. Measurable conse-
guences of spatially extended pairing fields are presented, and the sensitivity of the theoretical predictions to
model details is discussed50556-281®6)04406-§

PACS numbes): 21.10-k, 21.30.Fe, 21.60.Jz

I. INTRODUCTION the one-neutron drip line, defined by the condition
One of the most exciting challenges in today’s nuclearS“(Z'N):B“(Z’N)_B”(Z’N_l)zo’ IS solely determined

structure studies is the physics of exotic nuclei far from theby the binding energy difference between two neighboring

line of B stability. What makes this subject particularly in- isotopes. Analogously, the vanishing two-neutron separation

teresting(and difficuly is the unique combination of weak gnergySZn(Z,N)=Bn(Z,N)—Bn(Z,N—Z) deflnes the posi-
o L . : tion of the two-neutron drip line. Since experimental masses
binding and the proximity of the particle continuum, both

: : ) ébinding energiesnear the neutron drip lines are unknown,
implying the large diffuseness of the nuclear surface an .
In order to extrapolate far from stability, the large-scale mass

xtrem tial dimension haracterizing th term .
Euclior?s[ir—)j]a dimensions  characte 9 the oulerMOtaiculations are usually usedee, e.g.[7-11]). However,

For weakly bound nuclei the decay channels have to bSince their techniques and parameters are optimized to repro-

considered explicitly. Because of the virtual scattering Ofdl:]cehknor\]/vn atqrrlnc mazsesd itis d by nobmganj fObV'OlljS
nucleons from bound orbitals to unbound scattering stated/N€ther the particle number dependence obtained from glo-

the traditional shell-model technology becomes inappropriP@l calculations at extreme values NfZ is correct. Apart

ate. The proper tool is the continuum shell mode6] which from_strong theoretical z_and exp_erimental _interest in nut_:lear
correctly accounts for the coupling to resonances; the singlehysics aspects of exotic nuclei, calculations for nuclei far
particle basis of the continuum shell model consists of bot{rom stability have strong astrophysical implications, espe-
bound and unbound states. The explicit coupling betweesially in the context of the -process mechanisfil2,13.
bound states and the continuum and the presence of low- In previous work 14] several aspects of nuclear structure
lying low-/" scattering states invites a strong interplay be-at the limits of extreme isospin were discussed by means of
tween various aspects of nuclear structure and reactiothe macroscopic-microscopic approach. In the present study,
theory. the ground-state properties of drip-line systems and the sen-
Particularly exciting are new phenomena on the neutronsitivity of predictions to effective forces are investigated by
rich side. Because neutrons do not carry an electric chargepeans of the self-consistent Hartree-Fock-Bogoliubov
the neutron drip line is located very far from the valley of (HFB) approach. Even though this method is not restricted to
B stability. Consequently, neutron drip-line systerti®.,  spherical nuclei, in the present work we decided to stick to
those close to the neutron drip linare characterized by this very special geometry. This restriction largely facilitates
unusually largeN/Z ratios. The outer zone of these nuclei is the discussion of basic principles and allows presenting illus-
expected to constitute essentially a new form of a many-bodgrations for one-dimensiondtadial) dependence of all rel-
system: low-density neutron mattgneutron halos and evant physical quantities.
skins. The paper is organized as follows. Section Il discusses the
Except for the lightest nuclei, the bounds of neutron staeffective interactions employed in this study. Since pairing
bility are not known experimentally. Theoretically, becausecorrelations are crucial for the behavior of drip-line systems,
of their sensitivity to various theoretical details.g., ap- particular attention is paid to the particle-parti¢fep, pair-
proximations used, parameter values, interacjiom®dicted ing) component of the interaction. After a short review of the
drip lines are strongly model dependent. The placement ofeneral properties of effective pairing interactions, with em-
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phasis on the density dependence, the pairing forces investdamiltonian has been approximated by the state-independent
gated in our work, namely, contact forc@elta interaction, seniority pairing force, or schematic multipole pairing inter-
density-dependent delta interaction, and Skyrme interactioraction [16]. Such oversimplified forces, usually treated by
and the finite-range Gogny force, are described. means of the BCS approximation, perform remarkably well
The basic ingredients of the HFB formalism in the coor-when applied to nuclei in the neighborhood of the stability
dinate representatior(single-quasiparticle orbitals, time- valley (where, as pointed out above, pairing can be consid-
reversal symmetry, canonical states, and various densitiegred as a small correctinnAs a result, considerable effort

are defined in Sec. Ill. In contrast to single-quasiparticlewas devoted in the past to optimizing the p-h part of the
wave functions which often contain a scatterifmyitgoing interaction, while leaving the p-p component aside.
component, canonical stat¢Sec. Ill A) are always local- Up to now, the microscopic theory of the pairing interac-

ized, even if they have positive average energy. The intertion has only seldom been applied in realistic calculations for
pretation of particle andespecially pair densities in terms finite nuclei (see Ref[17] for a recent examp)e A “first-
of single-particle and correlation probabilities is given in principles” derivation of the pairing interaction from the
Sec. lll B. This interpretation is essential when relating thebare NN force using the renormalization procedure
calculated HFB densities and fields to various experimentalG-matrix technigqug still encounters many problems such
observables. as, e.g., treatment of core polarizatigi8,19. Hence, phe-
The structure of the HFB equations is analyzed in Sec. IVhomenological pairing interactions are usually introduced.
Here, various functions entering the equations of motioriTwo important open questions asked in this context(gre
(i.e., mass parameters and mean-field potentais intro- the role of finite range, andii) the importance of density
duced for both particle-hol¢p-h) and p-p channel¢Secs. dependence. Since realistic effective interactions are be-
IV A and IV B). lieved to have a finite range, the first question seems purely
The advantage of using the coordinate-space HFB formalacademic. However, the remarkable success of zero-range
ism for weakly bound systems is that in this method theSkyrme forces suggests that, in many cases, the finite-range
particle continuum is treated properly. This important pointeffect can be mocked up by an explicit velocity dependence.
is discussed in detail in Sec. V. In particular, the differenceTo what extent this is true for the pairing channel remains to
between the single-particle Hartree-FO@kF) spectra and be seen. One obvious advantage of using finite-range forces
canonical HFB spectréSec. V B, the asymptotic properties is the automatic cutoff of high-momentum components; for
of the HFB stategSec. V B and densitie§Sec. V F, and the zero-range forces this is solved by restricting the pair
the effect of the pairing coupling to positive-energy statesscattering to a limited energy range and by an appropriate

(Sec.V @ are carefully explained. renormalization of the pairing coupling constésee Appen-
The robust predictions of the formalism for various ex-dix B).
perimental observabldpairing gaps and pair transfer ampli- ~ The answer to the question of the density dependence is

tudes, masses and separation energies, radii, shell gaps, andch less clear. Early calculatiof20,21] for nuclear matter
shell structurgare reviewed in Sec. VI, where experimental predicted a very weakS, pairing at the saturation point
fingerprints of the surface-peaked pairing fields and thgke=1.35fm™ ). Consequently, it was concluded that
quenching of shell effects far from stability are also given.strong pairing correlations in finite nuclei had to be due to
Section VII contains the main conclusions of the paper. Thédnteractions at the nuclear surface. This led to the surface
technical detailgi.e., the form of a mean-field Gogny Hamil- delta interaction(SDI) [22], a highly successful residual in-
tonian and the discussion of the energy cutoff in the Skyrmeeraction between valence nucleons. Of course, the SDI is an

mode) are collected in the Appendixes. extreme example of a surface interaction. More realistic
density-dependent pairing forces are variants of the density-
[l. EFFECTIVE INTERACTIONS IN THE p-p CHANNEL dependent delta interactig®DDI) introduced in the Migdal

. o ) ) . theory of finite Fermi system3|.
_The uniqueness of drip-line nuclei for studies of effective  gjince the effective interactions commonly used in the HF
interactions is due to the very special role played by th&gcylations are bound to be density dependent in order to
pairing force. This is seen from approximate HFB relations,enroduce the compressibility of the infinite nuclear matter
between the Fermi level, pairing gapA, and the particle  [24] (an explicit density dependence is also said to account
separation energg [15]: for three- and higher-body components of the interagfiiin
S~—r—A 2.1) seems natural to introduce the density dependence in the p-p
' ' channel as wel[25].

Since for drip-line nucleB is very small,x +A~0. Conse- Interestingly, the presendabsencgof the density depen-

guently, the single-particle field characterized by(deter- dence in the pai.ri.ng channgl has consequences for the spatial
mined by the p-h component of the effective interactiand properties of pairing densities and fields. As early recognized
the pairing fieldA (determined by the p-p part of the effec- [26] the density-independent p-p force gives rise to a pairing
tive interaction are equally important. In other words, con- 11€ld that has a volume character. For instance, the com-
trary to the situation encountered close to the line of betdnonly used contact delta interaction

stability, the pairing component can no longer be treated as a VA(r ) =Vod(r—r') 2.2
residualinteraction, i.e., a small perturbation important only ’
in the neighborhood of the Fermi surface. leads to volume pairing. By adding a density-dependent

Surprisingly, rather little is known about the basic prop-component, the pairing field becomes surface peaked. A
erties of the p-p force. In most calculations, the pairingsimple modification of forcé€2.2) is the DDDI[25,27,2§
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V(1) =Vod(r—r"){1—[p(r)pc]", (2.3)  semiclassical description of neutron superfluidity in neutron
stars using the Gogny forge.
wherep(r) is the isoscalar nucleonic density, awg, pe, In this study, several self-consistent models based upon

andy are constants. |, is chosen such that it is close to the the HFB approaches are used. The effective ir_1teract_ions em-
saturation densityp.~p(r=0), both the resulting pair den- ployed, and other model parameters, are briefly discussed
sity and the pairing potentia (r) (see Secs. Ill Band IV Delow. _ _ _
are small in the nuclear interior. By varying the magnitude of '€ spherical HFB-Skyrme calculations have been carried
the density-dependent term, the transition from volume pairQUt in spatial cqordmate; foIIow!ng the method introduced in
ing [ p.> p(0) to surface pairing can be probed. Ref.[52] and discussed in detail in Secs. llI-V. Several ef-
What are the experimental arguments in favor of surfacdective Skyrme interactions are investigated. Thesdiatbe

pairing? Probably the strongest evidence is the odd-everkY'Mme parametrization SkP introduced in RE§2] [SkP
staggering in differential radii, explained in terms of the di- @S exactly the same form in the particle-h@deh) and pair-
rect coupling between the proton density and the neutroif’d channel§ (i) Skyrme interaction SkPof Ref. [53] [in _
pairing tensor[29-3J. Other experimental observables € P-h channel, this force is the SkP Skyrme parametriza-
which strongly reflect the spatial character of pairing are thdion, While its pairing component is given by delta interac-
particle widths and energies of deep-hole stdte3,34, tion, .Eq.(2.2)]; (i) the Skyrme interaction SKP of Ref.
strongly influenced by the pairing-induced coupling to thel53][in the p-h channel, this force is the SkP Skyrme param-
particle continuum, and the pair transfer form factors, di-€trization, while its pairing component is given by E2.3)];
rectly reflecting the shape of the pair density. Because oflV) the force S”_lﬁ (in the p-h channel, this is the Siil
strong surface effects, the properties of weakly bound nuclepKyrme parametrizatiofb4J; its pairing component is given
are sensitive to the density dependence of pairing. In partic?y the delta force of Ref53]); (v) the force SkM (in the
lar, the same type of force is used to describe the spatidl-n channel, this is the SkM Skyrme parametrizatiof5],
extension of loosely bound light systefi@—3§. (The mea- and its pairing part is given by the delta force with the pa-
surable fingerprints of surface pairing in neutron-rich sys-‘ameters of Ref{53]).
tems are further discussed in Sec) W this context, it is ~_Apart from other parameters, the above Skyrme forces
also worth mentioning that the self-consistent model with thediffer in their values of the effective mass for symmetric
DDDI has recently been used to describe the nuclear charddiclear matterm*/m. Namely,m*/m is 0.76, 0.79, and 1
radii [39] and the moments of inertia of superdeformed nu-for Slll, SkM*, and SkP, respectively. All HFB-Skyrme re-
clei [40]. In the latter case, the inclusion of a density depenSults have been obtained using the pairing phase space as
dence in the p-p channel turned out to be crucial for thedetermined in Refl52] (see also discussion in Appendiy.B
reproduction of experimental data arouHg. A set qf spherlc_all HFB calculatlpns has also been per-
In a series of papeffg1-43 the quasiparticle Lagrangian forme_d using the finite-range _densﬂy-_dep_endent_Gogny in-
method(QLM) [44] based on the single-particle Green func- teraction D1S of Ref[5_>6]. In this effective interaction57]
tion approach in the coordinate representafit] has been thg central part consists of four terms par.ametr.ized with
applied to the description of nuclear superfluidity. The resultfinite-range Gaussiangsee Appendix A Spin-orbit and
ing pairing interaction, based on the Landau-Migdal ansatglensity-dependent terms of zero range are also included as in
[23], has zero range and contains two-body and three-bod{e Skyrme parametrizations. The pairing f!eld is calculated
components, thus leading to a density-dependent contaf0m the D1S forc_e;_l.e., the same interaction is used for_a
force similar to that of Eq(2.3). Note that in the approxima- Microscopic description for both th_g mean field and the pair-
tions of Ref.[41], the neutronpairing interaction is propor- INg channels. However, by a specific choice of the exchange
tional to the proton density and vice versaHowever, in  contribution, the pairing component of the D1S is density
practical QLM calculations[41-43, a pure density- independent. It is also interesting to note that the pairing
independent delta force was used. component of the D1S is repulsive at short distances and
A better understanding of the density dependence of thattractive at long rangels8,58. For the D1S force, the ef-
nuclear pairing interaction is important for theories of super-fective mass for infinite nuclear matterris*/m=0.70.
fluidity in neutron stars. As pointed out in Rd#6], it is The parameters of the D1S interaction were chosen to
impossible at present to deduce the magnitude of the pairinggProduce certain global properties of a set of spherical nu-
gaps in neutron stars with sufficient accuracy. Indeed, calcu<lei and of nuclear mattef59]. The HFB+Gogny results
lations of 1S, pairing gaps in pure neutron matter, or sym- prese_:nted_ here were pbtaln_ed by expandlng.the HFB wave
metric nuclear matter, based on bai&\ interactions[47] functions in a harmonic oscillator basis containing up to 19
suggest a strong dependence on the force used; in generafells.
the singletS pairing is very small at the saturation point. On
the other hand, nuclear matter calculations with an effective
finite-range interaction, namely, the Gogny foifd@], yield
rather large values of the pairing gap at saturation The HFB approach is a variational method which uses
(A=0.7 MeV). (For relativistic HFB calculations for sym- independent-quasiparticle states as trial wave functions.
metric nuclear matter, see R¢f.8]. The pairing properties These states are particularly convenient when used in a
of the Skyrme force in nuclear matter were investigated irvariational theory, because, due to the Wick theof&f,
Ref. [49]. See also Ref[50] for schematic calculations of one can easily calculate for them the average values of an
pairing properties in nuclear matter based on the Green fun@rbitrary many-body Hamiltonian. Even if the exact eigen-
tion method with a contact interaction, and Rgg1] for a  states of such a Hamiltonian can be rather remote from any

Ill. INDEPENDENT-QUASIPARTICLE STATES
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> Zt(ror’o)ata’ o)
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[61] that one may obtain in this way fair estimates of at least | W) =ex
one-body observables.
An independent-quasiparticle state is defined as a vacuum 3.4

of quasiparticle operators which are linear combinations of ) _ _ ) _
particle creation and annihilation operators. This linear com@Nd is defined by the antisymmetric complex: function
bination is called the Bogoliubov transformatigg2—64. £ (ro.r'o’)= —Z*(ro,r’'a’) of the space-spin coordi-
According to the Thouless theordi5], every independent- nates. Already,_at this pomt,_ we see_thaft any v_arlatlonal
quasiparticle statg¥), which is not orthogonal to the method employing an attractive effective interaction for a

vacuum statd0), i.e., (0]¥)=0, can be presented in the bound finite systemmust lead to functions which are local-
form o ’ ized in space,

one of the independent-quasiparticle states, one can argue p{ 1] =
— = | dordr’
2

(7'(7'[

lim Z(ro,r'¢’)=0 for anyr’, ¢’, ando. (3.5

Ir|—e

1
|W)=ex _EE Z;Va;aj]m), (3.1
nv
Recall that in coordinate space, values of the function

where the Thouless matriZ is antisymmetricZ* = —z* Z(ro,r'o") at different space-spin points are the variational
and in general complex. The phase of st&d) is fixed b'y parameters, and that any arbitrarily small value of this func-
the condition(0|¥)=1; the norm is given by(¥|W¥)= tion at large dislt_ancelr|foc, would create at this point a
det(1+2*2)Y2 In the following, statelW) will represent nonzero probability density. Whether this would be energeti-
the | ™=0" groimd state of the even-even system cally favorable depends upon the number of particles in the

We refer to standard textboof@4] for a discussion of the system and on the interaction used in the variational method.

properties of the Bogoliubov transformation. Here we starfo‘p.a.rt from exotic phen(_)mena such as halos, and apart from
our discussion from the trial wave functid®.1) which is infinite matter such as in the neutron-star crust, we assume

parametrized by the matrix elementsaf This form of the that the attractiveness _qf the Interaction always favors com-
pact, localized probability densities, and hence we require

independent-quasiparticle state is very convenient in vari A " .
tional applications because variations with respect to all m%—h(er Io<r:,aI|,z)at|on conditiori3.5) for the variational parameters
o,ro’).

trix elementsZ ,,=—27,, are independent of one another. . L . .
mr e b An expansion of the variational functiafi(ro,r'c’) in

Instead of using the matrix representation Correspondingerm of the sinale-particle wave functions is a straightfor
to a set of single-particle creation operataﬁsnumbered by S Ingle-particie wave tunct IS 9
) ; . . ward consequence of transformatiqs2) and (3.3,
the discrete indexu, one may use the spatial coordinate

representation. This is particularly useful when discussing
spatial properties of the variational wave functions and the Z(ro,r o' )=> W (ra)Z,, 0% (r'a’). (3.6)
coupling to the particle continuum. Therefore, in the follow- wr rey
ing, we shall consider the operators creating a particle in the
space point and having the projection of spim=+ 3, The localization condition, Eq3.5), can, therefore, be guar-
anteed in the most economic way by requiring tilasingle-
particle wave functiong,(ro) vanish at large distances. Of
a = > l//Z(I’O’)a; , (3.2 course, this is only a matter of convenience and manageabil-
“ ity, because any localized function can be expanded in any
complete basis. It is, however, obvious that such an expan-
wherey, (ro) is the wave function of theth single-particle  sion converges very slowly if the basis has inappropriate
state. To simplify the following expressions, we considerasymptotic properties. For example, one can expect that a
only one type of particle. A generalization to systems de-plane-wave expansion &(ro,r’'¢’) would require an infi-
scribed by a product of neutron and proton wave functions isite number of basis stateg,(ro), and in practice, any
straightforward, while that involving the mixing in the iso- reduction to a finite basis would lead to serious errors. A
spin degree of freedom is discussed in R66). discussion pertaining to asymptotic properties of functions in
The inverse relation with respect (8.2) is given by spatial coordinates, and the choice of an appropriate single-
particle basis, will be a pivotal point in our study.

a/t:f d3r§ Yu(ro)ag,. 3.3 A. Time-reversal and canonical basis
The present study is entirely restricted to an analysis of

Equations(3.2) and (3.3 assume that the wave functions ground-state phenomena, and therefore, we use only time-
¥, (ro) form an orthonormal and complete set. In practica|even_vananonal independent-quasiparticle wave functions.
calculations, the basis has to be truncated and the complet&he time-reversal operator can be represented as a product of
ness is realized only approximately. The choice of the singlethe spin-flip operator and the complex conjugation, iTes,
particle wave functions use@ize of the set and, in particu- —ioyK [67]. The explicit time-reversed creation operators
lar, the asymptotic behavipis of crucial importance to the then have the form
phenomena discussed in this study. “ a .

In coordinate space, the Thouless s@d) has the form Tra,T=-20a, ,, (3.79
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and ZW are related by Eq.(3.6), a diagonalization of

Tt T 3 *(r _ + b
Ta,T fd rzf,: (2091, o)]a,. (3.7 Z(ro,r'¢’), Eq.(3.1)), is equivalent to a diagonalization of

Z v
We now suppose that the set of basis states represented b§
the creation operatoraz is closed with respect to time re-

versal, and that the stafe’ a:ﬁ' is actually proportional{up EV: 2Dy =2,D ;. (3.1
to a phase factos,=—s,, |s,|=1) to another basis state
denoted by a bar over the Greek symbal, i.e., Therefore, in the canonical basis, the Thouless stat®

. . acquires the well-known separable BCS-like for2d].
T a,T=sza,, (3.89
B. Density matrices and the correlation probability

S—dr—( — * _
wVtro) =20, (r,— o). (3.80) According to the Wick theorem[60,24] for the

In this way, the single-particle basis is assumed to be Comi_ndependent-quasiparticle state, E81) or (3.4), an average

posed of pairs of time-reversed states denoted by indlices value of any operator can be expressed through average val-
and u. In what follows, we use the convention that u, ues of bifermion operators,

and that the sums over eithgror u are always performed o(ro r’o’)z(\lf|a+, a0 (3.133
overall basis states. The phase factsgsdepend on relative ' Mool
phases chosen for theth and uth states of the basis; it is a,|¥). (3.13H
convenient to keep them unspecified in all theoretical formu- o '

las and to make a definite suitable choice of the phase coRr,e functionsp(ro,r'o’) and p(ro,r'o”) are called the

vention only in a specific final application. particle and pairing density matrices, respectively. For a

~ A requirement of the time-reversal symmetry of the qua-jme.reversal invariant stafal’), both density matrices are
siparticle vacuum(3.1) or (3.4), T|¥)=|¥), leads to the tjme even and Hermitian:

following conditions:

p(ror'c’)=-20"(Vl|a,,

-

p(ror'e"y=400c p(r—0o,r'—0c’)*, (3.143
szs;s’:zzvy, (3.93
p(ro,r'o’Y=400'p(r—o,r'—0o’)*. (3.14b
Z(ro,r'o'Y=400'Z2*(r,—o,1',—0'). (3.9b -
Therefore, the pairing density matrix(ro,r’'c’) is more

These properties allow the introduction of more suitableconvenient to use than the standard pairing ter{sei

forms ofZ,, andZ(ro,r' o'); namely, k(ro,r'a’)=20"p(ro,r’',— '), which is an antisymmetric
function of the space-spin arguments.
"Z'W;ZSMZB, (3.103 The formulas expressing(ro,r'o’) andp(ro,r'c’) in
terms of the functiorZ(ro,r’ o') can be easily derived from
Z(ro,r'a'):=20Z(r,—a,r' o). (3.10p  those for the density matrix and the pairing tensor which are
given in[24], and they read
The matrix EMV and the fun(:Ntion’Z'(ura,r’q:) are both B =0 132
time even and Hermitian, sz:zw, Z*(ro,r'a') p=(1+2%772Z% (3.153
=Z(r'o’ herefore th i I - =0 1=
(r'o’,ro), and therefore they can be considered as usua = (147217, (3.15h

operators in the corresponding Hilbert spaces. In particular,
the functionZ* (ro,r’ ¢') can be diagonalized by solving the

L . X Local HFB densities, i.e., the density matrices for equal
following integral eigenequation:

spatial arguments’ =r, have very well-defined physical in-

terpretations. To see this, let us assume tha(ro) is a

j d3r’2 Z(ra,r’a’)@M(r’o’)=sz¢”(ra), (3.12) normalizeq single-particle wave functigwave packetcon-
o’ centrated in a small volum¥, around the point=x and

) ) _ having the spirs=c¢. The corresponding creation operator
wherez, are real eigenvalueg, =z, The eigenfunctions

¥, (ro) form the single-particle basis, usually referred to as L %S N

the canonical basis Canonical states, together with the ei- ay= | dr - ys(ro)a,, (3.1
genvaluesz,,, completely define the quasiparticle vacuum

|¥). (Here and in the following we use the checked sym-together with its Hermitian conjugate, defines the operator
bols, e.g.,y, and a;, to denote objects pertaining to the

canonical basis. Nys= 8ycdys (3.17
Two important remarks concerning the canonical basis
are now in order. First, the localization conditi¢8.5) di-  which measures the number of particles in the vicinity of the

rectly results in the fact thaall canonical-basis single- pointx. Since
particle wave functionsy,(ro) are localized in space, i.e., <, s
vanish at large distanceg — . Second, sinc&(ro,r'c’) Nis=Nixs, (3.18



2814 J. DOBACZEWSKIet al. 53

N, can be regarded as a projection operator which projects It is important to note that the kinematic conditions
out the component of the many-body wave function that conp-p=p-p and p-p+p-p=p, which result from the fact
tains one spirs fermion in the volumeV,. Therefore, its that|¥) is an independent-quasiparticle state, B34), do
average value givethe probability to find a particle with not directly constrain the local values of the particle and

spin s in this volune pairing density matrices. This is so because these conditions
R involve in coordinate space an integration of nonlocal densi-
P1(xS)=(¥|Nyg| ¥)=V,p(XS,XS). (3.19 ties over spacg52]. In particular, there is no obvious kine-

matic relation between the probability of finding two inde-

In a very similar way, the probability of finding a fermion pendent particles at a given point of space, and the

in V, having opposite spin can be obtained by consideringrobability of finding a correlated pair at the same point. For
the time-reversed wave functiono2i(r,—o), cf. Eq. example, the first one can be small, while the second can be

(3.7b. This gives large (see discussion in Secs. IlIB 1 and VY. R his result
R means that in such a situation the experiments probing the
P1(X, =) =(¥|Ny _¢ ¥)=V,p(X,—S,X,—S). (3.20  presence of two particles will always find these two particles

as correlated pairs without a “background” characteristic of
Because of time-reversal symmetry, probabiliti@sl9 and two independent particles.

(3.20 are equal. Relations (3.15 imply that all three functions
We may now ask the question, whattige probability of  Z(r4 "4}, p(ro,r'e’), andp(ro,r'c’) are diagonal in
finding a pair of fermions with opposite spin projections  the canonical basis; cf. E¢3.11). Using the standard nota-

the volumeV,, P,(x)? If one considers twandependent ion for the eigenvalues g5 andp, one obtains
measurements, where in the first one is found the spin-

fermion and in another one the spir-§) fermion, P,(x) is 5 5

equal to the product of individual probabilities, i.e., f a3 > p(rg,r’g')%(r'g'):vi%(rg), (3.243
P1(X,S)P1(x,—s). On the other hand, if one wants to find in o'

V, both fermionssimultaneously one should project out

from |W¥) a corresponding two-fermion component. In this 3 _ . .

case,P,(X) becomes the expectation value of the product ofJ d V'Z p(ror’ o), (r'o’)=up, 4,(ro),  (3.24D
the projection operators Nys and N, s, e, 7
Pa(X) =(P|NysNy —¢|¥). Using the Wick theorem, this av-

) where the real factorsv, and u, are given by
erage value is

v,=v=2,/(1+22)"2 and u —u—1(1+z 2)12 Equa-
tion (3.243 represents the tradltlonal deflnltlon of the ca-
nonical states as the eigenstates of the HFB density matrix. It
+pr(xs,xs)}5(x,—s,x,—s) (3.2)  also shows that the canonical states are rthtural states
[68—-73 for the density matrix corresponding to the
or, in terms of the time-even spin-averaged densities, independent-quasiparticle many-body stalg, Eq.(3.133,
and the eigenvaluesi are the corresponding natural occu-
pation numbers.
Po(x)= —Vzp(X)zJr VZp(x)? (3.22 One may now easily repeat the previous analysis of prob-
abilities of finding a particle, or a pair of particles, in the
for canonical-basis single-particle staig,(ro). The result,
analogous to Eqs(3.21) and (3.22, is Pl(,u)=vi, and
Py ) =u> o +v . In this case, due to the normalization
P(r):; p(ro,ro), (3.233 condltlonu +ug, —1 P1(w) =P,(w). This result means that
the pamcles in the canonical states with indigeand u are
extremely correlated spaually, i.e., the probability of finding
2(N=2, plroro). (3.23p  the canonical pa|u v is directly dependent on the prob-
7 ability of finding two mdependent canonical fermlooé
However, as discussed above, a similar direct relation be-
tweenP;(x) andP,(x) does not exist. In particulaf?;(x)

£ P59,

Pa(X)=V2p(XS,XS) p(X, — S,X,—S)

Since the first terms in Eq$3.21) and (3.22 describe the
probability of finding the two fermions in independent mea-
surements, the second terms in these equations should b
interpreted as the probability of findine correlated pairat
point x.

The above arguments allow us to give a transparent physi- Figures 1 and 2 display the particle and pairing local
cal interpretation to the local HFB densities. Namely, asspherical neutron HFB densitiggr) andp(r), Eq. (3.23,
usual, p(r) represents the probability density of finding a as functions of the radial coordinate=|r|. Results are
particle at the given point. On the other hapr)? gives the ~ shown for several tin isotopes across the stability valley. For
correlation probability density, i.e., the probability of finding particle densities, the results obtained with the SkP and
a pair of fermionsn excesof the probability of finding two ~ SkP’ interactions are almost indistinguishable. Therefore,
uncorrelated fermions. Fig. 1 (middle panel shows results for the Siflinteraction.

1. Examples of particle and pairing densities
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peaked at the surface. In this case, the pairing densities tend

Nes2 o 3F N=82 ] to increase when going from the center of the nucleus to-
1k ’x// N=70 ] wards its surface. Again, shell fluctuations are superimposed
e on top of this general behavior. In particular, the central
£ =122 bump in the pairing density if?°Sn is due to a contribution
= from the 3,,, state. A more pronounced dependence on the
=z neutron excess is seen in the surface region. Especially near

1T 1 the drip line, the pairing density develops a long tail extend-
| R | T o ing towards large distances.

LSIe_ |, 3p Gosny-DIS | gThe results gbtained for the finite-range interaction D1S
2 4 6 8 2 4 6 8 10 L s .

£ (fm) exhibit intermediate features between the surface and the
volume type of pairing correlations. In particular, in the
nuclear interior one observes a fairly large region of rela-
tively constant pairing density. The overall magnitude of the
pairing densities is very similar in all three approaches. In
particular, it is interesting to see that at the nuclear surface

For pairing densities, compared in Fig. 2 are results for Sth,(; O%flrg)fr?]!;three pairing densities it*’Sn are very close

SkP’, and D1S effective interactions.
The particle densities obtained with these three effective
interactions are qualitatively very similar. One can see that V. HARTREE-FOCK-BOGOLIUBOV EQUATIONS

adding neutrons results in a simultaneous increase of the cen- We begin this section by presenting basic definitions and

tral neutron density and of the density in the surface reg'onéquations of the HFB approach. HFB theory is discussed in

The relative magnitude of the two effects is governed by amany textbooks and review articlésee Refs[74,24) for

ba"’f‘”ce betwe_en t_he volu_me anql the surface asymmetry .egxample, while its aspects pertaining to the coordinate rep-
ergies of effective interactions. Since all three forces consid- . ; . ;
i : 7 resentation have been presented in IReZ]. An earlier dis-

ered have been fitted in a similar way to bulk nuclear prop- . ; . )
cussion of the coordinate-representation HFB formalism has

erties, including the isospin dependence’. the. resultm%een given by Bulgac, whose work is available only in un-
balance between the volume and the surface isospin effects is

similar. Of course, this does not exclude some differencegUbliShed form[33]. Recently, similar methods have also
o ' . . ; “Deen applied to a description of light nucf&i7,3§. It is also

which are seen when a more detailed comparison is carried - X ;

out worth mentioning that the Green function approach in the

The pairing densities shown in Fig. 2 reflect different coordmate representaﬂcﬁthe (_30r kO\./ m_ethoc[75]) Is for-
. ; . mally equivalent to HFB; cf. discussion in Refd1,42. The
characters of the interactions used in the p-p channel. Th

g " gnly difference between the methods lies in the explicit en-
e e A0, 0en 1% oy epencence of e uasipricle mass peratr,an ana
wards the surfac&This general trend is slightly modified by 0g to the p-h single-particle HF Hamiltonidsee below.
shell fluctuations resulting from contributions from orbitals
near the Fermi level At the surface, the isospin dependence A. HFB energy and HFB potentials
of SkP’ is fairly weak. For example, there is very little dif-  The two-body effective Hamiltonian of a nuclear system
ference between the pairing densities fSn and*'“Sn.  can be written as the sum of kinetic energy and two-body
These results are characteristic for volume-type pairing corinteraction. The corresponding average energy in a time-

",
\ 1

FIG. 1. Self-consistent spherical neutron densitigér) calcu-
lated with the SkP, SIfi, and D1S interactions for selected tin
isotopes across thg-stability valley.

relations. even HFB vacuuni3.4) reads
A different pattern appears for the SkP results, where the
density dependence renders the p-p interaction strongly 1

EHFB=EJ d3rd3r’2 [T(ro,r' o )p(r' o’ ro)

+h(ro,r' a")p(r'a’,ro)

+ﬁ(ra,r'a')5(r'a',r0)]. 4.0

The last two terms are the interaction energies in the particle-
hole (p-h) and in the particle-particlé-p) channels, respec-
tively. They are given by the p-h and p-p single-particle
1\ S Hamiltonians, h(ro,r'a’) = T(ro,r'c’) + I'(ro,r'c’)
SkP® . |1Gogny-D1S andh(ro,r' o'), respectively:
5 10 15 5 10 15 20
r (fm)

N=122

_ _ y N F(ra,r’a’)zJ d3r,dry D V(ro,raoy;r o’ rhos)
FIG. 2. Self-consistent spherical neutron pairing densities o0}
;N(r) calculated with the SkP, SKP and D1S interactions for

selected tin isotopes across tfestability valley. Xp(ryo3,120), (4.29
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GTogﬁy-bIS;

F(m,rra')zfd%;d?*rgz 20" o)

7"7"
0102

XV(ro,r',—a';rioy,r5,—05)

Xp(rioy,ry0%), (4.2b

Uy (®) (MeV)

where we assume th¥{(r,oq,r,0,;r;07,r,05) includes the
exchange terms.

Additional terms coming from the density dependence of
the two-body interactiov have been for simplicity omitted
in Egs.(4.2a, (4.2b, and(4.1). The last term in Eq(4.2),

FIG. 3. Self-consistent spherical local neutron potentials

1 33 O = L =, Un(r) calculated with the SkP, SH] and D1S interactions for
Epair=7 d°rd*r 2 h(ro,r'a")p(r'e’,ro), (43 selected tin isotopes across thestability valley.
oo

represents the pairing energy. We also define the averaﬁr_r') (see Appendix A Consequently, the local field
magnitude of pairing correlations by the form(i2] U(r) cannot be extracted in a meaningful way. For instance,
the diagonal(i.e., r'=r) part of of the D1S pairing field is
1 AN . . positive; i.e., it is dominated by the short-range repulsive
<A>:—N—Tf d3rd’r 2 h(ro,r'a’)p(r'a’ ro), component rather than the long-range attractive [i8158.
7 (4.4 In the spherical case, the potentiblér) andU(r) depend
on only one radial coordinate=|r|. This facilitates the
whereN" is the number of particleeutrons or protons qualitative comparison between different forces. Figure 3
The p-h and p-p mean fieldd.2) have particularly simple displays the self-consistent spherical local p-h potentials
forms for the Skyrme interactiof62]. In Appendix A we  U(r), Eq.(4.5), for several tin isotopes, calculated with SkP,
present the form of the p-h and p-p mean-field Hamiltonianss|i1 %, and D1S interaction&he results with SkP are very
in the case of a local two-body finite-range Gogny interacclose to those with SKPThe terms depending on the angular
tion. momentum, which result from a reduction to the radial co-
) ordinate, are not includedThe general behavior of the self-
1. Examples of the p-h and p-p potentials consistent p-h potentials has already been discussed many
In this section we aim at comparing the self-consistentimes in the literature, e.d.76—-7§, and we include these
potentials obtained with the Skyrme and Gogny forces. Suckesults only for completeness and for a comparison with the
a comparison cannot be carried out directly, because the cogorresponding p-p potentials, for which the detailed analysis
responding integral kernel&i(ro,r'c’) and h(ro,r'¢’) ~ does not exisl. _ o
have different structure. For the Skyrme interaction, they are Qualitatively, the results fod(r) obtained with different
proportional tos(r—r’) and depend also on the differential €ffective forces are quite similar, which reflects the fact that
operators(linear momenta[52], while for the Gogny inter-  all these interactions correctly describe global nuclear prop-
action they are sums of terms proportionaldr—r’) and ~ €rties. In particular, one sees that with increasing neutron
terms which are functions ofandr’ (Appendix A. excess the neutron potentials become more shallow in the
Therefore, for the purpose of the present comparison wéterior and more wide in the outer region. Interestingly, for
introduce operational prescriptions to calculate the locaP@ch Of these three forces there exists a pivoting point at

parts of the integral kernels: which the potential does not dep(_and on the neutron excess.
For the three forces presented, this occuns=%.9, 4.6, and
U(r)=log'(ro,r'c’)], (4.59 5.4 fm, respectively. The differences in the overall depths of
the average potentials reflect the associated effective masses
U(r):|oc[ﬁ(m,r'g')]_ (4.5b) (i.e., the nonlocal contributions of the two-body interac-
tions).
These formal definitions in practice amount(tp disregard- The analogous results for the p-p potentiﬁlsr) calcu-

ing the momentum-dependent terms of the kern@lscon-  |ated for the SkP and SKFnteractions are shown in Fig. 4.
sidering only terms witlr =o' =1/2 (which by time-reversal  On can see that the different character of pairing interactions
symmetry are equal to those with=0'=—1/2), and(iii) s directly reflected in the form of the p-p potentials. Particu-
taking into accounonly the term proportional té(r—r’), if  larly noteworthy is the fact that the density-dependent pair-
such a term is present. The expressionsUdr) and U(r) ing interaction in SkP yields a very pronounced surface-
can be found in Appendix A of Ref52] (Skyrme interac- peaked potentiglthe behavior ofU(r) at large distances is
tion) and in Appendix A(Gogny interactioh In the Skyrme  further discussed in Sec. V]G0ne can easily understand its
calculations, the contribution of the Coulomb interaction toform by recalling that this potential is equal to the product of
U(r) has been neglected since it is estimated to be small. the pairing densityp(r) (Fig. 2 and the function which
In the case of finite-range local interactiofsuch as roughly resembles the behavior of the DDDI of EG.3),

Gogny or Coulomp the corresponding nonlocal pairing i.e., small in the interior and large in the outer region. Of
field h(ro,r'c’) does not contain the term proportional to course, values g¥(r) andU(r) depend on each other by the
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nents of the two-component single-quasiparticle HFB wave
function, and\ is the Fermi energy.
Properties of the HFB equation in the spatial coordinates,

S Eq. (4.6), have been discussed in RE52]. In particular, it
§ has been shown that the spectrum of eigenenekgisscon-
= tinuous for|E|>—X\ and discrete folE|<—\. Since for
= y E>0 and\ <0 the lower componentg,(E,ro) are local-
z,:)z 200 |b]f 1B ] ized functions ofr, the density matrices

p(rar'o’)= D ¢y(En,ra)d%(En,r'a’)
0<E,<—-\

r (fm)

+Jidn(E)¢2(E,rcr)¢§(E,r’cr’)

FIG. 4. Self-consistent spherical local neutron pairing potentials
UN(r) calculated with the SkP and SRmnteractions for selected (4.79
tin isotopes across thg-stability valley.

p(ror'a)== 2> $y(Eq,ro) ¢} (En,t'a”)

fact that they both result from a self-consistent solution of 0<Bp<-—A
the complete HFB equation in which the p-h and p-p chan- o
nels are coupled togethgsee Sec. IV ¢ Similar results —f dn(E)¢,(E,ro) o7 (E,r' o),
were also obtained in Ref§79] (in the HFB+SkP model —A
and[80] (in the QLM) for the proton-rich rare-earth nuclei. (4.7

Since the p-h channel provides the bulk part of the inter-
action energy, the particle densitipér) closely follow the are always localized.
pattern of the p-h potentialg.e., the density is large where For the case of a discretized continuum, Sec. V A, the
the potential is degp An analogous relation is only partly integral over the energy reduces to a discrete §hgh but
true forp(r) andU(r); i.e., even the dramatic surface char- one should still carefully distinguish between contributions
acter of the SkP p-p potentiéfFig. 4) does not result in the coming from the discrete H,<—\) and discretized
pairing density being similarly peaked at the surface. Recal(E,>—)\) states. Neither upper nor lower components are
that the contributions tp(r) come mainly from a few wave normalized. The norms of the lower components,
functions near the Fermi surface, and that the form of these
wave functions is mainly governed b_y thg p-h channel. Sinc_e N, = d3r2 | po(E, T )2, 4.9
these wave functions must have significant components in -
the interior, the resulting pairing densities cannot exactly fit
into the surface-peaked p-p potentials. Nevertheless, a cledefine the total number of particles,
tendency towards surface localization is evider;t in Fig. 2.

In the case of the pure contact interacti@kP° calcula- _ 3 _
tions) the p-p potential is exactly proportional to the pairing N_f d rp(r)—zn‘, No- (4.9
density[52] with the proportionality constar¥,/2 equal to
—80 MeV fm® [53]. Therefore, the resulting potential is In HFB theory, the localization conditio¢8.5) discussed
concentrated at the origin and increases towards the surfadg. Sec. lll is automatically guaranteed for any system with
[Early calculations of p-p potentials in the QLM with the negative Fermi energy. This allows studying nuclei which
density-independent delta interaction can be found in Refare near the particle drip lines where the Fermi energy ap-
[43]. The general behavior &f(r), denoted ad (r) therein, Proaches zero through negative values.
is very similar to our SkP results] For the Skyrme interaction, the HFB equatigh6) is a
differential equation in spatial coordinatgs?]. If the spheri-
cal symmetry is imposed, which is assumed in the following,
this equation reads
The variation of the HFB energy with respect to indepen-

B. HFB equations in the coordinate representation

dent parameterg(ro,r'c’) leads to the HFB equaton | d (M M\ d . U—X ] ré.(Er)

[24,52 dripm —m/dr U —U+N/ [\ rea(Er)

f S (;(r‘” o) hr(]“"r ') ) ili'r o ;) r¢1(E,r)> @10
] 'o') —h(ro,r'o’ JI'o’ = , (4.
- (ro,r'a’) (ro,r'a’) 2 o r do(E,r)

(4.6 M andM are p-h and p-p mass parameters, respectively, and
U andU are defined in Sec. IV A. Because of the spherical
symmetry, Eq.(4.10 is solved separately for each partial

where¢,(E,ro) and¢,(E,ro) are upper and lower compo- wave (j,/). The potentials include also the centrifugal and

E+N 0 \[y(Ero)
0 E—-\\¢xEro)]’
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_ 205 M(r) | 21 Upper component Lower component
E T =
% 10} 5
g 23
g | g
E L
ofF

Ul (MeV)
8
(ASW) W

r (fm)

_ FIG. 5. The self-consistent HFBSKP mass parametek and

M, and potentialdJ and U (central parts only for neutrons in
1205,

HFB+SkP wave functions r®(E 1)

spin-orbit terms, and the p-h mass paramfeis expressed
in terms of the effective masg*, i.e., M =#2/2m*; see Ref.
[52] for details.

Before discussing the properties of the HFB wave func-
tions, we analyze the structure of the spherical HFB Hamil-
tonian of Eq.(4.10. Figure 5 shows the behavior &(r) T =2
andM(r), andU(r) andU(r) (central parts onlyobtained 0 10 20 0 10 20
for neutrons in*2°Sn in the HFB+SkP model. The p-h func- r (fm)
tions M(r) andU(r) are similar to those obtained in other

. . 2 —

Ee?/r}-ﬂezld thhgorzlesM(r) hasd VE;IuetSh Closel @ /?n][h_ 22 FIG. 6. The HFB+SkP radial wave functionsg;(E,,r) of the
evim=, which corresponds 1o he€ value of e Iee . ..,  single-quasiparticle states #°Sn. Upper (=1) and
ngcleon massn. In the nuclear interior, th|§ function ,has lower (i =2) components are plotted in the left and right columns,

slightly smaller values, because the effective maBsis | egpectively. The numbers preceded by a times gign indicate

here slightly larger tham. This effect is due to the nonzero ihe scaling factors for the small wave function components.
isovector effective mass of the Skyrme SKP interaction; re-

call that for this interaction the nuclear-matter value of thei.e., for vanishing centrifugal, Coulomb, and spin-orbit po-
isoscalar effective mass isi* =m. The central potential tentials. The calculations were performed f3fSn.

U(r) has the standard depth of about 40 MeV and disappears _ o _
aroundr =7.5 fm. 1. Examples of the single-quasiparticle wave functions

The form of the p-p function® (r) andU(r) character- The neutron single-quasiparticle wave functions are pre-
izes the pairing properties of the system. One may note thatented in Fig. 6. The upper components, (E,,,r) and the
both these functions are essentially peaked at the nucletswer components¢,(E,,r) are plotted in the left and right
surface. In12%Sn they also exhibit central bumps resulting columns, respectively. Because a box of a finite radius was
from the fact that in this nucleus the neutrosy 3 orbital is  used, the particle continuum is discretized. The positive qua-
located near the Fermi surface. Valueshd(r) are (in the  siparticle eigenenergids, are in increasing order numbered
chosen unitsan order of magnitude smaller than those ofby the indexn, and their values are tabulated in the left
U(r). This should be compared with the results obtained fofPortion of Table I, together with the norms of the lower
the p-h channel, where the valuesM{r) are only about a components(4.8), N,=4m[r?dr|¢,(E,.r)|>. Since the
factor of 2 smaller than those &f(r). It means that, for the lower components define the particle density mafiq.
SkP parametrization, the kinetic term in the p-p channel4.7a], the numbers (P+1)N,, (i.e., N, for the j=1/2 case
(which simulates finite-range effegis relatively less impor- ~ consideredl constitute contributions of a given quasiparticle
tant than the kinetic energy term in the p-h channel. state to the total number of neutrofsee Eq(4.9)].

The wave functions in Fig. 6 and the entries in Table |
have been ordered from the bottom to the top, not according
to the excitation-energy inder, but rather according to

This section contains the discussion of the HFB wavenumbers of nodes of thiarge component(The large com-
functions ¢4(E,r) and ¢,(E,r) (Sec. IVC 3, canonical- ponent is the lower component for hole states and the upper
basis wave functionsy,(r) (Sec. IVC 3, and HFBCS  component for particle states; see Fig. Bhe lower compo-
wave functions(Sec. IV C 3. In the following, the HFB nent of then=8 state is large, and it has zero nodes; there-
equation(4.10 was solved in the spherical box of the radius fore it is plotted at the bottom of the figure. Next comes the
Rpox=20 fm for the j=1/2 and/'=0 (s;5) neutron states, n=5 state, whose lower component has one node, and the

C. Single-quasiparticle wave functions
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TABLE |. Results of the HFB calculations with SkP force for energies strongly depend on the size of the box, because the
the sy, neutrons in'2%Sn. For thenth quasiparticle staté;™> and  wavelength of their exterior parts will increase with increas-
N, are the quasiparticle energy and the norm of the lower COMPOjng Ry, (is roughly proportional tdRpgy).
nent, respectively. For theth canonical-basis statey, is the oc- From the above discussion, one can see that the structure
cupation probabilitye, andA,, are, respectively, the average val- ot 15196 components resembles very much that of the HF
ues of the p-h and p-p mean-field Hamiltonidiig. (4.15] and 5.6 “fnctions. Moreover, the small components are very
E, 1S the BC_S-Iuke quasiparticle energy defined in E417. Al small compared to the large ones; in order to plot both of
energies are in MeV. them in the same scal€ig. 6) they have to be multiplied by
factors from 10 to 25. Only the lowest quasiparticle state

nQuasI;ﬂgéncle s',\fates o EC Canl?zn lcal bas;s states A (n=1), which corresponds to thes§2_ st_ate near _the Fermi

n " il “ ® ® surface, has two components of a similar magnitude. It is to
11 54.27 0.0001 11 47.27 0.0 39.32-0.37 be noted, however, that the detailed structure of small com-
10 44.38 0.0001 10 78.07 0.0 70.12-0.03 ponents is decisive for a description of the pairing correla-
9 3544 00006 9 7314 00 65.20-0.81 tions. Indeed, both components are coupled in the HFB equa-
7 27.49 0.0008 8 54.84 0.0 46.89 0.13 tions by the pairing field&(ro,r'o’) or U.
6 20.82 0.0019 7 5522 0.000003 47.27 0.07 In agreement with general asymptotic properties of the
4 15.58 0.0008 6 62.46 0.00003 54.5%0.76 upper and lower componenit33,57, one sees in Fig. 6 that
3 11.61 00006 5 3844 0.0001 30.48 0.76 the lower components vanish at large distances for all qua-
2 892 0.0002 4 2050 0.0005 12.54 0.99 Siparticle states, regardless of the excitation energy. Conse-
1 154 08372 3 236 08362 —988 135 quently, the resulting density matrix is localized. It is inter-
5 1760 0.9942 2 2006 09990 —27.96 1.97 esting to observgTable |) that the norms of the lower
8 3164 09992 1 29.94 09999 —37.88 0.45 componentdN,, do not behave monotonically with quasipar-

ticle energy. NamelyN,, is about 0.0002 fon=2; then it

. increases to 0.0019 at=6, and only then does it decrease to
n=1 state with two nodes. Lower components of these thregp,.t 0.0001 ah=11. This means that the pairing correla-

states are larger than their upper components and they COfians couple states with very high quasiparticle excitations
tribute almost two particles each to the total number of neuz g short-wavelength upper components, i.e., located high
trons. Consequently, these quasiparticle states should be ags i, the particle continuum. In the considered example, only
sociated with the &5, 25,15, and 3,5, single-hole states. y gging to the energy region of as high as 50 MeV is the
For all other calculated,,, states the upper components pairing coupling to the continuum states exhausted.
are larger _than the lower ones, and these states contribute Apart from then=1 state which has the quasiparticle en-
small fractions to the particle number; see Table I. Conseg gy £ smaller than- A, for all other quasiparticle states the
qguently, these quasiparticle states should be associated W'Eﬁbper components oscillate at large distances; i.e., these
the sy, single-particle states. The behavior of these waveiaies belong to the HFB continuum. This seems natural for
functiong differs in the nuqlear intericﬁ.'r.e., forr<R where  ihe b, 55,5, and B, states discussed above, but it also
R~7 fm is the nuclear radigsand outside (> R). Since the 115145 for the deep-hole states,} and Z,,,. This illustrates
wavelength of the upper component is roughly proportionalne physical property of the deep-hole states that, once such
to IWE,+A—U(r), the ratio of the corresponding wave- 5 state is excited, it is coupled to the particle continuum and

lengths behaves as acquires some particle width. Of course, before such a hole is
created(e.g., one-quasiparticle excitation in the neighboring
)‘Lut% /l+ |U(0)] (4.11) nucleus the nucleudi.e., quasiparticle vacuunis perfectly
Nin E,+\’ ' particle bound and the contributions from deep-hole-like

quasiparticle states to the density matrix are localized in
whereU(0) is the depth of the neutron potential well. For space.
the s;/, neutron states it?°Sn the excitation energl,,+ X\
can be found from Table | N=-7.94 Me\), and
U(0)~—45 MeV (see Fig. 5.

The upper component of the=2 state has three nodes. By solving the integral eigenequation for the density ma-
However, forr>R the exterior part of the wave function trix (3.243, one obtains the canonical-basis wave functions
corresponds to a half-wave; i.e., it represents the lowesty,(r). Actually, when the HFB equatiof#.10 is solved by
energy discretized continuum state. SinEg+\ is only  a discretization method on a spatial mesh, as is done here,
0.97 MeV, the wavelength in the nuclear interior-s6.5 the density matrix is represented by a matrix and the integral
times shorter tham,,;.. The next two wave functions have eigenequation becomes the usual matrix eigenproblem. In
four and five nodes in their upper components. Compared tthe present application t6°°Sn, a mesh of equally spaced
then=2 state, they exhibit shorter wavelengths both outsidgoints with Ar=0.25 fm was used and then the canonical-
and inside the nucleushe corresponding excitation energies basis wave functions were obtained on the same mesh of
are largey, and the ratio\ ,;/\;, decreases according to Eq. points. These wave functions are plotted in Fig. 7, while
(4.1, other characteristics of the canonical states are listed on the

The quasiparticle states with=2, 3, and 4 should be right-hand side portion of Table I. Here the states are ordered
associated with thes4,,, 5s;5,, and &, states in the par- from bottom to top according to their occupation probabili-
ticle continuum. Of course, the values of their quasiparticlaieSUi.

2. Examples of the canonical-basis wave functions
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higher, the occupation probabilities are so small that the nu-
merical procedure used to diagonalize the density matrix re-
turns accidental mixtures of almost degenerate eigenfunc-
tions. This is seen in Fig. 7, where the wave function with
p=6 has six nodes instead of five, expected from the regular
sequence. Also the energieg are for these nearly empty
states randomly scattered between 40 and 70 MeV, while the
pairing gapsA , are scattered around zero.

0.5F
0.0F

0.5}

0.5
0.0F

05F

osk 3. Examples of the BCS quasiparticle wave functions

The BCS quasiparticle wave functions can be obtained by
enforcing the BCS approximation on the HFB equations.
This is done by setting the pairing Hamiltonianto a con-
stant, i.e., by using/(r)=0 andU(r)=—1.232 MeV. This
value ofU is equal to minus the HFB average neutron pair-
ing gap, as defined in E¢¢.4). As seen in Fig. 8, the pattern
of large components follows closely that obtained in the
HFB method, while the shapes of small components are en-
tirely different. Indeed, since in the BCS approximation
lower and upper components are simply proportional, small
and large components have the same asymptotic properties.

0.0F

05f

0.5F
0.0F

-05F

05F

0.0F

05F

HFB+SkP canonical wave functions ™V ,(r)

05t This leads to serious inconsistencies, because the small lower
0.0 3 componentsare not localized any more, and introduce an
. =D unphysical particle gas in the density matrix, while the small

i R T — upper componentare localized and the corresponding deep-
hole states have no particle width.

r (fm)

D. HFB equations in the canonical basis
FIG. 7. The HFB+SkP radial canonical-basis wave functions

r;sﬂ(r) of the neutrors,, single-particle states if?’Sn. It is seen in Eq(4.2) that the two-body interaction enters

the p-h and p-p channels in a different way. This is particu-
Whenu increases from 1 to 5, the number of nodes of thelarly conspicuous when the canonical ba&8s24) is used,

canonical-basis wave functions increases from 0 to 4. Theré-e.,

fore, these states represent thg,lto 5s,,, single-particle 1

states. The first three of them have large occupation prob- _ = 2.\ .22

abilities v% , negative average values, of the p-h Hamil- Eves Ey TunViut ZMEV Funuvs

tonian, and positive pairing gags, [see Eq(4.195]. These

states have all the characteristics of bound single-particle 1w o

states, and their wave functions strongly resemble the large - ZZV Gt yUyvy, (4.12

components of the=8, 5, and 1 quasiparticle states shown g

in Fig. 6. It is interesting to note that the two stajes4 and  where

5 follow exactly the same pattern of localized wave func-

tions, despite theositivevalues ofe,, . Therefore, these two - 1. .
states can be understood as the representatives of the Fuv_z(vuwv"_vu ) (4.133
positive-energy spectrum in the ground-state'éiSn. We
purposely avoid using the term “particle continuum,” be- G =——s*sV —— (4.138
cause these orbitals represent discrete and localized eigen- Y pov o RRETY
states of the density matrix. _ . Since we include iV(ryo4,r,0,;r0;,r,05) the exchange
Table | shows that the occupation probabilities of theiorm the matrixV .., is antisymmetric inuv and in
. . ST ’ myvu'v
canonical-basis states with=4, ..., 7 decrease very rap- 1, Because of the Hermiticity and the time-reversal sym-

'dly.' In fact on_ly states witlz=4 and 5 have tanglple oceu- metry of the interaction, the matricé‘sﬂ,, and é/w obey the
pation probabilities; one can say that the remaining orbitals v < <

. R
are entirely empty. This feature has to be compared with théymm?tiy relations F,,=F,,=F,,=F.,,=F. and
sequence of the norms of the lower HFB componéits GMV:GMV:'GW_:GMK—_ G- _ .

which do not fall down to zero at even a nearly similar pace. The matrixF is defined by different matrix elements of
This demonstrates that even if the convergence of the HFhe interaction than the matri. Namely, the matrix ele-
eigenproblem requires high quasiparticle energies, the numment F,,, represents a “diagonal” scattering of pairs of
ber of physically important single-particle states is very re-statesuv— uv (or wv— uv). This type of scattering con-
strained. Unfortunately, as discussed below in Sec. IV D, oneernsall pairs of states. The resulting contributions to the
cannot obtain the canonical-basis states without actuallgnergy, Eq.(4.12), involve the occupation probabilities of
solving the HFB equations up to high energies. ker6 and  the single-particle states constituting each pair. On the other
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The occupation probabilities,, are solely determined by
the diagonal matrix elements of the p-h and p-p Hamilto-

Lower component

Upper component

nians,
€,:=h,,, (4.153

o Ayi=—=hy,, (4.15h
E,f and the result is
o
g _ 1 e€,—A
g v,=Ssgna,) PR TR (4.16a
=1 M
&
: . 4.16
g “WINZT 2, (4.160
~
@ where E,, are the diagonal matrix elements of the matrix
& E,.:
8 I
?:t E,:=E,,=V(e,~\)?+AZ. (4.17

In this representation, the average pairing ¢&g) is given
by the average value df, in the occupied states,

A0 1
(A)=—<5—7"= 2 A (4.18
10 20 0 10 20 wp Z
r (fm) Equations(4.16) and (4.17) misleadingly resemble those
of simple BCS theory24]. However, in HFB theorye,, is
FIG. 8. Same as in Fig. 6, but for the HIBCS approach. not the single-particle energy.e., the eigenvalue df) but

. the diagonal matrix element di in the canonical basis.
hand, the matrix elements ,, represent a “nondiagonal” Similarly, A, does not represent the pairing gap in the state
scattering of pairs otime-reversedstatesvv— puu. This ¥,, andE, is not the quasiparticle energy. However,
scattering concerns only a very special subset of all pairs. since these quantities define the occupation probabilities,

In principle, an effective interaction should describe boththey play a very important role in an interpretation of the
channels of interaction at the same time. This is, for exHFB results, and many intuitive, quantitative, and useful fea-
ample, the case for the Gogny interacti@¥] and for the  tures of BCS theory can be reinterpreted in terms of the
Skyrme SkP interactiof52]. However, the fact that both canonical representatiqef. Sec. V Q.
channels of interaction play a different role in HFB theory In particular, the average values of single-particle p-h and
allows the use of different forms of interaction to model thep-p Hamiltonians fulfill the following self-consistency equa-
p-h and p-p channels. Such an approach is additionally maions:
tivated by the fact that the interaction in the p-h channel,

which defines, e.g., the saturation properties, is much better - - €,—\
known than the p-p interaction. Moreover, the p-h channel €= T EEV: F;w(l_ E ) (4.193
provides a two-orders-of-magnitude larger interaction en- '
ergy. . 1 - A
Since the canonical-basis wave functiopéro) are all A”ZZE G'”E_V' (4.19bH

localized, it is instructive to consider the HFB equations in

this particular basis. They read For a given interactioﬁw andéw, Eqgs.(4.19 represent a

. - set of nonlinear equations which determiag and A, .

(h=N\) w4t hy6,,=0, (4.143  Equations fore, (4.193 anq forA, (4.199 are coupled by
the values off, (4.17), which depend on botle, andA , .
However, it is clear that the interaction in the p-h channel

(h=N) €= m=EL,, (4.14b  mainly influences the values af,, while that in the p-p
channelA , .
where 5,,,:=u,v,+u,v, and§,,:=u,u,—v,v,. Equa- Unfortunately, Eqs.(4.19 cannot replace the original

tion (4.143 is equivalent to the variational condition that the HFB equations, because they require_knowledge of the ca-
HFB energy be minimized, while Eq4.14h defines the nonical basis to determine tife,, and G, matrices. The
energy matrixg,,. (The matrixE,, represents the HFB only way to determine the canonical basis is to solve the
Hamiltonian in the canonical basjs. original HFB equatiori4.6), and then to diagonalize the den-
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the radiusR,,, of the spherical box in which the HF equa-
tions are solved. It is assumed that the following boundary
condition holds for all single-particle wave functions:

¥, (Rpox) = 0. (5.1

For bound single-particle state};<0, the effect of in-

N creasingR,,x beyond 10 fm is insignificant. As seen in Fig.

A 9, the energies of the least bound, 2f, 1lhg,, and 1435

é states, which form the 82N=<126 shell, are independent of
E & Rbox-

w

The boundary conditiori5.1) leads to a discretization of
the continuum by selecting only those states which have a
node atr=R,,.. When R, increases, the density of the
low-energy continuum states increase®gs,. This effect is

®--0hyz

s =8 : i very well visible in Fig. 9. Among those states whose ener-
» oo gies decrease witlR,,,, one may easily distinguish some
' ..,f,.. guasibound states, which have energies fairly independent of
10 15 20 25 30 Ruox- In Fig. 9 these are the high- statesijim, j13m.
Ryox (fM) j152, andkys,. However, at some values &, they are

crossed by, and they interact with, the real continuum states
lane wavegof th m ntum numbers, and their pre-
FIG. 9. Weakly bound and unbound self-consistent single-(pa e wavepof the same quantu umbers, and their pre

. ) cise determination is, in practice, very difficult.
neutron HF-SkP energies,; for **%Sn as function 0Ry,. Top A solution of the HFBp equatiori4 3110) in the spherical
and bottom panels show states of positive and negative parity, )

re- . .
spectively. %hox amounts to using the analogous boundary conditions

. . . E,Rpo) = E,Rpo0 =0 5.2
sity matrix (4.7a. Moreover, solving Eqg4.19 ensures that $1(E,Rood = b2(E,Roo) .2
only the u=v subset of the variational equati¢d.143 is  for both components of the HFB wave function. As a result,
met, the minimum of energy being obtained by solving thethe quasiparticle continuum of states witg|>—\ is dis-

whole set(i.e., for all indicesu andv). . cretized and becomes more and more dense with increasing
The diagonalization of the energy matii,, gives the R, . However, as discussed in Sec. IV C, the density matrix
spectrum of HFB eigenenergi&s, : depends only on the localizeiower) components of the
quasiparticle wave functions and, therefore, is very stable
E E U =E U, . (4.20 with increasingRy.,. By the same token, the properties of
S uvTne A the canonical-basis states, which are the eigenstates of the

density matrix, are also asymptotically stable. Of course, the

The matrixl,, represents the unitary transformation from bigger the value oRy, the larger is the numerical effort
the canonical to the quasiparticle bag2dl]. Its matrix ele-  required to solve the HFB equations. Consequently, it is im-
ments provide the link between the quasiparticle energieportant to optimize the value &, i.e., to use the smallest
E, and the diagonal matrix elemenks, which define the box sizes which reproduce all interesting physical properties
occupation probabilities, i.e., of the system.

Apart from ours, there are also other possible approaches
4.21) to s_olv_ing t_he HFB eigenproble_m, in _particul(éil} _the _c_jiago-

’ nalization in the large harmonic oscillator basis dng the
two-step diagonalization. Schen(ig has been used, e.g., in
the HFB+Gogny calculations or in the deformed HFBKP
calculations of Ref[79]. Its limitations, due to the incorrect

For weakly bound nuclei one may expect that the particleasymptotics, are discussed in Sec. V G below. In metfiod
continuum influences the ground-state properties in a signifiene first solves the HF problem and then diagonalizes the
cant way. As discussed in Sec. IV C 2, the phase space cofull HFB Hamiltonian in the HF basis. Such a strategy has
responding to positive single-particle energies should not bbeen suggested in Reff42] and recently adopted in Ref.
confused with the continuum of scattering states whichi81].
asymptotically behave as plane waves, and are significant for

genuine scattering phenomena. B. Canonical single-particle spectrum

As discussed in Sec. IV D, quantities which determine the
p-h properties of the system are the canonical energjes

Properties of the continuum scattering states are intufEq. (4.153]. The neutron canonical energies 1°Sn are
itively well understood in terms of unpaired single-particle shown in Fig. 10 as functions of the box siRg,. In this
orbits. Shown in Fig. 9 are the self-consistent-HEkP neu- figure, the single-particle index. is represented by the
tron single-particle energies itr’Sn, eﬁfj, as functions of spherical quantum numbenrs”j; only the states with occu-

E#:En‘, EnllUn,|2

V. COUPLING TO THE POSITIVE-ENERGY STATES

A. Boundary conditions
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FIG. 10. Same as in Fig. 9, but for the canonical energies
€nsj, EQ.(4.153.

pation probabilitieS)ﬁ/j>0.0001 are presented. The canoni- 60 80 100 120

cal states belonging to the shell8R<126 have negative Neutron Number

€n/j'S, and they are very close to the HF single-particle en-

ergies displayed in Fig. 9. They do not depend on the values FIG. 11. Self-consistent single-quasineutron HFEKP ener-

of Ryox fOr Ryg,>10 fm. giesEyy (top panel compared with the BCS-like canonical single-
At positive values ofe,,j, there are several orbitals quasineutron energies;”] [Eq. (4.17)] (bottom panel for the tin

which do not depend on the box size everRgt,<15fm.  isotopes.

These states correspond to the hihquasibound states

112, j13/20 i152: @nd Kygpp, lready identified in the HF VI C). This shell-gap quenching is not a result of a too small

value of the spin-orbit splitting. Indeed, a larger spin-orbit

spectrL_Jm of F.'g' 9. The values et for_ these states are strength would push the , level down in energy, without
only slightly higher than the corresponding valuese} . ; . = .

. . ; J affecting the size of th&l=126 shell gagseveral negative-
However, these quasibound canonical-basis states are not ac-

companied by the sea of plane-wave scattering stafethe parity states are near}ijheN 126 gap. wh|_c h IS equal.to
) - about 4 MeV atR,,,=10fm, closes up with increasing
j13/2, @and thek;s, states in Figs. 9 and 100ne can thus say . >
n ; . . due to the several low- states whose energies steadily
that the canonical-basis states represent the quasibound sta ; i A
. . ecrease. This effect can be attributed to the pairing-induced
well decoupled from the scattering continuum.

C 1 e . ..coupling with the positive-energy statésee Sec. V G
Many other canonical basls .Stang’ especially those witf In the energy window between 0 and 20 MeV, the density
low orbital angular moment&, significantly depend on the

box size up o aboURy,,=18 fm, and then stabilize. There- of single-particle canonical energies is fairly uniform and no

fore. in all subsequent calculations we use a “safe” value 01pronounced shell effects are visible. Since the Fermi energy
' d . must stay at negative values, this region of phase space can-
Rpox=20 fm, unless stated otherwise.

Above 20 MeV there appear states with canonical enerpot be reached. However, one may say that the influence of
gies fluctuating withR,,,. These states have very small oc- the positive-energy spectrum on the bound sta we

cupation probabilities close to the limiting value of analyzed it in terms of, e.g., the Strutinsky averagifg

2p b . L ung characterized by a rather structureless distribution of states.
vn,;=0.0001, and their determination as eigenstates of @, e 20 MeV, the occupation probabilities rapidly de-
density matrix is prone to large numerical uncertainfese

creasdgcf. Table ), and this part of phase space can safely be
Sec. IV C 2. One should note that the physical observable & ‘ P P P y

. . : i %isregarded, provided one stays in the canonical basis.
are calculated directly by using the HFB density matrices,

and the above numerical uncertainties do not affect the re-
sults obtained within HFB theory.

As pointed out in Ref[77], the canonical spectrum pre-  The eigenvalues of the HFB equatidd.10 (single-
sented in Fig. 10 can be used to analyze shell effects far frorjuasiparticle energigsarry information on the elementary
stability. In particular, the size of thBl=126 gap is very modes of the system. The lowest single-quasineutron ener-
small (a 2 MeV gap between the b, and 4, state$, and ~ gies E;/;* in tin isotopes betweeN=50 andN=126 are
hence it cannot yield any pronounced shell efiseten, e.g., shown in Fig. 11(top panel. Apart from the magic shell
in the behavior of the two-neutron separation energies, Segaps atN=50 andN=82, where the single-quasiparticle en-

C. Single-quasiparticle spectrum
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ergies exhibit sudden jumps, they depend rather smoothly on

neutron number. For a given orbitat’j, the minimum of ¢2(En,ftf):§/:4 Al (ro), (5.3b
Ei/ is attained in the isotope where the corresponding

single-particle state is closest to the Fermi energy. Henceyhere

from Fig. 11 one can infer the order of single-particle ener-

gies in the beginning of the 5ON=<82 shell as #g», A(i)EJ &3S W (reVé (E- ro i=12) (54
3Sy/, 2dg, 1972, and dhyy,. Similarly, the predicted or- ne ; Vulto)di(Eqro) (1=12) (54

der at the bottom of the next major shell i$,2, 3psp, ) , ,
31, 2fep, 1hgp, and ligs,. The order of spherical are the associated overlaps. In order to find the relation be-

(1) (2)
single-particle states does vary wih For instance, accord- Ween-Ar,; and A;,; one can employ Eq€3.24 and (4.7)
ing to the HFB+SkP calculations of Fig. 11, thegd,, shell for the HFB densities. This gives the canonical wave func-

never becomes lowest in energy, as it should have done, hdigns expressed as linear combinations of bxerer HFB

the single-particle energies bebshindependent. components:

Noteworthy is the fact that, due to the strong interaction .
with the low-" continuum(cf. Sec. V B, the 4s,,, excitation 2, (10) =2 AL do(Ey T0), (5.59
becomes lowest dti>114. Above the §,,, state there ap- "
pear several quasiparticle states with excitation energies rap- .
idly decreasing withN. These orbitals represent the low- —u#vﬂz//#(ra-):E Af;(ﬁz(En,rU). (5.5b
energy continuum states. They are very close in energy, :

exhibit small spin-orbit splitting, and the lowest of them are gne should note that the expansiahss) are valid regard-
the low~" states: $1,, 4Pz, 3dzz, and s, All these  jess of the fact that the lower componesitg(E,, ,ro?) do not
features are characteristic of the continuum stg8e Still  constitutean orthogonal ensemble of wave functions. By
higher in energy, one may distinguish a similar douk_)let Ofrﬁultiplying both sides of Egs(5.538 and (5.5b with
the 3f5, and 37, states, as well as thegg), state which  * (r¢) and taking the scalar product, one arrives at the or-
represents a hight- resonance. thogonality relations:

The bottom panel of Fig. 11 shows similar results for the
BCS-like canonical energie&, defined in Eq.(4.17), and ; AﬁﬁjAfJ*=v26 (5.69

HFB wCuv

denoted here byE;Y}. A comparison betweetk,; and

Er7] illustrates the fact that tHewestelementary excitations

of the nucleus are equally well described by both these quan- 1) 42 _

tities. Indeed, a genqeral );)attern and, in m)cl)st cases, algo the ; Ag"’?Ai‘V) = Ukl O (5.6

values ofE});; and E;Y] are very similar. The differences o

mainly concern thes,, states, and also the lovi-states in  1N€ above identities express the fact that botff) and

the continuum, which in the canonical representation appeaflsy, are related to the transformation matti, defined in

higher in energy(see Table | for the direct comparison for EQ. (4.20,

Sy State$. On the other hand, the position of the high-

21;3,2 resgnance is almost identical E\ both representgtions. A=y A= = Ul .7

Such a similarity supports the suppositi@ef.[77] and Sec. ;. Eqgs.(5.6) reflect the unitarity of4,,. Equations(5.7)

V B) that the canonical single-particle energies, which arg.gn pe easily derived by inserting expansi¢as) into the

the main ingredients dE(’'} , constitute a fair representation prg equation(4.6), and then expressing the matrﬁﬂ,,

of single-particle and single-quasiparticle properties of the. 14 in its eigensystent4.20.

system. It is instructive to express the upper HFB component in a
form similar to that of Eq(5.3b:

'

D. Relation between canonical
. i - . u .
and single-quasiparticle wave functions ¢1(En’m):_2 U_MA(nz;Z‘%(W)- (5.9
The canonical states constitute a basis in which the moTR

|ndepfendentl—qugsmartlzclle s;ith) fhas thr? form of a prod—b For E,>—\, the upper component,(E,.ro) is the scat-
uct of correlated pair§24]. Therefore, these states can etering wave function. It can be formally expanded in the

considered as fundamental building blocks describing the) . i-ed canonical wave functions according to E&.8)

Egm(‘qthc;g:gln?g; ';;ergzrx'geerg:ﬁ:}nsgjtgné Sorlluttri]c?noé?teq%m the main contribution comes from the particlelike states
! : ; ) . ith very small values o2 . Hence, this relation is not too
HFB equation, the single-quasiparticle states. useful i:practical applica;ttions

Since the canonical states constitute an orthonormal en-
semble, the lower and upper HFB components can be ex- o ) . _
E. Spectral distribution for the canonical-basis wave functions
panded as
In order to discuss the importance of the particle con-
E. ro)= AD Y (ro , 53 tinuum on the_structure of canomcall sta’ges,. it is interesting to
$1(Eq.ro) % V(1) (533 see how a given canonical state is distributed among the
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single-quasiparticle states. For this, it is convenient to re- 2
write Eq. (5.53 in the following way: £ [ continaum> HFB+SkP
a : : (120Sn)
b(ro)= > ﬁ@(E ro). (5.9 z . X 3048
Iz 0<EZE, . /—Nn ns» N % % (0.0001)
1R 73
- - trihti 0 BBl 8FSnnd
The spectral amplitudes,,, define the distribution of the 7 o R ,
canonical states among the single-quasiparticle states. It is 12 ¢ ' ' > ' 4
important to recall at this point that the sum in E§.9) 0.8 % é%oig
represents in fact the discrete (< —\) states and the dis- 0.4 f—; 4 %S % i
cretized €,> —\) continuum states, i.e., % 0% 5% 987 W4 i
. S 08 R @D -9.88]
Puro)= 2 = gy(Eqy o) PN |G 0569
0<Ep<—-N N n f 0.4 % E
E LR 3
E 0N Bt e E
9 i . . .
g — . i i
(5.10 & 08| / D> 2796
04k g 0.999)
. . . 7
vv_|th the spectral _amplltudeﬁ,w and Sg , pertaining to the 0 g
discrete and continuous HFB spectrum, respectively. . . . , ,
The sp%:)tral amphtudes can'be expressed in terms of the 0.8 L g G=D -37.88 1
matrices Ay, or Uy, introduced in Sec. V D: oak é 0.9999)
4t . ]
N N ok 2 2 (S12 ) ]
<2> : : .
= A

Snu=

(5.1)) : s

0 10 20 30 40 50
Quasiparticle Energy (MeV)

We have included ii&,,,, the normsN, of the lower compo-

nents, Eq.(4.8). In this way, the values of spectral ampli-  FIG. 12. The HFB-SkP spectral amplitudeS,, (5.9 of the
tudes measure the influence of quasiparticle states irrespeganonicals,;, states in*?%Sn with x=1-5. The corresponding ca-
tive of the overall magnitude of their lower components.  nonical energye,, is given in MeV and the occupation probability

Before discussing the properties of the spectral ampliv’ is displayed in parentheses. All the amplitudgs, for u=1
tudes, let us write down the two sum rules have been assumed to be positive. This defines the relative phases

of the spectral amplitudes fqe>1 (shown by bars hashed in op-
posite directions For E<—\ the quasiparticle spectrum is dis-

1=> |SnM|ZU—M=2 |SnM|2v—”, (5.1  crete, while forE>—N\ it is represented by the discretized con-
Np Np tinuum.
v ; ;

1:2 1S, |2 (5.13 Es=17.60 MeV andE;=1.54 MeV quasiparticles. For all

S\ three of these canonical states, the diagonal amplitudes
dominate.

The first two sum rules, Eq5.12, come from the unitarity Another pattern appears for the positive-energy canonical

of U, . The last one, Eq(5.13, expresses the condition states, i.e., fou=4 and x=5. These two canonical states
defining the norm of the lower HFB component. contain large components of the holelike quasiparticles at

In Fig. 12 are shown the spectral amplitudes for $hg = Es=17.60 MeV andE;=1.54 MeV, but in addition, they
canonical states it?°Sn (cf. Secs. IVC 1 and IVCR The also acquire large components of the particle-type quasipar-
phases of the single-quasiparticle wave functions have bedicles belonging to the continuum. These continuum compo-
fixed in such a way that all the amplitudss, for =1 are nents are centered around 15 and 20 MeV for4 and
positive (some of these amplitudes are too small to be disww=5, respectively. This illustrates the fact that a correct de-
played in the figure This defines the relative phases of the scription of the positive-energy canonical states requires
spectral amplitudes fgr > 1. Then, the positive and negative solving the HFB equation to rather high energies. The widths
amplitudes are in Fig. 12 shown by bars hashed in oppositef the corresponding distributions are rather large, which in-
directions. Results shown in this figure pertain to the samelicates that there is not a single resonance in the particle
single-quasiparticle and canonical states as those shown @ontinuum which would alone describe the high-enesgy
Figs. 6 and 7, respectively, and in Table I. canonical states. This can be well understood by recalling

The lowest panel in Fig. 12 shows that thg 4 canonical  that the/'=0 resonances have usually very large widths.
state w=1) is composed mainly of two components corre-  For the drip-line nucleus®®sn, the spectras,,, ampli-
sponding to the two deep-hole quasiparticles atudes are shown in Fig. 13. Similarly to the casé®d8n, the
Eg=31.64 MeV andE;=17.60 MeV. Similarly, thex=2  three lowest canonical states for=1, 2, and 3 are mainly
and u=3 canonical states are mixtures of thecomposed of the three holelike quasiparticle€gt34.27,
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the other hand, since the value |, 4| is very small, the
Continuund> HFB+SkP I asymptotic behavior of the =1 canonical state is dominated
— . -/150511\-, . . by the hole-like quasiparticle &s=17.60 MeV.
s | g @=5> 10.03 An entirely different property can occur in drip-line nu-
, @ (00018 - clei, where the Fermi energy is close to zero and there may
N ﬁ Q be no quasiparticle excitations in the discrete spectrum be-
0 gham. P . . tween 0 and-\. In such a situation, shown in Fig. 13, the
1y ' ' ' '2.72 3 canonical states are represented by superpositions of lower
08 ? N (0.012) 3 quasiparticle components belonging to the particle con-
g 04 Z:}?% 3 tinuum. Consequently, it is the integral over the lowest con-
2 o0 A I " B tinuum quasiparticle states just above e —\ threshold
% : : : : : : 3 that determines the asymptotic properties of the canonical
g 08E @=3> -11.22 states. In other words, the profile of the level density
S sl § 02 dn(E)/dE aroundE=—\ becomes a crucial factor. Good
% 0k 3\ § . examples of a very strong coupling to the particle continuum
2 : : S are thew=4 and 5 canonicas,, states in**%Sn, where the
N 08 < .25.55 quasiparticle strength is distributed in a very wide energy
04 b N p ©0.9998) interval ranging from 1.5 to 20 MeV.
N § g ] An analysis of the spectral distribution, analogous the one
0 ¥ w % 3 presented above, has recently been perforf@j for the
sk _:32 o] natural orbits in*%0 determined within the Green function
E(-x é ©0.99997)] method using th& N interaction. This method accounts for a
04 ¢ Z ? E much more general class of correlations as compared to the
0 B¥ . é 5 (S ] HFB correlations of the pairing type studied here. However,
' ' : the general features of the spectral distributions remain es-

0 10 20 30 40 50

Quasiparticle Energy (MeV) sentially the same. Namely, the low-occupation-number

natural orbits are determined mostly through high-energy
continuum contributions, and large box siz&5—20 fm) and
large single-particle bas€20 states per’j block) have to be
used to stabilize the solutions. This is so even if the studied
nucleus ¢0) is B stable, well bound, and light; one can
xpect that for drip-line nuclei the aforementioned features
an only be more pronounced.

FIG. 13. Same as in Fig. 12, but fd?%Sn. No discrete states
appear folE<—N\.

E,=22.12, andE;=7.24 MeV with dominating diagonal
amplitudes. On the other hand, the low-lying positive-energ;}e
canonicalu =4 state has large and almost equal componentg
coming from the particlelike quasiparticles &;=2.40,
E,=4.84, andE,=8.93 MeV. The followingu=5 canonical
state has dominant amplitudes from the holelike and particle-
like quasiparticles aE;=7.24 and 8.93 MeV, respectively. In the limit of weak binding, radial dimensions of atomic
One should note that the=4 andu=5 canonicak,, states  nuclei increase and it becomes exceedingly important to con-
in %%Sn have rather large occupation factors as compared twol the radial asymptotics of many-body wave functions, not
those in *2°Sn. Both of them require including the single- only in reaction studies, but also in nuclear structure appli-
quasiparticle stateat leastup to 10 MeV. The following cations. Figure 14upper panéldisplays the radial depen-
1 =6 state(not shown in the figunehas the occupation prob- dence of the neutron densip(r) in °%Sn calculated with
ability of v2=0.0003 and the spectral amplitudes extendingthe values oRy,, between 10 and 30 fm. It is seen that, for
up to 25 MeV. every value oR,,, p(r) follows its asymptotic behavior up
The spectral amplitudes allow also for a determination ofto aboutR,,,— 3 fm and then falls down to zero as a result of
the asymptotic properties of canonical stat&ee Ref[69] the boundary condition€s.2). That is, these boundary con-
for a discussion of the the asymptotic properties of naturatlitions affect the density only in a narrow spherical layer of
orbits) The lower componentg,(E, ,ro) behave asymp- the thickness equal to about 3 fm, while inside this layer
totically as exp—rv2m(E,—\)/%?] [33,52. Therefore, as p(r) behaves independently of the valueRyf,,. Analogous
seen from Eq(5.10, the asymptotic properties of canonical results for the pairing densify(r) are shown in the lower
states are governed by the lowest discrete quasiparticle, prpanel of Fig. 14.
vided the corresponding spectral amplituslg, is not equal At very large distances the asymptotic behavior of the
to zero. However, if such a spectral amplitude is nonzero buparticle density is governed by the square of the lower com-
very small, the corresponding asymptotic behavior will beponent of the single-quasiparticle wave function correspond-
attained only at very large distances. In practice, the loweshg to the lowest quasiparticle enerd,,. Similarly, the
discrete quasiparticle dominates the asymptotic behaviaasymptotic behavior of the pairing densip(r) is deter-
only if the corresponding spectral amplitude has a signifi-mined by the product of the upper and the lower components
cantly large value. For ths,,, states in*2°Sn (Fig. 12 such  of quasiparticleE ,;,. Using the asymptotic properties of the
a situation occurs for the canonical states witl2—-5. On  HFB wave functions derived if33,52, one obtains

F. Asymptotic properties
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10° Therefore, in stable nuclei both types of densities have rather

similar asymptotic behavior, while in drip-line nuclei the

10 pairing densities have much longer tails.

107 In this context, it is instructive to recall the discussion
& . from Sec. Il B regarding the probabilistic interpretation of
@ 10° the HFB densities. The probabilif;(x) or P,(x) of finding
T 10° a particle or a pair of particles at=x is proportional to
0.210-10 p(X) or p2(x)+p3(x), respectively. Consequently, in stable

nuclei P,(x) decays much faster thaR,(x) at large dis-

1012 tances. This is not true for drip-line nuclei, where the asymp-

totics of P;(x) andP,(x) is the same.

of ek As discussed above, static pairing correlations can influ-
o 10 - 1 ence dramatically the asymptotic behavior of density distri-

'E 104 Ryc10fmt S ‘ ] butions in drip-line nuclei. In addition, a significant modifi-
P 10 Ropets fmt S LA e cation of the density tails comes from the dynamical
= ] Ry =20 fm’ ; coupling to collective modes through the particle continuum.
08 Re. =25 fm i Such a coupling can be treated in terms of the continuum

1010 - . . """ Ryoy=30 fmY] quasiparticle random phase approximati{@RPA) and has
0 5 10 15 20 25 30 been shown to be very important for light systef88,84.

r (fm) An analysis of the asymptotic behavior of the particle density

p(r) has recently been perform¢85] by finding theexact

solutions for weakly bound two particles interacting through
a contact force. In that study, the role of one-particle reso-
nant states on the density asymptotics has been discussed.

FIG. 14. Self-consistent HFBSKP single-neutron density
pn(r) (top), and neutron pairing densifyy(r) (bottom in 15%Sn
calculated with different values @,,.,. The insets show the same
data in linear scale. The shaded lines illustrate the asymptotic be-

havior given by Eqgs(5.14). G. Pairing coupling to positive-energy states

As illustrated in Sec. V A, the density of the scattering
large 1 exp(— xr) _ continuum states increases wily,,. In the limit of very
p(r) ~ 5 . Xx=2ky, (5.143 . . ;
r large values oRy,,, the set of discretized continuum states
can be considered as a fair approximation of the real con-
~ large r exp—Xr) tinuum, and the sums over the positive-energy states can
p(r) ~ 5 . X=K1t+kK,, (5.14b correctly represent integrals over the continuous energy vari-
r . e
able. Therefore, we may consider this limit in order to study
where the dynamical cou_pling between the bound single-particle_
states and the positive-energy states. In the language of pair-
2m(—Epin— \) 2m(Epin— \) ing correlations, one may think of this coupling in terms of a
K=\ Tz KT\ Tz virtual .s.cattering of pairs of fermions from the bo.und states
(5.15 to positive-energy states, and back. Such a pair scattering
gives rise to the additional pairing energy to the ground-state
In the considered example 8?%Sn the calculated values are €nergy.
A=—1.46 MeV andE,,,= 1.07 MeV (a py, staté. Conse- To illustrate the stability of results with increasing box
quently, y=0.70 fm~ ! and Y=0.49 fm™*. In Fig. 14 the size, in Fig. 15 we show the neutron p-p potentidig) in
asymptotic dependences given by E§.14 are shown as '°%Sn and'’?Sn calculated in the HFBSkP model for sev-
shaded lines. One can see that fdr) the asymptotic re- eral values olR,,. In these two nuclei, the values bf(r)
gime is reached only at distances as large as 25 fm, whicto not change wheRy,,, is larger than 20 and 22 fm, respec-
means that the contributions from other quasiparticle statetvely, but at smaller values d®,,,, one observes significant
and/or from the next-to-leading-order terms in the Hankelvariations. A rather unexpected result of this analysis is that
functions still influence the particle density at rather largethe overall magnitude of pairing correlations, represented by
values ofr. Interestingly, the pairing density approaches thethe average pairing gapA), decreaseswith increasing
asymptotic limit already at~10 fm. Rpox- This occurs in spite of the fact that the actual density
A rough estimate of¢y and’y can be obtained by substi- of scattering states dramaticalljcreaseswith increasing
tuting the value of a typical pairing gapA&1 MeV) for the  Rygy.
lowest quasiparticle energyE.,. For stable nuclei This effect can be understood by noting that the pairing
(A=—8MeV) one obtainsy=1.32fm !, while for the correlations produced by a density-dependent p-p interaction
one-neutron drip nuclei, defined by a vanishing separatiortand hence for the SkP force used heaee concentrated at
energyS,=A-+\=0, the result isy=0.62 fm~1. This dif- the nuclear surface, i.e., at a fixed location in space. For
ference illustrates the increase in the spatial extension of themall values ofR,,,, the boundary conditionés.2) have a
particle densities when going towards the neutron drip line.tendency to push the continuum wave functions towards
On the other hand, for theairing densities the correspond- smaller distances, and into the surface region. This increases
ing numbers aréy=1.24fm™ ! and y=x/2=0.31fm 1. the magnitude of the pairing correlations. On the other hand,
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FIG. 15. Self-consistent HFBSKP neutron pairing potentials FIG. 17. Neutron densitiegy(r) (in logarithmic scalg calcu-

U(r) in *%n (top panel and *7Sn (bottom panelcalculated with  jated in the HFB-SkP and HFE-D1S models for®2Sn, 1%%Sn, and
four values ofRy,,. The corresponding average gap valdés 1725

[Eq. (4.4)] are indicated.

The two upper plots confirm that a stability of results is
with increasingRy,, the scattering states spread out Llni_attained be_y_ond 20 or 22 fm, While_t_he bottom plot indicates
formly outside the nucleus and effectively leave the surfacdnat the pairing coupling to the positive-energy states can be
region. Hence(A) decreases. As a consequence, with ina decisive factor influencing tr71e nuplear binding. Indged, be-
creasingRp,y the self-consistent attractive pairing potential low Rpe,=20 fm the nucleus'™Sn is unbound, and it be-

(1) decreases n magniude and sgnicanty spreacs oI55, 00Tl when 1 ground tte s sloued o g
towards large distances. 9 P 9 9

The importance of allowing the pairing interaction to distances. This indicates that, for the surface-type pairing

couple properly to the particle continuum is illustrated inmteractlon, one has to consider a rather dense particle con-

Fig 16, where the neuron ms radius, the average pain{ 47, 29018 1 DA COLBITG 0 poslie ey S
gap, and the Fermi energy are shown as functionRygf. see Ref[34]. There, it has been pointed out that because of

strong coupling to the continuum, is significantly lowered
in the case of surface pairing as compared to the case of
volume pairing).

Since, for the Gogny interaction, the HFB equations are
] solved by expansion in the harmonic oscillator basis, one can
. test the coupling to the positive-energy states by increasing
the numbemy, of the oscillator shells used in the basis. In

1y (fm)

S E practice, calculations must be restrictedNg<20, which

§ allows one to describe wave functions up to about
b E Rmac= V2Ngfi/mwg, wherewg is the frequency of the har-
& E monic oscillator{14]. For Ng,=20 this corresponds to about
e ] Ria=14 fm.

~ 06 ] Figure 17 compares the asymptotic behavior of the neu-
% 0.0 tron particle densities in three neutron-rich tin isotopes cal-
§ 0.6 ] culated in the spatial coordinatéSkP or in the harmonic-
Zaa ] oscillator basigD19). In the former case one obtains a clean

: . region of the asymptotic dependence governed by Eq.
10 14 18 22 26 30 (5.143, which aroundr=18 fm is perturbed by the box
R}, ) boundary condition$5.2) at R,,,=20 fm. In the latter case,
the region of proper asymptotic behavior becomes perturbed
FIG. 16. Neutron rms radius, (top panel, average pairing gap by the exp-mawgr?/%) dependence characteristic of the
(Ay) (middle panel, and the Fermi energyy (bottom panelcal- harmonic-oscillator-basis wave functions. Thgvalues, ob-
culated in the HFB-SkP model for °°Sn (solid circle3 and  tained by minimizing the total energy for tiNy,=17 basis,
1725 (open circley as functions oRyy,. are equal to 13.4, 6.6, and 6.3 MeV M?Sn, °%n, and
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FIG. 18. Same as Fig. 16 for the D1S interaction, but as a 10F
function of the number of oscillator shellé,,. For everyNg, the 3
oscillator-basis frequency is adjusted as described in the text. 108f Ruox=20 fm ™
0 5 10 15 20 25

17230, respectively. Because of this, a study of the con- r (fm)
tinuum influence using such a basis can be performed only

up to densities of scattering states corresponding to about G 19. Same as in Fig. 14, but for the single-neutron densities
Rpox=14 fm in the heavier isotopes and oo =10fmin  cajculated within(i) the HF+BCS+(A) approach with the con-
1323”, as can be seen in Flg 9. Let us note, however, that tMant pairing gaps as listed in Fig. ]_ﬁop panel (i) the
neutron densities beyorrd=10 fm are typically smaller than HF+BCS+SkP model (middle panel, and (iii) the HF-BCS
104 fm 3, which explains the stability of the HFB calcu- +SkP modelbottom paneél In all these calculations the same pair-
lations with increasing size of the basis. ing space(i.e., energy cutojfwas used as in Fig. 14.

This is illustrated in Fig. 18 which is analogous to the
similar study presented for the SkP interaction in Fig. 16.2nd, moreover, the spatial asymptotic properties of the solu-
Here, for each value dfig, and for each nucleus, the value of tions are still going to be incorrect.
wo Was optimized so as to minimize the total energy. As can 10 illustrate the latter point, Fig. 1@op panel shows the
be seen, one obtains a nice stability of results by usingi€utron densities in'>°Sn calculated for several values of
Ng=17. This test corresponds to testing the coordinateRoox Within the HF+BCS approximation. In order to avoid
representation solutiondig. 16 in the range of box sizes the increase of pairing correlations with increasing dgqsny of
between 12 fiE Ryo<14 fm. In this rather narrow region, States, the calculations have been performed by fixing the
the SkP results are not stable because of the dominanglues of the pairing gap. For every box sRg,, the value
surface-type character of its pairing interaction. Since the p-®f Ascs has been set equal to the average pairing @&p
Gogny interaction is more of the volume tyf®ec. Ill B 1),  obtained within the HFB method. The correspondifi)

it requires much smaller distances to saturate. values are quoted in Fig. 15. _ _
It is not too surprising to see that the asymptotic behavior

of the density calculated in the HBBCS+(A) method(top
) ) ) o ) ) pane) is entirely different than that shown in Fig. 14. Be-
When inspecting Fig. 9, it is obvious that by applying the cause of a nonzero occupation probability of quasibound
BCS approximation to the state-independent pairing forceates, there appears an unphysical gas of neutrons surround-
and by allowing the BCS-type pairing correlations to de-jng the nucleus. In Fig. 19 this gas has a constant density of
velop in such a dense spectrum, the result can be disastrOLbs: 6x 105 fm ~3, independent 0Ry,. This result means
The seniority force gives rise to theonlocalized pairing  that an external pressure would have been necessary to keep
field [52] the neutrons inside the box. Namely, had the box boundary
—~ condition been released, one would have observed a stream
hges(ro.r'o")=—Apcsd(r=r') 8, (5.16  of neutrons escaping the nucleus. This is a completely arti-
ficial (and unwantegdfeature of the BCS approximation, be-
i.e., to a constant pairing gap, identical for all states. Thecause for a negative value of the Fermi energy, neutrons
high density of single-particle states in the particle con-cannot be emitted.
tinuum immediately results in an unrealistic increase of BCS In the above example the density of the neutron gas at
pairing correlationg14]. One may, in principle, artificially R,,,=25 fm corresponds to about four neutrons uniformly
readjust the pairing strength constant to avoid such an indistributed in the sphere dR=R;,,. Needless to say, by
crease, but then the predictive power of the approach is loshcreasing the box radius, the number of neutrons in the gas

H. BCS approximation
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grows at the expense of the number of neutrons constituting E
the nucleus in the center of the box. Since the total average 2.50 ¢

guence of the presence of a gas of particles is that the rms 1.00 E
nuclear radius cannot be calculated in BCS theory, because :
the results strongly depend on the box gigee discussion in :
Refs.[52,11]). 0.00 -

: 4, AA s @ :
number of neutrons is conserved, by changig, one ac- 2.00 n 'fx o E
tually performs an unphysical study dffferentnuclei, sur- 3 i ° 3
rounded by a neutron gas of a fixed density. Another conse- 1.50 ¢ "8 9
E L %2 3

0.50

It has been suggested in the literat{86] that the above =
deficiencies of the BCS approximation can be cured by ap- é’ 1.50
plying to them the state-dependent-pairing-gap version, <
where the pairing gap is calculated for every single-particle = 100
state using an interaction which is not of the seniority type. <1 050 F |aal o
[The corresponding BCS equations resemble the canonical- A dey 4 P
basis relationg4.19.] In such an approach one hopes that R I
the majority of continuum states would neither contribute to P
the pairing field(e.g., because of their very different spatial 1.50

characternor result in the appearance of the unphysical gas.
This conjecture is tested in Fig. 1@niddle and bottom
pane) where the neutron densities obtained within the state- 0.50 x & @
dependent version of the BCS approximation using the 0.00 Ereessmmssersoraromeiarasesisonsns S
SkP’ and the SKP interactions are presented. It is seen that a
reduced coupling of some continuum states to the pairing
field does indeed decrease the gas density; however, the € . (MeV)
asymptotic behavior of the density is still incorrect. w

In the above plots, the shaded lines represent the asymp- _
totic behavor given by EQ(5.142 assumingE =0, e, FI% 20 Merage vaes of e neuton p and p ot

i i i i n/j n/j A4

that of a single-particle state at the Fermi energy. It is seeﬁzoén in HFé+D15 (top). HFB+SKP® (middle), and HFBiSKP

that a surplus density above this asymptotic limit appears . .
large distances. However, the deficiencies of the stat:(-h ottom) models. Only the states wit, j>0.0001 are displayed

dependent BCS approximation, as used for example in Refgye excitations, level occupations, odd-even mass differ-
[86,36,87, are certainly less acute than those of thegnces and other observables. The average neutron canonical
seniority-pairing BCS. For examp_le, in this type of approaChpairing gaps(4.15b are shown in Figs. 201¢°Sn) and 21

one may probably calculate radii of nuclei much nearer tq 1505y a5 functions of the canonical single-particle energies
the drip line. (4.153.

It is clear that the neutron gas appears in the BCS solu- aq seen in the middle part of Fig. 20, pairing gaps ob-
tions because of the nonzero occupation probabilities of scafzined with the volume-type pairing interaction exhibit a
tering states. Therefore, one may think that excluding th‘?/ery weak configuration dependence. 9Sn they decrease
scattering states from the pairing phase space could be Jightly with e, but remain confined between 1.0 and

decisive solution to the problem. However, for drip-line nu- 1.5 MeV. In general, the values af, for the s, states are
. . ’ M

clei, where the Fermi energy is by definition close to zerogjignyy jarger than for other orbitals, which is again related
the remaining phase space would then be small, and th

o . s ) the volume character of volume delta interaction.
would lead to an artificial quenching of pairing correlations. — +n4 results presented in the bottom part of Fig. 20 nicely

Moreover, even if the density obtained in a such methoqy syrate the surface character of the SkP pairing interaction.
would vanish asymptotically, the corresponc_ilng facno_r Indeed, here the pairing gaps increase from 0.5 Me&ép-
would not be governed by —x=2MeV, as discussed in o stateto about 1.25—1.5 MeV when the single-particle
Sec. VF, but by the single-particle energy=0 of the  gnergies increase towards the Fermi energy, and then they
highest-energy single-particle state considered in BCS calCyjgcrease again to about 1.0 MeV for positive single-particle

lations. This again would lead to densities vanishing at &nergies. This is related to the fact that orbitals near the
much slower pace than is required by HFB theory. Fermi level are concentrated in the surface region.

Still another type of behavior is obtained for the finite
VI. PHYSICAL OBSERVABLES FAR FROM STABILITY range Gogny interactioﬁop part of F|g 20) Here’ the pair-

In this section are discussed some experimental consdld 9aps decrease steadily with single-particle energy. In
P élnzoSn the values oA, decrease from about 2.5 MeV for

guences of HFB theory, particularly important for weakly deep-hole states to’ about 0.75MeV for positive-energy

bound nuclei. > e
states.(A similar energy dependence of pairing gaps was
obtained in the BCS calculations of REL7] with the renor-
malized Paris potential.Interestingly, the values obtained
Pairing gaps are p-p analogs of single-particle energiedor the high/’, j=/— 3 orbitals (antiparallelL-S coupling
They carry the information about the energies of noncollecare significantly larger than those for other orbitals. The dif-

1.00

-60 -50 -40 -30 -20 -10 0 10 20 30

A. Pairing gaps
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0.00 mF ' (1 A . L
R e e for the series of tin isotopes.
@iz ® hyy i 3
150 £ |9 feegte » & afus, 3
™ mg ‘; 3 depends strongly on the range and density dependence of
1.00 L N AFTE pairing interaction.
0.50 a% @ 3 Figure 22 shows the average neutron pairing d&jus.
P S A [SKP L (4.4) and (4.18] for SkP, SIII°, and D1S interactions. The
0 T e large values of A) obtained in HFB-D1S can be explained
-60 -50 -40 -30 -20 -10 0 10 20 30 by (i) an overall larger magnitude of pairing correlations in
£, (MeV) tin nuclei and(ii) strong pairing correlations in deep-hole

states which strongly contribute to the average, (BdL8). It

is to be noted, however, that despite the stronger pairing in
FIG. 21. Same as in Fig. 20, but fér°sn. D1S, the HFB-D1S pairing gaps vanish &t=126 (near the

two-neutron drip ling in contrast to the HFB SkP result.

ferent ranges o€, values for SkP and D1S in Fig. 20 reflect This difference may be traced back to a much larger con-

the different effective masses in both models. A rather Iom{:'gllétﬂﬁmasfgezp%cg t\zlr(]i:r;] I,:rtg agr?‘g?r:[eénino?rzel-t?: di-
effective mass in D19n*/m=0.70, gives rise to a reduced . P

level densit d re bound round state as com- nate representation, and to a lardé~=126 shell gap(4.2
eved er_f: yhanSk?D mo del f/ 1_1219 qu 4 he MeVin 1851 obtained with D1S(The increase of proton
pared with the mo .en(. m=1). In fact, due to the pairing gaps when approaching the proton drip line has been
nonlocal exchange contributions to the p-h mean fiélg-

. . . calculated previously in Ref79] with the HFB+SkP model
pendix A), the Is,, state in the Gogny model has a canonicaly g explained in a similar wayThe disappearance of the
energy lower than the bottom of the local potential weII,neutron pairing aN =126 in the HFB+SIII ® model is partly

shown in Fig. 3. ~ :
i, . due to the volume character bf(a weaker coupling to the
12|
In 1%, the HFB-D1S pairing gaps at the Fermi energy particle continuumand partly due to a larged =126 shell
are of the order of 1.75 MeV, which slightly overestlmates%ap[sﬂ

the values corresponding to the odd-even mass staggering
this region. However, one should bear in mind that the pair-
ing gaps at the Fermi energy are rather rough approximations B. Shell effects
to the odd-even mass difference. A more accurate description As discussed in Sec. IV A, diffused nucleonic densities
can be obtained by performing blocked HFB calculations forand very strong, surface-peaked, pairing fields obtained with
odd-mass isotopes. In the vicinity of°Sn this method the density-dependent pairing interaction are expected to
yields the odd-even mass staggering of 1.6 M&¥] for the  lead to very shallow single-particle potentials in drip-line
D1S interaction and of 1.3 Me}52] for the SkP interaction. nuclei. Because of a very diffuse surfaom flat bottom, the
Another contribution to the odd-even mass difference comesesulting single-particle spectrum resembles that of a har-
from the coupling to the low-lying collective modes. There- monic oscillator with a spin-orbit tergbut with a weakened
fore, the D1S parameters have been adjuBélito give the /2 term) [77]. Schematically, this effect is illustrated in the
pairing gap in tin to be 0.3 MeV larger than the experimentalleft panel of Fig. 23. By comparing with the situation char-
one. On the other hand, such a margin has not been takextteristic of stable nucléright panel of Fig. 28 a new shell
into account for the SkP and SRRorces. Clearly, a detailed structure emerges with a more uniform distribution of
comparison of the values of pairing gaps for the interactionsiormal-parity orbits and a unique-parity intruder orbit which
discussed in Fig. 20 is delicate. Much more information carreverts towards its parent shell. Such a new shell structure,
actually be derived from the comparison of their dependencwith no pronounced shell gaps, would give rise to different
on the single-particle energies, which is markedly different.kinds of collective phenomend4,8§.

The general pattern af , remains very similar when go- The effect of the weakening of shell effects in drip-line
ing to the neutron-rich nucleu$°Sn (Fig. 21). In particular,  nuclei, first mentioned in the astrophysical contesd], was
the magnitude of the average pairing gap in deep-hole statdsrther investigated in Ref$10,77,53. First analyses of its



2832 J. DOBACZEWSKIet al. 53

)
|f31 2 3 p
Rz 3p PR i < 2 |
sz a N=5 2f P32 >
Pis2 = L ha [ 1 ]
P2 2
712 712 =2
—1h @ oz 0
hi12 ~
d
3s ha/z v -1 i
:7/2 /: s 11/1212 -2 —=—Sie 4
s;:;: N=4 2d ng sl —a— SkP3 ]
d5 ; \_ 1 g 5/2 —e— SKM?
09/2 m— [ —o—SkP
GJos2 12 —o—SkP3
. 0.8 —— Gogny-D1S i
no spin
very diffuse orbit around the 4
surface harmenic exotic nuclei/ valley of
neutron drip line oscillator hypernuclei B-stability

FIG. 23. Sequences of nuclear single-particle levels for various
potentials. Orbitals are labeled by the spherical quantum numbers.
From left to right:(i) shell structure for a potential with spin-orbit 100 1(',6 1'12 1'18 1'24 130
term but with a very diffuse surfacéij) the N,s.=4 and 5 shells of Neutron Number
the harmonic oscillator potentidiji) no spin-orbit term, leading to
a degenerate spin-orbit pattern as observed in, e.g., hypernuclei, and
(iv) shell structure characteristic of nuclei near the stability valley.

FIG. 25. Two-neutron separation energi®s (top) and Fermi
energies\y (bottom) for the Sn isotopes, calculated in the HFB

) approach with several Skyrme interactions and the Gogny-D1S in-
consequences for the nucleosynthesis have also been pefraction.

formed[13,90. Microscopically, it can be explained ky)
the changes in the mean field itself due to weak bindseg
above and (ii) a strong pairing-induced coupling between
bound orbitals and the low- continuum.

interactions. As seen in the plot &, and Ay for the tin
isotopes(Fig. 25 this effect is seen in the SkP and SkP
models, and, to some degree, also in the Skivdel. (A
weak irregularity atN=126 reflects the weaker coupling to
) ) _continuum for the volume pairing34].) The strong shell
Weakening of shell effects with neutron number mani-gttect seen in the Siil and SkMresults has been discussed
fests itself in the behavior of two-neutron separation enerj, pet [53]: it can be attributed to the low effective mass in
gies. This is |IIu_strated in Fig. 24 which displays the two- these forces. The result of the D1S model, bothSgy and
neutron separation energies for the-=80, 82, 84, and 86 Ay, is close to that of the SKPmodel. It is interesting to

spherical even-even isotones. The laige82 magic gap, . . ;
clearly seen in the nuclei close to the stability valley and topc,):?t Sult tfhatﬂ_':heSQl__Mt caIcngtllc()jns of Re.[|'42] (W'tl? ¢
the proton drip line, gradually closes down when approach-m m=1) for the Sn isotopes yield very similar results to

ing the neutron drip line. The quenching of the neutron shelf0Se of HFB-SkP.

structure withN is not a generic property of all effective  1N€ Very neutron-rich nuclei, as those shown in Fig. 25,
cannot be reached experimentally under present laboratory

conditions. On the other hand, these systems are the building

C. Separation energies

Proton Number blocks of the astrophysical process; their separation ener-
74 68 62 56 50 44 38 32 . i ) .

C . . . . T . gies, decay rates, and cross sections are the basic quantities
24k Efgg"“" ] determining the results of nuclear reaction network calcula-
20k N=84 —e— ] tions. Consequently, one can learn about properties of very

: N=86--8-- neutron-rich systems by studying element abundances

[12,91. The recentr-process network calculationgl3],

] based on several mass formulas, indicate a quenching of the
] shell effect atN=82 in accordance with the results of HFB
+SkP model.

neutron drip

S. (MeV)
2n
X

proton drip

D. Deep hole states

— The pairing interaction between bound orbitals and the
N/Z particle continuum is partly responsible for the appearance of
particle widths of deep-hole states and the term-repulsion
FIG. 24. Two-neutron separation energies forkhe80, 82, 84, Phenomenor(strong repulsion between single-particle lev-
and 86 spherical even-even isotones calculated in the +&@  €l9 [33,34. In the distorted-wave Born approximation
model as a function dfl/Z (lower scaleN=83) or Z (upper scale ~ (DWBA) and for the local pairing field) the particle width
The arrows indicate the proximity of neutron and proton drip lines.is given by
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Here, ¢;i(r) is the HF wave function of the bound deep-hole
statei with the single-particle energy—E; in the absence
of pairing, while ¢ (r) is the HF wave function of the un-
bound state with the energy+E; .

Equation(6.1) is obtained by assuming that the p-p field
of the HFB Hamiltonian can be treated perturbatively. A
more consistent way would be to estimétebased on self-
consistent HFB solutions containing pairing correlations.
The proper formulation of the nonperturbative HFB-based
theory of deep-hole states and one-particle transfer processes
still needs to be developed.

As discussed in Ref34], I'; is sensitive to the type of the
pairing force. In general, the widths are larger for surface
pairing than for volume pairing. However, the result for an
individual state strongly depends on its angular momentum
and excitation energy. L L : : s

Experimentally, total widths of deep-hole statEg,, are

08} 15051‘1 /A\ -

Pair transfer form factor (fm)

of the order of MeV's(see, e.g., Ref§92—-95). That is, the r (fm)

partial width (6.1), of the order of 10—-100 keV, constitutes

an extremely small fraction of ;. Consequently, the ex- FIG. 26. Pair transfer form factor?p(r), calculated directly
perimental determination df; alone is very unlikely. from the HFB pairing density(r) (solid lineg, compared with the

macroscopic form factor calculated from the derivative of the par-

E. Pair transfer form factors ticle densitydp(r) (dashed lines

There are many interesting aspects of the physics of Uragnanding to particle numbeks+1 andN— 1. In these cal-

stable nuclei which are related to reaction mechanism studs,ations. in order to explore the smooth dependence on the
ies: weak binding, large spatial dimensions, skisee, e.g., ’

X article numbemN, the odd-average-particle-number vacua
Refs.[2,96,97). Below, we discuss some consequences Otaye pheen calculated without using the blocking approxima-
surface-peaked pairing fields for pair transfer studies.

tion. It should be mentioned at this point that the further

An experimental observable that may probe the character,,yimation[98,10 of the derivativedp(r)/dN by the
of the pairing field is the pair transfer form factor, directly spatial derivativedp(r)/dr is not justified, because the

related to the pairing densipy. The difference in the asymp- ,,,;me_conservation condition is not valid for the neutron
E)tIC behavior of single-particle densify and pair density density distributionsee Fig. 1
p in a weakly bound systertsee Secs. Ill B 1 and V)Fcan The pair transfer form factors in Fig. 26 clearly show that
be probed by comparing the energy dependence of onehis process has a predominantly surface character. The mac
particle and pair-transfer cross sections. Such measurementsscopic form factors have smaller widths and higher
when performed for both stable and neutron-rich nuclei, camaxima than the microscopic ones. On the other hand, they
shed some light on the asymptotic properties of HFB densiare smaller in the interior of the nucleus as well as in the
ties and hence on the character of pairing field. asymptotic region. In3-stable nuclei the macroscopic ap-
Figure 26 displays the pair transfer form facto/®(r)  proximation works fairly well, while in drip-line nuclei the

calculated in*2%Sn, 1°%sn, and?"?Sn with the SkP interac- differences between the two form factors are markedly
tion. These microscopic results are compared with the madarger. In general, the corresponding differences are much
roscopic form factors?sp(r) [98] which are determined by larger than those obtained within the BCS and the particle-
using the derivative of the particle density with respect to thenumber-projected BCS approaches for the seniority interac-
neutron number: tion [101].

A comparison of the results obtained for different isotopes
— Epair dp(1) 6.2 conspicuously shows a significant increase in the pair trans-
(A) dN ' fer form factors in the outer regions of drip-line nuclei. In

1205n, the form factors vanish around 9 fm, while #’Sn

where E,,; is given by Eq.(4.3). This expression can be and!’?Sn they extend to much larger distances. This effect is
motivated by the fact that only the orbitals near the Fermiparticularly pronounced for the microscopic pair transfer
surface make significant contributions to the pair density. Inform factors.
BCS theory, the normalization constantdp(r) is usually
chosen[99] as A/G=—E,,/A. Here, we use neither the
BCS approximation nor the constant pairing stren@h
Therefore, the normalization E,,;/(A) is employed. The The importance of the HFB treatment for calculations of
derivative in Eq.(6.2) is calculated from the finite difference nuclear radii has been discussed in several papers
between the self-consistent results for the HFB vacuum cor52,79,31,11 As mentioned in Sec. Il, odd-even staggering

op(r)=2

F. Other observables
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of rms charge radii is one of the best experimental indicatorsearch program is the microscopic description of excited

of the density-dependent pairing. The proper treatment of thetates, especially those lying above the particle emission

pairing effect on radii is especially important for weakly threshold, for which the boundary conditions used in this

bound systems which exhibit halo or skin effef36,79,11  study(an impenetrable bgxhave to be modified to account

(cf. discussion in Sec. VG explicitly for outgoing waves. We are only beginning to ex-
Apart from information on the nuclear rms radii, one may plore the many unusual aspects of the nuclear many-body

also gain some experimental insight into the ratios of neutromproblem offered by systems with extrerhgZ ratios.

and proton densities at large distances from the center of the

nucleus[102,103. This is possible due to experiments on ACKNOWLEDGMENTS
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to the situation characteristic of stable nuclei, the coupling
between the p-h field and the p-p field in nuclei with extreme APPENDIX A: THE p-h AND p-p MEAN-FIELD
N/Z ratios is dramatic; i.e., no longer can pairing be treated HAMILTONIANS FOR A LOCAL TWO-BODY
as a residual interaction. FINITE-RANGE GOGNY INTERACTION
The main objective of this study was to perform a detailed The Gogny forcé57,56 is composed of the central, spin-
analysis of various facets of pairing fields in atomic nuclei.orbit, density-dependent, and Coulomb interactions. The
The first part contains the comprehensive summary of thgpin-orbit and density-dependent terms have zero range, and
HFB formalism, with particular attention on the physical in- their contributions to the p-h and p-p mean fields are identi-
terpretation of the underlying densities and fields. Very littlecal to those of the Skyrme interaction. The corresponding
is known about the p-p component of the nuclear effectiveexpressions can be found in several papers, e.g., Refs.
interaction; its structure is of considerable importance nof104,53, and will not be repeated here. In the following we
only for nuclear physics, but also for nuclear astrophysiconly consider the central finite-range and Coulomb terms.
and cosmology. Therefore, the second part of this work foThe central components read
cuses on the differences between various pairing interactions. 5
In particular, the role of the density dependence and finite -~ (=122
range of the p-p force has been illuminated, and the impor- Vcen:jzl e H(Wj+BjP,—H;P.—M;P,P,),
tance of the coupling to the particle continuum has been (A1)
emphasized. Finally, the third part of our study relates the
theoretical formalism to experimental observables, i.e., enwhere P, and P are the exchange operators for spin and
ergy spectra, masses, radii, and pair transfer form factors. {§0Spin variables, respectively. This interaction is local; i.e.,
is demonstrated that these observables carry invaluable infoit- should be multiplied bys(r;—r;) 8(r,—r;) before it is
mation that can pin down many basic questions regarding thimserted in the integralgt.2) defining the mean fields. More-
effective NN force, and its pairing component in particular. over, it should also be multiplied by the antisymmetrizing
It should be stressed, however, that in order to see clearlgperator (:-P,P,P,), whereP, is the exchange operator
some of the predicted effects, an excursion far from the valfor space variables. One usually calls the term involvihg
ley of B stability is necessary. the exchange term, while the term involving no space ex-
The analysis presented in this paper should be viewed aschange is called the direct term.
useful starting point for future investigations. One of them is The space, spin, and isospin variables are denoted by
the coupling between collective surface modesy., defor- o==*3, and r== 3, respectively. The parameters , W,
mation and pairing fields in weakly bound nuclei. Another B;, H;, andM; belong to the set called D18.05] which
interesting avenue of exploration is the role of dynamicshas been used in this paper. Since the expressions given by
e.g., the importance of particle number conservation and ththe j=1 and 2 components are identical, in what follows we
coupling to pair vibrations. A fascinating and difficult re- drop the index to increase the legibility of the formulas.

VIl. SUMMARY AND CONCLUSIONS
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1. Contribution of the central direct interaction to the p-h mean field

Since the interactioil.1) is local, the direct term gives the p-h mean fiéd2g which is also local, i.e.,

Li(ro,r o)) =8(r—=1")8,, f drie”TIES [(W=HS6,, )p (1) +(B=M8,, )p™(r10.110)]
71

FO(r=1") 8y f Prie” "I (B-MS6,, )p (10— 0), (A2)
71

wherep’(r) is the density of nucleon&.233 of type 7.

Assuming that we consider only the states which are even with respect to the time reversal, the densi{g.4Zdrobeys
the relation(3.143. Consequently, the densitigé€(ro,ro) for c==3 are equal to3p™(r), and the densitiep™(ro,r— o)
vanish. Therefore, the term {#2), which is proportional ta5,_ ,, vanishes, and the contribution of the direct term to the p-h
mean field is the local, spin-independent potential

Lg(ror'a’)=68(r=r") 8., U(r), (A3)
where
u(n= J d3rie AR (WA BI2) p(ry) — (H+M/2)p7(r)]. (Ad)
One should note that due to the locality of the interaction, the direct term depends only on the local densities.

2. Contribution of the central exchange interaction to the p-h mean field

Because of the locality of the interaction, the contribution of the exchange term to the p-h mean field involves no
integration:

P roro)=e S, {%((M ~B3,,)3 p"i(roy,r' o))+ (H-W8,.)p(ro,r' o)
Tl O'l

+68,_(H —W5771)p71(r0',r’ —0o)|. (A5)

Here the time-reversal symmetry does not bring any simplification. However, a simpler formula is obtained in cases where
p(ro,r' ') is real. It follows from Eq.(3.143 that the densitiep™(ro,r' o) are equal tas=,p™(ro,r’ o), which finally
leads to

Todror o)=e " [M+H2— (B+WI2)8,, 12 p™(roy. I ay), (AB)
71 o1
T dror —o)=e TS (H-Ws,, )p(ro,r' — o). (A7)
71
I
3. Contribution of the Coulomb interaction 4. Contribution of the central interaction to the p-p mean field

to the p-h mean field The general form of the pairing field is given by Eq.

Derivation of the direct and exchange Coulomb fields is(4.2b. In this case the direct and the exchange contributions
similar to the one of the finite range terfA1) with several are equal. For the local central for¢al), the total contri-
additional simplifications. When the nuclear state is time-butions to the p-p mean field have the form:
reversal invariant, one obtains the following contributions to

the proton p-h mean field in terms of the proton densities: Ff(ro-,r’a)=e’“’r'>2’“2[(w—H)'ﬁ (ro,r' o)
e? —(B=M)p (r'o,ro)], (AL0)
1—‘goul—dir‘(ra-!r,a',): 5(r_r,)5¢m’f d3r1|r_rl| pP(ry), _ )
(A8) h(ro,r' —o)=e "7 (W+B—H—-M)
e? Xp (ro,r'—o). (A11)

| ro,r'oc’)=r——pP(ro,r'c’). A9 . .
Coutexd 1,10 |r—r’|p (ro,r'e’) (A9) Again it is to be noted that due to the locality of the interac-
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tion, the corresponding p-p mean fields do not involve anytions than finite-range interactions, one applies the former
integration but are proportional to the pairing density matri-ones in a limited configuration space determined by a cutoff
ces. In the case considered in this stuytlyne-even densi- in the single-particle energy or in the single-quasiparticle en-
ties), the contribution(A11) vanishes. ergy. This can be understood as a phenomenological intro-
Since the exchange parameter of the zero-range densitguction of the finite rang¢35]. There are two other argu-
dependent term of the Gogny D1S interaction is fixed atments in favor of such a procedure. First, the scattering of
Xo=1, this term does not contribute to the p-p mean field.particles in the nuclear medium at very high enerd@sat
Moreover, the spin-orbit and Coulomb terms usually givevery small distancegss very little known, and the particular
small contributions as compared to those of the central forcéorm offered by any phenomenological finite-range force is

(A1). very uncertain. Second, the single-particle wave functions
are primarily determined by the p-h channel of the interac-

5. Numerical methods used for the calculation tion, and they, in general, spread throughout distances which

of the mean fields are much larger than the range of the p-p interaction. There-

. ) fore, physical differences between the zero- and short-range
Computation of the exchange p-h mean fields, BE&6), ., forces cannot be expected to be very pronounced.
(A7), and(A9), and the pairing fields, Eq&A10) and(Al1l), Within the BCS approximation, and assuming a constant
is straightforward. It only requires the knowledge of the spa-yensity of the single-particle states at large energies, one can
tial spin-dependent nonlocal partigie(ro.r’o”) and pair-  gerive[23,106 a prescription to renormalize the strength of
ing p "(ro,r'o”) densities. _ the p-p interaction in such a way that the pairing gagoes
Computation of the direct p-h mean field, H&\3), and 5t depend on the energy cutoff. Suppose that the single-
the direct Coulomb mean field, EGA8), is more compli-  napicle states with energies ¢ <e—A<e, are used to

cated since it requires the evaluation of three-dimensional e the BCS equations for the force of strength Then

integrals of the form within the specified approximations, the following relation
holds:
',L(r)=f d3re TR (1), (A12)
Vo= Co (B1)
Ic(r)zf d3r’ |r_r,|p(r’). (A13) ° In(2Ve e /A)’

In order to computé ,(r) of Eq. (A12) we use the standard whereCy=300 MeV fn? is a constant inversely proportional
Gauss-Hermite quadrature. The computation of the Coulomto the density of single-particle states near the Fermi energy.
integral (A13) is more difficult due to the infinite range of In other words, for given values @, andA, Eq.(B1) gives
the Coulomb force. The method we have used consists ofalues ofV| for any other choice of the cutoff energief
expressing the Coulomb force as a sum of Gaussians: ande,.
Since in the present study we use the HFB method instead
1 2 (=du of the BCS approximation, and since the density of states can
m: \/_; 0 7 hardly be considered to be independent of endeptually
for fixed Ry, it increases as/e), formula (B1) cannot be
and therefore reducing the calculation kef(r) to that of directly used. However, the question as to what extent the

,.(r). In order to perform the remaining one-dimensionalPairing strengths can be renormalized for a zero-range p-p
integration over u, we change this variable to interaction can be addressed by analyzing the numerical so-

_ : . lutions of the HFB equations.
£=b/\Jb%+ u?, whereb is the largest of the three harmonic- X i, .
oscillator lengths,, b,, andbs. This change of variable is Figure 27(top panel shows the neutron pairing energies
convenient since the range of integration becoh@s| and Epair [Eq. (4.3)] calculated for the SkPinteraction which

the integral can be very accurately computed using th&iS€S the contact p-p interactio82) with Vo=-160
Gauss-Legendre quadrature. MeV fm*=. It should be recalled at this point that for all

coordinate-space HFB calculations presented in this study,
the cutoff energyE,.x depends on the quantum numbers
/’j (cf. Ref.[52]). In the tin nuclei,E,, decreases from
Calculations which are based on the schematic pairin%bOUt 40 MeV for thes, , states to zero for thie; 7, states. In
interaction or on the contact for¢&q. (B2)] require a finite  Figs. 27-29 different curves correspond to different cutoff
space of states in the p-p channel. For such interaction€ne€rgiesE = Enact AEmax (AEnax varied between 0 and
when this space is increased, the pairing energy diverges fé0 MeV). Hence AE,,=40 MeV corresponds to the cutoff
any fixed strength of the interaction. This divergence is aenergyE,,, of 80 MeV for thes,,, states and 40 MeV for
well-known effect{ 23] related to the fact that for the contact the largest values of’.
interactions the matrix elements do notr too slowly de- As expected, pairing energies depend significantly on the
crease with the excitation energy. This is not a case focutoff energy. Comparing results f&E =40 MeV with
finite-range interactions, such as the Gogny, interaction fothose forAE,=0, one obtains differences &, of the
which the pairing energy converges to a finite value. order of 10—20 MeV in the midshells. Because of the self-
Since it is considerably easier to use zero-range interaconsistent readjustment of the p-h and p-p energies, the cor-

e (K, (A14)

APPENDIX B: THE ENERGY CUTOFF
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FIG. 27. Pairing energie&,,; in the tin isotopes calculated
within the HFB+SkP? model. Top panel shows the results for the
fixed interaction strength/,=— 160 MeV fm® and for several cut-
off energiesAE,., addedto the usual’j-dependent cutoff energy
Emax [52]. Bottom panel shows similar results when the values of
V, are renormalized to—158.64, —149.57, —145.41, and
—142.01 MeV fr? for AE,,=10, 20, 30, and 40 MeV, respec-
tively.

responding differences in the total energi@€sg. 28 are
much smaller, 2—4 MeV, but still significant.

In the bottom panels of Figs. 27 and 28 are shown similar
results for the renormalized strengths of the contact force
(B2). The values ofV,, quoted in the caption of Fig. 27,
have been obtained by requiring that the average neutron
pairing gap in 2%Sn, (A\)=1.245 MeV, not depend on
AE . With such renormalized interactions, one obtains
very small changes of total energigsg. 28, bottom pangl
The largest deviations do not exceed 200 keV and 800 keV
in stable and exotic isotopes, respectively, and can be safely
disregarded when compared to all other uncertainties of
methods used to extrapolate to unknown nuclei, or when
studying the separation energies.

Figure 29 shows the effective pairing-interaction strengths
defined schematically aGq¢=—(A)?/Eyq;. The top panel
presents the results obtained fdg=—160 MeV fm*® and
for different values ofAE,,,. One can see that the depen-
dence on the cutoff energy is very weak, and thE,,,
dependence of A)? and Epair Cancels out inGgg. (At

AE,,, (MeV)

-1
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FIG. 28. Same as in Fig. 27, but for the total energy relative to
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>
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H
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that obtained witAE,,,,,=0.

and hence thés.; values cannot be calculatedA fixed
value of V, gives, therefore, a well-defined,
independent value of the effective pairing strength for every
isotope. This result, together with the analysis of pairing gap

cutoff-

F | Vo=-160 MeV

[ [ AE,,=40 MeV

-~
L | Vy renormalized

-145 |

0 10 20 30 40

AEmax (MEV)

60
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Neutron Number

FIG. 29. Same as in Fig. 27, but for the effective pairing

strength defined aGq¢=—(A)?/Ey;. The inset shows the renor-

N=82 the pairing gap and the pairing energy both vanishmalized strengtt/, compared with that given by E4B1).
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distributions in Sec. VI A, demonstrates that calculationssions we have normalized the multiplicative constants to ob-
employing the volume contact p-p interaction are, in manytain G=0.18 MeV atN=Z=50.
respects, similar to those with the schematic seniority-pairing The bottom panel of Fig. 29 shows similar results, but for

force (cf., however, Sec. VFE

the renormalized values &fy, quoted in the caption of Fig.

The values of5.; monotonically decrease with increasing 27, The inset shows the values ¢ (dots as function of
neutron numbeiN. The obtained dependence can be VEIYAE, ... compared with the simple fit by the formulB1) with

well described by the simple Madland-Nix formu[a07]
G=11 MeV/11+N), while the Jensen-Miranda formula
[108] G=0.18 MeV[1—-1.2—2.82] [I=(N—Z)/A] gives

a much faster decrease & with N. (In a recent study
[109], based on a schematic finite-range force, the isospi

dependence o has been discussed. The authors found nQ,

sign of thel? term suggested in Ref108]. This probably
explains the disagreement seen in Fig.) 28.both expres-

€,=€+AEna for =40 MeV, Cy=430 MeV fm®, and
A=5.58 MeV (solid line). One can see that the generic de-
pendence of the renormalized valued/gfon AE . is fairly
.well reproduced, although the numerical constaDgsand

'\ obtained from the fit do not exactly correspond to the
alues inferred from BCS theory with a constant density of
single-particle states.
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