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We present a description of the quantum Monte Carlo diagonalization method. This method has b
introduced recently as an approach having both the advantage of the quantum Monte Carlo method and t
the direct diagonalization of the Hamiltonian matrix. In addition, the angular momentum projection is imp
mented so as to remove the degeneracy with regard to magnetic quantum number. We show that with
method the convergence of the eigenvalues is improved and that the wave functions of excited states c
obtained more easily. Moreover, the calculation of transition matrix elements becomes simpler.@S0556-
2813~96!01006-0#

PACS number~s!: 21.60.Ka
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I. INTRODUCTION

The auxiliary field Monte Carlo technique has bee
widely used for investigating solid state and nuclear structu
physics. This technique enables us to treat the interact
many-body system spanning a Hilbert space with a hu
dimension for which the diagonalization of the Hamiltonia
cannot be carried out practically. This Monte Carlo tec
nique overcomes the combinatorial complexity of the qua
tum many-body system and has been successful in desc
ing the zero-temperature and thermal properties of t
interacting many-particle system. In nuclear structure phy
ics, Ormandet al. have extensively exploited this techniqu
into the nuclear shell model, referring to their method as t
shell model Monte Carlo method@1#. However, its applica-
tion has been rather restricted mainly because of the
calledminus-signproblem, a well-known generic and quite
difficult problem in the quantum Monte Carlo method. Fo
instance, in the shell model Monte Carlo method, the Ham
tonian must have specific properties with respect to the tim
reversal transformation. In addition, the structure of excit
states can be partly seen only through response functions
is crucial to remove such restrictions for further studies
nuclear structure physics at zero temperature.

On the other hand, there is the direct diagonalizatio
method, where the Hamiltonian matrix is diagonalized e
actly in an appropriate Hilbert space. In nuclear structu
physics, direct diagonalization is widely used and turns o
to be a very powerful tool, especially for light nuclei. Owing
to the recent development of supercomputers with huge s
age and the improvement of algorithms of shell model ca
culations, direct diagonalization in the large-scale sh
model calculation has widen its scope. Recently, there ha
been some salient developments in the methodology of
shell model diagonalization including stochastic approac
For instance, the stochastic variational method@2# has been
proposed by Varga and Liotta who considered that t
single-particle basis is stochastically determined utilizin
Gaussian-type single-particle wave functions with rando
oscillator frequencies. In another work, Horoiet al.proposed
a stochastic truncation method@3# in the shell model diago-
533/96/53~6!/2786~8!/$10.00
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nalization. Thus, in order to overcome the basis-size proble
of the diagonalization of the shell model, the stochastic a
proach seems promising.

Recently we have proposed a new method which has
aspect of the quantum Monte Carlo method and that of t
direct diagonalization. This method has been reported, be
referred to as the quantum Monte Carlo diagonalizatio
~QMCD! method @4#. In the QMCD method, appropriate
many-body basis states are selected by using the auxili
field Monte Carlo technique and then diagonalization of th
Hamiltonian is carried out with respect to these bases. As
example, we have demonstrated that, by using the interact
boson model~IBM ! @5#, the basis states obtained in th
QMCD method efficiently cover quite well the subspace o
the entire Hilbert space which is needed for describing low
lying states. It was shown further@4# that the transition ma-
trix elements among these states can be readily evalua
Our approach reduces drastically the basis-dimension pr
lem of direct diagonalization, and overcomes certain intrins
problems of the quantum Monte Carlo method. For instanc
we can explicitly access the excited states, and the pres
method does not suffer from theminus-signproblem. We
note that, as will be presented elsewhere in detail, theminus-
sign problem occurs in some shell model Monte Carlo ca
culations with the IBM Hamiltonian, while the QMCD
method works well in such cases. However, basis states
tained in the present method are not eigenstates of ang
momentum in general, while the Hamiltonian eigenstates
be obtained are eigenstates of angular momentum. Theref
the angular momentum is restored stochastically, and deg
erate levels ofM52J,2J11, . . . ,J21,J are obtained with
J(M ) being the magnitude (z projection! of the angular mo-
mentum. This means that we solve the problem within
redundant space. Moreover, this redundancy prevents
from obtaining more excited states, as discussed later.

As a remedy of the above inefficiency, in the present p
per, we propose a new method to incorporate an angu
momentum projection into the QMCD method. In genera
the full angular momentum projector can be expressed a
three-dimensional integral involvingD functions. This pro-
jection is difficult for numerical calculation unless the sys
2786 © 1996 The American Physical Society
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tem has axial symmetry. However, the projection of thez
component of the angular momentum suffices in remov
the degeneracy with regard to the magnetic quantum num
and is easily incorporated into the QMCD method. It can
carried out by inserting the one-dimensional numerical in
gration into the computation of overlap and Hamiltonian m
trix elements, as we will discuss later. This projection will b
referred to naturally as theM projection hereafter. We will
report also the efficiency of theM -projected QMCD.

This paper is organized as follows: In Sec. II we sket
the formulation of the QMCD method. In Sec. III, th
M -projection method is presented in detail. Section IV
devoted to an illustration of the QMCD method and itsM
projection by numerical calculations. In Sec. V, we presen
summary.

II. FORMULATION OF THE QMCD METHOD

First, we summarize the formulation of the QMC
method@4#. For an illustration, we make use of the IBM a
an easily accessible, still yet realistic, many-body syste
The boson creation operators are denoted asbi

†

( i51, . . . ,Nsp) whereNsp denotes the number of single pa
ticle states. In the IBM-1,Nsp56 and b1

†5s†, b2
†5d22

† ,
. . . , b6

†5d2
† . The IBM Hamiltonian consists of single

particle energies and a two-body interaction:

H5 (
i , j51

Nsp

e i j bi
†bj1

1

4 (
i , j ,k,l51

Nsp

v i jkl bi
†bj

†bkbl , ~1!

where e i j and v i jkl are parameters. Presently the QMC
method is a diagonalization of the Hamiltonian matrix wi
respect to the coherent states created as

uF~xW !&5
1

ANB!
S (
i51

Nsp

xibi
†D NBu0), ~2!

where u0) is the boson vacuum and thexi ’s are ~generally
complex! amplitudes.NB denotes the number of boson
Since the coherent states are nonorthogonal to one ano
we solve the generalized linear eigenvalue probl
Hc5ENc, whereH andN are the Hamiltonian and norm
matrices, which are generally complex. Thexi ’s are not
unique for specifying a given eigenstate ofH. No method
has been known for selecting the appropriate coherent st
efficiently as the basis of diagonalization. Here, in order
select the coherent states, we use the auxiliary field Mo
Carlo technique.

In the auxiliary field Monte Carlo method, one of the ke
technique is the Hubbard-Stratonovich~HS! transformation
@6#, which allows us to reduce the exponential function of t
two-body interactions to the integral of the exponential fun
tions of the linearized one-body fields. In order to perfor
the HS transformation, it is useful to rewrite the Hamiltonia
~1! in a quadratic form

H5 (
a51

Nf

~EaOa1 1
2VaOa

2 !, ~3!
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whereOa’s andNf denote one-body operators and the nu
ber of one-body operators, respectively. TheNf can be at
mostNsp

2 and usually appears to be much smaller. TheEa

andVa are coefficients deduced from Eq.~1!.
By dividing the imaginary timeb intoNt steps, the imagi-

nary time evolution operator~many-body propagator! e2bH

can be written as the product of time-sliced imaginary tim
evolution operators:

e2bH5 )
n51

Nt

e2DbH, ~4!

where Db5b/Nt . By applying the HS transformation to
each time step@7#, this operator can be expressed as an
tegral of one-body evolution operators~one-body propaga-
tors! with respect to the auxiliary fieldssan :

e2bH'E
2`

`

)
a,n

dsanS DbuVau
2p D 1/2G~s!)

n
e2Dbh~sW n!,

~5!

wheresW n means a set of auxiliary fields of thenth time step,
sW n5(s1n ,s2n , . . . ,sNfn

), ands denotes the assembly o
the auxiliary fields over all the time steps
s5$sW 1 ,sW 2 , . . . ,sW Nt

%. The Gaussian weight factorG(s) is
defined by

G~s!5expS 2(
a,n

Db

2 UVaUsan
2 D , ~6!

andh(sW n) is one-body Hamiltonian defined by

h~sW n!5(
a

~Ea1saVasan!Oa , ~7!

wheresa561 (56 i ) if Va,0 ~.0!. The operator~5! is a
ground state projector acting on the trial state which h
nonvanishing overlap with the ground state, that is,

limb→`e
2bHuF~0!&}uFg&, ~8!

where uFg& denotes the ground state and theuF (0)& is an
initial wave function. In the case of the present calculatio
uF(xW )& with an appropriate initialxW can beuF (0)&.

In principle, the multidimensional integration in Eq.~5!
can be evaluated by the Monte Carlo method wheres is
taken from the Gaussian random number distribution w
the weight function~6!. Each set ofs yields the correspond-
ing uF(s)&:

uF~s!&} )
n51

Nt

e2Dbhn~s!uF~0!&. ~9!

For one set ofs, the one-body evolution operator~9! can be
considered to be a transformation from an initialuF (0)& to a
final uF(s)& which is also a coherent state. Therefore, t
exact ground state can be expressed by a linear combina
of the many coherent states generated by the correspon
auxiliary fields s ’s. The auxiliary field quantum Monte
Carlo method implicitly and stochastically ensures the c
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rect linear combination of such coherent states for the grou
state. In the QMCD method, as discussed below, the line
combination is determined explicitly by diagonalizing th
Hamiltonian in a subspace formed by selected coher
states.

Each coherent state which contains the large fraction
the wave function of the ground state can be considered to
a good basis vector for describing the low-lying states, a
the one-body evolution operator~9! generates such coheren
states, as we will discuss later. In this sense, the one-bo
evolution operator~9! can be considered to be a generator
bases for describing the low-lying states in a good appro
mation, in contrast with the fact that the many-body prop
gatore2bH is an exact ground-state projector. Therefore, w
can use these coherent states as the bases for diagonal
the Hamiltonian matrix. We note that we can use differe
initial states if necessary, for instance, in the case of t
shape coexistence problem. The different sets of rand
numbers provide differents auxiliary fields and conse-
quently different coherent basis states. Because such co
ent states are nonorthogonal and can be similar to each ot
we orthogonalize them. Moreover, we select thegoodbases
by the perturbative estimation in the sense of ‘‘stochas
diagonalization’’@10# as we will discuss later. Thus, we in-
crease the bases in diagonalizing the Hamiltonian matrix u
til the obtained energies converge. In the previous paper@4#,
we have shown that this procedure works well, and that w
end up with well-convergent energies and wave functions
several low-lying states. The QMCD method is composed
two processes: One is the generation of the bases~i.e.,
QMCD bases! for describing the low-lying states by the aux
iliary field Monte Carlo technique, and the second is th
diagonalization process in terms of the QMCD bases. It
important to realize that the bases are automatically selec
by the dynamics of the system in the former process, and
this sense, we diagonalize the Hamiltonian in the full spa
~no space truncation!.

III. ANGULAR MOMENTUM PROJECTION METHOD

In this subsection, we present a prescription for removi
the degeneracy with regard to magnetic quantum number
order to extract the component of a given magnetic quant
numberM from the coherent state, we introduce the state

uF~s,M !&5PMuF~s!&5
1

2pE0
2p

dfe2 if~Jz2M !uF~s!&,

~10!

wherePM is the projector onto the total magnetic quantu
numberM . HereJz stands for thez component of angular
momentum operators. Note thatJz is an operator andM is its
quantum number. The stateuF(s,M )& will be referred to as
the M -projected coherent state. The corresponding over
and matrix element of the Hamiltonian are evaluated wi
one-dimensional integration overf in Eq. ~10!. The numeri-
cal calculation for theM projection is easier in comparison
to the full angular momentum projection.

If we consider the states with angular momentumJ, we
can use theM -projected coherent states withM5J. The
subspace with the definite total magnetic quantum numb
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M5J is often used in shell model diagonalization in them
scheme. As this space certainly includes eigenstates with
gular momenta higher thanJ, we add theJ•J term to the
Hamiltonian, so as to push up the eigenstates with high
angular momenta. Hence, with this procedure, we can obt
low-lying states with the angular momentumJ, separating
them from other states with different angular momenta. Wi
regard to theJ•J term, the same technique has been used
stabilizing the numerical calculation in them-scheme diago-
nalization. In this respect, the presentM projection has a
certain similarity to the shell model diagonalization in th
m scheme.

We summarize the procedure of theM -projected QMCD
method.

~1! We take an initial coherent state which is supposed
contain the low-lying states to be obtained.

~2! A set of the auxiliary fieldss is given stochastically
according to the Gaussian weight function~6!.

~3! We calculate a wave functionuF(s)& for the present
sets.

~4! TheM projection is carried out by the projection op
erator ~10!. The presently obtainedM -projected coherent
stateuF(s,M )& is orthonormalized by means of the Schmid
method with respect to all other basis states obtained pre
ously, and then a new basis stateuF8(M )& added to the basis
states is determined. In order to accelerate the convergen
we use the following criterion for selectinggoodbases@10#.
The energy decreaseDE which originates in the new basis
stateuF8(M )& can be estimated by

DE;(
i51

Ne 1

2
$Ei2«1A~Ei2«!214uDi u2%, ~11!

whereNe is the number of the eigenstates which we tr
to solve,Ei denotes the energy of thei th state obtained
in the previous step, «5^F8(M )uHuF8(M )&, and
Di5^C i uHuF8(M )& whereC i is the i th wave function ob-
tained in the previous step. IfDE is small, for example, less
than 10% in comparison to the energy decrease in the pre
ous steps, the stateuF8(M )& is discarded, and we return to
step~2!.

~5! By adding the new basis state obtained in step~4! to
the subspace where the HamiltonianH is diagonalized, we
obtain improved energiesEi ’s of the considered states and
their wave functionsuC i& ( i51, . . . ,Ne).

~6! The steps from~2! to ~5! are repeated until the ener-
giesEi ’s of the considered states converge.

The present angular momentum projection is carried o
only in the diagonalization process. We do not apply an
modification to the Monte Carlo procedure. However, b
cause the coherent state generated by the imaginary t
evolution operator~9! contains various angular momenta, th
M -projected basis can be considered to be good as a basis
the subspace with a given magnetic quantum number. Mo
over, theM projection reduces the burden of the diagona
ization by decreasing the dimension.

TheM projection has been studied also in the shell mod
Monte Carlo method@8#. Moreover, the angular momentum
projection of the path integral representation of the partitio
function has been proposed by Rossignoli and Ring@9#.
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They discussed the general projected statistics of a gr
canonical ensemble according to the symmetry of the L
algebra, and showed the importance of such an angu
momentum-projected calculation within the static path a
proximation.

The present method is different from the abov
mentioned approaches, particularly in the aspect that
presentM projection is plugged into the diagonalization pro
cess. Thus, theM -projected QMCD method is somewha
related to shell model diagonalization in them scheme with
similar projection procedures.

IV. ILLUSTRATIONS BY NUMERICAL CALCULATIONS

A. IBM Hamiltonian

In the following, theM -projected QMCD method is ap-
plied to the O~6! limit of the sd-IBM and the SU~3! limit of
the sdg-IBM @5# as a demonstration. The O~6! and SU~3!
limits of the IBM represent theg-unstable and axially sym-
metric deformed nuclei, respectively. Thesdg-IBM is an
extension of thesd-IBM by including the hexadecupole de
gree of freedom and can be more suitable in describing c
tain aspects of well-deformed nuclei. As the cases of t
SU~3! and O~6! limits describe deformed nuclei, almost th
entire space is needed to diagonalize the Hamiltonian in
spherical@i.e., U~5!# basis and hence there is no appropria
truncation scheme. Because the Hilbert space of
sdg-IBM is quite huge, the present method is useful for sol
ing the Hamiltonian. We start with the IBM Hamiltonian

H52kQ•Q1k8J•J, ~12!

whereJ represents the angular momentum operator andQ is
the quadrupole operator defined by

Q5s†d̃1d†s1x@d†d̃#~2!1l@d†g̃1g†d̃#~2!1v@g†g̃#~2!.
~13!

In the case of the O~6! limit of the sd-IBM, x, l, andv
vanish. The SU~3! limit of the sdg-IBM can be obtained
with x5211A10/28,l59/7, andv523A55/14.

B. Comparison between QMCD andM -projected
QMCD methods

First we present the results of the QMCD method witho
theM projection. As we have already mentioned, the resu
ant eigenstates are degenerate with respect to the magn
quantum numberM . For instance, the fivefold 21

1 level ap-
pears in the QMCD calculation. Figure 1 shows the conv
gence pattern of several low-lying levels by open diamon
The levels come down basically as the dimension of t
subspace spanned by the QMCD basis states is increa
This dimension is called the QMCD basis dimension. W
show the convergence of the eigenvalues for up to the eig
level as a function of the QMCD basis dimension. We sho
the cases of the SU~3! and O~6! limits. We observe the five-
fold degeneracy with regard to the magnetic quantum nu
ber of the 21

1 level in both cases. The boson number is tak
to be 16. Other parameters are given in the figure capti
Since the dimension in the fullsdg space turns out to be
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155 117 520 in thissdg calculation, we see the remarkable
efficiency of the QMCD calculation over the direct diagona
ization.

The degeneracy with respect to magnetic quantum nu
ber means that we solve the Hamiltonian in a redundant w
As described above, theM -projection technique removes
this redundancy by lifting the degeneracy. Solid symbols
Fig. 1 indicate the convergence pattern of certain lowest le
els obtained with theM projection. In fact, we show the
results of the QMCD calculation with theM projection onto
the M50 space. The correspondingm-scheme dimension
~with M50) is 4 859 194 for thesdg-IBM. As we decom-
pose the whole space into subspaces with definite magn
quantum number, the dimension of the considered Hilbe
space is reduced significantly. In order to compare the e
ciency of convergence in the QMCD method with that in th
M -projected QMCD method, we show the results using th
same parameters of the Hamiltonian. Since the results w
and without theM projection are included in Fig. 1, one
finds that the efficiency of theM -projected QMCD method
for the O~6! and SU~3! limits is quite high compared to the
QMCD method without theM projection. In the QMCD
method without theM projection, since the eigenstates ar
degenerate with respect to magnetic quantum number
larger QMCD basis dimension is needed to complete su
multiplets of a givenJ. Moreover, in the QMCD method
without theM projection, it is difficult to obtain higher ex-
cited states, because basically all the eigenstates below
state of the interest have to be obtained. In turn, in t
M -projected QMCD method, this difficulty is removed. As
consequence, we can easily handle many excited states w
various angular momenta. From this comparison, one co
cludes that theM projection plays a very important role in
the practical calculations. In the following, we discuss d
tailed properties of theM -projected QMCD calculation.

C. Statistical property of the QMCD basis

Here we take a boson numberNB530. While this is
larger than usual values, this is chosen only for the sake

FIG. 1. Excitation energies of the low-lying states for the resul
of QMCD ~open diamond! andM -projected QMCD~solid circle,
square, and triangle! methods as a function of the QMCD basis
dimension. The points are connected to guide the eyes. The Ham
tonian is taken as the SU~3! limit for ~A! and the O~6! limit for ~B!.
Other parameters used areDb516, Nt520, k50.1, and
k850.01. The exact values are also shown by horizontal lines.
the case of the QMCD method, we show the results for up to t
eighth level.
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examination of the efficiency of the present method. In
case of thesdg-IBM, the m-scheme basis dimension wit
M50 turns out to be 2 332 164 293, for which the full d
agonalization is much beyond the scope of any compu
available in the near future.

Before proceeding to the results of the QMCD metho
we discuss certain properties of the coherent states obta
by the one-body operator~9!. This operator is of the form of
the imaginary time evolution, and its function in Eq.~5! is
very clear. However, since it contains not the original Ham
tonianH but the one-body operatorh @see Eq.~7!# obtained
from H, the meanings of the operator in Eq.~9! should be
clarified. We take an initial state and trace its evolution
Eq. ~9!. The evolution is carried out by time sliceDb, which
is repeatedNt times, giving rise tob5DbNt . The values
Nt520 is taken. We first examine the variation of the ener
expectation value of the stateuF(s)&. Here we keepNt un-
changed but varyDb, which results in differentb, because
of b5DbNt . For a given value ofb ~or Db), we repeat
stochastically the evolution process in Eq.~9! with Nsig sets
of randomly selecteds ’s. We takeNsig5400 in the present
calculation. The energy expectation valueE(s,b) is then
calculated for eachb and each set ofs as

E~s,b!5
^F~s!uHPMuF~s!&

^F~s!uPMuF~s!&
. ~14!

Note that theM projection is made. Thus, we obtainNsig
values for each value ofb. We then consider the average an
standard deviation ofE in Eq. ~14! with respect tos:

Ē~b!5
1

Nsig
(
s

E~s,b!, ~15!

DE~b!5H 1

Nsig
(
s

@E~s,b!2Ē~b!#2J 1/2. ~16!

The values of the averageĒ(b) and the standard deviatio
DE(b) are shown in Fig. 2 as functions ofb (5DbNt) for
M5 0, 4, and 6. In the QMCD description, an eigenstate
expressed in terms of stochastically generated bases w
are actuallyM -projected statesuF(s,M )& in Eq. ~10!. Low-
lying eigenstates are described by a given set of such b
states to almost the same extent. Therefore, theM5 0, 4,
and 6 states in Fig. 2 show similar patterns. AsDb increases,
the average energy decreases, and forDb>25 (b>500) it
reaches an almost constant value. On the other hand, in
2, we can see that the variance of the energy does not
crease asb increases. Since this variance is a consequenc
a certain variety of the states in Eq.~10!, this property can be
utilized in the QMCD method for generating many linear
independent QMCD bases at a definite value ofb. There-
fore, we can see that the one-body evolution operator~9!
works as a projector for extracting states in Eq.~10!, needed
as bases for low-lying states. This is a very useful prope

At smallerb, the coherent states in Eq.~9! have higher
energy expectation values. Hence, we can anticipate
such coherent states contain a larger fraction of exc
eigenstates. At a certainb, by the auxiliary field Monte
Carlo technique, we can obtain many coherent states wi
he

i-
ter

d,
ined

il-

y

gy

d

is
hich

asis

Fig.
de-
of

y

ty.

hat
ted

hin

the aforementioned variance. After obtaining all the avai
able coherent states at a certainb, we can thus obtain an-
other set of coherent states if we decreaseb. We use this
property in selecting the QMCD basis.

Finally, we note that the inverse temperatureb in the
present work has no physical meaning and it is used as
mathematical tool because we work in the framework of th
microcanonical ensemble~zero-temperature formalism!.

D. SU„3… limit

Next we discuss detailed feature of theM -projected
QMCD method in the case of the SU~3! limit. Figure 3
shows the energies and the expectation values ofJ•J as
functions of the QMCD basis dimension, forM50. The
adopted values of other parameters are given in the figu
caption. One sees that the yrast energies of 01

1 , 21
1 , 41

1 , and
61

1 converge within the QMCD basis dimension of about 50
On the other hand, nonyrast states show a clearly differe
and slower convergence. The members of theb andg bands,
02

1 , 22
1 , 23

1 , 31
1 , and 42

1 , require QMCD bases of about
350 for convergence of the energy and of theJ•J value.

Figure 4~A! shows the energies of the yrast and sever
nonyrast excited states as functions of the QMCD basis d
mension for theM54 space. Obviously, the 01 and 21

levels are absent in Fig. 4. Because of the elimination of th
01 and 21 states, we can obtain the 42

1 and 43
1 states much

more easily than in theM50 space. One can see the degen
eracy of the 42

1 and 43
1 states, which is characteristic in the

SU~3! limit. Comparing Fig. 3 to Fig. 4, we can see tha

FIG. 2. Average energies and variances of the QMCD bases
a function ofb. The average energy and variance are calculate
with the 400 coherent states forM50, 4, and 6 space at eachb.
The variances are indicated by the error bars. The Hamiltonian
the exact SU~3! limit is taken. The parameters used areNB530,
Nt520, k50.005, andk850.05.
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levels are displaced. This is due to strength of a repuls
J•J interaction, which is larger in the calculation shown i
Fig. 4. The adopted values of the parameters are given in
figure caption. These figures show that theM -projected
QMCD method can reproduce not only the yrast states
also the members of theb andg bands.

An axially symmetric coherent state (l†)NBu0&, where
l†5( lxlbl0

† , gives the exact wave function in the SU~3!
limit after projecting it onto a good angular momentum. He
the x’s are amplitudes, while theb’s stand for bosons. This
can be achieved by projecting the above coherent state w
an appropriately chosenl. This means that a coherent sta
is a good basis for the yrast states in the SU~3! limit.

Concerning the members of theb andg bands, it may be
useful to consider the Tamm-Dancoff approximation~TDA!
in boson systems, where the intrinsic states are of the fo
blm
† (l†)NB21u0&. We now discuss how to generate suc
states in the QMCD method.

We consider two coherent states resembling each oth
These coherent states are denoted by (l i

†)NBu0& ( i51,2)

FIG. 3. ~A! Energies and~B! expectation values of the angula
momentum of low-lying states as functions of the QMCD bas
dimension. TheM50 space is considered. The Hamiltonian of th
exact SU~3! limit is taken. The parameters used areNB530,
Nt520,k50.005,k850.03, and initialDb525. The exact values
are shown by horizontal bars.
ive
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but
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wherel i
†5( lmxilmblm

† ( i51,2). In the case ofl1;l2 , the
(l2

†)NBu0& is shown as (l1
†1dl†)NBu0& ;(l1

†)NBu0&
1NBd(x1lm)blm

† (l1
†)NB21u0&1•••. After the Schmidt orth-

gonalization, the first component on the right-hand side d
appears. The remaining component is basically the gene
ized TDA trial wave function. Thus, in the QMCD method
TDA~-like! states are included, by varying thel ’s. This is
why the QMCD method can easily produce theb and g
bands.

E. O„6… limit

The O~6! limit representsg-unstable deformed nuclei
Recently, the structure of O~6! nuclei has been reinterprete
as a multiphonon scheme built on theg-unstable deformed
ground state@11#. As this structure is not simpler than that o
the SU~3! from the viewpoint of the coherent state, this is
good testing ground to see whether or not the QMC
method can reproduce eigenenergies and eigenstates. H
we add to the Hamiltonian~12! the interactionk3T

(3)
•T(3),

whereT(3)5@d†d̃# (3). As T(3)•T(3) is a Casimir operator of
O~5!, the Hamiltonian remains in the O~6! limit and can be
still solved algebraically. However, it increases the numb
of auxiliary fields. In Fig. 5, we show the energy and th
expectation value ofJ•J. Contrary to the convergence pa
tern of the SU~3! limit shown in Fig. 4, the convergence
patterns of yrast levels are very similar to that of nonyra
levels as functions of the QMCD basis dimension. This
because yrast and nonyrast states of O~6! have equally com-
plicated intrinsic structures. We can calculate the Ham
tonian matrix for the space with a fixed value ofM . This
space includes the levels withJ>M . In order to separate
states ofJ.M from those ofJ5M , we add theJ•J term to
the Hamiltonian. In Fig. 6~A!, we show the results of the
M56 space. In this case, we evaluate six well-converg
61 levels by using theJ•J term. Thus, theM projection with
a largeJ•J term works efficiently, making it possible that
decent number of low-lying levels of the deformed nuc
can be obtained.

r
is
e

FIG. 4. ~A! Energies of the low-lying states,
~B! quadrupole moments of yrast states, and~C!
severalB(E2)’s as functions of the QMCD basis
dimension. TheM54 space is considered. The
Hamiltonian of the exact SU~3! limit is taken.
The parameters used areNB530, Nt520,
k50.005,k850.05, and initialDb58. The ex-
act values are shown by horizontal bars.
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FIG. 5. ~A! Energies and~B! expectation val-
ues of the angular momentum of the low-lyin
states as functions of the QMCD basis dimensio
TheM50 space is considered. The Hamiltonia
of the exact O~6! limit is taken. The parameters
used areNB530, Nt520, k50.025, k350.03,
k850.05, and initialDb510. The exact values
are shown by horizontal bars.
de-
to-
t on
the
f the
. In
n-

ap-
he
he
w-
he
the
he
d.

tes

re-
e
tly
on-
ele-

ce

ged
F. Basis-size problem of the QMCD method

One of the advantages of the auxiliary field quantu
Monte Carlo method is that, due to the linearized one-bo
Hamiltonian by the HS transformation, the size of the r
quired space for the numerical calculation for the man
particle system is reduced to that of a single-particle on
independent of the number of particles involved in the co
sidered system. Therefore, the shell model Monte Ca
method overcomes the basis-size problem of direct diagon
ization. On the other hand, the QMCD method is a comb
nation of the auxiliary field quantum Monte Carlo metho
and the direct diagonalization method. Therefore, the QMC
method may inherit their advantages and disadvantages.
the QMCD method spans the bases of the diagonalizati
there is a possibility that the dimension of required QMC
bases may be too large. It is important to investigate t
relation between the QMCD basis dimension and the dime
sion of the entire Hilbert space as functions of the number
particles involved, because it determines the scope of
application of the present method.

FIG. 6. ~A! Energies of the low-lying states,~B! quadrupole
moments of up to the sixth state, and~C! B(E2: 61

1→41
1) as func-

tions of the QMCD basis dimension. TheM50 space is consid-
ered. The Hamiltonian of the exact O~6! limit is taken. The param-
eters used areNB530,Nt520,k50.025,k350.03,k850.05, and
initial Db510. The exact values are shown by horizontal bars.
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In the QMCD method, by construction, the bases are
termined by the mean fields which are generated in a s
chastic way, and hence the basis size is mainly dependen
the number of the mean fields dominating the structure of
states of interest. On the other hand, the dependence o
boson number can be expected to be indirect and weak
Table I, we show the typical values of QMCD basis dime
sion required for having convergence of the 01

1 states in the
case of the SU~3! and O~6! limits. The corresponding
m-scheme dimension of the entire Hilbert space grows r
idly from 102 to 109 as the boson number increases. On t
other hand, in the QMCD, the required dimension of t
QMCD basis is rather independent of boson number. Ho
ever, it depends on the property of the Hamiltonian of t
considered system. One can see that in the application to
IBM, the QMCD method has a significant advantage in t
basis-size problem over the direct diagonalization metho

G. Transition matrix elements

In the shell model Monte Carlo method, the excited sta
can be studied through the response function@1#. Some of
the transition matrix elements can be estimated by this
sponse function. In turn, in the QMCD method, owing to th
introduction of the diagonalization process, we can explici
construct the wave functions of the excited states. As a c
sequence, we can easily compute the transition matrix
ments.

TABLE I. QMCD basis dimension needed for the convergen
for the 01

1 level as a function of boson numberNB . The dimension
of the full M50 subspace is listed for comparison. The SU~3! and
O~6! limits are considered. The convergence of each state is jud
by ^J•J&<0.01, whereJ is the angular momentum operator.

SU~3! O~6!

NB QMCD basis FullM50 QMCD basis FullM50

10 30 92123 60 202
20 50 39180981 130 1957
30 70 2332164293 230 8265
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For evaluating the transition matrix elements between
low-lying excited states, eigenstates with definiteJ andM
are needed. In a previous paper@4#, for improving the sepa
ration of the degenerate eigenstates with differentM ’s, we
modified the Hamiltonian by adding the termg(Jz2M )2.
Obliviously, we take a positiveg and some integerM . With
this term, all states withJzÞM can be pushed up. Howeve
as theg(Jz2M )2 term makes the convergence worse
large dimension of the QMCD basis is required. On the c
trary, due to theM projection, such a problem does not ar
in the present approach.

In Figs. 4~B! and 6~B!, we show the convergence of th
quadrupole moment of each state as functions of the QM
basis dimension. In the case of the O~6! limit, the quadrupole
moments of all the states should vanish. Figure 6~B! con-
firms this property as the QMCD basis dimension increa
In Figs. 4~C! and 6~C!, we show the convergence of th
B(E2) values as functions of the QMCD basis dimension
these figures, the quantum numbers of angular momen
and its z component are assigned approximately, for
cases where convergence is not achieved. In the case o
SU~3! limit, the interbandB(E2)’s vanish while the intra-
band B(E2)’s have large values. Figure 4~C! shows that
these features are accomplished as functions of the QM
basis dimension. By showing the convergence of the qu
rupole moment andB(E2), we can confirm the convergenc
of the wave function obtained by the QMCD method.

We finally make remarks on the computational aspec
the transition matrix element calculation. The coherent st
span the over complete space as we have already menti
The same wave function can be represented in many w
For instance, a different initial seed of the random num
gives rise to a completely different representation of
same wave function because the present method is p
stochastic. Moreover, the wave function of a givenJ can be
manipulated in various subspaces with different magn
quantum numbers. Therefore, to evaluate the transition
trix elements, we have several methods of computat
However, if the initial and final wave functions are repr
sented by the same bases, it is most convenient for the
culation of the transition matrix elements, because the
evaluation of the norm matrix is not needed.

V. SUMMARY

In summary, we have sketched the QMCD method t
we have recently proposed@4#. We have explained that th
he
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QMCD method has the advantages of both the quant
Monte Carlo method and the conventional diagonalizat
method often used in shell model calculations. The appli
tion of the QMCD method provides us with quite accura
eigenvalue solutions within the tractable number of t
QMCD basis dimensions. However, it produces degene
eigenstates with respect to the magnetic quantum num
Hence, we have introduced theM -projection method into the
QMCD method. ThisM projection reduces the Hilbert spac
by decomposing it into subspaces with definite magne
quantum numbers. This is a method analogous to the s
model diagonalization in them scheme. Contrary to the ful
angular momentum projection, the present method is easy
numerical calculations. By this projection method, conve
gence of the eigenvalues is extremely improved. The deg
eracy with respect to the magnetic quantum number is
moved. As a consequence, we can easily evaluate
properties of excited states. After diagonalization of t
Hamiltonian, the resultant wave function has a definite an
lar momentum andz projection, if the convergence is
achieved. This makes the evaluation of the transition ma
elements easier. The presentM -projection method seems to
be an indispensable tool for applying the QMCD method
nuclear structure physics.

Up to now, we have discussed numerical examples
utilizing the group theoretical limits of the IBM, for the sak
of comparison to exact solutions. For systems with a bos
number as large asNB; 20–30, it is impossible to diagonal
ize the full IBM Hamiltonian. However, we have confirme
that in the present method the QMCD basis dimens
needed for reasonable convergence is tractable also for o
more general Hamiltonians.

We are now trying to apply this method to fermion sy
tems. The significant improvement in the boson system s
gests that thisM -projected QMCD method should work in
fermion systems as well.
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