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We present a description of the quantum Monte Carlo diagonalization method. This method has been
introduced recently as an approach having both the advantage of the quantum Monte Carlo method and that of
the direct diagonalization of the Hamiltonian matrix. In addition, the angular momentum projection is imple-
mented so as to remove the degeneracy with regard to magnetic quantum number. We show that with this
method the convergence of the eigenvalues is improved and that the wave functions of excited states can be
obtained more easily. Moreover, the calculation of transition matrix elements becomes siiBpE56-
281396)01006-

PACS numbdps): 21.60.Ka

[. INTRODUCTION nalization. Thus, in order to overcome the basis-size problem
of the diagonalization of the shell model, the stochastic ap-
The auxiliary field Monte Carlo technique has beenproach seems promising.
widely used for investigating solid state and nuclear structure Recently we have proposed a new method which has the
physics. This technique enables us to treat the interactingspect of the quantum Monte Carlo method and that of the
many-body system spanning a Hilbert space with a hugélirect diagonalization. This method has been reported, being
dimension for which the diagonalization of the Hamiltonianreferred to as the quantum Monte Carlo diagonalization
cannot be carried out practically. This Monte Carlo tech-(QMCD) method[4]. In the QMCD method, appropriate
nique overcomes the combinatorial complexity of the quanmany-body basis states are selected by using the auxiliary
tum many-body system and has been successful in descrifeld Monte Carlo technique and then diagonalization of the
ing the zero-temperature and thermal properties of thdlamiltonian is carried out with respect to these bases. As an
interacting many-particle system. In nuclear structure physexample, we have demonstrated that, by using the interacting
ics, Ormandet al. have extensively exploited this technique boson model(IBM) [5], the basis states obtained in the
into the nuclear shell model, referring to their method as th€QMCD method efficiently cover quite well the subspace of
shell model Monte Carlo methdd]. However, its applica- the entire Hilbert space which is needed for describing low-
tion has been rather restricted mainly because of the sdying states. It was shown furth4] that the transition ma-
called minus-signproblem, a well-known generic and quite trix elements among these states can be readily evaluated.
difficult problem in the quantum Monte Carlo method. For Our approach reduces drastically the basis-dimension prob-
instance, in the shell model Monte Carlo method, the Hamildem of direct diagonalization, and overcomes certain intrinsic
tonian must have specific properties with respect to the timeproblems of the quantum Monte Carlo method. For instance,
reversal transformation. In addition, the structure of excitedve can explicitly access the excited states, and the present
states can be partly seen only through response functions. method does not suffer from thminus-signproblem. We
is crucial to remove such restrictions for further studies ofnote that, as will be presented elsewhere in detailmireus-
nuclear structure physics at zero temperature. sign problem occurs in some shell model Monte Carlo cal-
On the other hand, there is the direct diagonalizatiorculations with the IBM Hamiltonian, while the QMCD
method, where the Hamiltonian matrix is diagonalized ex-method works well in such cases. However, basis states ob-
actly in an appropriate Hilbert space. In nuclear structurdained in the present method are not eigenstates of angular
physics, direct diagonalization is widely used and turns outnomentum in general, while the Hamiltonian eigenstates to
to be a very powerful tool, especially for light nuclei. Owing be obtained are eigenstates of angular momentum. Therefore,
to the recent development of supercomputers with huge stothe angular momentum is restored stochastically, and degen-
age and the improvement of algorithms of shell model calerate levelsoM=—-J,-J+1, ... J—1J are obtained with
culations, direct diagonalization in the large-scale shellJ(M) being the magnitudez(projectior of the angular mo-
model calculation has widen its scope. Recently, there haveentum. This means that we solve the problem within a
been some salient developments in the methodology of theedundant space. Moreover, this redundancy prevents us
shell model diagonalization including stochastic approachfrom obtaining more excited states, as discussed later.
For instance, the stochastic variational met@thas been As a remedy of the above inefficiency, in the present pa-
proposed by Varga and Liotta who considered that theper, we propose a new method to incorporate an angular
single-particle basis is stochastically determined utilizingmomentum projection into the QMCD method. In general,
Gaussian-type single-particle wave functions with randonthe full angular momentum projector can be expressed as a
oscillator frequencies. In another work, Hostial. proposed  three-dimensional integral involvinB functions. This pro-
a stochastic truncation methgd] in the shell model diago- jection is difficult for numerical calculation unless the sys-
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tem has axial symmetry. However, the projection of the whereO,’s andN; denote one-body operators and the num-
component of the angular momentum suffices in removinder of one-body operators, respectively. THe can be at
the degeneracy with regard to the magnetic quantum numbamostN§p and usually appears to be much smaller. Bhe
and is easily incorporated into the QMCD method. It can beandV,, are coefficients deduced from Ed.).

carried out by inserting the one-dimensional numerical inte- By dividing the imaginary time into N, steps, the imagi-
gration into the computation of overlap and Hamiltonian ma-nary time evolution operataimany-body propagatpe "

trix elements, as we will discuss later. This projection will be can be written as the product of time-sliced imaginary time
referred to naturally as th®! projection hereafter. We will  evolution operators:
report also the efficiency of thil-projected QMCD.

This paper is organized as follows: In Sec. Il we sketch _H _AH
the formulation of the QMCD method. In Sec. llI, the e :nﬂl e , 4
M-projection method is presented in detail. Section IV is -
devoted to an illustration of the QMCD method and lits where AB:B/NI- By applying the HS transformation to
projection by numerical calculations. In Sec. V, we present @&ach time stefp7], this operator can be expressed as an in-

Ny

summary. tegral of one-body evolution operatofsne-body propaga-
tors) with respect to the auxiliary fields ,,:
Il. FORMULATION OF THE QMCD METHOD o A,3|V | 1/2 ~
X . . e_,BH~ H do _ra G(O’)H e_Aﬁh(‘Tn)
First, we summarize the formulation of the QMCD —wan M\ 27 i '

method[4]. For an illustration, we make use of the IBM as (5)
an easily accessible, still yet realistic, many-body system.

The boson creation operators are denoted BS  wherea, means a set of auxiliary fields of tmh time step,
(i=1,... Ngp whereNg, denotes the number of single par- 4 = (g, 09, . .. .on,n), and o denotes the assembly of

; - oot piogt
ticle statltes.TIn the IBM-1Ng;=6 andb;=s', b;=d>5,  the auxiliary fields over all the time steps,
..., bg=d;. The IBM Hamiltonian consists of single-

particle energies and a two-body interaction: U:_{Ul'gz’ -+ ,0n}. The Gaussian weight fact@(o) is
defined by
< thoo L < tht AB 2
H:,Z €ijbibj+ — Z vijki by bbby, 1) G(o)=exp — >, — |V, 2], (6)
i,j=1 4|,J,k,I:1 a,n 2

where €; and v, are parameters. Presently the QMCD and h(y) is one-body Hamiltonian defined by
method is a diagonalization of the Hamiltonian matrix with

respect to the coherent states created as h(&n)ZZ (E,+8,V001)O,, @
Nsp Ng N . ( ) .
D(X)) = x.bf 0), 2 wheres,==*1 (==i) if V,<0 (>0). The operato5) is a
[©00) VNg! (Z’l ' ') 10) @ ground state projector acting on the trial state which has

nonvanishing overlap with the ground state, that is,

where|0) is the boson vacuum and tixgs are (generally i —BH| 5 (0)

. img_ e ) D), 8
comple®y amplitudes.Ng denotes the number of bosons. B | Ad o) ®)
Since the coherent states are nonorthogonal to one a”OIh%herekI)g) denotes the ground state and ljt@‘”) is an
we solve the generalized linear eigenvalue problempy;iial wave function. In the case of the present calculation,
Hc=.ENc, whereH and N are the Hamiltonian and norm |(I>(>Z)) with an appropriate initiak can be|d©)).
ma_ltrlces, Wh'Ch. are gen_erally _complex. Thes are not In principle, the multidimensional integration in E()
unique for specifying a given eigenstate iaf No method can be evaluated by the Monte Carlo method wherés

has been known for selecting the appropriate coherent S‘tat(i’[’ﬁ(en from the Gaussian random number distribution with
efficiently as the basis of diagonalization. Here, in order to - . . )
select the coherent states, we use the auxiliary field Montéhe weight functior(6). Each set ofr yields the correspond

Carlo technique. ihg |®(0)):
In the auxiliary field Monte Carlo method, one of the key N
technique is the Hubbard-Stratonovi@HS) transformation |®(o))o 11 e AAM(0)| () 9
n=1

[6], which allows us to reduce the exponential function of the

two-body interactions to the integral of the exponential func- )
tions of the linearized one-body fields. In order to performFOr One set ofr, the one-body evolution operat(®) can be

the HS transformation, it is useful to rewrite the Hamiltonianconsidered to be a transformation from an initidl®) to a

(1) in a quadratic form final [® (o)) which is also a coherent state. Therefore, the
exact ground state can be expressed by a linear combination
Ny of the many coherent states generated by the corresponding
H= 2 (E,O,+1v,07%), 3) auxiliary fields_ (r’s_. _The auxiliary fie_:ld quantum Monte
a=1 “ Carlo method implicitly and stochastically ensures the cor-
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rect linear combination of such coherent states for the grountyl =J is often used in shell model diagonalization in tine
state. In the QMCD method, as discussed below, the lineascheme. As this space certainly includes eigenstates with an-
combination is determined explicitly by diagonalizing the gular momenta higher thah® we add thel-J term to the
Hamiltonian in a subspace formed by selected coherertiamiltonian, so as to push up the eigenstates with higher
states. angular momenta. Hence, with this procedure, we can obtain
Each coherent state which contains the large fraction ofow-lying states with the angular momentuin separating
the wave function of the ground state can be considered to bitaem from other states with different angular momenta. With
a good basis vector for describing the low-lying states, andegard to thel-J term, the same technique has been used for
the one-body evolution operat®) generates such coherent stabilizing the numerical calculation in tme-scheme diago-
states, as we will discuss later. In this sense, the one-bodyalization. In this respect, the presexit projection has a
evolution operatof9) can be considered to be a generator ofcertain similarity to the shell model diagonalization in the
bases for describing the low-lying states in a good approxim scheme.
mation, in contrast with the fact that the many-body propa- We summarize the procedure of the-projected QMCD
gatore” Pt is an exact ground-state projector. Therefore, wemethod.
can use these coherent states as the bases for diagonalizing(1) We take an initial coherent state which is supposed to
the Hamiltonian matrix. We note that we can use differentcontain the low-lying states to be obtained.
initial states if necessary, for instance, in the case of the (2) A set of the auxiliary fieldsr is given stochastically
shape coexistence problem. The different sets of randoraccording to the Gaussian weight functi).
numbers provide different auxiliary fields and conse- (3) We calculate a wave functidmb (o)) for the present
quently different coherent basis states. Because such cohejetg.
ent states are nonorthogonal and can be similar to each other, (4) The M projection is carried out by the projection op-

we orthogonalize them. Moreover, we select gmddbases erator (10). The presently obtainedl-projected coherent

by the perturbative estimation in the sense of “stochastiGtate|®(o,M)) is orthonormalized by means of the Schmidt
diagonalization”[10] as we will discuss later. Thus, we in- method with respect to all other basis states obtained previ-
crease the bases in diagonalizing the Hamiltonian matrix unously, and then a new basis stide’ (M)) added to the basis

til the obtained energies converge. In the previous pper  states is determined. In order to accelerate the convergence,
we have shown that this procedure works well, and that wgye use the following criterion for selectirgpodbaseg10].

end up with well-convergent energies and wave functions forrhe energy decreaseE which originates in the new basis
several low-lying states. The QMCD method is composed 0ktate|d’(M)) can be estimated by

two processes: One is the generation of the bdgses

QMCD basesfor describing the low-lying states by the aux- Ne ¢
iliary field Monte Carlo technique, and the second is the AE~E —{Ei—s+\/(Ei—s)2+4|Di|2}, (11)
diagonalization process in terms of the QMCD bases. It is =12

important to realize that the bases are automatically selected

by the dynamics of the system in the former process, and, igvhere N, is the number of the eigenstates which we try
this sense, we diagonalize the Hamiltonian in the full spacgo solve, E; denotes the energy of thieh state obtained

(no space truncation in the previous step, e=(®’(M)|H|®'(M)), and
D;=(¥;|H|®'(M)) whereWV; is theith wave function ob-
IIl. ANGULAR MOMENTUM PROJECTION METHOD tained in the previous step. XE is small, for example, less

than 10% in comparison to the energy decrease in the previ-

In this subsectign, we present a pre;cription for removing, ;5 steps, the stafe’(M)) is discarded, and we return to
the degeneracy with regard to magnetic quantum number. 'Qtep(Z).

order to extract the component of a given magnetic quantum (5) By adding the new basis state obtained in Sipto
numberM from the coherent state, we introduce the state ¢ subspace where the Hamiltoniginis diagonalized, we
1 (2 obtain improved er;ergieEi’s of the considered states and
_ == Ty paid3,—M) their wave function$¥;) (i=1,... No).
[©(,M)) =Pyl ®(0) 27Tfo dge (), (6) The steps fron(zg to (5) are repeated until the ener-
(10 giesE;’s of the considered states converge.

The present angular momentum projection is carried out
whereP), is the projector onto the total magnetic quantumonly in the diagonalization process. We do not apply any
numberM. HereJ, stands for the component of angular modification to the Monte Carlo procedure. However, be-
momentum operators. Note thhtis an operator anil isits  cause the coherent state generated by the imaginary time
quantum number. The sta@ (o,M)) will be referred to as  evolution operato(9) contains various angular momenta, the
the M-projected coherent state. The corresponding overlap -projected basis can be considered to be good as a basis for
and matrix element of the Hamiltonian are evaluated withthe subspace with a given magnetic quantum number. More-
one-dimensional integration overin Eq. (10). The numeri-  over, theM projection reduces the burden of the diagonal-
cal calculation for theM projection is easier in comparison ization by decreasing the dimension.
to the full angular momentum projection. TheM projection has been studied also in the shell model

If we consider the states with angular momentlymwe  Monte Carlo method8]. Moreover, the angular momentum
can use theM-projected coherent states witi =J. The  projection of the path integral representation of the partition
subspace with the definite total magnetic quantum numbeiunction has been proposed by Rossignoli and Rigg
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They discussed the general projected statistics of a grand ,,
canonical ensemble according to the symmetry of the Lie
algebra, and showed the importance of such an angular-
momentum-projected calculation within the static path ap-
proximation. 208

The present method is different from the above-
mentioned approaches, particularly in the aspect that the V 2i0p \R
presentM projection is plugged into the diagonalization pro- :
cess. Thus, theM-projected QMCD method is somewhat 22k
related to shell model diagonalization in thescheme with
similar projection procedures.

-14.8 |-

(B)

<H>
<H>

[ 500 1000
QMCD basis dimension QMCD basis dimension

IV. ILLUSTRATIONS BY NUMERICAL CALCULATIONS o . )
FIG. 1. Excitation energies of the low-lying states for the results

A. IBM Hamiltonian of QMCD (open diamony and M-projected QMCD(solid circle,
square, and trianglemethods as a function of the QMCD basis
dimension. The points are connected to guide the eyes. The Hamil-

. tonian is taken as the limit for (A) and the limit for (B).
the sdgIBM [5] as a demonstration. The(€) and SU3) Other parameters uz?d arAB=(1)6 Nt:2(()36);<=0.1 (ar)1d

I|m|t§ of the IBM repres.ent th@/-u_nstable and aX|aIIy SYM-,7=0.01. The exact values are also shown by horizontal lines. In
metric _deformed nuclei, V?SpeCt,'VG'y- TiselgIBM is an the case of the QMCD method, we show the results for up to the
extension of thesd-IBM by including the hexadecupole de- gjghth Jevel.

gree of freedom and can be more suitable in describing cer-

tain aspects of well-deformed nuclei. As the cases of thd55 117 520 in thisdg calculation, we see the remarkable
SU(3) and ) limits describe deformed nuclei, almost the €fficiency of the QMCD calculation over the direct diagonal-
entire space is needed to diagonalize the Hamiltonian in th&ation. ) .

sphericalfi.e., U5)] basis and hence there is no appropriate The degeneracy with respect to magnetic quantum num-
truncation scheme. Because the Hilbert space of th@€r means thatwe solve the Hamiltonian in a redundant way.

sdgIBM is quite huge, the present method is useful for solv-AS described above, th#l-projection technique removes
ing the Hamiltonian. We start with the IBM Hamiltonian th.'s redur)dancy by lifting the degeneracy. SOI'q symbols in
Fig. 1 indicate the convergence pattern of certain lowest lev-

H=—-xQ -Q+«'J-J, (12)  €els obtained with theM projection. In fact, we show the
results of the QMCD calculation with thd projection onto

the M=0 space. The corresponding-scheme dimension
(with M=0) is 4 859 194 for thesdgIBM. As we decom-
pose the whole space into subspaces with definite magnetic
quantum number, the dimension of the considered Hilbert
space is reduced significantly. In order to compare the effi-
ciency of convergence in the QMCD method with that in the
M-projected QMCD method, we show the results using the
same parameters of the Hamiltonian. Since the results with
and without theM projection are included in Fig. 1, one

In the following, theM-projected QMCD method is ap-
plied to the @6) limit of the sd-IBM and the SU3) limit of

whereJ represents the angular momentum operatorQ@urisl
the quadrupole operator defined by

Q=s'd+d's+x[d"d]?+\[dG+g"d]?+ w[g*g‘]ﬁ.g)

In the case of the ®) limit of the sd-IBM, x, A\, andw
vanish. The SI®B) limit of the sdg-IBM can be obtained

with y=—11y10/28,\=9/7, andw=—355/14. finds that the efficiency of th&1-projected QMCD method
for the Q6) and SU3) limits is quite high compared to the
B. Comparison between QMCD andM -projected QMCD method without theM projection. In the QMCD
QMCD methods method without theM projection, since the eigenstates are

; : degenerate with respect to magnetic quantum number, a
First we present the results of the QMCD method without Lo L ’
P Q larger QMCD basis dimension is needed to complete such

the M projection. As we have already mentioned, the result-"" <" ) .
ant eigenstates are degenerate with respect to the magne'fﬂylt'plets of a given). Moreover, in the QMCD method

quantum numbeM. For instance, the fivefold 2 level ap- without theM projection, it is difficult to obtain higher ex-

: . . cited states, because basically all the eigenstates below the
pears in the QMCD calculation. Figure 1 shows the ConVerstate of the interest have to be obtained. In turn, in the

gence pattern of several low-lying levels by open diamonds, ™~ - . e .
The levels come down basically as the dimension of the('\:/I npsrgjeucetigthﬂveCEar:eetQ;Cli, thh;igl'éﬂfnu;%/ Ise;i?eodvigét'g: \?vith
subspace spanned by the QMCD basis states is increaseg >4 ' y i y €xc

various angular momenta. From this comparison, one con-

This dimension is called the QMCD basis dimension. We ludes that theMl proiection plavs a verv important role in
show the convergence of the eigenvalues for up to the eight : Proj play y imp .
e practical calculations. In the following, we discuss de-

level as a function of the QMCD basis dimension. We show, . . . .
the cases of the SB) and G6) limits. We observe the five- tailed properties of thé-projected QMCD calculation.

fold degeneracy with regard to the magnetic quantum num-
ber of the 2 level in both cases. The boson number is taken
to be 16. Other parameters are given in the figure caption. Here we take a boson numbéfg=30. While this is

Since the dimension in the fufdg space turns out to be larger than usual values, this is chosen only for the sake of

C. Statistical property of the QMCD basis
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examination of the efficiency of the present method. In the 0
case of thesdg-IBM, the m-scheme basis dimension with

M =0 turns out to be 2 332 164 293, for which the full di-
agonalization is much beyond the scope of any computer
available in the near future.

Before proceeding to the results of the QMCD method,
we discuss certain properties of the coherent states obtained
by the one-body operatd®). This operator is of the form of -10
the imaginary time evolution, and its function in E&) is
very clear. However, since it contains not the original Hamil-
tonianH but the one-body operatdr [see Eq(7)] obtained £ 15
from H, the meanings of the operator in E®) should be \Y
clarified. We take an initial state and trace its evolution by
Eq. (9). The evolution is carried out by time sliceB, which
is repeated\, times, giving rise to=ABN,;. The values
N,= 20 is taken. We first examine the variation of the energy
expectation value of the stat®(o)). Here we keeN; un-
changed but var 8, which results in differeng, because 25
of B=ApBN,;. For a given value of3 (or AB), we repeat
stochastically the evolution process in Ef) with Ny sets

of randomly selected’s. We takeN;,=400 in the present -30
calculation. The energy expectation valEéo,B) is then 0 100 200 300 400 500 600
calculated for eacl8 and each set of as [3

(®(a)|HPy|P(0)) FIG. 2. Average energies and variances of the QMCD bases as

(14 a function of 8. The average energy and variance are calculated
with the 400 coherent states fM =0, 4, and 6 space at eagh

L The variances are indicated by the error bars. The Hamiltonian of
Note that theM projection is made. Thus, we obtaMsy  1he exact SEB) limit is taken. The parameters used dig=30,
values for each value @. We then consider the average and N, =20, x=0.005, andx’ =0.05.

standard deviation dE in Eg. (14) with respect too:

B0 B)= T8 (0) [Pyl ®(0))

o 1 the aforementioned variance. After obtaining all the avail-
E(B)= _E E(o,B), (15 able coherent states at a cert@n we can thus obtain an-
Nsig “ other set of coherent states if we decreg@seWe use this
" property in selecting the QMCD basis.
1 — Finally, we note that the inverse temperatyein the
AE(B)= N_smyg [E(U'B)_E(ﬂ)]zl . (16) present work has no physical meaning and it is used as a
mathematical tool because we work in the framework of the

The values of the averaﬁﬁ) and the standard deviation microcanonical ensembl@ero-temperature formalism

AE(B) are shown in Fig. 2 as functions gf (= ABN,) for

M= 0, 4, and 6. In the QMCD description, an eigenstate is D. SU(3) limit
expressed in terms of stochastically generated bases which . . .
are actuallyM-projected stategDP(o,M)) in Eq. (10). Low- MNgét wethdg,c_us?h detailed ffetzri]turzwoﬁ_ tf_l:i-golecteg
lying eigenstates are described by a given set of such bas method in the case of the &b) limit. Figure

states to almost the same extent. Therefore,Mhe 0, 4, SNOWS the energies and the_ ex_pectat_lon values -df as

and 6 states in Fig. 2 show similar patterns.A8 increases, functions of the QMCD basis dimension, .ﬂM :.0' The.

the average energy decreases, andAfig=25 (8=500) it adopted values of other parameters are given in the figure

; N aV Ba
reaches an almost constant value. On the other hand, in Fi gipnon. One sees that the yrast energiesof 2, , 4, , and

2, we can see that the variance of the energy does not d , converge within the QMCD basis dimension of abo.ut 50.
crease a@ increases. Since this variance is a consequence &N the other hand, nonyrast states show a clearly different
a certain variety of the states in E40), this property can be aﬂd slgwer+con\iergence. The members ofgrendy bands,
utilized in the QMCD method for generating many linearly 02 » 22, 23, 31, and 4, require QMCD bases of about
independent QMCD bases at a definite valueBofThere- 350 for convergence of the energy and of thd value.

fore, we can see that the one-body evolution operé&dpr Figure 4A) shows the energies of the yrast and several
works as a projector for extracting states in Etp), needed nonyrast excited states as functions of the QMCD basis di-
as bases for low-lying states. This is a very useful propertymension for theM =4 space. Obviously, the 0and 2"

At smaller B, the coherent states in E(Q) have higher levels are absent in Fig. 4. Because of the elimination of the
energy expectation values. Hence, we can anticipate th&" and 2" states, we can obtain the 4and 4; states much
such coherent states contain a larger fraction of excitednore easily than in th1 =0 space. One can see the degen-
eigenstates. At a certai, by the auxiliary field Monte eracy of the 4 and 4; states, which is characteristic in the
Carlo technique, we can obtain many coherent states withiBU(3) limit. Comparing Fig. 3 to Fig. 4, we can see that
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-31

where\=3, Ximb/, (i=1,2). In the case ok;~X\,, the
(AD)Ne|0) is shown as XxI+onT)Ne0) ~(a])Neo)
+Ng(Xym)bl(A\)Ne=2|0) + - - .. After the Schmidt orth-
gonalization, the first component on the right-hand side dis-
appears. The remaining component is basically the general-
ized TDA trial wave function. Thus, in the QMCD method,
TDA(-like) states are included, by varying thés. This is
why the QMCD method can easily produce tBeand y
bands.

(A) 140 |-
32
120} o

33
100~ g

34 80 4}

<H>

I

<JJ>

35| 60|

40
236

SN B O CwNwoR

20
-37

1 1 | | (U t t +
0 100 200 300 400 0 100 200 300 400

QMCD basis dimension QMCD basis dimension

E. O(6) limit

, , The Q6) limit representsy-unstable deformed nuclei.
FIG. 3. (A) Energies andB) expectation values of the angular pecanily, the structure of @) nuclei has been reinterpreted

momentum of low-lying states as functions of the QMCD ba5|saS a multiphonon scheme built on theunstable deformed

dimension. TheVi =0 space is considered. The Hamiltonian of the P . . .

exact SU3) limit is taken. The parameters used aky=30 ground stat¢l11]. As this structure is not simpler than that of

N,=20, x=0.005, x’ =0.03, and initialA 8= 25. The exact Va|ués the SU3) from the viewpoint of the coherent state, this is a

are shown by horizontal bars. good testing ground to see whether or not the QMCD

method can reproduce eigenenergies and eigenstates. Here,

levels are displaced. This is due to strength of a repulsivd/e add to the Hamiltoniafl2) the interactionksT(- T(%),
J-J interaction, which is larger in the calculation shown in whereT®)=[d'd]®. As T®.T®) is a Casimir operator of
Fig. 4. The adopted values of the parameters are given in tHe(5), the Hamiltonian remains in the(6 limit and can be
figure caption. These figures show that theprojected still solved algebraically. However, it increases the number
QMCD method can reproduce not only the yrast states budf auxiliary fields. In Fig. 5, we show the energy and the
also the members of th@ and y bands. expectation value of-J. Contrary to the convergence pat-
An axially symmetric coherent state\ ()Ne|0), where tern of the SW3) limit shown in Fig. 4, the convergence
A'=3xb/,, gives the exact wave function in the @) patterns of yrast levels are very similar to that of nonyrast
limit after projecting it onto a good angular momentum. Herelevels as functions of the QMCD basis dimension. This is
the x’s are amplitudes, while thk’s stand for bosons. This because yrast and nonyrast states () ®ave equally com-
can be achieved by projecting the above coherent state witlicated intrinsic structures. We can calculate the Hamil-
an appropriately chosex. This means that a coherent state tonian matrix for the space with a fixed value . This
is a good basis for the yrast states in the(3Uimit. space includes the levels with=M. In order to separate
Concerning the members of thandy bands, it may be states of)>M from those ofJ=M, we add thel-J term to
useful to consider the Tamm-Dancoff approximat{dDA)  the Hamiltonian. In Fig. 6A), we show the results of the
in boson systems, where the intrinsic states are of the forny=6 space. In this case, we evaluate six well-convergent
bl (A")Ne~10). We now discuss how to generate such6™ levels by using thd-J term. Thus, thé projection with
states in the QMCD method. a largeJ- J term works efficiently, making it possible that a
We consider two coherent states resembling each othedecent number of low-lying levels of the deformed nuclei
These coherent states are denoted bir/)"CB|0> (i=1,2) can be obtained.
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F. Basis-size problem of the QMCD method In the QMCD method, by construction, the bases are de-

One of the advantages of the auxiliary field quantumt€rmined by the mean fields which are generated in a sto-
Monte Carlo method is that, due to the linearized one-body@stic way, and hence the basis size is mainly dependent on
Hamiltonian by the HS transformation, the size of the re_the number of the mean fields dominating the structure of the
quired space for the numerical calculation for the many_states of interest. On the other hand, the dependence of the

particle system is reduced to that of a single-particle oneboson number can be expected to be indirect and weak. In

independent of the number of particles involved in the con-Table I, we show the typical values of QMCD basis dimen-

sidered system. Therefore, the shell model Monte Carl&ion required for having convergence of the States in the
method overcomes the basis-size problem of direct diagonafase of the S(B) and Q6) limits. The corresponding
ization. On the other hand, the QMCD method is a combi-Mn-scheme dimension of the entire Hilbert space grows rap-
nation of the auxiliary field quantum Monte Carlo method idly from 107 to 10 as the boson number increases. On the
and the direct diagonalization method. Therefore, the QMcC®ther hand, in the QMCD, the required dimension of the
method may inherit their advantages and disadvantages. A8MCD basis is rather independent of boson number. How-
the QMCD method spans the bases of the diagonalizatiorgVver, it depends on the property of the Hamiltonian of the
there is a possibility that the dimension of required QMCDconsidered system. One can see that in the application to the
bases may be too large. It is important to investigate théBM, the QMCD method has a significant advantage in the
relation between the QMCD basis dimension and the dimenbasis-size problem over the direct diagonalization method.
sion of the entire Hilbert space as functions of the number of

particles involved, because it determines the scope of the G. Transition matrix elements

application of the present method. In the shell model Monte Carlo method, the excited states
can be studied through the response funcfibh Some of

the transition matrix elements can be estimated by this re-
sponse function. In turn, in the QMCD method, owing to the
introduction of the diagonalization process, we can explicitly
construct the wave functions of the excited states. As a con-
sequence, we can easily compute the transition matrix ele-
ments.

(A)

Quadrupole moment

1
|

TABLE |. QMCD basis dimension needed for the convergence
for the G/ level as a function of boson numbilg . The dimension
of the full M =0 subspace is listed for comparison. The($tand
O(6) limits are considered. The convergence of each state is judged
by (J-J)=<0.01, wherel] is the angular momentum operator.

50 100 150 200 250 300
QMCD basis dimension QMCD basis dimension

SU3) 0O(6)

FIG. 6. (A) Energies of the low-lying state¢B) quadrupole N, QMCD basis FullM=0 QMCD basis FulM=0
moments of up to the sixth state, af@ B(E2: 6] —4;) as func-

tions of the QMCD basis dimension. Th¢=0 space is consid- 10 30 92123 60 202
ered. The Hamiltonian of the exac{(® limit is taken. The param- 20 50 39180981 130 1957
eters used arBlg=30,N,;=20, k=0.025,xk3=0.03,x'=0.05, and 30 70 2332164293 230 8265

initial AB=10. The exact values are shown by horizontal bars.




53 QUANTUM MONTE CARLO DIAGONALIZATION WITH ANGULAR.. .. 2793

For evaluating the transition matrix elements between th&€MCD method has the advantages of both the quantum
low-lying excited states, eigenstates with definiteand M Monte Carlo method and the conventional diagonalization
are needed. In a previous papdt, for improving the sepa- method often used in shell model calculations. The applica-
ration of the degenerate eigenstates with diffeddris, we  tion of the QMCD method provides us with quite accurate
modified the Hamiltonian by adding the tery(J,—M)?2. eigenvalue solutions within the tractable number of the
Obliviously, we take a positiver and some integevl. With  QMCD basis dimensions. However, it produces degenerate
this term, all states witld,# M can be pushed up. However, eigenstates with respect to the magnetic quantum number.
as the y(J,—M)? term makes the convergence worse, aHence, we have introduced the-projection method into the
large dimension of the QMCD basis is required. On the conQMCD method. ThisM projection reduces the Hilbert space
trary, due to théM projection, such a problem does not ariseby decomposing it into subspaces with definite magnetic
in the present approach. quantum numbers. This is a method analogous to the shell

In Figs. 4B) and GB), we show the convergence of the model diagonalization in then scheme. Contrary to the full
guadrupole moment of each state as functions of the QMCRngular momentum projection, the present method is easy for
basis dimension. In the case of théDlimit, the quadrupole numerical calculations. By this projection method, conver-
moments of all the states should vanish. Figu(8)6con-  gence of the eigenvalues is extremely improved. The degen-
firms this property as the QMCD basis dimension increaseseracy with respect to the magnetic quantum number is re-
In Figs. 4C) and GC), we show the convergence of the moved. As a consequence, we can easily evaluate the
B(E2) values as functions of the QMCD basis dimension. Inproperties of excited states. After diagonalization of the
these figures, the quantum numbers of angular momentutdamiltonian, the resultant wave function has a definite angu-
and its z component are assigned approximately, for thdar momentum andz projection, if the convergence is
cases where convergence is not achieved. In the case of thshieved. This makes the evaluation of the transition matrix
SU(3) limit, the interbandB(E2)’s vanish while the intra- elements easier. The presévtprojection method seems to
band B(E2)’s have large values. Figure(@ shows that be an indispensable tool for applying the QMCD method to
these features are accomplished as functions of the QMCDuclear structure physics.
basis dimension. By showing the convergence of the quad- Up to now, we have discussed numerical examples by
rupole moment an&(E2), we can confirm the convergence utilizing the group theoretical limits of the IBM, for the sake
of the wave function obtained by the QMCD method. of comparison to exact solutions. For systems with a boson

We finally make remarks on the computational aspect ohumber as large @85~ 20-30, it is impossible to diagonal-
the transition matrix element calculation. The coherent stateige the full IBM Hamiltonian. However, we have confirmed
span the over complete space as we have already mentionddat in the present method the QMCD basis dimension
The same wave function can be represented in many wayseeded for reasonable convergence is tractable also for other
For instance, a different initial seed of the random numbeimore general Hamiltonians.
gives rise to a completely different representation of the We are now trying to apply this method to fermion sys-
same wave function because the present method is purelgms. The significant improvement in the boson system sug-
stochastic. Moreover, the wave function of a givkoan be  gests that thisM-projected QMCD method should work in
manipulated in various subspaces with different magnetidermion systems as well.
guantum numbers. Therefore, to evaluate the transition ma-
trix elements, we have several methods of computation.
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