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Proton „neutron… spin rotation in a polarized nuclear target:
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The nuclear interaction of a proton~neutron! beam of energy;1 GeV with a polarized nuclear target of
lengthl results in spin rotation of the incident particles through an angleu5~1023–1024!l ~cm!. Using the spin
density matrix method, it is shown that there are two physically different mechanisms which lead to the
rotation effect. The first mechanism, coherent spin rotation, has a quasioptical nature and depends direc
the real part of a spin dependent proton-proton (pp) and proton-neutron (pn) forward scattering amplitude. It
manifests itself in a broad energy range from a few hundredths of an eV@but for (pp) interaction, from tens
of MeV# to hundreds of GeV. The second mechanism, diffractive spin rotation, is caused by Coulomb-nu
interference in (pp) scattering and is of the same order as coherent spin rotation in an energy region of a
tens of MeV. The diffractive spin rotation angle decreases with the incident beam energy, and, at about 1
it represents only 1% of the value of the coherent spin rotation angle. Experimental measurement of the
rotation angle makes it possible to reconstruct directly the real part of the forward scattering proton-proton
proton-neutron amplitudes. Spin rotation is proposed to be used for the investigation of threshold effects a
resonant baryon states in the intermediate energy region.

PACS number~s!: 29.25.Pj, 03.75.Be, 13.75.Cs, 29.27.Hj
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I. INTRODUCTION

There are two physical principles, unitarity and analyt
ity, which, physicists believe, hold for the description
strong interactions. The unitarity principle gives the dire
relation between a total cross section of colliding partic
and the imaginary part of the forward scattering amplitude
is well known in experimental particle physics how to me
sure a total spin dependent cross section of proton-pro
(pp) and proton-neutron (pn) interactions~for a review, see
@1#!. The corresponding physical program has been car
out for a long time in the broad energy range of collidin
particles@for the (nN) interactions, for example, from a few
hundredths of an eV to hundreds of GeV#.

Through analyticity we can get dispersion relations b
tween the real and imaginary parts of the forward scatter
amplitude. These relations are very valuable for analyz
strong interactions, especially if we know both the real a
imaginary parts of the forward scattering amplitude in
broad energy range through independent experimental m
surements. Moreover, knowledge of the real part of the f
ward scattering amplitude is important for the investigati
of dibaryon resonances@2–5#, the measurement of (pp) spin
observables under small angle scattering@6,7#, phase shift
analysis@8#, and the calculation of parity violation in (pN)
and (nN) interactions@9#.

However, up to the present, the usual method for cal
lating the real part of the spin dependent amplitude has b
through a dispersion relation from the imaginary part. No
also that unlike the case of the spin independent part of
amplitude, where the method of dispersion relations is
well-determined procedure, the calculation of the spin
pendent part of the amplitude using the dispersion integra
533/96/53~1!/267~10!/$06.00
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not very reliable, because, in this case, the contribution of
nonphysical region of theNN̄ cutoff is very complicated to
take into account@10#.

There are also several experimental possibilities for
indirect measurement of the real part of the forward scat
ing amplitude@1#. Since no scattering experiment is possib
in the forward direction, the determination of the real part
the forward amplitudes has always consisted in the meas
ment of well-chosen elastic scattering observables at sm
angles and then in the extrapolation of these observables
wards zero angle@1#. In addition, there has been one expe
ment in which the real parts ofn-p forward scattering am-
plitudes were calculated by using isospin symmetry relatio
@1# through the measurement ofn-p scattering amplitudes a
180° c.m. @11,12#. All of these methods, however, contai
discrete ambiguities in the reconstruction of the forward sc
tering matrix which can be removed only by new indepe
dent measurements. Consequently, what is needed is a d
reconstruction of the real part of the forward scattering m
trix such as we have in the case of the imaginary part throu
the measurement of a total cross section.

It has been shown in@13–18# that there is an unambigu
ous method which makes the direct measurement of the
part of the spin dependent forward scattering amplitude p
sible. This technique is based on the effect of proton~neu-
tron! beam spin rotation in a polarized nuclear target a
uses the measurement of a proton~neutron! spin rotation
angle under the conditions of a transmission experimen
the so-called spin rotation experiment. The analogous p
nomenon for thermal neutrons was theoretically predicted
Podgoretsky and one of the authors~V.B.! @14# and experi-
mentally measured by the Abragam@15# and Forte @17#
groups ~the phenomenon of nuclear precession of neut
267 © 1996 The American Physical Society
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spin in the quasimagnetic nuclear field of a polarized nucle
target!.

The nature of the spin rotation effect can be easily und
stood using a simple quasioptical model of the nuclear int
action of an incident beam with the target. In this case t
difference in the interaction of protons~neutrons! polarized
parallel and antiparallel to the polarization of the nucle
target is described by two effective indices of refraction,n↑↑
andn↑↓ . These refractive indices characterize the interacti
of the incident beam with the target as a whole. This is d
ferent from the refractive index introduced in the usual op
cal model of nuclear interactions@19,20# which describes the
scattering process on separate target nuclei. As is usual w
two indices of refraction, the quasioptical phenomena of sp
rotation and dichroism of absorption arise when the pol
ized protons~neutrons! penetrate the polarized nuclear targe
Since the quasioptical description holds under arbitrary e
ergies of the incident particles, the phenomenon of spin
tation is manifest both in the low and in the superhigh ener
regions.

This very simple picture of the spin rotation phenomeno
holds only for the forward scattered protons~neutrons! @i.e.,
for the coherent proton~neutron! wave#. However, the elec-
tromagnetic interaction of incident particles with the Cou
lomb field of the target results in fast damping of the cohe
ent wave~especially for the polarized proton beam!. It seems
that this effect should lead to practically total suppression
coherent proton spin rotation in the polarized nuclear targ
but this is not the case. We will show that a scattered pro
also ‘‘senses’’ the quasimagnetic nuclear field in which i
spin is rotated. Coulomb scattering in the nuclear target
sults in only insignificant depolarization of the beam an
does not influence coherent spin rotation. Moreover, spin
tation for the scattered protons is enhanced, for, besides
herent spin rotation in the quasimagnetic nuclear field, th
is incoherent spin rotation arising in single scattering eve
on the target nuclei. This incoherent spin rotation is con
tioned by the interference between the nuclear and the e
tromagnetic interaction~diffractive spin rotation!.

This paper, then, is organized as follows. In Sec. II w
discuss the basic properties of the spin dependentN-N scat-
tering matrix. In order to describe the dynamics of a pola
ized proton beam traveling through a polarized nuclear tar
under the conditions of a transmission experiment, we use
Sec. III, the formalism of the spin density matrix. Then
based on this formalism, we describe both coherent and
fractive proton spin rotation in polarized matter. The expre
sions for the polarization of the incident beam which tak
into account both the processes of depolarization and dif
sion of the beam over the solid angle are obtained in Sec.
It is seen that, in the GeV region, diffractive spin rotation
strongly suppressed, and spin rotation is mostly due to
coherent part. Accordingly, spin rotation can be described
two indices of refraction as discussed in Sec. V. In Sec.
we consider various beam and target spin configurations
a spin rotation experiment. Such an experiment can be u
to investigate threshold effects as well as to observe sign
of possible dibaryon resonances.

II. THE NUCLEON-NUCLEON SCATTERING MATRIX

In this section we review the basic properties of theN-N
scattering matrix. By assuming parity conservation, tim
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reversal invariance, and the Pauli principle, we can write t
general form of the scattering matrix for colliding nucleon
@21# as

M ~ k̂,k̂8!5$~a1b!1~a2b!~nW ŝ1!~nW ŝ2!1~c1d!~mW ŝ1!

3~mW ŝ2!1~c2d!~ lWŝ1!~ lWŝ2!1e@nW ~ ŝ11ŝ2!#

1 f @nW ~ ŝ12ŝ2!#%/2, ~1!

whereŝ1 andŝ2 are the Pauli matrices acting on the first an
second nucleon wave function,

mW 5
k̂2 k̂8

uk̂2 k̂8u
, lW5

k̂1 k̂8

uk̂1 k̂8u
, nW 5

~ k̂3 k̂8!

uk̂3 k̂8u
, ~2!

k̂ and k̂8 are unit vectors in the direction of the incident an
scattered particles, respectively, anda, b, c, d, e, and f are
six complex invariant amplitudes dependent on the angleu
betweenk̂ andk̂8 and on the particle energyE. If we assume
also isospin invariance of the scattering matrix then the a
plitude f vanishes.

A direct transition of the scattering matrix~1! to the case
of zero scattering angle is impossible because of the unc
tainty in the directions ofmW andlW whenk̂85 k̂. However, the
requirement of uniqueness of the forward scattering mat
M ( k̂,k̂) leads to the following relations between amplitude

e~0!50,

f ~0!50, ~3!

a~0!2b~0!5c~0!1d~0!,

which are used to get

M̂ ~0!5 1
2 @~a1b!1~c1d!~ ŝ1ŝ2!22d~ ŝ1k̂!~ ŝ2k̂!#.

~4!

As follows from Eq.~4!, there are only three out of six non-
zero independent complex parameters which completely
scribe the forward scattering amplitudes.

Recall also@19,20# that the proton-proton and proton-
neutron scattering matrix may be written as

M ~ k̂,k̂8!5Mel~ k̂,k̂8!1Mn~ k̂,k̂8!, ~5!

where we separated the contributions to the scattering am
tudes conditioned by the electromagnetic and strong inter
tions. Note that at energy;10 MeV the nuclear part of the
p-p scattering matrixMn( k̂,k̂8) is strongly modified by the
electromagnetic interaction@19,20#.

The scattering matrixMel( k̂,k̂8) of a proton on the Cou-
lomb center is obtained in the Appendix:

Mel5ael~u!S 12
ibg
2

~ ŝ1nW !u1~bgu!2/8D , ~6!

where bg5(g22)~g221!/~2g!1~g21!/g, and g and g are
the Lorentz factor and gyromagnetic ratio of the proton, r
spectively. The amplitudeael~u! is a maximum atu50 and
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falls off as 1/u 2 as the scattering angle increases. This
quite different from the smooth behavior of the nuclear pa
of Mn~u! near zero angle,

Mn~u!1!'Mn~0!5A1B~ ŝ1ŝ2!1C~ ŝ1k̂!~ ŝ2k̂!, ~7!

where the coefficientsA, B, andC are complex functions of
energy. Taking into account~5!, ~6!, and~7!, this allows us to
write the matrixM ~u! for small scattering angles as

M ~u!1!'Mel~u!1Mn~0!. ~8!

Comparing formulas~4! and ~8! it is possible to find rela-
tions between the coefficients in~2! and ~7!;

A5@a~0!1b~0!#/22ael~0!,

B5@c~0!1d~0!#/2, ~9!

C52d~0!.

The calculation of the imaginary parts of amplitudesA, B,
andC is possible through the optical theorem@22,23#

s tot5
4p

k
Im$@a~0!1b~0!#/21@c~0!1d~0!#~PW bPW t!/2

2d~0!~PW bk̂!~PW tk̂!%, ~10!

wherePW b and PW t are the beam and target polarization an
stot is the total cross section of theN-N interaction. The total
cross section in turn is directly determined by measuring t
final intensity of then (p) beam that has passed through th
polarized nuclear target under the conditions of a transm
sion experiment. However, besides intensity, then (p) beam
possesses another experimentally measurable character
polarization. Polarization, together with intensity, chang
when then (p) beam traverses the polarized nuclear targ
We will show that the change in beam polarization is co
nected with the real part of the spin dependent amplitudeB
andC by a simple algebraic relation. Hence, an experime
which measures not only transmission but also final polariz
tion of the beam, a spin rotation experiment, opens the p
sibility for the complete experimental reconstruction of th
amplitudesB andC.

III. SPIN DENSITY MATRIX FORMALISM

The most natural quantum mechanical description of
polarized proton~neutron! beam traveling through a polar-
ized target utilizes the spin density matrixw. In the nonrel-
ativistic approximation which holds in the energy region u
to tens of MeV, the density matrices of the polarized prot
~neutron! beam and polarized target are

w~b!5I ~kW !@11ŝPW b~kW !#/2,
~11!

w~ t !5~11ŝPW t!/2,

whereŝi are the Pauli matrices,I (kW ) andPW b(kW ) are the in-
tensity and polarization of the proton beam,kW is the incident
particle momentum, andPW t is the target polarization. In our
case, we treat the polarized proton target as a thermal re
is
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average. Neglecting the influence of the polarized prot
beam on the target we can treat the polarizationPW t as a
constant vector for the duration of the experiment. Therefo
the density matrix for the system,w(b,t), consisting of the
polarized target plus polarized proton beam, can be writt
as a tensor product of the matricesw(b) andw(t);

w~b,t !5w~b! ^w~ t !. ~12!

The master equation for the spin density matrix of this sy
tem has the standard form

dw~b,t !

dt
52

i

\
~Ĥw2wĤ!1S dwdt D

sct

~13!

with the Hamiltonian Ĥ52mpŝtBW 2mpŝbBW 2iG/2. Here
mp5\ge/(4mc) is the proton~neutron! magnetic moment,e
andm are the proton charge and mass, andg is the Lande´
factor. The Hamiltonian includes the magnetic interaction b
tween protons of the beam and target and the holding m
netic field BW of the polarized nuclear target and also th
decay part of the Hamiltonian,G, which is responsible for
inelastic nuclear interactions. The term (dw/dt)sct describes
the change in the density matrix due to elastic collisions
the target and will be considered more thoroughly.

Let us introduce theSmatrix Ŝ describing the transitions
from the initial state before scattering to the final state aft
particle scattering by the target nucleus. The density mat
after the collision can be written as

w85ŜwŜ1. ~14!

An element of theSmatrix Ŝ is

Ss8s~k
W8,kW !5^kW8s8uŜukWs&, ~15!

wherekW and kW8 are the initial and final momentum of the
scattered particle, ands ands8 are the spin variables of the
system target plus beam before and after the collision,
spectively. We representSs8s(k

W8,kW ) in the form

Ss8s~k
W8,kW !5d~kW8,kW !ds8s12p i S 2p\2

mL3 D
3d~E2E8!Mss8~k

W8,kW !, ~16!

where we introduced the scattering matrixMs8s(k
W8,kW ) ~1! as

is usually done in scattering theory@19#. HereL is the ele-
ment of length used for normalization,E is the energy, andm
is the reduced mass of the colliding particles. We assume t
the density matrix of the system under consideration has
form

^kW8s8uwukWs&5wss8d~kW8,kW !. ~17!

Here we neglect the nondiagonal elements of the dens
matrix in momentum space@24,25#. The spin density matrix
after collision can then be written as

wss̄8~k
W !5(

s8s9
(
kW8kW9

^kWsuŜukW8s8&^kW8s8uwukW9s9&^kW9s9uŜukW s̄&.

~18!
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To sum overkW we use the relation

(
kW
→L3E d3kW

~2p\!3
5

L3

~2p!3
E S 2mE

\2 D 1/2 m\2 dE dV.

~19!

Then, substituting the expression~16! in ~18!, we can get

wss̄8~k
W !5wss̄~kW !1DtS \k

mL3D F2p i

k S (
s8

Mss8~k
W ,kW !ws8s̄~k

W !

2(
s9

wss9~k
W !Ms9s̄

1
~kW ,kW !D

1E dV(
s8s9

Mss8~k
W8,kW !ws8s9~k

W !Ms9s̄
1 G , ~20!

whereDt is the characteristic scattering time. We are inte
ested in the quantity

w82w

Dt
5

Dw

Dt
, ~21!

where we compare the density matrices at the timest and
t1Dt. The time intervalDt should be chosen so that it is
much more than the characteristic correlation time of t
systemt but still small enough to fulfill the condition that the
differenceDw is linear overDt. We can then replace expres
sion ~21! by the derivative (d/dt)sct . Note that we can use
this derivative only for the description of the change inw(t)
for a time interval more thant.

Thus the master equation for the density matrix describi
the behavior of the polarized proton~neutron! beam in po-
larized nuclear matter can finally be written as

dw

dt
52

i

\
@Ĥ,w#1vr TrtF2p i

k
@M ~u50!w~kW !

2w~kW !M1~u50!#1E dV M ~kW8!w~kW8!M1~kW8!G ,
~22!

wherekW85kW1qW ,qW is the momentum transfer from the inci
dent particle to the target nucleus,v is the speed of incident
particles, andr is the nuclei density in the target. In~22! we
take the trace over the spin states of the target nuclei.

IV. THE DYNAMICS OF A POLARIZED PROTON BEAM
IN A POLARIZED NUCLEAR TARGET

Now we can obtain the differential equations for the in
tensity and polarization of a proton beam passing through
polarized nuclear target.

The intensity of the beam is

I5TrbTrtw, ~23!

where the spin matrixw is determined by Eq.~12!. Using
~23! and~12! and taking the trace over the polarization stat
of the incident protons, the change in the beam intensity
written as
r-
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dI

dt
5vr TrtTrbF2p i

k
@M ~u50!w~kW !2w~kW !M1~u50!#

1E dV M ~kW8!w~kW !M ~kW8!G2GI . ~24!

Polarization of the proton beam is determined as

PW 5
TrbTrtwŝ

TrbTrtw
5
TrbTrtwŝ

I
, ~25!

where we definedPW b5PW . To find the differential equation
for the beam polarization at a distancez in the polarized
nuclear target we consider the expression

DPW 5PW ~z1dz!2PW ~z!, ~26!

wheredz!z. Expanding the spin density matrixw(z1dz)
into a Taylor series

w~z1dz!5w~z!1
dw~z!

dz
dz1••• ~27!

and substituting it in~26! we get

dPW ~z!

dz
5
TrbTrt~dw/dz!ŝ

I ~z!
2PW ~z!

TrbTrtdw/dz

I ~z!
. ~28!

Equations~24! and ~28! completely describe all observable
characteristics of the proton beam in the polarized nucle
target.

To solve these equations we will use the fact that und
the conditions of a spin rotation or transmission experime
we are interested only in those protons, which, after pass
the target, fall into the small angular rangeum!1 near the
initial direction of the beamu,um . In this case, instead of
the exact scattering matrixM (kW8,kW ) in Eqs. ~24! and ~28!,
we will use its approximation~8! which holds true for small
scattering angles. Note also that existing polarized nucle
targets, as a rule, are much smaller than the nuclear leng
This means that a particle scattered through an angleu.um ,
because of the nuclear interaction, cannot return to the
lected angular range and, therefore, drops out of consid
ation. This process, the decrease of particle number from
incident beam because of nuclear scattering through la
angles, can be described by Eqs.~24! and~28! if we integrate
overdV up to the angleum .

To simplify calculations we consider in this section th
concrete geometry of a spin rotation experiment when t
initial polarization of incident protons is perpendicular an
the beam axis is parallel to the polarization of the target. T
general experimental geometry will be treated in Sec. V.

Since in the small angle range the electromagnetic int
action is much larger than the nuclear interaction, let us fi
consider only the contribution of the electromagnetic scatte
ing and neglect the nuclear. The corresponding amplitude
given by Eq.~6!. Substituting the spin density matrixw ~12!
in ~24!, we get the differential equation for the intensity o
the proton beam
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dI~kW !

dz
5rE dV8

dsCol

dV8
F I ~kW1qW !2I ~kW !1

bg
2u82

2
I ~kW1qW !G

2GI ~kW !, ~29!

wheredscol/dV8 is the Coulomb cross section. Here we use
the optical theorem~10!. Applying the same procedure to Eq
~28! we have

dPW ~kW !

dz
5
2mp@BW 3PW ~kW !#

v

1rE dV8
dsCol

dV8
F I ~kW1qW !@PW ~kW1qW !2PW ~kW !#

I ~kW !

2~bgu8!2
I ~kW1qW !PW ~kW1qW !

I ~kW ! Y4G . ~30!

Using the approximation of small angle scattering an
expanding the intensity and polarization of the beam in
powers of the momentum transfer, we get

I ~kW1qW !'I ~kW !1qi
]I ~kW !

]ki
1
1

2
qiqj

]2I ~kW !

]ki]kj
, ~31!

PW ~kW1qW !'PW ~kW !1qi
]PW ~kW !

]ki
1
1

2
qiqj

]2PW ~kW !

]ki]kj
. ~32!

We can then rewrite Eqs.~29! and ~30! in the form

dI~u,z!

dz
5

u2

4
Du I ~u,z!1

bg
2u2

2
I ~u,z!2GI ~u,z!,

~33!

dPW ~u,z!

dz
5
2mp~BW 3PW !

v
1

u2

4 S DuPW 1
2

I

]I

]u i

]PW

]u i
D 2

bg
2u2

4
PW ,

~34!
d
.

d
to

where

u25rE dV8
dsel

dV8
u82516pS Za

E D 2r ln~183Z21/3!

~35!

is the mean square-root scattering angle conditioned by t
electromagnetic interaction,a is the fine-structure constant,
andZ is the charge of the target nuclei. The initial condition
for Eqs. ~33! and ~34! are I (u,z50)5I 0d(u),
Py(u,z50)5P0 , Px(u,z50)50, and PW z(u,z50)50,
whered~u! is the delta function.

As follows from ~33! and~34!, electromagnetic scattering
does not have a significant effect on the polarization of th
beam. Because of the small angle nature of this scatterin
the protons of the beam are distributed diffusely over th
solid angleu with diffusion coefficientu2. This diffusion
does not influence the direction of the beam polarization.
only leads to a decrease in the magnitude of the polarizatio
the so-called depolarization process described in@26#. Ac-
cording to Eq.~34!, the depolarization rate of the proton
beam in the target equals

h512udep
2 /4, ~36!

where

udep
2 5bg

2u2l , ~37!

and l is the target length, a result which is in accord with
@26#. For the ammonia target of length;10 cm and an en-
ergy of the proton beam of about 10 MeV, the depolarizatio
rateh is about 1–1027. This means that depolarization is a
very small effect even for low energy protons and can b
omitted.

Let us consider the results of the joint effect of the elec
tromagnetic and nuclear interactions. Substituting expressi
~8! in the equation for the intensity~24! and polarization~28!
and using the same procedure as above we get
dI

dz
5

u2

4
DuI1

bg
2u2

2
I2GI2

4prI

k
ImA12rI E dV8 Reael~u8!ReA, ~38!

dPW ~kW !

dz
5
2mp~BW 3PW !

v
1

u2

4 S DuPW 1
2

I

]I

]u i

]PW

]u i
D 2

bg
2u2

4
PW 1

4pr

k
~ReB1ReC!~PW t3PW !2

4pr

k
~ ImB1ImC!PW t

22rE dV Rea~u!@~PW t3PW !~ ImC1ImB!1PW t~ReB1ReC!#. ~39!
r-
In formulas ~38! and ~39! under the integral we left only
the terms which describe the influence of Coulomb-nucle
interference on the dynamics of the beam intensity an
polarization. In the small angle approximation these term
dominate nuclear scattering. Equations~38! and ~39!
completely describe the behavior of the proton bea
polarization in a polarized nuclear target located in th
ar
d
s

m
e

supporting magnetic fieldBW .
In Eq. ~39! the terms which are proportional to the vector

(PW t3PW ) result in proton beam spin rotation. The terms pro-
portional to PW t lead to spin dichroism of the polarized
nuclear target. In direct analogy with@14,16# we may say
that there arises a quasimagnetic nuclear field of the pola
ized nuclear target with strength
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GW 5
2p\2r

mDm
PW tF ~ReB1ReC!

2
ka

E
lnS 1

kuColr s
D ~ ImB1ImC!G , ~40!

wherer s is the atomic screening radius andDm is the proton
anomalous magnetic moment. Spin rotation of the incide
proton beam takes place in the effective magnetic fieldBW eff
which equals the sum of the magnetic and quasimagn
nuclear fields.

Also, as follows from formulas~39! and ~40!, there are
two physically different mechanisms for spin rotation an
dichroism of a proton beam passing through a polariz
nuclear target. The first is connected with coherent proces
of proton scattering by the target nuclei and is determined
the real and imaginary parts of the forward nuclear scatter
amplitude. The nature of the other mechanism is connec
with incoherent processes whenever an incident proton
scattered through a nonzero angle. Indeed, because of
spin dependence of the nuclear interaction, the incident p
ton can flip its spin in a single scattering event on the targ
nucleus. The structure of Coulomb-nuclear interference
such that this incoherent scattering process leads to the
cumulation of the spin rotation angle while the beam pass
the polarized target. Unlike coherent spin rotation which
manifest during the interaction of the incident beam with th
target as a whole, we will call the process of incohere
accumulation of spin rotation angle diffractive spin rotatio

Let us compare the coherent and diffractive spin rotati
angles in the polarized nuclear target. As follows from~40!,
the diffractive spin rotation angle is

udif54prPtl ~ ImB1ImC!
a

E
lnS 1

kuColr s
D , ~41!

wherePt is the magnitude of the target nuclei polarizatio
and for an energyE5100 MeV it is approximately ten times
less than the coherent spin rotation angle

ucoh5
4pr lPt

k
~ReB1ReC!'1022 rad. ~42!

In the region of energyE;10 MeV these two mechanisms
complement one another, which leads to an increase of
total spin rotation angle. With a further increase of the inc
dent proton energy, the ratio between the diffractive and c
herent spin rotation angles tends to the valuea, and, starting
with an energyE;1 GeV, the spin rotation angle is deter
mined, to a 1% accuracy, by coherent spin rotation alo
This allows us to neglect the electromagnetic interaction
these energies and to consider the interaction of relativis
protons and neutrons by the introduction of a refractive ind
for the polarized nuclear target.

V. THE REFRACTION OF HIGH ENERGY PROTONS
„NEUTRONS… IN A POLARIZED NUCLEAR TARGET

Let a relativistic polarized proton~neutron! beam of en-
ergy E be incident on a target with polarized nuclei. Th
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wave function of Dirac particles in vacuum is described b
the plane wave

C i5exp~ ikz!uk , ~43!

wherekW is the wave vector of the incident particle anduk is
the bispinor of the free particle defining its spin state.

According to @14,18#, the wave function of a relativistic
particle in a medium can also be described by a plane wav
The wave function has the form

C f~ l !5
1

A2E HAE1m exp~ ikn̂l !Ŵ
AE2m~ ŝ k̂!exp~ ikn̂l !Ŵ.

~44!

Here

n̂511
2pr

k2
f̂ ~0! ~45!

is the operator index of refraction of the particle in polarize
matter,Ŵ is the spinor,r is the density of scatterers in the
target, andf̂ ~0! is the forward elastic scattering amplitude o
the particles by the polarized nuclei. This amplitude acts a
an operator in the spin space of the incident particles and
averaged over the spin states of the target particles. Thus
influence of the medium on the incident beam propagating
the initial direction consists finally in a change in the phas
and amplitude of the wave function~n̂ has both a real and an
imaginary part!.

The scattering operator of particles with spin 1/2 in th
relativistic case is defined by a two-dimensional matrix ac
ing on the spinorŴ which describes the behavior of the
wave function in the rest system of the particle. Therefor
the general form of the forward scattering amplitude i
analogous to the nonrelativistic amplitude~4!. We note that,
according to the results of the previous section, we only co
sider that part of the scattering amplitude which is cond
tioned by the nuclear interaction of the beam and target.

Taking into account~44!, the spinorŴ( l ) of the particle
that has passed through the target of lengthl can be written
as

Ŵ~ l !5exp~ in0kl !exp~ iGW ŝ l !Ŵ~0!, ~46!

where

n0511
2pr

k2
A, ~47!

GW 5
2pr

k
@BPW t1C~PW tk̂!#5G1ĝ11 iG2ĝ2 , ~48!

ĝ1 and ĝ2 are the unit vectors, andG1 andG2 are real num-
bers.

Next we find the change in the particle polarization in th
rest system while traveling through the polarized target o
lengthz1dz such thatdz!z. In this case we can write the
expression

PW ~z1dz!5
*Ŵ1~z1dz!ŝŴ~z1dz!d3x

*Ŵ1~z1dz!Ŵ~z1dz!d3x
. ~49!
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Using the expansion

W~z1dz!5W~z!@11 i ~n0k1GW ŝ !dz#, ~50!

we transform expression~49! into the differential equation

dPW ~z!

dz
52G1@ ĝ13PW ~z!#22G2$ĝ22PW ~z!@ ĝ2PW ~z!#%.

~51!

By acting analogously we can get the differential equati
for the change in the intensity of the polarized beam in
polarized nuclear target:

dI~z!

dz
522 Im~n0!kI~z!22G2@ ĝ2PW ~z!#I ~z!. ~52!

Equations~51! and~52! should be solved together under th
initial conditionsPW (0)5PW i , I (0)5I i . According to~51!, the
polarization of the incident particles passing the polariz
nuclear target undergoes rotation through the angle

u52G1l ~53!

about the vectorĝ1. Comparing Eq.~51! with the Bargmann-
Michel-Telegdi equation@27# for the spin motion of a
charged particle in a magnetic field, we can introduce, as
Sec. III, the quasimagnetic field of the polarized nuclear t
get using the relation

2G1ĝ15
e

2m S g2212
1

g DBW n1
e

2m
~g22!

E

E1m
vW ~vWBW n!.

~54!

In the nonrelativistic energy range, the quasimagne
nuclear fieldBW n , defined by relation~54!, transforms into an
expression for the quasimagnetic nuclear field@14,16#. Also
note that, for the geometry considered in Sec. III, different
equation~51! is analogous to the equation for polarizatio
~39! when we neglect the effects of diffusion, depolarizatio
diffractive spin rotation, and dichroism. Thus we get a
equation describing the change in the polarization of relat
istic particles because of the coherent scattering by the ta
nuclei at arbitrary directions of the vectorsPW i , ĝ1, andĝ2.

VI. EXPERIMENTAL POSSIBILITIES FOR THE
INVESTIGATION OF THE SPIN ROTATION EFFECT

IN A POLARIZED NUCLEAR TARGET

Let us consider the necessary elements of an experime
setup to carry out the spin rotation experiment. First, there
a polarized proton~neutron! beam whose polarization may
be rotated in any direction. Further, a~preferably! long ~;10
cm! nuclear target in a frozen spin mode, which is to have
least two spin directions, ideally any spin direction. Th
beam extracted from the accelerator must be monitored b
very accurate polarimeter and the final spin state of the tra
mitted beam is to be determined by another polarimeter, a
very accurate. The beam intensity must be carefully mo
tored and the corresponding monitors must be independ
of beam polarization.

Assume that the target polarizationPW t is parallel~this is
the case of longitudinal polarization! or orthogonal~transver-
on
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sal polarization! to the momentum of the incident particlekW .
Thenĝ15ĝ25PW t/Pt and Eqs.~51! and~52! are reduced to a
simple form. Consider two specific cases for which the initia
polarization of the incident beam is~a! PW i iPW t or ~b! PW i'PW t ,
which encompass, anyway, all sets of the effects which c
arise.

The case ~a! is a standard transmission experimen
wherein we observe the process of absorption in the pola
ized target without a change in the direction of the initia
beam polarization. The absorption is different for particle
polarized parallel and antiparallel to the target polarizatio
The initial intensityI 0 of the polarized beam then changes
according to

I ~ l !5I 0exp~2s6r l !, ~55!

where

s65
4p

k
@ Im~A!1Im~B!~PW tPW i !1Im~C!~PW tk̂!~ k̂PW i !#.

~56!

In the case~b! the coherent scattering on the polarized nucle
results in spin rotation of the incident particles about th
target polarizationPW t

PW f5PW icos~2G1l !2~PW i3PW t!sin~2G1l !1tanh~ssr l !PW t .
~57!

The spin rotation angleu equals

u5
4prPtl

k
Re@B1C~PW tk̂!#. ~58!

As follows from formula~58!, the spin rotation angle is di-
rectly connected with the real part of the forward scatterin
amplitudes. The values ReB and ReC can be determined
separately by measuring spin rotation angles for two cas
when the target spin is parallel and antiparallel to the bea
direction k̂. This means that by measuring the final intensit
and polarization of the beam in cases~a! and ~b! we can
directly reconstruct the spin dependent forward scatterin
matrix.

Let us consider one more configuration of the target an
the beam in a transmission experiment intended to obser
proton ~neutron! spin rotation. We assume that the inciden
particle momentum is directed at some angle~which does not
equalp/2! with respect to the target polarization, and that th
incident beam polarization is perpendicular to the plan
formed by the vectorsPW t and k̂. In this case the effect of
proton ~neutron! spin rotation about the vectorĝ1 combined
with absorption dichroism, determined by the vectorĝ2, will
cause absorption asymmetry of the polarized beam. Inde
in the first approximation to the quantitiesG1l andG2l we
can get from Eqs.~51! and ~52! that
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I ~ l !5I ~0!exp~2s0r l !F124~G2l !
212S 2pr l

k D 2
3~ReB ImC2ReC ImB!@PW t3 k̂~ k̂PW t!#PW i G ,

~59!

which indicates the possibility of measuring the combinatio
of the real and imaginary parts of the forward scattering a
plitudes. Unlike a spin rotation experiment, this transmissi
experiment does not allow us to determine ReB and ReC
separately. A maximum asymmetry in this experiment,

Asym5
I ~1!2I ~2!

I ~1!1I ~2!
, ~60!

can be reached for two configurations of the vectorsPW t andk̂
when the angle between these two vectors is6p/4. Note that
this transmission experiment does not require the measu
ment of the final polarization of the beam. But we need
rotate the target spin about the directionk̂.

Among the applications enumerated in the Introductio
we will emphasize and discuss in detail the possibility
investigating baryon exotic states. Indeed, a great numbe
experimental studies of (pp) and (pn) interactions in the
energy region up to 3 GeV, demonstrate a series of p
nounced peculiarities, which may be a manifestation
dibaryon resonances@3,4#. For example, the data on spin
dependent cross sectionssT andsL and also loop behavior
of the curves on Argand diagrams are indicative of
dibaryon resonance. However, there are works which expl
the manifestation of these peculiarities by introducing ne
inelastic channels@5#.

In this situation direct evidence in favor of the existenc
~or the lack! of resonances might be supplied by the simu
taneous measurement of both the imaginary and real part
the forward spin dependent scattering amplitudes in (pp)
and (pn) interactions. Let us now assume that the dibary
resonance exists at an energyEr . In this case the scattering
amplitude near the resonance has the form@20#

Re@ f ~0!#5Re@ f nr~0!#1j
~E2Er !G r /2

~E2Er !
21G r

2/4
, ~61!

wheref nr~0! is the nonresonant part of the forward scatterin
amplitude which has a smooth energy dependence,Gr is the
resonant width, andj is a real coefficient. As follows from
~61!, the resonant part of the real forward scattering amp
tude changes sign when the energyE intersects the resonan
energyEr . This effect then leads to the fact that the contr
bution to the spin rotation angle conditioned by the reson
part of the forward scattering amplitude also changes si
This effect can be a direct signal of resonance existen
Note that the experimental determination of the energe
dependence of the spin rotation angle allows us to sepa
the resonance state from the background of newly open
inelastic channels and also allows the investigation of thre
old phenomena in (pn) interactions. Indeed, near the thresh
old of a reaction, the (pn) forward scattering amplitude has
the universal form@20#
n
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Re@ f ~0,E!#5Re@ f th~0!#2
kth
4p

AmAEth2E cos~2id0!,

E,Eth, ~62!

Re@ f ~0,E!#5Re@ f th~0!#2
kth
4p

AmAE2Eth sin~2id0!,

E.Eth, ~63!

wherekth andEth are the threshold momentum and energy
f th~0! is the scattering amplitude atE5Eth , andAm andd0
are real numbers. As follows from~62! and ~63!, the exist-
ence of a threshold leads to the characteristic energy dep
dence on the spin rotation angleu;AE2Eth, which is dif-
ferent from the energetic dependence near the resonance

u;
~E2Er !G/2

k@~E2Er !
21G2/4#

. ~64!

In addition, the measurement of the spin rotation angle
protons~neutrons! makes it possible to determine the func
tionsB(E) andC(E) separately. This is very important for
the investigation of the origin of dibaryon resonance@10#.

Let us next estimate the proton spin rotation angle whe
polarized particles travel through a target consisting of po
larized hydrogen using the results of an experiment@28#. In
this experiment the amplitude and phase of the scatteri
matrix were reconstructed using the total set of the expe
mental observables. For energiesE,3 GeV the magnitude of
the real part of the spin dependent part of the forward (pp)
scattering amplitude, determined from@28#, is equal to
Re[B1C(PW tk̂)];10213 cm. Thus, for example, for a polar-
ized proton beam with an energyE,3 GeV incident on an
ammonia target~r50.83 g/cm3! with a hydrogen percentage
F518% and which has a polarizationPH580%, we get an
estimateu5~1023–1024!l ~cm!. In the case when the initial
beam polarizationPx(0)5Pz(0)50, Py(0)5P, and the tar-
get polarization is directed along the incident beam mome
tum, the components of the beam polarization are

Px~0!5P sin~u!,
~65!

Py~0!5P cos~u!.

The measurement of the spin rotation angle in the pola
ized target of length;10 cm on a level 1022–1023 rad is
possible when we eliminate from consideration the large
component of polarizationPy . This can be accomplished by
the orientation of the beam polarimeter in the plane perpe
dicular to thex axis. With this orientation, the polarimeter
will measure only thePx polarization component. Let us
then estimate the data acquisition time for the measureme
of the spin rotation angle when a polarized proton beam
the SATURNE II accelerator~polarized proton beam inten-
sity equals 23108 sec21 @28,29#! travels in a polarized solid
ammonia target~NH3! of length l54.4 cm@29#. Then, using
the data from@29#, for the proton energyE51 GeV, we get a
spin rotation angleu'231024 rad and a data acquisition
time of 100 h. For protons with energy 500 MeV we ge
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u'531024 rad and an acquisition time of 10 h, which mee
the requirements of a standard transmission~spin rotation!
experiment.

Summing up, we point out that the interaction of a pola
ized proton~neutron! beam with a polarized nuclear targe
results in quasioptical effects of spin rotation of the proto
~neutron! beam and of spin dichroism of the target. The
effects can be observed in a broad energy range. The e
tromagnetic interaction of the protons with the nuclei do
not destroy the coherent effects of spin rotation and dich
ism and, moreover, results in additional diffractive spin rot
tion in the energy range;10 MeV. Experimental measure
ment of the spin rotation angle is of most interest when t
incident proton~neutron! beam energy is;1 GeV, where the
effect opens new possibilities, namely, the investigation
threshold effects and of possible resonance baryon state
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APPENDIX

Let us consider the scattering process of a fast parti
with the spin 1/2 on a Coulomb center when the scatteri
angleu0!1. In this case the main contribution into the sca
tering amplitude is from the region of large impact param
etersz@\/ku0 where the potential energy is much less tha
the kinetic energy of the particle. This means that we can u
the eikonal approximation and the scattering amplitude c
be written as

Mel~u!52
ik

2p E z dz$exp@ iS~z!/\#21%

3E
0

2p

exp~2 iku0z cosc!dc. ~A1!

Here

S~zW !5
1

v E
2`

`

u~zW ,z!dz, ~A2!

u(zW,z) is the Coulomb potential, andc is the angle between
the vectorzW, which is perpendicular to the particle momen
tum, and the scattering plane. Let us take into account
particle spin precession in the field of the Coulomb cent
According to@30#, this can be done by multiplying the func
tion exp@iS(zW)/\# by the rotation operator
ts
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R@u~z!#5exp@2 i ~ ŝnW 1!u~z!#, ~A3!

wherenW15(kW3zW)/ukW3zWu, andu~z! is the spin rotation angle
corresponding to the motion of the charged particle along th
classical trajectory with the impact parameterz, and it equals

u~zW !5bgu0~zW !. ~A4!

On the other hand,u0(zW) can be determined by the action
function

u0~zW !5
1

\k

d

dz
S~zW !. ~A5!

Thus to calculateMel~u0! we have to substitute in~A1! in-
stead of exp@iS(zW)/\# the expression

exp@ iS~z!/\#R̂@u~zW !#5exp@ iS~z!/\#$cos@u~z!/2#

2 i ~ ŝnW 1!sin@u~z!/2#%. ~A6!

Then, with the accuracy ofu0
3, Eq. ~A1! can be written as

Mel5ael~u0!1bg~ ŝnW !E J1~ku0z!S ddz
exp@S~z!/\# D z dz

1
ibg

2

8k E
0

`

z dz J0~ku0z!exp@ iS~z!/\#S dS~z!

dz D 2,
~A7!

wherenW is the unit vector which is orthogonal to the scatter
ing plane. Using the well-known relations for the Besse
functions

d

dx
@xJ1~x!#5xJ0~x!,

~A8!
d

dx
J0~x!52J1~x!,

and also the relation

dS

dz
5
2e2

kvz
, ~A9!

which holds for the Coulomb potential, we get with an ac
curacy ofu0

3

Mel~u0!5ael~u0!@12 ibg~ ŝnW !u01~bgu0!
2/8#.

~A10!

Note that the second term in formula~A10! describes the
spin rotation around the vectornW through the anglebgu0
when a charged particle is scattered by a Coulomb center
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