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Limit on T-violating P-conservingrNN interaction from the g decay of 57Fe
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We use the experimental limit on the interference ofM1 andE2 multipoles in theg decay of57Fe to bound
the time-reversal-violating parity-conservingrNN vertex. Our approach is a large-basis shell-model calcula
tion of the interference. We find an upper limit on the parameterḡr , the relative strength of theT-violating
rNN vertex, of close to 1022, a value similar to the best limits from other experiments.

PACS number~s!: 24.80.1y, 21.60.Cs, 21.30.Fe, 23.20.Gq
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For many years it has been difficult to compare the qua
of limits on time-reversal-violating parity-conservin
~TVPC! interactions coming from different low-energy e
periments. The experiments typically limit observab
unique to themselves, and before comparisons can be m
these limits must be translated into a common TVPC qu
tity. It turns out that a convenient measure of nuclear TV
interactions is the dimensionless ratio, often calledḡr @1#, of
the TVPCr-meson–nucleon coupling to the normal stro
couplinggr . Among the other mesons only those with axia
vector couplings can transmit TVPC interactions betwe
nucleons via a single exchange@2#, and they are significantly
heavier than ther and consequently less effective in nucle
It is therefore reasonable to treat all TVPC nucleon-nucle
interactions as arising fromr exchange, and to useḡr to
parametrize their strength.

Experimental upper limits on several quantities, includi
the electric dipole moments of the neutron and of199Hg @1#,
and a correlation in the scattering of polarized neutrons fr
aligned 165Ho @3#, have been translated into limits onḡr ,
constraining it to be less than about 1022. A number of other
experiments, looking, e.g., for the violation of detailed b
ance@4#, remain to be similarly interpreted. In this paper w
report an examination of a 1977 experiment@5# that searched
for interference betweenM1 andE2 radiation in theg decay
of the first 5/22 state in57Fe to the first 3/22 state.~Neither
is the ground state; the two have excitation energies of
keV and 14 keV.! Our approach was to diagonalize th
strong nuclear Hamiltonian in the shell model, and then tr
the TVPC r-exchange interaction as a perturbation th
causes the interference by mixing higher-lying states into
two involved in the transition. Reference@6# employed this
method to constrain the TVPC coupling of theA1 meson to
the nucleon from the same experiment, but used what
argue is too small a model space. In addition, the lighter
more commonly consideredr meson was neglected com
pletely.

TheM1-E2 interference that signalsT violation can be
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expressed in terms of sinh,1 the imaginary part of the multi-
pole mixing ratiod, @7# which is defined as@8#

d5
^Jf iTM1iJi&
^Jf iTE2iJi&

5udu~cosh1 i sinh!. ~1!

In Ref. @5# the upper limit onusinhu was expressed in the
form of a measured value that included zero within exper
mental accuracy:

usinhu5~3.166.5!31024. ~2!

The contributions toh can be written as

h5«E22«M11j, «E2 ,«M1 ,j!1, ~3!

where the last termj represents effects of final state interac
tions, which have been shown@9# to be smaller than the
upper limit in Eq.~2!.

In first-order perturbation theory, the difference betwee
the two« ’s is @10#

i ~«E22«M1!5(
n

^Jf uVrunJf&
Ef2En

S ^nJf iE2iJi&
^Jf iE2iJi&

2
^nJf iM1iJi&
^Jf iM1iJi&

D
1(

n

^nJi uVruJi&
Ei2En

S ^Jf iE2inJi&
^Jf iE2iJi&

2
^Jf iM1inJi&
^Jf iM1iJi&

D . ~4!

1sinh is directly proportional to the experimental correlation
(J•q3E)(J•q)(J•E), whereJ is the quantization axis of the initial
nucleus,E is the photon electric field vector, andq is the photon
direction @5#.
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With nucleons represented byi , j , the two-body
r-exchange potential has the form

Vr5(
i , j

V i , j
r @t i3t j #3 ,

~5!

V i , j
r 5

mr
3gr

2ḡrmv

4pM2

e2mrr i j

mr
3r i j

3 ~11mrr i j !~si2sj !• l ,

where r i j5r i2r j , l5r i j3(1/2)(pi2pj ), mv53.70 n.m. is
the isovector nucleon magnetic moment,M is the nucleon
mass,gr52.79 is the normal strongrNN coupling, andḡr is
the quantity that we are trying to constrain. After choosing
model space and interaction~and a reasonable prescription
for treating short-range correlations@1,6#!, we can use this
formalism in a shell-model calculation to translate the e
perimental limit on sinh to a limit on ḡr .

The issues surrounding the calculation are more comp
cated than they initially appear, however. To evaluate t
phases in Eq.~4! one needs, in principle, the wave function
and energies ofall 3/22 and 5/22 states in57Fe. To obtain
them, one ought to diagonalize the best available nucle
hamiltonian for 17 valence nucleons moving freely in th
p f shell. Such a space has anm-scheme dimension of
;4.53108. At the other extreme is a minimal model spac
based on the well-established shell closure atN or Z 5 28,
consisting of 3 valence neutrons in the (2p3/2,1f 5/2,2p1/2)
shells and the remaining 14 nucleons in the 1f 7/2 subshell.
This ‘‘small space’’ is the one used in Ref.@6# and contains
few enough states to allow direct diagonalization of an
Hamiltonian. Unfortunately this space artificially restricts th
M1 strength from any given state because it does not all
the important 1f 7/2-1 f 5/2 spin-flip transition. Consequently,
in the calculations described here we used a ‘‘large spac
constructed by allowing a single proton or neutron to mo
out of the 1f 7/2 shell into any one of the other subshells. Th
large space contains 23604m-scheme states, forcing an ap
proximate diagonalization.

To obtain the approximate wave functions we used t
Lanczos algorithm as implemented in the shell-model co
CRUNCHER @11# and its auxiliary codes, with slight modifi-
cations to accommodate the imaginary two-body matrix e
ments of the interaction in Eq.~5!. Since it was not practical
to calculate allJp53/22 and 5/22 wave functions~there are
2052 and 2755 of these, respectively!, we adopted a proce-
dure expounded in Ref.@12# to obtain Gamow-Teller
strength functions. We first used the Lanczos algorithm
obtain the lowest 3/22 and 5/22 states in57Fe to high pre-
cision. Next we created a ‘‘collective’’E2 or M1 state by
acting on the parent state with the relevant operator. We th
used the collective state as the initial basis vector for
approximate Lanczos-based diagonalization of higher-lyi
states, yielding pseudoeigenvectors~PSEV’s!, which ap-
proximate the true states. We typically performed about 1
Lanczos iterations, resulting in about 100 PSEV’s for each
the Ji ’s. In the Lanczos approach the lowest~and highest!
several PSEV’s are quite accurate representations of the
responding eigenstates, while at intermediate energies
PSEV’s converge more slowly, and after'100 iterations
each still has contributions from tens to hundreds of actu
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eigenstates. It is easy to see, however, that all of the stren
is contained in these PSEV’s, which we used for the stat
nJi andnJf in Eq. ~4!. The wave functions used in each o
the four terms in Eq.~4! were slightly different since they
originated from different initial collective states.

So far we have not mentioned our choice of interactio
There are several effective interactions on the market, b
~unfortunately! we did not know which was the best in this
space. We were able to test the sensitivity of our results
the choice of Hamiltonian, however, and so used three d
ferentp f-shell interactions: the FPVH interaction of@13#, the
TBLC8 interaction of@14#, and the FPBPN interaction~the
FPD6 interaction of@15# with the single-particle energies
modified to fit 56Ni @16#!. Each of these interactions repro-
duced the energy spectrum of low-lying states in57Fe rea-
sonably well. The spread in the calculated values of th
phase«E22«M1 with these interactions provided a rough
measure of theoretical uncertainty.

The last component of the calculation was the choice
effectiveE2 andM1 operators for each force. The matrix
element̂ 5/2uu E2 orM1 uu3/2& normalizes each term in Eq.
~4!. Since theM1 matrix element@in the denominator in the
second and fourth terms in Eq.~4!# is very small, it is par-
ticularly important, and we chose effectiveg values for the
M1 operator in order to reproduce it accurately. Our pre
scription was to fix all of theM1 g values, except for the
isoscalar spin piece (gIS

s ), at their free nucleon values. For
each interaction we then chosegIS

s to give the correct matrix
element for the first transition. The sign of the matrix ele
ment is not known, so we chose it consistently amongst t
forces to obtain the most reasonable values for the set
gIS
s ’s.
For theE2 operator a similar procedure gave unrealist

values for the effective chargesep and en ; we therefore
adopted the ‘‘canonical’’ valuesep51.5e anden50.5e for
all of the interactions. These values result in reasonab
agreement with the firstE2 matrix element, especially for
the FPBPN force. In addition, the final phase«E2 is only
weakly dependent on the choice of theE2 effective charges.
Table I summarizes theE2 andM1 matrix elements and
total strengths for the few lowest states in both the large a
small spaces.~The TBLC8 force shares a common heritag
with the FPVH force and, since the results are similar, w
omit TBLC8 from the tables.! In the large space the total
strength for both multipoles is relatively insensitive to th
force chosen. However, theM1 strength is about a factor of
10 larger than in the small space, dramatically illustrating th
importance of including the 1f 5/2 level.

How much did the nonconvergence of the intermedia
PSEV’s affect the results? The answer is very little for th
E2 part of the phase, because the strength is concentrate
low energies and the energy denominator in Eq.~4! enhances
the contribution of the low-lying converged states and re
duces the effects of the higher-lying states. In Fig. 1 we sho
the distribution ofE2 strength for the 3/22→n(5/2)2 tran-
sitions ~dashed line!. It is completely dominated by transi-
tions among the converged states. A similar result holds f
the E2 in the 5/22→n(3/2)2 direction. Though the effects
of the energy denominator are also at work in theM1 piece
of the phase, the distribution ofM1 strength complicates
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TABLE I. The absolute values of theE2 andM1 matrix elements for the FPVH and FPBPN forces
compared to the experimentally determined values. The total calculatedE2 andM1 strengths are also
included.

Transition Experiment FPVH~small space! FPVH ~large space! FPBPN~large space!

M1 5
2 )1→

3
2 )1 0.113 0.113 0.113 0.113

E2 5
2 )1→

3
2 )1 13.35 7.091 6.866 12.88

M1 5
2 )2→

3
2 )1 0.344 1.202 0.806 0.858

E2 5
2 )2→

3
2 )1 27.83 27.62 36.38 37.73

M1 3
2 )2→

5
2 )1 0.298 0.141 0.018 0.126

E2 3
2 )2→

5
2 )1 3.208 11.66 14.12 13.87

B(M1) 3
2 )1→n 5

2
1.154 11.56 10.57

B(E2) 3
2 )1→n 5

2
211.7 440.7 480.5

B(M1) 5
2 )1→n 3

2
0.598 5.18 3.63

B(E2) 5
2 )1→n 3

2
43.8 97.0 101.5.
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matters. In Fig. 2 we show the totalM1 strength for the
3/22→n(5/2)2 transitions~dotted line!; a broad resonance i
visible at;12 MeV. Although this is the region where th
PSEV’s are unconverged, theM1 part of the phase nonethe
less seems to be represented reasonably well. We make
statement after varying the number of Lanczos iterations
hence the number of PSEV’s~converged and unconverged!
to see if the phase changed appreciably as the approx
tions became more accurate. The size of the dependen
illustrated in Table II, where theE2 andM1 parts of the
phaseh ~with ḡr51) are listed for several numbers of itera
tions and for two different interactions. TheE2 phases show
essentially no dependence on the number of iterations~as
implied above! and theM1 phases are not affected drama
cally, indicating that the true result is not far from our be
approximation.

The results in Table II allow us to constrain the parame
ḡr and estimate the uncertainty. The FPVH and the FPB

FIG. 1. The piece of«E2 arising from E2 transitions with
Jf53/2←nJi55/2 using the FPBPN force in the large space. T
solid line is the sum from Eq.~4!. The points correspond to the
individual points in the sum. The dashed line is the individu
B(E2) in e2 fm4 divided by a factor of 105. It is apparent that
«E2 is well converged at low excitation energies.
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forces give very similar results for each piece of the phas
and the final phases are very close. The TBCL8 interactio
gives a similar result,«E22«M15224.231023. The lack of
dependence on the interaction suggests that the uncertai
in the results is not large. Table II also suggests that th
phase is insensitive to the size of the model space, but th
turns out to be a coincidence. In the small space, all of th
M1 piece of the phase lies at very low excitation energy
mirroring the initial upward peak at 2–3 MeV in Fig. 2. But
the fall in the phase from 3–10 MeV and the subsequent ris
due to theM1 resonance are not present in the small spac
and so the agreement on the final value of«M1 between the
two model spaces is accidental.

The entries in Table II were evaluated withḡr 5 1. Ne-
glecting theoretical error, which we have argued should b
fairly small, and averaging the results from the FPVH and
FPBPN forces in the large space, we conclude tha
u«E22«M1u/ḡr516.431023. The experimental value for

he

al

FIG. 2. The piece of«M1 arising fromM1 transitions with
Jf53/2←nJi55/2 using the FPBPN force in the large space. The
solid line is the sum from Eq.~4!. The points correspond to the
individual points in the sum. The dashed line is the individua
B(M1) in nuclear magnetons divided by a factor of 100.«M1 is
well converged at excitation energies above 20 MeV.
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TABLE II. The phases, withḡr51 in Eq.~5! and multiplied by a factor of 103, computed with the FPVH
and FPBPN interactions. The number of Lanczos iterations is listed to illustrate the convergence o
phases. 200 iterations were performed only for the cases listed. Each of columns 3–6 corresponds to
the terms in Eq.~4!; for example, the heading«E2(n3/2) corresponds to the first term of the equation with
Ji55/2 andnJf53/2. The last column contains the final phase calculated according to Eq.~4!.

Force~space!
Lanczos
iterations «E2(n3/2) «E2(n5/2) «M1(n3/2) «M1(n5/2) «E22«M1

FPVH ~small! Complete -5.08 -5.15 7.04 10.10 -27.6
FPBPN~small! Complete -6.50 -5.84 7.94 13.03 -33.3

FPVH ~large! 100 -3.239 -2.322 -0.814 12.681 -17.4
FPVH ~large! 200 -3.239 -0.691
FPBPN~large! 60 -2.436 -2.306 1.913 8.5052 -15.2
FPBPN~large! 100 -2.425 -2.298 2.135 8.4813 -15.3
FPBPN~large! 200 1.769
i
-
-
n

t-
-
of
usinhu, Eq. ~2!, then implies that

uḡru5~264!31022. ~6!

This number is comparable to the best limits from other e
periments. Limits on electric dipole moments, for examp
correspond touḡru&1022, and the new data on neutron
holmium @17# scattering yieldsuḡru5(2.362.1)1022. Per-
haps coincidentally, all these very different experiments g
roughly the same limit. It has been suggested@18#, however,
that upcoming detailed balance experiments, which
through complicated compound nuclear states, may prov
limits that are better than these by 2 orders of magnitu
Even though recent theoretical work@19,20# indicates that
one cannot expectḡr to be much larger than 10

28, it remains
x-
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-

ve
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ide
de.

worthwhile to translate limits from other experiments into
limits on ḡr . Theoretical expectations are easily and often
confounded, and it is important to know which of the many
experiments reported in the literature~and still to come! have
the best chance of actually seeing time reversal violation.
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