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Delays associated with elementary processes in nuclear reaction simulations
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Scatterings, particularly those involving resonances, and other elementary processes do not happen insta
taneously. In the context of semiclassical nuclear reaction simulations, we consider delays associated with a
interaction for incident quantum wave packets. As a consequence, we express delays associated with eleme
tary processes in terms of elements of the scattering matrix and phase shifts for elastic scattering. We sho
that, within the second order in density, the simulation must account for delays in scattering consistently with
the mean field in order to properly model thermodynamic properties such as pressure and free-energy densit
Delays associated with nucleon-nucleon and pion-nucleon scattering in free space are analyzed with the
nontrivial energy dependence. Finally, an example ofs-channel scattering of massless partons is studied, and
scattering schemes in nuclear reaction simulations are investigated in the context of scattering delays.

PACS number~s!: 24.10.Cn, 21.65.1f, 25.75.2q
nt
of
pres-
cles
ns,
-
ak-
but
mic
in
an
ed
es
o-
the
We
ing
h a

s.
the
r
and
we

rd-
t ap-
he
ary

ec.
at-
and
es
-
dic
f a
sity
that
I. INTRODUCTION

Semiclassical transport simulations have provided
theoretical backbone for interpreting heavy-ion reactions
energies in excess of few tens of MeV per nucleon. Simu
tions follow either a cascade approach@1,2# or a solution to
the Boltzmann equation including the mean field effects a
the Pauli principle@3–5#. Within these approaches particle
move classically in-between collisions where momen
change abruptly and possibly new particles form. In practi
the Pauli principle appears primarily important for reactio
below 150 MeV/nucleon. For beam energies of hundreds
MeV per nucleon, detailed comparisons of simulations w
data have been carried out@6–9# in order to determine fea-
tures of the momentum and density dependence of
nuclear mean field. Within many-body theory, efforts ha
been made to calculate nuclear optical potentials start
from elementaryNN interactions@10–12#. In describing re-
actions with beam energies up to;2 GeV/nucleon, pions
and low-lying resonances have also been included in sim
lations.

It has been noted that results of heavy-ion reaction sim
lations can depend sensitively on prescriptions of space-t
details of elementary scattering processes@13–16,9,17#.
Such details of elementary processes may matter even m
at higher beam energies than at those of the MSU or S
accelerators, specifically, at those of AGS~14 GeV/nucleon!,
SPS~200 GeV/nucleon!, and of the constructed and planne
colliders, RHIC and LHC. This is because of high Loren
dilation factors that can amplify space-time effects, and b
cause of high particle densities early in the reactions.

In this paper we investigate the time duration of eleme
tary processes in free space, in the context of semiclass
simulations. Both the forward-going and scattered waves
delayed in elementary processes. While delay of the forw
wave is consistent with the effects of an optical potential f
a particle in a medium, to the lowest order in particle dens
both types of delay times, of the forward and scatter
waves, affect the density of states in energy, to the low
53-2813/96/53~1!/249~18!/$06.00
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nontrivial second order in particle density. As one importa
outcome of our work, we find that to describe the density
states and associated thermodynamic quantities such as
sure, heat capacity, etc., the delays for scattered parti
must be properly accounted for in semiclassical simulatio
in addition to the effects of the optical potential. If one re
laxes the requirements on interactions in simulations, fors
ing, e.g., the proper behavior of single-particle energies,
demanding that free energy as a fundamental thermodyna
function is properly reproduced to within the second order
density in equilibrium, then one can manipulate the me
field to entirely absorb effects of the delays for scatter
particles. Alternatively, time delays for scattered particl
may be manipulated to absorb the effects of the optical p
tential. Even in a degenerate Fermi gas, as we show,
delays in scattering can affect thermodynamic quantities.
investigate several examples of particle-particle scatter
amplitudes describing, respectively, the scattering throug
sharp Breit-Wigner resonance, thepN interaction in theD
channel, and thes-channel scattering of massless parton
Using free-space amplitudes, we numerically calculate
time delays for theNN system. We show that the delay fo
scattering has some dependence on the scattering angle
that the delays become small at high energies. Finally,
investigate scattering schemes in simulations@2,4,5,13–17#
in the context of time delays. The schemes include ha
sphere scattering and scattering at the distance of closes
proach. We outline numerical strategies for determining t
equation of state and transport coefficients to an arbitr
order in density given the scattering prescription.

The content of subsequent sections is as follows. In S
II we consider a wave packet traversing a region with a sc
terer and derive expressions for the delays of scattered
forward-going waves in terms of scattering amplitud
~phase shifts! and their derivatives. In Sec. III we demon
strate that these delay times are consistent with an ergo
constraint stating that the extra time spent in the vicinity o
scatterer should be proportional to the change in the den
of states brought about by that scatterer. We further show
249 © 1996 The American Physical Society
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250 53PAWEL” DANIELEWICZ AND SCOTT PRATT
the delay time for a forward-going wave corresponds to t
classical motion of a particle in a mean field given by th
self-energy for a plane wave in a low-density medium.
that section, and further in the Appendix, we also discuss
modification of the scattering of two bodies brought about
the presence of a third body. Finally, we express the fr
energy density and pressure in terms of different time dela
In Sec. IV we draw conclusions on the time delays in a Bo
or Fermi degenerate medium by examining an expression
the change in the pressure due to two-particle interactio
Section V is devoted to the examples of resonance scatter
In Sec. VI we calculate spin-isospin averaged time delays
NN system and directly relate the delays to the second vi
coefficient. Different scattering prescriptions and metho
for the determination of equations of state and transport
efficients, to within arbitrary order in density for given pre
scriptions, are discussed in Sec. VII.

II. TIME DELAYS FROM WAVE-PACKET DYNAMICS

We consider a wave-packet incident on a large spher
volume of radiusR, at the center of which interaction take
place. To make the derivation simpler we assume that
volume is much larger than the wave packet. The wave fu
tion is

ca~ t !5E dE g~E!ca
E~ t !, ~2.1!

where for large distances

ca
E5(

b
fab~r ,t !xb

5fa
0~r ,t !xa1(

b
f ab~u,E!

ei ~kbr2Et!

r
xb , ~2.2!

and

fa
05

1

2ikar
(
l 50

Lmax

~2l 11!Pl ~cosu!

3@~21!~ l 11!e2 i ~kar1Et!1ei ~kar2Et!#. ~2.3!

Herea andb denote the initial and final channels, respe
tively, andx is the internal wave function. Most often w
shall consider elastic scattering of particles with no intern
degrees of freedom, hence

f ~u,E!52
1

2k (
l

~2l 11!Pl ~cosu!T l ~E!, ~2.4!

where the amplitudeT l is related to scattering matrix and
phase shift by

T l 5 i ~Sl 21!522 sind l expid l , ~2.5!

Sl 5exp2idl . For the asymptotic form to be validr must be
much larger thanLmax/k andTl must vanish forl .Lmax.

The average timetvol that a particle spends in the volum
can be written as
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tvol5R2
(g*dt dV jg~R,V,t !• r̂ t

N
, ~2.6!

where current density in channelg is

jg5
1

2mgi
fg* ~r ,t ! ]J fg~r ,t !, ~2.7!

andN is integrated incident flux through the surface. Th
time in ~2.6! is represented as the average time for the pa
ticle to leave the volume minus the average time for th
particle to enter the volume, asj• r̂ is positive when a particle
exits and negative when a particle enters. We decomposj
into incoming and outgoing pieces and, as there is no inte
ference between incoming and outgoing waves for a lar
volume, we write explicitly

tvol5tout2t in . ~2.8!

With the incoming wave having only a contribution from the
unscattered wave packet, one finds, from~2.3! and~2.6!, that
t in52R/va .

The outgoing wave has contributions from both the sca
tered and unscattered portions of the wave packet. Cor
spondingly, the outgoing current has three contribution
from the scattered wave, from the unscattered wave, a
from the interference between the two. We first calculate th
exit time associated with the scattered wave in the sing
channel case, for particles leaving at the center of mass an
u, using the partial-wave expansion

ts~u!5R2
*dt j s~R,u,t !• r̂ t

dNs /dV

5
1

Z(
l ,l 8

Lmax E dt dE dE8g~E!g~E8!ei ~k2k8!R~2l 11!

3Pl ~cosu!~2l 811!Pl 8~cosu!T l 8
* ~E8!

3T l ~E!te2 i ~E2E8!tS 1k1
1

k8D , ~2.9!

whereZ is the same expression as the sum on the rhs of t
last equation, only without the timet in the integrand,

Z5 (
l ,l 8

Lmax E dt dE dE8 g~E!g~E8!ei ~k2k8!R~2l 11!

3Pl ~cosu!~2l 811!Pl 8~cosu!T l 8
* ~E8!T l ~E!

3e2 i ~E2E8!tS 1k1
1

k8D . ~2.10!

By making the substitution

t5
i

2 H ]

]E
2

]

]E8 J , ~2.11!

then carrying out integration by parts to make the derivativ
with respect toE andE8 act ong, expi(k2k8)R, andT , and
further integrating over the time coordinate and one of th
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53 251DELAYS ASSOCIATED WITH ELEMENTARY PROCESSES IN . . .
energy variables, one obtains a simple expression forts . For
a well-defined energy this expression is

ts~u!5
R

v
1Dts~u!

5
R

v
1

1

Z8 (
l ,l 8

Lmax

~2l 11!Pl ~cosu!~2l 811!

3Pl 8~cosu!
1

2i FT l 8
* ~E!S d

dE
T l ~E! D

2S d

dE
T l 8
* ~E! DT l ~E!G , ~2.12!

where

Z85 (
l ,l 8

Lmax

~2l 11!Pl ~cosu!~2l 811!

3Pl 8~cosu!T l 8
* ~E!T l ~E!. ~2.13!

The more general result when many channels are open
terms of the scattering amplitudef , is

ts
ab~V!5

R

vb
1

1

2i u f abu2 H f ab*
d fab

dE
2 f ab

d fab*

dE J . ~2.14!

This is of use when determining time delays for aNN system
in Sec. VI. In that case the indices refer to spin componen

For the case of elastic scattering in only one partial wa
the exit time from~2.12! may be written as

ts5
R

v
1
dd l
dE

. ~2.15!

Thus, the extra time delay due to the scattering isdd/dE
which is not the naive guess that one would make from co
sidering an incoming partial wave reflecting off a potentia
In that case the answer should be 2dd/dE since the potential
modifies the scattered wave by a factore2id. This discrep-
ancy is associated with the interference between the forwa
going wave and the scattered wave.

Next, we consider the current and the average exit ti
associated with the interference of the forward wavef0 with
itself and with the scattered wave. The angular integrat
must extend up tou.Lmax/kR which limits the forward
wave, and it may, in particular, extend over the whole ang
lar range. Analogous procedure to that before yields

t f5
R

v
2

1

2Z9 (
l 50

Lmax

~2l 11!
d

dE
@T l ~E!1T l

* ~E!#, ~2.16!

where

Z95 (
l 50

Lmax

~2l 11!$12 i @T l ~E!2T l
* ~E!#%. ~2.17!

In terms of phase shifts this gives
, in

ts.
ve,
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t f5
R

v
1

(
l

Lmax~2l 11!2 cos2d l
dd l
dE

(
l

Lmax ~2l 11!~124 sin2d l !

. ~2.18!

The more general result in terms of the scattering amplitu
f is

t f
a5

R

va
1

2

(
l

Lmax~2l 11!24ka Imf aa~0!

d

dE

3$kaRef aa~0!%. ~2.19!

By combining the results for scattered and forward wav
we obtain the average exit time in the single-channel cas

tout5t f S 12
Ns

N D1E dV ts~V!
dNs /dV

N

5
R

v
1

(
l

Lmax~2l 11!2
dd l
dE

(
l

Lmax ~2l 11!

. ~2.20!

The total number of scattered particles isNs . The delay time
~2.20! is the same that one would have guessed assum
that different partial waves acted independently and each w
delayed by 2dd l /dE. The complexity of Eqs.~2.18! and
~2.12! stems from the interference of partial waves. In th
next section we discuss the consistency of these results w
equilibrium expectations. We show that the forward del
time agrees with a delay in the motion through a mean fie

III. THE ERGODIC CONSTRAINT
AND THE MEAN FIELD

A. Ergodicity

All thermodynamic variables such as the pressure can
found if one knows the density of states within a syste
Assuming that particles do not interact, and that statisti
effects can be ignored, one can obtain thermodynamic qu
tities to lowest order in particle density. Assuming that pa
ticles interact only two at a time allows one to calculate the
quantities to the next order in the density. To account for t
interaction of two particles at a time, one needs to find t
correction to the density of states of relative motion. Th
correction to the density of statesr(E)[dn/dE is given by
phase shifts for two-particle scattering@18,19#,

r~E!5r0~E!1Dr~E!5
4pV

~2p!3
k2

v
1
1

p (
l

~2l 11!
dd l
dE

,

~3.1!

wherek is the reduced relative momentum,V is the volume,
andv is the velocity of relative motion. This is the complet
quantum-mechanical answer for the single-channel case
processes such asa1b→c1d can occur, a similar answer
can be obtained by diagonalizing theS matrix and finding
the eigenphases@20#.

In a simulation, the equations of motion should modi
the probability for two particles of a specific energy to be
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the vicinity of each other, such that it should be proportiona
to the change in the density of states for these particles. If t
equations of motion accomplish this, the classical simulatio
will yield correct thermodynamic quantities. We consider
subvolumeV in relative-coordinate space and a narrow
relative-energy rangeuE2E0u,dE. Given that particles
spend a portion of timet0 within V in the absence of inter-
actions, when sampling is carried out over a long timeT, in
the presence of interactions, the time withinV should change
by Dt such that

Dt

t0
5

Dr

r0
5

1

p
( l ~2l 11!

dd l
dE

r0
. ~3.2!

This can be thought of as an ergodic constraint, since a sy
tem continuously sampled over a long time should be pop
lated according to its contribution to the density of states. I
this section we explore the case of elastic scattering and wi
to see if the results of the preceding section are consiste
with the ergodic constraint and with the picture of particle
moving through a mean field.

In the context of a classical simulation, the additional tim
Dt will come from three causes. First, the particle kinetic
energy within the volumeV will be different as compared to
free space, reduced by the mean potential within the volum
2u(k). The change in the energy gives a change in th
momentum and in the velocity and, in consequence, in th
time spent within subvolume by an amount denotedDt1

clas.
In addition, the energy dependence of the mean potent
generally changes the velocity byDv5du/dk. The corre-
sponding change in the time spent within the volume is de
noted asDt2

clas. Both these contributions to the time follow
from classical equations of motion within a potential. A third
contributionDtcoll stems from collisions. Because of colli-
sions the particles will emerge on the average earlier or lat
~particularly in the case of resonance scattering! from the
volume than in absence of collisions. Summing the thre
contributions should yield

Dt1
clas1Dt2

clas1Dtcoll

t0
5

1

p
( l ~2l 11!

dd l
dE

r0
. ~3.3!

The timeDt1
clas can be easily obtained from the ergodic

theorem for aclassicalpotential. Otherwise, one can resort
to geometric considerations, caring for the fact that to th
lowest order inu, the velocity changes its direction as well
as the magnitude. As the relative change in time spent with
the subvolume should be proportional to the relative chang
in the density of states brought about by the change in kine
energy, we obtain

Dt1
clas

t0
5

Dr0
r0

52

u~E!
dr0
dE

r0
. ~3.4!

The contributionDt2
clas is obtained by noting that the time it

takes to traverse a given path through the subvolume is pr
portional to the inverse of velocity,
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Dt2
clas

t0
52

Dv
v

52
1

v
du

dk
52

du

dE
. ~3.5!

The contribution due to collisions,Dtcoll, will be determined
by the collision rate and the changeDts in the average time
spent within the collision range compared to free flight time

Dtcoll5t0
sv
V

Dts . ~3.6!

Combining the expressions for different contributions to th
change in time on account of interactions, we find that, a
cording to the ergodic constraint, we should have

1

p (
l

~2l 11!
dd l
dE

52
dr0
dE

u2r0
du

dE
1r0

sv
V

Dts . ~3.7!

In the following we shall expressu in terms of phase
shifts and then determineDts from ~3.7! and examine
whether the result is consistent with what was obtained
preceding section. The potentialu in ~3.7! is identified with
the correction to the kinetic energy at which the single
particle Green’s function has a pole,

g~k1 ,E1!5
1

E12e~k1!2u1 ig/2

5
1

E12e~k1!2^kuT uk&/V
, ~3.8!

where we use the fact that the self-energy can be expres
in terms of the forward element of theT matrix. Here,k
continues to be the relative particle momentum. Assumin
that angular momentum is conserved, we obtain

1

V
^kuT uk&5

1

V (
l ,m

^kul ,m&^l ,muT ul ,m&^l ,muk&

5(
l

~2l 11!
T l

2pr0
. ~3.9!

The imaginary part of the matrix times22 can be shown to
be equal tosv by using the standard expression for the cros
section involving sin2d. Theng is indeed the geometric scat-
tering rate one expects. Turning now to the real part ofT

matrix, the potential associated with the presence of oth
particle within subvolume becomes

u~E!52
( l ~2l 11!sin2d l

2pr0
. ~3.10!

The sum of the timesDt1
clasandDt2

clas in ~3.7! involve the
derivatived@u(E)r0(E)#/dE. With ~3.10!, we obtain

Dt1
clas1Dt2

clas

t0
52

1

r0

d

dE
@r0u~E!#

5
1

pr0
(
l

~2l 11!cos2d l
dd l
dE

.

~3.11!
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Upon inserting the above result into Eq.~3.7! we find

Dts5

( l ~2l 11!sin2d l
dd l
dE

( l ~2l 11!sin2d l
. ~3.12!

If only one partial wave is scattered, then the change in tim
reduces to

Dts5
dd l
dE

. ~3.13!

This result is consistent with Eq.~2.15! of the last section. If
many waves are scattered, then there is generally inter
ence between various scattered partial waves giving rise t
variation of the change in time with scattering angle, cf. E
~2.12!. Equation~3.12! represents, in such a case, an avera
of the change of time over scattering angles, weighted w
the flux or cross section.

One can further see that the time delay of the forwa
wave, as derived in the last section, may be identified w
Dt1

clas1Dt2
clas. The wave packet in the last section was of

transverse sizeB5Lmax/k. We further assume that the
length of the packet isW. The time for such a packet to
move by the potential in the absence of interactions
t05W/v. Using Eq. ~2.16! in the limit of large Lmax we
obtain

Dt f
t0

5

( l ~2l 11!2 cos2d l
dd l
dE

W

v
( l ~2l 11!

. ~3.14!

For wide packets we can approximate( l (2l 11)
.2* l dl 5k2B2 and, with the volume of a packet being
equal toV5pB2W, we can rewrite~3.14! as

Dt f
t0

5

( l ~2l 11!cos2d l
dd l
dE

WB2k2

v

5

( l ~2l 11!cos2d l
dd l
dE

pr0
,

~3.15!

wherer0 is the density of states insideV. One can see that
this agrees with~3.11!.

Given a uniform many-body system, with densityn and
temperatureT treated as independent variables, all intensi
thermodynamic quantities can be obtained from the free e
ergy per unit volumef. In terms of the correction to the
density of states of relative motion in energy in~3.1!, the free
energyf, to the second order in the density, can be written

f~n,T!5f0~n,T!1DP~n,T!, ~3.16!

wheref0 is free energy for a noninteracting system andDP is
the correction to the pressure@21,18#
e

fer-
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q.
ge
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rd
ith
a

is

ve
n-

as

P5P01DP5nT2Tn2S 4p

mTD
3/21

2E dE e2E/T
1

p

3(
l

~2l 11!
dd l
dE

, ~3.17!

and where the effects of statistics are ignored. It can verifi
by a direct calculation that the correction to pressure may
further expressed as

DP5
1

2E dp1
~2p!3

dp2
~2p!3

f ~p1! f ~p2!

3Rê ~p12p2!/2uT u~p12p2!/2&

2T
1

2E dp1
~2p!3

dp2
~2p!3

f ~p1! f ~p2!E dV
ds

dV
vDts~V!.

~3.18!

Here f5e(m2E)/T is phase-space occupancy. The first term
on the rhs of~3.18! accounts for the forward time delay or
mean field. The second term accounts for delay in scatteri
and, depending on the sign ofDts , allows further for an
interpretation in terms of the reduction in the number o
degrees of freedom or in terms of excluded volume.

B. Limitation of the considerations

Two important conclusions can be reached regarding t
method of the previous section. First, the sum of time dela
for scattered and forward-going waves is consistent with e
godic constraints. Second, the time delay of the forwar
going wave is consistent with motion of a particle through
mean field. However, this consistency was derived assum
that the size of the region used to determine the densities w
large. The limitations of this approximation are discusse
below.

A problem with incorporating a mean field which depend
on the number of particles within a given volume element,
that such field can result in classically bound states for a
tractive potentials, or inpenetrable potential barriers for r
pulsive potentials. Considerations in this section require
that the potentialu(E) was much smaller than any charac
teristic energy. This requires thatDr!r0 . For a sufficiently
large volumeV this is not a problem. However, for a finiteV
there exists phase space that is either bound~attractive po-
tentials! or unavailable~repulsive potentials!, of a magnitude

D5
V

~2p!3
4p

3
@2mu~k50!#3/2. ~3.19!

On using sind0'2ka, wherea is scattering length, for lowk
in the expression for optical potential~3.10!, one finds that

D5
4

3p1/2

a3/2

V1/2. ~3.20!

Thus one finds that for astrict validity of our considerations
the volumeV containing a single scatterer must be chose
large compared to the scattering length. On examining E
~2.16! from the previous section, one finds that such a co
dition must be satisfied to allow for a proper definition o
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t f . Scattering lengths are of the order of the interactio
range, unless a resonance or bound state exist close to
threshold. Unfortunately, this is precisely the case f
nucleon-nucleon scattering near threshold where scatter
lengths approach 20 fm.

C. Scattering in the presence of third bodies

When considering the interaction of two particles in Sec
II and III A, we neglected the probability that a third body
could interact with any of the two particles within the sub
volume used to define the mean field. In Eq.~3.3! the con-
tributions to the extra time spent within the subvolum
Dt1

clasandDt2
clas, arose because the particle trajectories we

modified by the mean field. The first contribution arose b
cause the kinetic energy and direction were altered on en
ing the mean field. The second contribution arose due
dependence of the mean field on momentum that led to
change of velocity bydu(E)/dE. When many scatterings
occur, the time spent in a given relative state does not j
depend on trajectories and velocity, but further on the ma
ner in which such state is populated and depopulated. If
population of different states is to be consistent with the fir
two of the time delays in Eq.~3.3! due to interactions, the
scattering prescriptions need to be modified in the prese
of third bodies.

Transition rates per unit time from an initial state ar
given by a transition matrix element to a final state squar
multiplied by the final-state density in energy. For exampl
in the case of particles 1 and 3 scattering in the presence
particle 2, the final-state density would be obtained from
product of single-particle densities for 1 and 3. Latter den
ties, up to a factor, are identical with imaginary parts o
single-particle Green’s functions~3.8!. When shifting the
single-particle energies by mean fields generally depend
on relative momenta of 1 and 2, and 3 and 2, one precis
accounts for the change in the density of relative states,
feeding of the states. Besides the change of relative mome
due to the mean field that corresponds toDt1

class, the levels
of 1 and 2 or 3 and 2 are pulled apart or pushed togeth
when the mean field is energy dependent, changing the d
sity that corresponds toDt2

class. Then the rates calculated
with single-particle energies in the final density of state
would yield a population of states consistent with these fi
two times in Eq.~3.3!, if the particles could leave these state
during the whole time such as obtained with an inclusion
the forward time delay or adoption of the mean field.

Ergodicity when many scatterings occur is discussed
more detail in the Appendix, together with the single-partic
spectral densities. There, we show that the population of d
ferent states could be made consistent with an ergodic c
straint involving all three delay times in~3.3!, i.e., also the
scattering delay, if one included in the Green’s function~3.8!
the imaginary part of theT matrix and allowed for a sepa-
rate dependence of the matrix on energy and relative m
mentum. Modification of the scattering or transition rates
terms of such complete spectral functions, nonethele
might not be practical except for fully equilibrated situation
Also, it needs to be stated that a modification of the fina
state density for two particles such as 1 and 3 on accoun
scattering with a third particle,independentof a modification
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of matrix element for 1 and 3, might not be proper. Wit
regard to scattering, correlations could be important, pers
ing throughout the interaction process.

It will be seen in the examples of Secs. V and VI that th
contribution to the density of states from the mean fie
alone can be very significant. If scattering is then done in
presence of strong mean fields, it is important that mat
elements get modified too. In the case of momentu
independent mean fields, this amounts to the calculation
scattering rates in terms of kinetic particle energies on
Situations can be more cumbersome in the case
momentum-dependent fields as one generally loses the c
venience of working in the rest frame of the scattering p
ticles. A particularly strong momentum dependence of t
mean field is expected for pions in nuclear matter due
derivative coupling to nucleons and deltas@22,23#.

Rates and scattering prescriptions may be complica
when the time delay is negative. In such a case the presc
tion may effectively exclude a relative volume, e.g., a
energy-dependent hard core. One may not want to fill
excluded phase-space volume in the scattering with a th
body to be consistent with the ergodic theorem. Scatter
prescriptions are investigated in Sec. VII, including one wi
a hard-core prescription and one where effective time del
are generated by correlating the outgoing scattering an
with the impact parameter.

D. Manipulating time delays

If one solely aims at satisfying the ergodic constraint, a
thus properly reproducing thermodynamic properties of
system, while ignoring the physical differences behind t
mean field or forward time delay and the delays for scatte
waves, then one can absorb all interaction effects, in
lowest nontrivial order in density, exclusively into the mea
field or, alternatively, into the delays for scattered particle
We shall illustrate our points by considering the correction
the pressure in~3.17! and ~3.18!.

Thus, from ~3.2!, ~3.10!, and ~3.11!, it follows that the
density of two-particle states in energy would be prope
reproduced when ignoring the delays for scattered wa
and, in place of the mean fieldu in the center expression in
~3.10!, using a fieldu8 given by~3.10! with sin2dl replaced
by 2@d l (E)2d l (0)#. As far as the correction to the pres
sure is concerned, this corresponds to rewriting the expr
sion ~3.18! as

DP5
1

2E dp1 dp2 f ~p1! f ~p2!

3^~p12p2!/2uReT 8u~p12p2!/2&, ~3.21!

where

^puReT 8up&5
2pv
k2 (

l
~2l 11!@d l ~0!2d l ~E!#. ~3.22!

The replacement of the sine by its argument in the field
actually a good approximation when the phase shifts are l
compared top/4. The general conclusion then is that th
delays for scattered waves are relatively unimportant for
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thermodynamic properties when the phase shifts are low,
matter what are the values of these delays.

If the mean field were to be ignored, then, in order
properly reproduce the density of two-particle states, fro
~3.2! and~3.6!, the mean delay time for scattering should b
taken equal to

Dts85

( l ~2l 11!
dd l
dE

2( l ~2l 11!sin2d l
, ~3.23!

and for scattering in only one partial wave

Dts85
1

2 sin2d l

dd l
dE

, ~3.24!

in place of ~3.12!. The correction to the pressure~3.18! is
then rewritten as

DP52T
1

2E dp1 dp2 f ~p1! f ~p2!svDts8. ~3.25!

Some advantage of an approach with delays put into scat
ing is that particles move with uniform velocities. One prob
lem, though, is that the delay timesDts8 diverge at thresh-
olds, where phase shifts go to zero linearly in the moment
with the coefficient of proportionality being equal to th
negative of scattering length. In Sec. V when we evalua
resonant scattering and pion-nucleon scattering, we furt
discuss the implication of these various schemes. Now
turn to to the role of statistics.

IV. TIME DELAYS AND STATISTICS

For any finite energy the density of states in energy
increases by symmetrization and decreased by antisymm
zation. Corrections to thermodynamic quantities, such as
free-energy density or pressure, arise within the second or
in density even in the absence of interactions. Symmetri
tion also affects scattering processes both in that the out
ing states may be Pauli blocked or Bose enhanced and in
the scattering amplitude may be internally modified@24#. In
the following, we consider pressure in an equilibrated man
body system in terms of theT matrix. In a nonequilibrium
system, for low scattering rates, theT -matrix approximation
@25# in the single-particle equations of motion leads to th
Boltzmann equation with rates corresponding to two-partic
collisions, enhanced or reduced on account of statistics
final states and with medium-modified amplitudes. We ass
implications for time delays and scattering processes
simulations, following from ergodicity.

The pressure in a many-body system at a given tempe
ture T and chemical potentialm may be generally repre-
sented as@26#

P~m,T!5P0~m,T!1DP~m,T!, ~4.1!

where
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DP~m,T!5
1

2E dP

~2p!3
dp

~2p!3
dEt

1

e~Et22m!/T21

3E
0

1

dlS 2
1

p D Im^puV Gl~P,Et!~ up&6u2p&).

~4.2!

Here V is the interaction,p and P are relative and total
momenta, respectively,Et is the total energy, andGl is the
two-particle Green’s function within a system with the inter
action scaled down by a factor ofl. The negative of the
imaginary part of this function, divided byp, plays the role
of the two-particle spectral function. The statistical factor i
~4.2! is bosonic, as is appropriate for a state of two particl
with the same statistics. The apparent change in sign of
correction to the pressure above compared to~3.17!, is asso-
ciated with the fact that there the pressure is expressed a
function of density while in~4.2! it is expressed as a function
of m.

In the T -matrix approximation @25# the two-particle
Green’s function satisfies

G5G01G0V G, ~4.3!

and explicitly

^kuG~P,Et!uk1&5^kuG0~P,Et!uk1&

1E dk2
~2p!3

dk3
~2p!3

^kuG0~P,Et!uk2&

3^k2uV uk3&^k3uG~P,Et!uk1&. ~4.4!

The noninteracting Green’s function in the above is equal

^puG0~P,Et!up8&5~2p!3d~p2p8!
N~p,P!

Et2P2/4m2p2/m1 i e
.

~4.5!

The factor ofN stems from an equal-time commutator of th
operators for two particles,

N~k,P!5@16 f ~P/21k!#@16 f ~P/22k!#

2 f ~P/21k! f ~P/22k!

516 f ~P/21k!6 f ~P/22k!, ~4.6!

and the upper signs refer to bosons and lower to fermio
TheT matrix and Green’s function are related with

T 5V 1V GV , ~4.7!

and thus theT matrix satisfies

T 5V 1V G0T . ~4.8!

The factor ofN in G0 in the above equation, on considering
the case of a resonance, can be related to the fact that, f
bosonic two-particle state, the width is equal to the diffe
ence between the decay and the formation rates@25#.

On integrating in~4.2!, we obtain, from~4.3!,
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E
0

1

dl Im^puV Gl~ up&6u2p&)

5Im^pu (
n51

`
1

n
~V G0!

n~ up&6u2p&)

52Im^pu ln~12V G0!~ up&6u2p&)

5^puarctan~V ~12V ReG0!
21 ImG0!~ up&6u2p&)

5^puarctan~R ImG0!~ up&6u2p&), ~4.9!

whereR satisfies

R5V 1V ReG0R. ~4.10!

On introducing then the matrixR̃ that is Hermitian in the
spherical angle and may be diagonalized,

R̃~p,V,V8,P!5sgn~Et22m!uN~p,P,V!N~p,P,V8!u1/2

3^p,VuR~P,Et!up,V8&

5(
n

rn~p,P!Yn~p,P,V!Yn* ~p,P,V8!,

~4.11!

whereEt5P2/4m1p2/m, and $Yn% form an orthonormal
set in spherical angle~with a definite symmetry under inver-
sion!, we can rewrite~4.2! as

DP~m,T!5
1

2E dP

~2p!3
dE

p

1

e~E1P2/4m22m!/T21

3(
n

dn~p,P!, ~4.12!

wheredn5atan(2p2rn/8p2v).
In terms of the phase shiftsdn introduced above, the on-

shellT matrix can be expressed as

^p,VuT ~P,Et!up,V8&52
8p2v
p2

sgn~Et22m!

3uN~p,P,V!N~p,P,V8!u21/2

3(
n

sindne
idnYn~p,P,V!

3Yn* ~p,P,V8!. ~4.13!

On carrying partial integrations in~4.12!, the correction to
the pressure may be decomposed into the mean-field
scattering contributions that take the form, in terms of t
T matrix,
and
he

DP~m,T!52
1

2E dp1
~2p!3

E dp2
~2p!3

f ~p1! f ~p2!

3Rê puT ~P,e~p1!1e~p2!!~ up&6u2p&)

1
1

2E dP

~2p!3
P2

6mE dp

~2p!3
E dV

3S f ~p1! f ~p2!ds

dV
vDts@16 f ~p18!#@16 f ~p28!#

2 f ~p1! f ~p2!
ds

dV
vDtsf ~p18! f ~p28! D , ~4.14!

where f5(e@e(p)2m#/T71)21, ds/dV5(m/4p)2

u^puT (P,Et)(up8&6u2p8&)u2, integration is over the spheri-
cal angle of 2p, and the time delay for scattering is

Dts5S ]

]~p2/m!
2

]

]~P2/4m! D
3Im@ ln^puT ~P,Et!~ up8&6u2p8&!]. ~4.15!

Following ~4.1! and ~4.14!, in order to produce proper
changes in the pressure in simulations, associated with tw
particle interactions, it is necessary to include the effects
the mean field on particle motion, and to delay the collisio
processes, according to the expressions in terms of theT

matrix, with an internal symmetrization and symmetrizatio
with other particles in the medium accounted for in the fina
and intermediate states@Eqs.~4.8!, ~4.5!, ~4.14!, and~4.15!#.
Besides delaying direct collisions, where two particles alte
their momenta and spins, byDts , it is necessary to delay
exchange collision processes, where pairs of particles m
and interchange pairwise quantum numbers, by2Dts . ~The
latter holds for particles of one statistics. In the case of pa
ticles of opposite statistics, the exchange collisions should
delayed byDts .) The exchange collisions may be thought o
as processes@26# where two particles collide and, while in an
intermediate 2p-2h state, encounter two more particles, en
ing up in the interchange of the quantum numbers. The cro
section, from~4.14!, is the same as for the direct collisions
Notably, there is no room for the exchange collisions in th
Boltzmann equation that ignores the duration of interaction
since these processes leave the occupations of single-part
states unaltered. These processes should, nonetheless, ap
in a possible quantum Enskog equation, since their durati
affects thermodynamic quantities.

V. RESONANCE SCATTERING

A. Sharp Breit-Wigner resonance

An obvious example, that can serve to illustrate the tim
delays and different prescriptions, is that involving a shar
resonance. If the width of the resonanceG is small compared
to its energyER , then the phase shift in the vicinity ofER is
given by

tand52
G/2

E2ER
. ~5.1!
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This yields the following time delays for the scattered an
forward-going waves, respectively,

Dts5
dd

dE
5

G

2@~E2ER!21G2/4#
, ~5.2!

and

Dt f3
pB2

s
5Dts82Dts5

~E2ER!22G2/4

G@~E2ER!21G2/4#
, ~5.3!

where Dt f is the time delay of the forward-going wave
packet with total cross-sectional areapB25(p/k2)
( l (2l 11). Figure 1 illustrates the different times. It is see
that the delay for the forward-going wave turns negative
the vicinity of the resonance. For light in a dielectric mediu
@27# this corresponds to the increase in group velocity f
packets with resonant frequencies.

The energy-averaged delay for the forward-going wa
Dt f is zero. ~This may be expected whenever phase-sh
variation is limited to a narrow range in energy.! Weighted
with the cross section, the average delay time for scatte
waves over energy is equal to the inverse width, coincidi
with naive expectations. The actual delay time for scatter
waves~5.2! is twice as high at the resonance, see also@28#,
and it drops rapidly with energy when going away from th
vicinity of that resonance.

The result that the time delay equals the inverse width
also obtained when putting all delays into scattering, fro
~5.2! and ~5.3!,

Dts85
1

G
. ~5.4!

It is now a common prescription in relativistic simulations t
use an energy-independent delay given by the inverse wid
Provided that particles are not also propagated through
mean field and resonances are indeed of a Breit-Wig

FIG. 1. Time delays in the case of a Breit-Wigner resonance
a function of energy from the resonance divided by the width. T
solid line represents the time for the scattered waveDts . The short-
dashed line represents the timeDts8 which is ergodically consistent
when the delay for forward wave or mean field are neglected.
nally, the long-dashed line shows the time delay for the forwa
wave divided by the fraction of the incoming wave that is scattere
Dts82Dts @cf. Eq. ~5.3!#.
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form, such a prescription would yield correct thermodynam
functions up to the second order in density.

B. pND system

Different resonances in apN system may be identified a
independent particles. For the lowestP33 D resonance, the
width is comparable to the energy of the resonance above
pN threshold and, as such, this width exhibits a significa
energy variation. An interacting system of pions, nucleo
and deltas, is of considerable interest for heavy-ion collisio
in the beam-energy range from few hundred MeV/nucleon
few GeV/nucleon.

In this section we address three issues. First, by study
pN phase shifts we calculate time delays and indicate diff
ences with the Breit-Wigner case above. Second, we p
out that a quantum decomposition of the effective increase
the density of states represented by the time delay wo
include contributions fromboth theD andpN components.
Finally, we point out a practical difficulty in separating th
D andpN components.

Time delays can be calculated given the experimenta
determinedpN phase shifts@29,30#. The delay of the for-
ward wave@divided by the fraction of particles that scatter a
in ~5.3!# and the delay of the scattered wave are shown fo
p1p system in Fig. 2. In many prescriptions, time delays a
only incorporated into scattering events, which would me
that the combination of the two contributionsDts8 is appro-
priate. One should note that this combination differs sign
cantly from the Breit-Wigner result and is extremely dive
gent at threshold due to a rapidly declining cross section,
Sec. III D. If the mean field is consistently incorporated in
a simulation, the appropriate delay isDts which behaves as
the derivative of the phase shift with respect to energy wh
is approximately the scattering length divided by the veloc
in the vicinity of the threshold. This threshold divergence
much weaker than that ofDts8.

The imaginary part of aD Green’s function in a therma
system gives the number of states for the resonance per

as
he

Fi-
rd
d,

FIG. 2. Time delays for ap1p system as a function of c.m
kinetic energy. The solid line represents the time delay for the s
tered wave averaged over angles and spin directions,Dts . The
dashed line represents the forward time delay averaged over
directions and divided by the fraction of the incoming wave that
on the average, scattered,Dts82Dts .
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energy and volume,Dr952ImgD /p @31,25#. The require-
ment then of a consistency with the number of collidin
pN pairs gives the timeDts9 during which thepN pair
should turn into the resonant particle,

Dr9~E!

r0~E!
5

s~E!vDts9

V
, ~5.5!

with a result that is the inverse of resonance width@32,33#,

Dts95
1

G~E!
. ~5.6!

This time differs fromDts8, such as in Eq.~3.24!, that
would, in particular, involve the energy derivative ofG; like-
wise Dr9 differs from Dr. Interestingly, within any single
spin-isospin channel, either correction to the density
states,Dr or Dr9, integrates over energy to unity, i.e., on
net state is gained. For sharp resonances, with couplings
widths independent of energy, there is no difference betwe
Dts8 andDts9 , as is apparent from Sec. V A, and there is n
difference betweenDr andDr9.

On studying the density of states for pions or nucleons
in the Appendix, one finds a change, perpN pair, that is
equal to Dr(E)2Dr9(E), where Dr5(1/p)(dd/dE) in
any single channel, i.e., one that precisely compensates
discrepancy above. The same type of discrepancy and c
pensation is found when applying the considerations to
system of pions and rho mesons, wherep1p↔r reactions
take place. If one were to ask about, in the last system, h
manyr mesons decay into dilepton pairs, the answer wou
involve the density of rho states within the system, rath
than the overall change in the density of states associa
with the resonance formation, important for thermodynam
considerations. For certain questions one has to keep in m
that the time delays derived before correspond to the cha
in the overall density of states and not necessarily to t
existence of the resonant particles.

The time for the conversion into a resonant particle
scattering~5.6! may diverge strongly when threshold is ap
proached, which parallels the situation when the overall d
lay time associated with the interaction is forced onto t
scattering.@The conversion time for a spherical wave, th
should be identified asDtsph52pDr9}G(E), tends to zero
at the threshold.# In practice, manipulations of the conver
sion time, dividing this time between the scattered and fo
ward waves, may pose more difficulty than the manipu
tions of the overall delay time, as negative conversion tim
cannot be simulated.

C. s-channel scattering of massless partons

An example, where time delays associated with intera
tion are relevant, is the collision of partons in ultrarelativist
nuclear reactions. Partons are copiously produced early
reactions and the goal of simulating partonic cascad
@34–36# is to determine the equilibration time scale and in
tial equilibrated energy density. Most partons at midrapid
are produced far off shell and decay via bremsstrahlu
Thus, quantum considerations are necessary to establish
duration of processes.
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While we shall not tackle the general problem here, w
shall try to gain insight by considering the simplified ex
ample of elastic scattering of two massless partons in thes
channel, assuming that the intermediate particle is massle
This turns out to be quite similar to the case ofpN scattering
close to the threshold. Since there are no energy scales
lowest order in perturbation theory the phase shift must d
pend only on the coupling constanta,

tand52ca. ~5.7!

Then, the overall time delay for a spherical wave from~5.7!
is zero. This peculiar result will arise from any theory with
no energy scale since phase shifts are dimensionless.

However, QCD acquires a scaleL through renormaliza-
tion that gives the coupling constant an energy dependen
@37#:

tand5ca~E!5c
4p

b0 ln~E2/L2!
. ~5.8!

With this, the time delay for spherical waves becomes

Dtsph52
dd

dE
5

b0

cpE
sin2d5

b0

cpE

c2a~E!2

11c2a~E!2
. ~5.9!

If all the time delay is put into the scattered wave, as in Se
III D, then the correct time delay for the scattered wave ac
quires a particularly simple form

Dts85
b0

4pcE
. ~5.10!

Note that the time delay does not involve the coupling con
stant and scales proportional to the inverse energy. If o
chose the time delay equal to the inverse width for the inte
mediate state, then one would certainly have obtained a tim
proportional to 1/(aE), as the width would be proportional
to a.

Since ans-channel scattering involves an intermediat
state very far from being on-shell, the questions involvin
the time delay for such a process may not be so crucial sin
these processes are rather rapid. Of greater concern is
formation of partons through bremsstrahlung involving inter
mediate states which are nearly on shell. Since such p
cesses create the majority of soft particles in an ultrarelati
istic pp collision, the issue of when and where such particle
appear can greatly affect estimates of the initial thermalize
energy density. Unfortunately, such two to three or more pa
ticle processes are outside the scope of this analysis, b
similar problems have been addressed in the context of d
caying hadronic resonances@38#.

VI. NUCLEON-NUCLEON INTERACTION

The nucleon-nucleon system is one for which th
quantum-mechanical scattering-amplitudes have been m
carefully measured in physics. It represents the most releva
case of scattering for heavy-ion physics, where semiclassic
simulations utilizing single-nucleon degrees of freedom a
commonly used to model heavy-ion reactions. At modera
densities and high temperatures, when cluster formation



the

ri-
he
e

i-
se

m

at
lay

n
-

ve.
t

e

n

ed
s-
rd
he

53 259DELAYS ASSOCIATED WITH ELEMENTARY PROCESSES IN . . .
unlikely, it may be reasonable to assume that nucleons in
act two at a time. Using phase shifts inferred from scatteri
data, one can calculate quantum-mechanical scattering
plitudes and determine the appropriate time delays followi
the prescriptions outlined in the previous sections.

First we present the calculation of the time delay for th
scattered wave at a given angle,Dts(u), when averaging
over the spin and isospin directions. Due to antisymmetriz
tion and the conservation of angular momentum, isospin, a
parity, the magnitude of the net nucleon spin is conserved
NN interactions. TheS50 amplitude for a given isospin is
given by

f S50~u!52
1

k (
l , j

~2l 11!Pl ~cosu!T l , ~6.1!

where only even or odd values ofl are included. That is
compensated by the factor before the sum in~6.1! being
twice as large as in~2.4!. Given the conservation laws, the
S51 amplitude is of the general form,

f mm8
S51

~u,f!52
1

k (
l

A4p~2l 11!^l 01m8u jm&

3^l 8~m2m8!1m8u jm&

3Yl 8m2m8~u,f!T l l 8 j , ~6.2!

whereT l l 8 j5 i (Sl l 8 j2d l l 8), and for the coupled waves
diagonal matrix elements areSl l 5cos2ē j exp2id̄ j l , and
off-diagonal elements Sl l 8 j5 i sin2ē j expi(d̄ j l 1 d̄ j l 8),
whereē is mixing parameter. In carrying calculations up to
laboratory energy ofElab5400 MeV, we use all partial waves
with both l and j less than 5. The mixing of waves is no
very strong in this region. The phase shifts are genera
using a potential model that had been carefully fitted to d
scribe theNN data@39#.

Using Eq.~2.14!, one obtains a delay timeDts that de-
pends on the scattering angle. This time is shown by differ
lines in Fig. 3 for several values ofElab. Due to the averag-
ing over initial spin and isospin and the amplitude antisym
metrization, the time is symmetric with respect to 90°. Th
time, averaged over angles, is additionally shown as a fu

FIG. 3. Spin-isospin averaged time delay forNN scattering as a
function of the cosine of c.m. scattering angle, at several values
laboratory kinetic energy indicated in the figure in MeV.
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tion of the laboratory energy by a solid line in Fig. 4, to-
gether with the forward delay time from Eq.~2.19!. The
observed negative delay times for scattered waves reflect
negative derivatives ofS wave and other phase shifts with
respect to energy, weighted in the average time with cont
butions to the cross section. The falling phase shifts make t
interaction, with regard to scattering, effectively repulsiv
aboveElab;2.5 MeV. Notably, theNN interaction is often
only considered repulsive when phase shifts are predom
nantly negative, although the energy derivatives of the pha
shifts also necessitate consideration. Both theT50 and
T51 phase shifts fall with energy, as the Levinson’s theore
requires that the deuteron formation inT50 channel and
enhancement of the density of states in thed* region in
T51 channel be compensated by a depletion in states
higher energies. In semiclassical considerations, the de
time for scattering should be limited from below by
22d/v, whered is interaction range andv is relative veloc-
ity. While the negative delay times in Fig. 4 decrease i
magnitude with an increasing laboratory energy, their de
crease is faster than implied by the above limit. At very low
energies, the times for the scattered waves become positi
At Elab&100 keV they begin to be governed by the single
scattering length,Dts.2as /v.

For comparison of the angular dependence, the delay tim
for a hard-sphere repulsive-scattering~discussed more in the
next section! as a function of the scattering angle is

Dts~u!52
2d

v
sin

u

2
, ~6.3!

and averaged over forward and backward directions, give
the constant scattering cross section,

D̄ts~u!5
1

2
~Dts~u!1Dts~p2u!!52

A2d
v

cosS p

4
2

u

2D .
~6.4!

of
FIG. 4. Time delays forNN system as a function of laboratory

kinetic energy. The solid line represents the time for the scatter
waveDts averaged over the scattering angle and the spin and iso
pin directions. The dashed line represents the time for the forwa
wave, averaged over spin and isospin directions and divided by t
fraction of incident wave scattered,Dts82Dts .
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Correspondingly, for repulsive scattering, more negative d
lay times might be expected atu590° than atu50. Indeed,
that is observed inNN scattering at the higher laboratory
energies. In fact, in the periphery the interaction might
expected attractive and the delay times might be expecte
turn to zero or even positive in the forward directions, an
not just decline in magnitude as for hard-sphere scatteri
and this can be seen for the 360 MeV scattering in Fig. 3.
passing, let us note that to properly isolate forward and ba
ward directions, constructing an amplitude prior to the an
symmetrization, one should continue the phase shifts o
the missing partial waves. If one were to identify a har
sphere radiusd for simulations from the delay at 90°, quite
low values would have been obtained compared to what w
used in simulations@16#, declining fromd50.6020.80 fm
for Elab within the range 10230 MeV to d50.1520.30 fm
for Elab within the range 1002400 MeV. At low energies, the
times become more negative at 0° than at 90°, and this
due to 3S1-

3D1 interference.
The forward delay times are positive in a wide energ

range 3& Elab&150 MeV, see Fig. 4. In the lower portion o
the range, this is due to the fact that, for largeS-wave phase
shifts, the real forward amplitude, multiplied by a relativ
momentum, increases, although theS-wave phase shifts de-
crease. In the higher portion of the above energy range, w
S-wave contributions are low, the forward delay times a
positive due to the positive energy derivatives of phase sh
for some high partial waves which, unlike in the delays f
scattered waves, are not weighted by partial cross section
the forward direction.

Of some interest is the issue of elasticNN interactions at
very high energies when amplitudes are primarily diffractiv
@17#. Schematically, a purely diffractive amplitude may b
represented, givenSl 50 for l <l c and Sl 51 for
l .l c , as

f ~u!5
i

2k (
l 50

l c

~2l 11!Pl ~cosu!. ~6.5!

As a diffractive amplitude is purely imaginary, its phase do
not depend on energy and the time delays for the elastica
scattered waves identically vanish, cf.~2.14!. Likewise, the
times for the forward waves~2.19! vanish. This is consistent
with the concept of particles moving freely around the inte
action region.

We conclude this section with a presentation of the pre
sure in a low density nuclear matter at moderate tempe
tures, as a function of the density and temperature, such
should be, generally, reproduced in simulations. Within t
second order in density the contributions to pressure~beyond
the free-gas termP05nBT) come from nucleon antisymme-
trization, formation of deuterons, and nucleon-nucleon sc
tering,

P5nBTS 11a2~T!nBS 2p

mTD
3/2D , ~6.6!

where the three respective contributions to the virial coe
cienta2(T) are given by
e-
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25/2a2~T!5
1

4
23 eBd /T2 (

T j l S
~2T11!~2 j11!

3E dE

2p
2
dd j l

TS

dE
e2E/T, ~6.7!

andBd is the deuteron binding energy. Antisymmetrization
increases the pressure, deuteron formation lowers the pr
sure, while at most temperatures, scattering increases
pressure. The overall effect of interactions, following
Levinson’s theorem, declines with the increase of temper
ture. The second virial coefficient~6.7! is shown as a func-
tion of temperature in Fig. 5.

VII. DELAYS IN SIMULATIONS

A. Effect of scattering prescriptions

Without explicitly delaying or advancing particles as they
pass near each other within a simulation, the time spent
particles in the vicinity of one another can be affected by th
scattering prescription. The prescription can makeDts posi-
tive or negative. Effects of scattering prescriptions on ma
roscopic features of reaction dynamics at Bevalac energ
have been investigated in Refs.@13–16#, see also@40#. We
analyze two examples, hard sphere scattering and scatter
at the point of closest approach.

Our first example is that of hard-sphere two-particle sca
tering. Given a volume in relative coordinates of radiusR,
and a hard-sphere potential that rises as particles are a d
tanced away, the expected reduction in the density of two
particle states within the relative volume, due to scatterin
becomesDr/r05Dtcoll/t052d3/R3. Particles that make
contact along a line at an anglea to the direction of original
relative motion, get deflected by an angleu5p22a. When
reaching the boundary of the relative volume defined wit
the radiusR, the particles traverse a relative distance that
altered by the scattering. The alteration divided by the rel
tive velocity, gives the change in the time spent in the vicin
ity of the other particle,Dts(b), that depends on impact
parameter and can be worked out from geometry,

FIG. 5. Second virial coefficient for nuclear matter, multiplied
by 25/2, from Eq. ~6.7!, as a function of temperature.
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Dts~b!52
2Ad22b2

v
52

2d cosa

v
52

2d

v
sin

u

2
. ~7.1!

The average change in time due to scattering is then given
an integral over the product of the probability density that
specific scattering occurred, times the change in time in t
scattering,

Dtcoll5
*db bDts~b!

*db b
52

d2

R2

4

3

d

v
. ~7.2!

In the last expression, the factorsd2/R2 and (4/3)d/v repre-
sent, respectively, the probability that a collision occurs a
the average time lost then in a collision. The average tim
spent within the volume of radiusR follows from dividing
the volume by cross-sectional area and veloc
t05(4p/3)R3/pR2v5(4/3)R/v, and we find that
Dtcoll/t052d3/R3, as we expected. The pressure corr
sponding to~6.3!, ~7.1!, and~7.2!, in the absence of statisti-
cal effects, from~3.17! and ~3.18!, is

P5nT1n2T
2pd3

3
. ~7.3!

Positive delay times are obtained when scattering the p
ticles as if off a thin spherical shell of sized open in the
direction of motion~the case of a concave rather than conv
mirror!. Then expressions~7.1! and ~7.2! remain valid but
with changed signs.

Within the most common prescription for scattering in
simulation, it is assumed that particles scatter when th
come abreast of each other, at a distanceb,d5As/p.
When deflected in a direction making an angleu relative to
the original direction, within a plane at an azimuthal ang
f with respect to the original reaction plane, the particl
reach a distanceR@d after a time longer by

Dts~b,V!52
b

v
sinu cosf, ~7.4!

than in the absence of scattering. If the scattering is repuls
(f50) and isotropic, i.e., cosu distribution is flat, then the
average delay time for a given impact parameter becom
equal to

Dts~b!52
p

2

b

v
. ~7.5!

By averaging over all impact parameters one further gets

Dtcoll52
d2

R2

p

3

d

v
. ~7.6!

Notably, the time lost in any one collision is reduced here
only a factorp/4 compared to hard-sphere scattering. B
choosingf5p in collisions, one can produce positive dela
times.

Generally, given required delay times such th
uDtsu,(2/3)d^sinu&5(Dts)max, these times may be gener
ated making a fractionn of all scatterings repulsive and a
fraction 12n attractive. This fraction is given by
by
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n5
1

2 S 12
Dts

~Dts!max
D . ~7.7!

B. Numerical determination of equations
of state and transport coefficients

While we have limited ourselves to the discussion of e
fects of two-particle interactions on thermodynamic prope
ties, many-body calculations can provide information ac
counting for interactions of a few particles at a time@10,12#.
The prescriptions for interactions in simulations may affec
microscopic thermodynamic quantities within a higher orde
than the second in density and they can also affect transp
coefficients. Given the prescriptions, thermodynamic quan
ties, and transport coefficients for simulations can be dete
mined numerically and confronted with those from funda
mental calculations.

All thermodynamic quantities can be derived once on
knows the pressure as a function of the chemical potent
and temperature,P(m,T). To determine the pressure, the
system may be enclosed in a box of macroscopic volumeV,
in contact with a free noninteracting gas with of chemica
potentialm and temperatureT, possibly only within some
external potential lower thanm. The contact with the gas can
be made through the walls in one direction, and in two re
maining directions periodic conditions may be used. If clus
ters are produced within the simulation, then the interfaces
the free gas can be made impermeable to those. Nucleons
in a cluster, on the other hand, getting into the free zon
would never return. At the same time, nucleons from the fre
zone with equilibrium phase-space distribution for givenm
andT with the inclusion of statistics, would pour in into the
box. The pressure within the box could be then compute
using the following virial-type expression with terms for dif-
ferent possible ways of accounting for interactions in a simu
lation:

P5
1

tV H 13 S E dt(
j
pj•vj2(

i, j
pi j •vi jDt f

i j

1E dt(
i, j

Fi j •r i j1(
i, j

Dpi j •r i j D
1E dtE dVS rU2E

0

r~ t !
dr8U D J . ~7.8!

The above equation is limited to the mean field being mo
mentum independent.

With regard to~7.8!, pressure is recognized as the densit
of momentum flux in equilibrium, in any one direction. In
~7.8! the pressure is evaluated by taking a trace of the m
mentum flux tensor and dividing it by 3 for the three direc
tions; t is the time over which the system is investigated
The first term on the rhs of~7.8!, with a sum over particles in
a box, accounts for the transport of momentum when pa
ticles move. The second term, with a sum over particle e
counters, accounts for the situations when particles pass
the vicinity of one another and their relative motion is de
layed in a simulation byDt f . The vectorpi j5(pi2pj )/2 is
relative momentum andvi j5vi2vj is relative velocity. The
third term on the rhs of~7.8! accounts for transport of mo-



e
cts:
r
us
in-
s,
di-
-
y
to

lay
ing
be
d
of
s-
e
or
a
ec.
-

ng
hat
un-
s
so
ion

r-

dy
he
by
ble
ces
of
u-
as
u-
s
as

ng
ry
-
the
ints
of
ng

ly
y
d
.

te

262 53PAWEL” DANIELEWICZ AND SCOTT PRATT
mentum with two-particle interactions treated explicitly. Th
force Fi j5ṗi j is that due to particlej on particlei . Due to
the interaction, the relative momentum changes as partic
are separated byr i j . The fourth term accounts for instanta
neous changes of relative momentum in collisions, and
final term accounts for the effects of interactions treated
the mean-field approximation. It is apparent in~7.8! that
positive ~negative! forward delay times, for a given particle
number, reduce~enhance! the pressure. Further, the attractiv
scattering style,Dpi j •r i j,0, reduces the pressure, while th
repulsive style,Dpi j •r i j.0, enhances it.

Transport coefficients such as shear viscosity or heat c
ductivity may be determined within a simulation by impos
ing different conditions within the free gas beyond the tw
walls of the box in contact with that gas. Provided that th
walls are perpendicular to thex axis and atx56Dx, the
viscosity coefficient may be determined by giving collectiv
velocities to the free gas in they direction equal to6Dv in
the two separated regions. The coefficient then follows fro
an off-diagonal term of the momentum flux tensor in the bo

h52
1

tVDv/Dx S E dt(
j
pj
yv j

x2(
i, j

pi j
y v i j

x Dt f
i j

1E dt(
i, j

Fi j
y xi j1(

i, j
Dpi j

y xi j D . ~7.9!

To gain an insight into~7.9!, one may consider a simple
assessment of the viscosity in a medium when ignoring
effects of the finite range and duration of interactions, i.
investigating, in particular, only the effects associated w
the first term in~7.9!. Provided that particles propagate free
between collisions for an average timetF'1/ns^v&, a par-
ticle at a positionxi of velocity v i

x would have, on the aver-
age, a momentum in they direction such as characteristic fo
a position this particle had a timetF earlier. With this, Eq.
~7.9! gives

h'2
1

VDv/Dx (
i
m^vy&~xi2v i

xtF!v i
x

52
1

VDv/Dx (
i
m~xi2v i

xtF!~Dv/Dx!v i
x

'mn̂ ~vx!2&tF5
mn̂ v2&tF

3
'
m^v&
3s

. ~7.10!

The hard-sphere scattering is known to enhance viscosity
within the lowest order in density, but the enhancement fa
tor for viscosity is smaller than that for pressure. For a giv
shear the medium with hard-sphere scattering, to lowest
der, behaves as less viscous compared to one where ef
of interaction range and duration may be ignored. For t
numerical determination of a heat conduction coefficie
given assumptions of a simulation, the temperature should
set different in the two regions with free gas adjacent to t
box where interactions take place.
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VIII. CONCLUSIONS

The principal goal of simulating heavy-ion collisions is to
infer the equation of state of nuclear matter. The effectiv
equation of state for a simulation depends on several aspe
treatment of the mean field in simulation, time delays fo
interactions and scattering prescriptions, inclusion of vario
resonances. In this paper we have carried out a detailed
vestigation of the time delays and of scattering prescription
and have shown that they should be incorporated in coor
nation with the mean field. If that is not followed, the effec
tive equation of state may be inconsistent with two-bod
scattering which constrains thermodynamic quantities
within the second order in the virial expansion.

In Sec. II expressions were derived for the average de
of an outgoing scattered wave as a function of the scatter
angle. In Sec. III, such delays in dynamics were shown to
consistent with the two-body density of states if a forwar
delay or mean field were included and calculated in terms
the forward scattering amplitude. Other ergodically consi
tent prescriptions were presented where all the effective tim
delays were incorporated either entirely into the scattering
into the mean field. Alterations to these considerations for
Fermi-degenerate system were shown to be nontrivial in S
IV. Sections V and VI illustrated the time-delay consider
ations with the examples of resonance andNN scattering. In
Sec. VII it was shown that repulsive and attractive scatteri
schemes can be interpreted in terms of time delays, and t
equations of state associated with these schemes may be
derstood quantitatively at a two-body level. The implication
of scattering prescriptions for transport coefficients were al
discussed and a practical method of determining the equat
of state and coefficients for a simulation was presented.

We conclude by giving some perspective to the conside
ations discussed here. Most of the flow in high-energy&1
GeV/nucleon heavy-ion collisions stems from the one-bo
free-gas pressure. The interactions of particles affect t
pressure and can increase the observed flow of a collision
'50% compared to a free gas. As experiments are now a
to measure sidewards flow and squeeze out flow differen
to better than 20%, a detailed and careful understanding
the simulations becomes crucial. Demonstrating that a sim
lation reproduces experimental results to within 10–20% h
little meaning unless thermodynamic properties of the sim
lation are understood to within 10–20% as well. Simulation
are becoming more sophisticated. Important aspects, such
the change of the dispersion relation for pions, are bei
incorporated through energy-dependent mean fields. At ve
relativistic energy, simulations must incorporate a large num
ber of resonances which can be very broad compared to
temperature. It is hoped that the prescriptions and constra
presented here will contribute to both the development
improved codes and to a better understanding of existi
approaches.
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APPENDIX

In this appendix we investigate changes in two-partic
scattering rates induced by the presence of other partic
within the lowest order in density, in the context of the e
godic theorem. To reach directly essential results we ad
simplifying assumptions. First, we concentrate on a su
system of one of the particles engaged in scattering, deno
as 1, and the spectator particle denoted as 2. We assume
these two particles interact only perturbatively with all oth
particles within the system, but not necessarily with one a
other. If the system has many particles confined to a fin
volume and sampling is done over a long timet, then we
may write an ergodic theorem for the subsystem of partic
1 and 2 alone:

1

t

dt

dp dE
5S E dE8

dn

dE8
e2E8/TD 21 dn

dp dE
e2E/T.

~A1!

In the abovedt/dp dE denotes time spent in a given set o
internal states, per unit volume of energy-momentum spa
dn/dp dE denotes the number of states, ande2E/T is relative
probability that any single internal state is occupied at a
instant. An equivalent formulation of the ergodic theore
~A1! is that for any two states (p,E) and (p8,E8):

S dt

dp dED 21 dn

dp dE
e2E/T5S dt

dp8 dE8D
21 dn

dp8 dE8
e2E8/T.

~A2!

For simplification, we next assume that 2 is much heav
than 1, whereupon we can make no distinction between re
tive states of 1 and 2 and single-particle states of 1. Equat
~A2! then may be also written as

S dt

dp1 dE1
D 21 dn1

dp1 dE1
e2E1 /T

5S dt

dp18 dE18
D 21 dn1

dp18 dE18
e2E18/T. ~A3!

We are now set to address the scattering of a particle
representing the remainder of the system, with particle 1,
the presence of 2. Transition or scattering rate within t
system are given by a transition matrix element squared m
tiplied by the density of final states in energy, times 2p.
When sampling is carried out over a long time, the numb
of transitions within the system from one set of states
some other should be the same as from the other set to
first. On multiplying both sides of Eq.~A3! by common fac-
tors and after manipulations, we can demonstrate an equ
lence of the ergodic condition~A3! with the general condi-
tion of the equality of the number of transitions in th
different directions. Specifically, we multiply both sides o
~A3! by a product of average number densities of
k
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dN3 /dp3 dE35dn3 /dp3 dE33e2E3 /T, in the vicinity of
two different states (p3 ,E3) and (p38 ,E38), such that
p11p35p181p38 andE11E35E181E38 , and by a matrix el-
ement squared in the momentum representation, same
direct and inverse transitions, uM13→1838u

2

5uM1838→13u2[uMu2. After manipulations we get

dt

dp1 dE1

dN3

dp3 dE3

~2p!4

V3 uMu2
dn1

dp18 dE18

dn3
dp38 dE38

5
dt

dp18 dE18

dN3

dp38 dE38

~2p!4

V3 uMu2
dn1

dp1 dE1

dn3
dp3 dE3

.

~A4!

The volumeV is assumed here to be large compared to th
range of interactions. The lhs of~A4! represents number of
transitions that take place, per element of energy-momentu
spacedp1 dE1 dp3 dE3 dp18 dE18 , from states 13 to 1838.
The rhs represents number of inverse transitions per ener
momentum elementdp18 dE18 dp38 dE38 dp1 dE1 . By virtue
of energy-momentum conservation the energy-momentu
elements involving any three out of the four states in th
above are actually identical. The number of transitions i
~A4!, e.g., on the lhs, is represented in terms of the tim
spent by particle 1 in the region (p1 ,E1) times the probabil-
ity of finding particle 3 in the region (p3 ,E3), times the
transition rate into (p18 ,E18) and (p38 ,E38).

Equation~A4! is fully equivalent to~A3! or ~A1!. Given
that interaction of particle 3 with any other particles is per
turbative, the perturbative scattering of 1 and 3 is modified
the presence of 2, compared to free space, by a changed fi
density of states. From~A4! it follows that, to comply with
ergodicity, it is necessary to allow particles to participate i
transitions at any time when in a given relative state. In th
transition rate and in the cross section, it is necessary
account for the changed final-state density.

Within many-body theory, a final-state density for scatte
ing is typically described in terms of single-particle spectra
functions@31,25# equal, up to a factor, to the imaginary par
of single-particle Green’s function~3.8!, A522Img. For
example, for the case above, the number of transitions
which particles from (p1 ,E1) and (p3 ,E3) interact and
populate (p18 ,E18) and (p38 ,E38), per unit time and per mo-
mentum volumedp3 dp18 , given well-defined energies of 3,
would be represented as

V

~2p!6
f ~p3!uMu2A~p18 ,E18!. ~A5!

On comparing the previous expression for transitions wit
the one in terms ofA, one can conclude that, in the discusse
case,

V

~2p!4
A~p1 ,E1!5

dn1
dp1 dE1

5
dn

dp1 dE1
. ~A6!

This implies an integral relation between the density of rela
tive statesr andA,
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dn

dE1
[r~E1!5

V

~2p!4
E dp1 A~p1 ,E1!. ~A7!

We now proceed to examine an explicit form ofA in the
T -matrix approximation in which interactions within a two
particle system, such as that of 1 and 2 in the above, are fu
accounted for. With an explicit form ofA, we shall further
examine the validity of~A7!, establishing a correspondenc
between different terms inA and inr. We shall then discuss
in-medium scattering rates.

From ~3.8! we find

A~p1 ,E1!522 Img~p1 ,E1!

5
g~p1 ,E1!

@E12e~p1!2u~p1 ,E1!#
21@g~p1 ,E1!#

2/4
.

~A8!

Here the real and imaginary parts of self-energy separat
depend on energy and momentum. In theT matrix approxi-
mation, this dependence corresponds to a separate de
dence of theT -matrix on energy and momentum as in th
Lippman-Schwinger equation. On expandingA for low scat-
tering rateg, in the discussed case rate for scattering of 1 o
2 given largeV, we obtain

A~p1 ,E1!'S 12
]u~p1 ,E1!

]E1
UE15E~p1!D 21

2pd@E12E~p1!#

2g~p1 ,E1!
P 8

E12E~p1!
~A9a!

'2pd@E12E~p1!#1
]u~p1 ,E1!

]E1
U
E15E~p1!

32pd@E12E~p1!#2g~p1 ,E1!
P 8

E12E~p1!
.

~A9b!

The energyE(p1) in the above is a solution of the equatio
E12e(p1)2u(p1 ,E1)50. The factor multiplying the 2pd
in ~A9a! is termed a wave-function renormalization facto
and

P 8

x
5

d

dx

P

x
5

d

dx
lim
e→0

1

2 S 1

x1 i e
1

1

x2 i e D
5 lim

e→0

d

de

1

2i S 1

x1 i e
2

1

x2 i e D , ~A10!

see also@41,42#. Equation~A9b! follows from ~A9a! on rec-
ognizing that, according to a dispersion relation, the ene
derivative of the mean field is proportional to the off-she
scattering rate. Thus, it is expected to be small when the r
is small. If V is large enough, then the mean field itself
small, and we can further expandA in terms ofu,
-
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A~p1 ,E1!'2pd@E12e~p1!#2u@p1 ,e~p1!#

32pd8@E12e~p1!#1
]u~p1 ,E1!

]E1
U
E15e~p1!

32pd@E12e~p1!#2g~p1 ,E1!
P 8

E12e~p1!

~A11a!

52p[d@E12e~p1!#2u~p1 ,E1!d8@E12e~p1!#

2g~p1 ,E1!
P 8

E12e~p1!
.

~A11b!

Within theT -matrix approximation, the mean field and sca
tering rate due to 2 are

u~p1 ,E1!5E dp2
~2p!3

f ~p2!Rê puT ~E!up&

5Rê p1uT ~E1!up1&/V, ~A12!

and

g~p1 ,E1!522E dp2
~2p!3

f ~p2!Im^puT ~E!up&

522 Im^p1uT ~E1!up1&/V, ~A13!

with the center expressions following under assumption
well-defined energies of 2, and rhs expressions represen
results for the specific case under discussion.

On insertingA in the form~A11a! into the rhs of~A7!, we
find that the leading term in~A11a! producesr0 from Eq.
~3.1!. The second term in~A11a!, with a derivative of the
d function, gives a complete contribution toDr associated
with the forward delay time,

d

dE S r0
1

V
^puReT ~E!up& D5

1

p (
l

~2l 11!cos2d l
dd l
dE

,

~A14!

compare Eq.~3.11!. The derivative from thed function act-
ing onr0 gives a contribution associated withDt1

clas, cf. Eq.
~3.4!, and the derivative acting onu gives a contribution
associated withDt2

clas, cf. Eq. ~3.5!. Finally, the remaining
wave-function renormalization and off-shell terms in~A11a!
yield jointly, on insertion into the rhs of~A7! and after
lengthy manipulations, a scattering contribution tor of the
form r0svDts /V, whereDts is given by ~3.12!, compare
~3.2! and ~3.7!, indeed confirming the equality in~A7!. The
manipulations involve, in particular, expressing thed func-
tion and principal value in~A11! in terms of the imaginary
and real parts of the free two-particle Green’s function, an
an extensive use of the relations between the imaginary a
real parts of the free two-particle Green’s function and th
T matrix, following from the Lippman-Schwinger equation
Eq. ~4.8! with N51 in G0 . Presence of the momentap1 in
the last term in~A11a! and in ~A13!, far from the shell de-
fined bye(p1)5E1 , indicate the effects of near zone in the
interaction of 1 and 2.
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Generally, in a scattering rate a single-particle spect
functionA would be used for each of final-state particles. O
the basis of the example above, one would conclude that
of such function leads to the population of states consist
with two-particle density. A more general relation betweenA
andr, than~A7!, is

V

2pE dp
d

d f ~p2!
A~p1 ,E1P2/2M2e~p2!!5Dr~E!, ~A15!

where integration is carried out over relative momentum
fixed total momentumP5p11p2 . Use of the distribution
f (p2) in ~A12! and~A13! allows for various momentum val-
ues of 2. Asf is not normalized to yield one particle within
a given volume, there is a possibility for 2 being absent fro
V, giving a reduction in the relative weight of the correctio
to the density of states due to the interaction, cf.~A11!.

In practical applications, the incorporation of the first co
rection term inA in ~A11a!, associated with the forward
delay time, amounts to correcting single-particle energies
the scattering rates by the mean field. The incorporation
the scattering delays in the final states in scattering rates
be much more cumbersome given the form of terms
~A11a!. One possible solution to get consistency with ergo
icity is to multiply rates or cross sections by factors of th
form
ral
n
use
ent

at

m
n

r-

in
of
can
in
d-
e

11E dp2 f ~p2!svDts , ~A16!

for each of final-state particles. That would be analogous
putting all delays into the forward delay time in the partic
propagation, discussed in Sec. III D. A weakness of an
proach where just final-state densities in two-particle scat
ing are modified on account of scattering with other pa
ticles, is the disregard of correlations that may pers
throughout the interaction process. Effects of correlations
come even apparent in a more detailed analysis of the
cussed simple example with perturbative scattering. Thu
careful reader might notice that the matrix elements in~A4!
for transitions should not be, generally, taken between pl
waves but rather between eigenstates of an internal Ha
tonian of 1 and 2. Separation of the wave functions for the
states into incident and scattered portions would, genera
yield two-particle and three-particle scattering terms in t
transition rate. Interference of the forward and scatte
waves for 1 and 2 would yield shadowing corrections in t
matrix element for the scattering of 1 and 3. The genu
three-particle scattering term would be characterized by
lack of momentum conservation within the subsystem o
and 3 alone. However, such effects are beyond the scop
present paper.
s.
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