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Delays associated with elementary processes in nuclear reaction simulations
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Scatterings, particularly those involving resonances, and other elementary processes do not happen instan-
taneously. In the context of semiclassical nuclear reaction simulations, we consider delays associated with an
interaction for incident quantum wave packets. As a consequence, we express delays associated with elemen-
tary processes in terms of elements of the scattering matrix and phase shifts for elastic scattering. We show
that, within the second order in density, the simulation must account for delays in scattering consistently with
the mean field in order to properly model thermodynamic properties such as pressure and free-energy density.
Delays associated with nucleon-nucleon and pion-nucleon scattering in free space are analyzed with their
nontrivial energy dependence. Finally, an exampls-channel scattering of massless partons is studied, and
scattering schemes in nuclear reaction simulations are investigated in the context of scattering delays.

PACS numbes): 24.10.Cn, 21.65:f, 25.75—q

[. INTRODUCTION nontrivial second order in particle density. As one important
outcome of our work, we find that to describe the density of
Semiclassical transport simulations have provided thestates and associated thermodynamic quantities such as pres-
theoretical backbone for interpreting heavy-ion reactions asure, heat capacity, etc., the delays for scattered particles
energies in excess of few tens of MeV per nucleon. Simulamust be properly accounted for in semiclassical simulations,
tions follow either a cascade approddh2] or a solution to  in addition to the effects of the optical potential. If one re-
the Boltzmann equation including the mean field effects andaxes the requirements on interactions in simulations, forsak-
the Pauli principlg 3-5]. Within these approaches patrticles ing, e.g., the proper behavior of single-particle energies, but
move classically in-between collisions where momentademanding that free energy as a fundamental thermodynamic
change abruptly and possibly new particles form. In practicefunction is properly reproduced to within the second order in
the Pauli principle appears primarily important for reactionsdensity in equilibrium, then one can manipulate the mean
below 150 MeV/nucleon. For beam energies of hundreds ofield to entirely absorb effects of the delays for scattered
MeV per nucleon, detailed comparisons of simulations withparticles. Alternatively, time delays for scattered particles
data have been carried di—9] in order to determine fea- may be manipulated to absorb the effects of the optical po-
tures of the momentum and density dependence of th&ential. Even in a degenerate Fermi gas, as we show, the
nuclear mean field. Within many-body theory, efforts havedelays in scattering can affect thermodynamic quantities. We
been made to calculate nuclear optical potentials startinqivestigate several examples of particle-particle scattering
from elementaryNN interactiong10-12. In describing re- amplitudes describing, respectively, the scattering through a
actions with beam energies up te2 GeV/nucleon, pions sharp Breit-Wigner resonance, theN interaction in theA
and low-lying resonances have also been included in simuchannel, and the-channel scattering of massless partons.
lations. Using free-space amplitudes, we numerically calculate the
It has been noted that results of heavy-ion reaction simutime delays for theNN system. We show that the delay for
lations can depend sensitively on prescriptions of space-timscattering has some dependence on the scattering angle and
details of elementary scattering proces4d8-16,9,17.  that the delays become small at high energies. Finally, we
Such details of elementary processes may matter even moievestigate scattering schemes in simulatip2g,5,13—17
at higher beam energies than at those of the MSU or SI$ the context of time delays. The schemes include hard-
accelerators, specifically, at those of AGZ GeV/nucleoh sphere scattering and scattering at the distance of closest ap-
SPS(200 GeV/nucleoy and of the constructed and planned proach. We outline numerical strategies for determining the
colliders, RHIC and LHC. This is because of high Lorentzequation of state and transport coefficients to an arbitrary
dilation factors that can amplify space-time effects, and beerder in density given the scattering prescription.
cause of high particle densities early in the reactions. The content of subsequent sections is as follows. In Sec.
In this paper we investigate the time duration of elemenAdl we consider a wave packet traversing a region with a scat-
tary processes in free space, in the context of semiclassictdrer and derive expressions for the delays of scattered and
simulations. Both the forward-going and scattered waves gdbrward-going waves in terms of scattering amplitudes
delayed in elementary processes. While delay of the forwar@phase shifisand their derivatives. In Sec. Ill we demon-
wave is consistent with the effects of an optical potential forstrate that these delay times are consistent with an ergodic
a particle in a medium, to the lowest order in particle densityconstraint stating that the extra time spent in the vicinity of a
both types of delay times, of the forward and scatteredscatterer should be proportional to the change in the density
waves, affect the density of states in energy, to the lowesbf states brought about by that scatterer. We further show that
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the delay time for a forward-going wave corresponds to the S, fdt dQ jy(R'Q,t).ft

classical motion of a particle in a mean field given by the Tvo=R? N , (2.6)
self-energy for a plane wave in a low-density medium. In

that section, and further in the Appendix, we also discuss th§here current density in channelis

modification of the scattering of two bodies brought about by

the presence of a third body. Finally, we express the free- . 1

energy density and pressure in terms of different time delays. Jy=m df;(r,t) 3¢y(r,t), 2.7
In Sec. IV we draw conclusions on the time delays in a Bose Y

or Fermi degenerate medium by examining an expression fo§q N is integrated incident flux through the surface. The

the change in the pressure due to two-particle interactiongime in (2.6) is represented as the average time for the par-
Section V is devoted to the examples of resonance scatteringeje to |eave the volume minus the average time for the

In Sec. VI we calculate spin-isospin averaged time delays fobarticle to enter the volume, & is positive when a particle

NN system and directly relate the delays to the second virialyjis and negative when a particle enters. We decompose
coefficient. Different scattering prescriptions and methods, incoming and outgoing pieces and, as there is no inter-

for the determination of equations of state and transport COrgrence between incoming and outgoing waves for a large
efficients, to within arbitrary order in density for given pre- \5jume. we write explicitly

scriptions, are discussed in Sec. VII.

Tvol™ Tout™ Tin - (2.8
II. TIME DELAYS FROM WAVE-PACKET DYNAMICS
. o . With the incoming wave having only a contribution from the
We consider a wave-packet incident on a large sphericglnscattered wave packet, one finds, frh®) and(2.6), that
volume of radiusR, at the center of which interaction takes rn=—Rlv,.
place. T_o make the derivation simpler we assume that this" The outgoing wave has contributions from both the scat-
volume is much larger than the wave packet. The wave funcrered and unscattered portions of the wave packet. Corre-
tion is spondingly, the outgoing current has three contributions:
from the scattered wave, from the unscattered wave, and
l/la(t):f dE g(E)yE(), (2.2) fro_m _the mterfer_ence b(_atween the two. We flrst.calculat'e the
exit time associated with the scattered wave in the single-
channel case, for particles leaving at the center of mass angle

where for large distances 6, using the partial-wave expansion

_ dt j(R,0,t)-rt
YE=2 bap(r X _ e dtiR.0.0) Tt

3 B B 7(6)=R ANL/d0

o ei(kﬁrfEt) Lmax

=G Oxat 2 Tap0E) — X, (22 -2 | dtdE dEg(E)g(ENE K R2/ +1)
vt
and XP,(cos9)(2/"+1)P,/(cosH).7%,(E')
e e —i(E-E")t 1 1
$o=g— 2 (2/+1)P,(cos) X7 (Ejte ki) @9
o /=0

X[(—1) Ve ik TEY 1 @ikar =BD] - (2.3)  whereZ is the same expression as the sum on the rhs of the
last equation, only without the timiein the integrand,
Here « and B8 denote the initial and final channels, respec-
tively, and y is the internal wave function. Most often we max i (k—K' )R>
shall consider elastic scattering of particles with no internal 2= 2 dt dE dE g(E)g(E')e (27+1)
degrees of freedom, hence i

X P, (cos9)(2/" +1)P,(co0).7,(E").7 /(E)

L

1
f(6.E)=— o Z (2/+1)P (cosH).7(E), (2.4

. 1 1
—i(E-E"t| =, —
Xe K + ak (2.10
where the amplitude”, is related to scattering matrix and
phase shift by By making the substitution
T,=1(S,—1)=—2 sind, exp s,, (2.5 _ij9 9
t 2| JE OE']’ (219

S, =expdés,. For the asymptotic form to be validmust be

much larger thar ,5/k and T, must vanish for>L ax- then carrying out integration by parts to make the derivatives
The average time,, that a particle spends in the volume with respect tcE andE’ act ong, exd(k—k’)R, and.7, and

can be written as further integrating over the time coordinate and one of the
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energy variables, one obtains a simple expressiorfofFor
a well-defined energy this expression is

R
TS(H)=;+ATS(0)

Lmax

> (2/+1)P,(co)(2/"+1)
Vvt

= — 4+ —
v Z'

1
X P,/ (cosd) o

d
ﬁ(E)(d—Ef/(E)

d
—(d—E?ﬁ,(E))Y/(E) : (212
where
Lmax
Z'=> (2/+1)P,(cos)(2/"+1)
vt
XP,:(cos).7%,(E).7 AE). (2.13

The more general result when many channels are open,
terms of the scattering amplitude is

1 [, df,

df*,
+ = -
2i|f,q° | *# dE

“F dE |-

R
TgB(Q)ZE

f (2.19

This is of use when determining time delays faxX &l system
in Sec. VI. In that case the indices refer to spin component

the exit time from(2.12 may be written as

R dé,
~o TdE

(2.15

Ts

Thus, the extra time delay due to the scatteringl &dE
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For the case of elastic scattering in only one partial wave
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Lo ) ds,
22/ +1)2 cos%/ﬁ

Tf:—+

(2.18
stmax(2/41)(1-4 sirfs,)

The more general result in terms of the scattering amplitude
fis

R 2
Vo  S.™N(2/+1)—4K, IMf,,(0)

=

d
dE
X {KRef 1o(0)}. (2.19

By combining the results for scattered and forward waves,
we obtain the average exit time in the single-channel case

N dN./dQ
Tout= Tf 1—W +fdQ TS(Q)T
ELmﬁv{z/url)zdi
R ~/ dE
=—+ . (2.20
i sime(2/41)

The total number of scattered particledNis. The delay time
(2.20 is the same that one would have guessed assuming
that different partial waves acted independently and each was
delayed by 285,/dE. The complexity of Eqs(2.18 and
(2.12 stems from the interference of partial waves. In the
next section we discuss the consistency of these results with
equilibrium expectations. We show that the forward delay
time agrees with a delay in the motion through a mean field.

lll. THE ERGODIC CONSTRAINT
AND THE MEAN FIELD
A. Ergodicity
All thermodynamic variables such as the pressure can be

which is not the naive guess that one would make from consqund if one knows the density of states within a system.

sidering an incoming partial wave reflecting off a potential.

In that case the answer should be&dE since the potential
modifies the scattered wave by a fac&st’. This discrep-

Assuming that particles do not interact, and that statistical
effects can be ignored, one can obtain thermodynamic quan-
tities to lowest order in particle density. Assuming that par-

ancy is associated with the interference between the forwardjcies interact only two at a time allows one to calculate these

going wave and the scattered wave.

guantities to the next order in the density. To account for the

Next, we consider the current and the average exit timgneraction of two particles at a time, one needs to find the

associated with the interference of the forward waJewith

correction to the density of states of relative motion. This

itself and with the scattered wave. The angular integrationq rection to the density of state¢E)=ddE is given by

must extend up tod=L /KR which limits the forward

phase shifts for two-particle scatterifig8,19,

wave, and it may, in particular, extend over the whole angu-

lar range. Analogous procedure to that before yields

Lmax

R d
Tf=;—ﬁ20 (2/+1)dE[f/(EHf;(E)], (2.16
where
Lmax
z"=20 2/ +D){1-i[7AE)—T%(E)]}. (21D

In terms of phase shifts this gives

k2 1

P(E)=po(B) +Ap(E)= 555+ 2 (2/+1) g

(3.2

wherek is the reduced relative momentui,is the volume,
andv is the velocity of relative motion. This is the complete
guantum-mechanical answer for the single-channel case. If
processes such ast+b—c+d can occur, a similar answer
can be obtained by diagonalizing ti$ematrix and finding
the eigenphasd20].

In a simulation, the equations of motion should modify
the probability for two particles of a specific energy to be in
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the vicinity of each other, such that it should be proportional A SRS Av 1 du du
to the change in the density of states for these particles. If the =~ T ,adk _dE
equations of motion accomplish this, the classical simulation 7o v v

will yield correct thermodynamic quantities. We consider aThe contribution due to collisiong, 7°°"
subvolumeV in relative-coordinate space and a narrow
relative-energy rangeE—Ey<JSE. Given that particles
spend a portion of time within V in the absence of inter-
actions, when sampling is carried out over a long timen ov

the presence of interactions, the time withirshould change A7eoll= TOVATs- (3.6
by A7 such that

(3.5

, will be determined
by the collision rate and the chander in the average time
spent within the collision range compared to free flight time,

1 ds Combining the expressions for different contributions to the
=3 (2/+ 1)_/ change in time on account of interactions, we find that, ac-
o S

A7 _Ap_ dE (32 cording to the ergodic constraint, we should have
o  Po Po ' '

1 , ds, dpo du ov

This can be thought of as an ergodic constraint, since a sysr Z (2/+1)GE =~ ggY Poge TPoy AT (37
tem continuously sampled over a long time should be popu-
lated according to its contribution to the density of states. In In the following we shall express in terms of phase
this section we explore the case of elastic scattering and wiséhifts and then determiné r, from (3.7) and examine
to see if the results of the preceding section are consistenthether the result is consistent with what was obtained in
with the ergodic constraint and with the picture of particlespreceding section. The potentialin (3.7) is identified with
moving through a mean field. the correction to the kinetic energy at which the single-

In the context of a classical simulation, the additional timeparticle Green’s function has a pole,
A7 will come from three causes. First, the particle kinetic
energy within the volum#& will be different as compared to

free space, reduced by the mean potential within the volume, 9(ke,E1)= E,—e(ky)—u+iy/l2

—u(k). The change in the energy gives a change in the

momentum and in the velocity and, in consequence, in the _ 1 3.9
time spent within subvolume by an amount denated. ~ Ey—e(ky) —(K|.7TK)V’ '

In addition, the energy dependence of the mean potential
generally changes the velocity byv=du/dk. The corre- Where we use the fact that the self-energy can be expressed
sponding change in the time spent within the volume is dein terms of the forward element of the” matrix. Here,k
noted asA 7525, Both these contributions to the time follow continues to be the relative particle momentum. Assuming
from classical equations of motion within a potential. A third that angular momentum is conserved, we obtain
contribution A 7°°" stems from collisions. Because of colli- 1 1

sions the particles will emerge on the average earlier or later V<k|ku7]k>: v 2 (K|Z,m)(/,m

71/,m){(/ m[k)

(particularly in the case of resonance scatterifrgm the /m

volume than in absence of collisions. Summing the three P

contributions should yield =E (2/+1) 7, _ (3.9

7 2mpg
.48,
A 75854 A 7588 A pooll 2A2/+1) dE The imaginary part of the matrix times2 can be shown to
= . (33 be equal tarv by using the standard expression for the cross
7o Po section involving siAd. Theny is indeed the geometric scat-

tering rate one expects. Turning now to the real partof
matrix, the potential associated with the presence of other
é)article within subvolume becomes

The time A 752 can be easily obtained from the ergodic

theorem for aclassicalpotential. Otherwise, one can resort
to geometric considerations, caring for the fact that to th
lowest order inu, the velocity changes its direction as well ;

as the magnitude. As the relative change in time spent within u(e)=-— 2A2/% 1)Sm25/_
the subvolume should be proportional to the relative change
in the density of states brought about by the change in kinetic
energy, we obtain

2o (3.10

The sum of the timed 7$#andA 752%in (3.7) involve the

derivatived[u(E) po(E) ]/dE. With (3.10, we obtain

dpo | |
E)—2 A 79854 A ,Clas d
ATcIas A U( dE 1 2 -
1 :ﬂ:_—. (3.4 7o pOdE[POU(E)]
70 Po Po
1 ds,
The contributionA 75 is obtained by noting that the time it = s Z (2/+1)c0s2, =

takes to traverse a given path through the subvolume is pro-
portional to the inverse of velocity, (3.1)
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Upon inserting the above result into E§.7) we find w321 1
P=Py+AP=nT—Tn? o Ef dE e*E’T;

ds
S 2/ + 1)sin25/d—E/

.46,
x}/} (2/+1) 5 (3.17)

Ar= (3.12

S (27 +1)sirts,

_ _ ~and where the effects of statistics are ignored. It can verified
If only one partial wave is scattered, then the change in timey a direct calculation that the correction to pressure may be

reduces to further expressed as
1( dp; dp
ds, - = 2
ATS:E' (3.13 AP 2) (2m)3 (Zw)sf(pl)f(pz)

XRe((p1—p2)/2|.71(p1—p2)/2)
This result is consistent with EQR.15 of the last section. If

; : 1( dp; dp do
many waves are scattered, then there is generally interfer- Tz f 1 2 ¢ f f dO—vAT(Q).
ence between various scattered partial waves giving rise to a 2) (2m)* (2m)° (Pu(P2) an v A7)
variation of the change in time with scattering angle, cf. Eqg. (3.18

(2.12. Equation(3.12 represents, in such a case, an average

of the change of time over scattering angles, weighted wittHere f=e(*~®'T is phase-space occupancy. The first term

the flux or cross section. on the rhs 0of(3.18 accounts for the forward time delay or
One can further see that the time delay of the forwardmean field. The second term accounts for delay in scattering

wave, as derived in the last section, may be identified withand, depending on the sign dfr,, allows further for an

A 7585+ A 758 The wave packet in the last section was of ainterpretation in terms of the reduction in the number of

transverse sizeB=L,/k. We further assume that the degrees of freedom or in terms of excluded volume.

length of the packet i®V. The time for such a packet to

move by the potential in the absence of interactions is B. Limitation of the considerations
=W/v. Using Eqg.(2.16 in the limit of large L, we : . .
g(k))tain v 9 Bq.(216 9€ Emax Two important conclusions can be reached regarding the

method of the previous section. First, the sum of time delays
for scattered and forward-going waves is consistent with er-

dé, godic constraints. Second, the time delay of the forward-
A 2A2/+1)2 cosD, e going wave is consistent with motion of a particle through a
7'_0 = W : (3.14 mean field. However, this consistency was derived assuming
— 3 (2/+1) that the size of the region used to determine the densities was
v large. The limitations of this approximation are discussed
below.
For wide packets we can approximat&, (2/+1) A problem with incorporating a mean field which depends
=2[/d/=k?B? and, with the volume of a packet being on the number of particles within a given volume element, is
equal tovV=mB*W, we can rewritg3.14 as that such field can result in classically bound states for at-

tractive potentials, or inpenetrable potential barriers for re-
‘ ds, ,‘ ds, pulsive potentials. Considerations in this section required
A 2 (2/+ 1)cos, = 2 (2/+ 1cos2, = that the potentiali(E) was much smaller than any charac-
—= — = , teristic energy. This requires thAip<<p,. For a sufficiently
7o WBk TPo large volumeV this is not a problem. However, for a finite
v there exists phase space that is either bo{attlactive po-
(3.19 tentialg or unavailablgrepulsive potentials of a magnitude

Wherepo is th_e density of states insidé. One can see that A= v . 4—77[2mu(k=O)]3’2. (3.19
this agrees with(3.11). (2m)° 3

Given a uniform many-body system, with densityand ] ] ] .
temperatureT treated as independent variables, all intensiveOn Using sidy~—ka, wherea is scattering length, for lok
thermodynamic quantities can be obtained from the free erll the expression for optical potenti€8.10, one finds that
ergy per unit volumef. In terms of the correction to the a2
density of states of relative motion in energy(811), the free A= _,_4 a (3.20
energyf, to the second order in the density, can be written as 32 vz '

Thus one finds that for strict validity of our considerations
the volumeV containing a single scatterer must be chosen
large compared to the scattering length. On examining Eg.
wheref, is free energy for a noninteracting system afelis  (2.16 from the previous section, one finds that such a con-
the correction to the pressur21,18 dition must be satisfied to allow for a proper definition of

f(n, T)=f(n,T)+AP(n,T), (3.19



254 PAWEL DANIELEWICZ AND SCOTT PRATT 53

7¢. Scattering lengths are of the order of the interactionof matrix element for 1 and 3, might not be proper. With
range, unless a resonance or bound state exist close to thegard to scattering, correlations could be important, persist-
threshold. Unfortunately, this is precisely the case foring throughout the interaction process.
nucleon-nucleon scattering near threshold where scattering It will be seen in the examples of Secs. V and VI that the
lengths approach 20 fm. contribution to the density of states from the mean field
alone can be very significant. If scattering is then done in the
o ] _ presence of strong mean fields, it is important that matrix
C. Scattering in the presence of third bodies elements get modified too. In the case of momentum-
When considering the interaction of two particles in Secsindependent mean fields, this amounts to the calculation of
Il and Il A, we neglected the probability that a third body scattering rates in terms of kinetic particle energies only.
could interact with any of the two particles within the sub- Situations can be more cumbersome in the case of
volume used to define the mean field. In E8.3) the con- momentum-dependent fields as one generally loses the con-
tributions to the extra time spent within the subvolume,venience of working in the rest frame of the scattering par-
A7$"andA 757, arose because the particle trajectories werdicles. A particularly strong momentum dependence of the
modified by the mean field. The first contribution arose benean field is expected for pions in nuclear matter due the
cause the kinetic energy and direction were altered on enteflerivative coupling to nucleons and del{@2,23.
ing the mean field. The second contribution arose due to Rates and scattering prescriptions may be complicated
dependence of the mean field on momentum that led to th@hen the time delay is negative. In such a case the prescrip-
change of velocity bydu(E)/dE. When many scatterings tion may effectively exclude a relative volume, e.g. an
occur, the time spent in a given relative state does not jusgnergy-dependent hard core. One may not want to fill the
depend on trajectories and velocity, but further on the manexcluded phase-space volume in the scattering with a third
ner in which such state is populated and depopulated. If thBody to be consistent with the ergodic theorem. Scattering
population of different states is to be consistent with the firsPrescriptions are investigated in Sec. VII, including one with
two of the time delays in Eq(3.3 due to interactions, the @ hard-core prescription and one where effective time delays
scattering prescriptions need to be modified in the presenc@® generated by correlating the outgoing scattering angle

of third bodies. with the impact parameter.
Transition rates per unit time from an initial state are
given by a transition matrix element to a final state squared D. Manipulating time delays

multiplied by the final-state density in energy. For example, ¢ 5ne solely aims at satisfying the ergodic constraint, and
in the case of p_articles 1 and 3 scattering in the. presence @f,s properly reproducing thermodynamic properties of a
particle 2, the fmal—st.ate dens_|t_y would be obtained from 3ystem, while ignoring the physical differences behind the
product of single-particle densities for 1 and 3. Latter densiyean field or forward time delay and the delays for scattered
ties, up to a factor, are identical with imaginary parts of\yayes then one can absorb all interaction effects, in the
single-particle Green's functiong3.8.. When shifting the  |o\yest nontrivial order in density, exclusively into the mean

single-particle energies by mean fields generally dependeriyq or, alternatively, into the delays for scattered particles.

on relative momenta of 1 and 2, and 3 and 2, one preciselyyg ghal llustrate our points by considering the correction to
accounts for the change in the density of relative states, g, pressure iti3.17 and(3.18.

feeding of the states. Besides the change of relative momenta 11,5 from (3.2), (3.10, and (3.11), it follows that the

- |
due to the mean field that correspondsMe;®*, the levels  gensity of two-particle states in energy would be properly

of 1 and 2 or 3 and 2 are pulled apart or pushed togethefeproduced when ignoring the delays for scattered waves
when the mean field is energy dependent, changing the degnq in place of the mean field in the center expression in
sity that corresponds td 75%% Then the rates calculated (3.10, using a fieldu’ given by (3.10 with sin2s, replaced
with single-particle energies in the final density of statespy 2[5, (E)—8,(0)]. As far as the correction to the pres-

would yield a population of states consistent with these firskyre is concerned, this corresponds to rewriting the expres-
two times in Eq(3.3), if the particles could leave these statessjon (3.18 as
during the whole time such as obtained with an inclusion of

the forward time delay or adoption of the mean field. 1
Ergodicity when many scatterings occur is discussed in Ap= Ef dp; dpz f(p1)f(p2)
more detail in the Appendix, together with the single-particle
spectral densities. There, we show that the population of dif- X{(p1—p2)/2|Re7"[(p1—p2)/2), (3.2D

ferent states could be made consistent with an ergodic con-

straint involving all three delay times i(8.3), i.e., also the where

scattering delay, if one included in the Green’s functidrg)

the imaginary part of theZ matrix and allowed for a sepa- 20

rate dependence of the matrix on energy and relative ma-p|Re7”|p)= & > (2/+1)[8,(0)-5,(E)]. (3.22
mentum. Modification of the scattering or transition rates in /

terms of such complete spectral functions, nonetheless,

might not be practical except for fully equilibrated situations. The replacement of the sine by its argument in the field is
Also, it needs to be stated that a modification of the final-actually a good approximation when the phase shifts are low
state density for two particles such as 1 and 3 on account afompared tom/4. The general conclusion then is that the
scattering with a third particlendependentf a modification  delays for scattered waves are relatively unimportant for the
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thermodynamic properties when the phase shifts are low, no 1 dP dp
matter what are the values of these delays. AP(u,T)= Ef 2m)? (ZW)SdEt SE 2T ]

If the mean field were to be ignored, then, in order to
properly reproduce the density of two-particle states, from 1 1
(3.2) and(3.6), the mean delay time for scattering should be Xf d?\( - ;) Im(p| 7 G,(P,E)(|p)=|—p)).
taken equal to 0

(4.2
dé, e : . .
2 (2/+ 1)E Here 7" is the interactionp and P are relative and total
Ar = ’ _ (3.23 momenta, respectivel¥, is the total energy, an@, is the
S 23 ,(2/+1)sirts,’ two-particle Green’s function within a system with the inter-
action scaled down by a factor &f. The negative of the
and for scattering in only one partial wave imaginary part of this function, divided by, plays the role
of the two-particle spectral function. The statistical factor in
1 ds, (4.2) is bosonic, as is appropriate for a state of two particles
ATi=—m e =, (3.24  with the same statistics. The apparent change in sign of the
2 sirté, dE

correction to the pressure above compare(Bta?), is asso-
ciated with the fact that there the pressure is expressed as a
in place of (3.12. The correction to the pressuf8.18 is  function of density while in(4.2) it is expressed as a function
then rewritten as of u.
In the .7-matrix approximation[25] the two-particle
1 Green’s function satisfies
G=Gy+G,7G, 4.3

Some advantage of an approach with delays put into scattegnq explicitly

ing is that particles move with uniform velocities. One prob-

lem, though, is that the delay timesr, diverge at thresh- (K|G(P,Ep)|k1)=(k|Go(P,Ep)|Kky)
olds, where phase shifts go to zero linearly in the momentum

with the coefficient of proportionality being equal to the dk, dkj
: : + | 553 5 53(KIGo(P.Ev)lk2)
negative of scattering length. In Sec. V when we evaluate (2m)° (2m)
resonant scattering and pion-nucleon scattering, we further ,
discuss the implication of these various schemes. Now we X(Kka| 7 Tk3)(k3|G(P,Ep)|k1). (4.9

turn to to the role of statistics. . _ o :
The noninteracting Green'’s function in the above is equal to

IV. TIME DELAYS AND STATISTICS ( Gy(P.Ey)| V= (2 )35( . N(p,P)
P E)Ip")=(2m)°6(p—p’) —.
For any finite energy the density of states in energy is ° t E(—P?/4m—p°/m+ie
increases by symmetrization and decreased by antisymmetri- (4.9

zation. Corrections to thermodynamic quantities, such as thx? e factor ofN stems from an equal-time commutator of the
free-energy density or pressure, arise within the second ordelh q

in density even in the absence of interactions. Symmetriza(-)perators for two particles,

tion also affects scattering processes both in that the outgo- _ _

ing states may be Pauli blocked or Bose enhanced and in that N(k,Py=[1= 1 (P2t k) L1+ F(PI2=k)]

the scattering amplitude may be internally modified]. In —f(PI2+k)f(P/2—k)

the following, we consider pressure in an equilibrated many-

body system in terms of the” matrix. In a nonequilibrium =1x1(P2+k) = f(Pl2—k), (4.6)

system, for low scattering rates, th& matrix approximation _ .
[25] in the single-particle equations of motion leads to the?nd tﬂe upper signs refer to bosons and lower to fermions.
Boltzmann equation with rates corresponding to two-particlel N€.7” matrix and Green's function are related with
collisions, enhanced or reduced on account of statistics of P
final states and with medium-modified amplitudes. We assess T=7+7GC7, (4.7
implications for time delays and scattering processes in ) -
simulations, following from ergodicity. and thus they” matrix satisfies
The pressure in a many-body system at a given tempera-
ture T and chemical potentiakk may be generally repre-
sented a$26]

T=7+7G7. 4.9

The factor ofN in G in the above equation, on considering
the case of a resonance, can be related to the fact that, for a
P(u,T)=Po(p, ) +AP(u,T), (4.1 posonic two-particle state, the width is equal to the differ-
ence between the decay and the formation rg2é§
where On integrating in(4.2), we obtain, from(4.3),
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o1
=Im(p| %, ~(7G0)"(Ip)=|-p))

—Im(p[In(1—7Gy)(|p) =|—p))
=(p|arctart 7{1— 7"ReGy) ~ ImGy)(|p) = |—p))

=(plarctari.Z2 ImGo)(|p) | —p)), (4.9
where. 7 satisfies
=7+ 7 ReGy. 2. (4.10

On introducing then the matrix2 that is Hermitian in the
spherical angle and may be diagonalized,

Jp.0,Q,P)=sgr(E,— 2u)|N(p,P,Q)N(p,P, Q)|
X (p,Q|2(P,E)|p, Q")

:2 rn(p,P)%n(p,P,Q),%(p,P,Q’),
(4.10)

where E;= P?/4m+ p?/m, and {7} form an orthonormal
set in spherical anglévith a definite symmetry under inver-
sion), we can rewritg4.2) as

1 dP dE 1
AP(n.T)=3 (2m)° 7 gE+PZAmM—2mIT_q

x}n‘, 5.(p,P), (4.12

where §,=atan( p?r,/87%v).
In terms of the phase shifi§, introduced above, the on-
shell.7 matrix can be expressed as

. , 87y
<pIQ|‘/(P1Et)|p19 >:_ 2

SO E—2u)
X|N(p,P,Q)N(p,P,0")| 12
X Y, sind e’ %y (p,P,Q)

n

X Y% (p,P.Q). (4.13

On carrying partial integrations it¥.12), the correction to

the pressure may be decomposed into the mean-field and
scattering contributions that take the form, in terms of the

7 matrix,

PAWEL DANIELEWICZ AND SCOTT PRATT

AP(u,T)=— 1f 35;34(2

X Re(DI.ﬂP.e(pl)+e(p2))(|p>i|—p>)

dP P2 f 40
(277

1
+§f 2m)3 6m

do
X f(pl)f(pz)EvATs[lif(pi)][lif(pé)]

)f(p2)

d
—f<p1>f<p2>d—gvmsf<p;>f<pg>), (414

where f=(eleP Tz 1)~ do/dQ=(m/4m)?
(p|.7(P,E)(|p") = |—p’))|?, integration is over the spheri-
cal angle of 2r, and the time delay for scattering is

Aro Jd d
T 9(pHm) ~ a(P2/4m)

E)(p")yx|-

p')]. (419

Following (4.1) and (4.14), in order to produce proper
changes in the pressure in simulations, associated with two-
particle interactions, it is necessary to include the effects of
the mean field on particle motion, and to delay the collision
processes, according to the expressions in terms of/the
matrix, with an internal symmetrization and symmetrization
with other particles in the medium accounted for in the final
and intermediate stat¢gqgs.(4.8), (4.5), (4.14), and(4.15)].
Besides delaying direct collisions, where two particles alter
their momenta and spins, by, it is necessary to delay
exchange collision processes, where pairs of particles meet
and interchange pairwise quantum numbers;-ayr. (The
latter holds for particles of one statistics. In the case of par-
ticles of opposite statistics, the exchange collisions should be
delayed byA 7¢.) The exchange collisions may be thought of
as processdf6] where two particles collide and, while in an
intermediate 2p-2h state, encounter two more particles, end-
ing up in the interchange of the quantum numbers. The cross
section, from(4.14), is the same as for the direct collisions.
Notably, there is no room for the exchange collisions in the
Boltzmann equation that ignores the duration of interactions,
since these processes leave the occupations of single-particle
states unaltered. These processes should, nonetheless, appear
in a possible quantum Enskog equation, since their duration
affects thermodynamic quantities.

V. RESONANCE SCATTERING
A. Sharp Breit-Wigner resonance

An obvious example, that can serve to illustrate the time
delays and different prescriptions, is that involving a sharp
resonance. If the width of the resonartés small compared
to its energyEg, then the phase shift in the vicinity &y is
given by

(5.9



53 DELAYS ASSOCIATED WITH ELEMENTARY PROCESSEN. . . 257

|||||||||||||||"|""|" SIII\IIIII LI I LI

: Q) E
- — ~. _1
£ ] £ E
- ] - E
< ] +I: =
. = —
- < :
- : o/ 5
_2 E 1 1 1 1 | 1 L 1 i | 1 1 1 1 | 1 1 1 1 .

-2 -1 0 1 = 0 100 200 300 400

(E — Ep)/T E-m,+—m, (MeV)

FIG. 1. Time delays in the case of a Breit-Wigner resonance as FIG. 2. Time delays for ar*p system as a function of c.m.
a function of energy from the resonance divided by the width. Thekinetic energy. The solid line represents the time delay for the scat-
solid line represents the time for the scattered wavg. The short-  tered wave averaged over angles and spin directidng, The
dashed line represents the time, which is ergodically consistent dashed line represents the forward time delay averaged over spin
when the delay for forward wave or mean field are neglected. Fidirections and divided by the fraction of the incoming wave that is,
nally, the long-dashed line shows the time delay for the forwardon the average, scatterely, —A 7.
wave divided by the fraction of the incoming wave that is scattered,
Ari—Arg[cf. Eq.(5.3)]. form, such a prescription would yield correct thermodynamic

o o functions up to the second order in density.
This yields the following time delays for the scattered and

forward-going waves, respectively, B. 7NA svst
. T system

Ar :ﬁ: r (5.2 Different resonances inaN system may be identified as
S dE  2[(E-Egr)*+I%/4]’ independent particles. For the loweRf; A resonance, the
width is comparable to the energy of the resonance above the
and N threshold and, as such, this width exhibits a significant
2 _E\2_T2 energy variation. An interacting system of pions, nucleons,
7B (E—ER)-—T“/4 . . : ; o
AT X——=A7,—A7= —, (5.3 and deltas, is of considerable interest for heavy-ion collisions
o I[(E—-Eg)*+17/4] in the beam-energy range from few hundred MeV/nucleon to
few GeV/nucleon.
In this section we address three issues. First, by studying

where A7; is the time delay of the forward-going wave

packet with total cross-sectional arearB2=(w/k?) : : . A
> (2/+1). Figure 1 illustrates the different times. It is seen N phas_e shifts we calt_:ulate time delays and indicate d|ﬁgr
ences with the Breit-Wigner case above. Second, we point

that the delay for the forward-going wave turns negative inout that a quantum decomposition of the effective increase of
the vicinity of the resonance. For light in a dielectric medium q P

[27] this corresponds to the increase in group velocity forf[he density gf sFates represented by the time delay would
packets with resonant frequencies. include contributions fronboththe A and #N components.

The energy-averaged delay for the forward-going WaveFmaIIy, we point out a practical difficulty in separating the

A7; is zero.(This may be expected whenever phase-s;hiftA ar_1d mN components. . .
variation is limited to a narrow range in enengyeighted T|me_ delays can be c_alculated given the experimentally
with the cross section, the average delay time for scattere(aetermmedﬂ.N. phase sh|fts[29,3(]. The _delay of the for-
waves over energy is equal to the inverse width, coincidin ard wave divided by the fraction of particles that scatter as
with naive expectations. The actual delay time for scattere +(5'3)] and t_he (_jelay of the scattereq wave are shown for a
7' p system in Fig. 2. In many prescriptions, time delays are

waves(5.2) is twice as high at the resonance, see 2], . ; 4 .
and it drops rapidly with energy when going away from theonly mcorpora.ted.lnto scattering events, .Whlc,h .WOUId mean
vicinity of that resonance. thc_':lt the combination of the twq contrlb_utlo_mrS is appro-
The result that the time delay equals the inverse width ipriate. One should note that this combln.atlon differs S|_gn|f|—
also obtained when putting all delays into scattering, fromc@ntly from the Breit-Wigner result and is extremely diver-
(5.2) and(5.3), gent at threshold due toa rapldly c!ecllnlng_ cross section, cf.
Sec. llI D. If the mean field is consistently incorporated into
1 a simulation, the appropriate delayAs-s which behaves as
Arg=F. (5.4 the derivative of the phase shift with respect to energy which
is approximately the scattering length divided by the velocity
It is now a common prescription in relativistic simulations to in the vicinity of the threshold. This threshold divergence is
use an energy-independent delay given by the inverse widthnuch weaker than that df 7.
Provided that particles are not also propagated through a The imaginary part of & Green’s function in a thermal
mean field and resonances are indeed of a Breit-Wignesystem gives the number of states for the resonance per unit
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energy and volumeAp”=—Img, /w [31,25. The require- While we shall not tackle the general problem here, we
ment then of a consistency with the number of collidingshall try to gain insight by considering the simplified ex-
7N pairs gives the timeA 7 during which thewN pair ~ample of elastic scattering of two massless partons irsthe

should turn into the resonant particle, channel, assuming that the intermediate particle is massless.
This turns out to be quite similar to the casendfl scattering
Ap"(E) o(E)vAT; close to the threshold. Since there are no energy scales, to
po(E) = Vv ' (5.9 lowest order in perturbation theory the phase shift must de-

pend only on the coupling constasnt
with a result that is the inverse of resonance wi8R,33,

tand= —ca. (5.7
A = 1 _ (5.6) Then, the overall time delay for a spherical wave fr(Bri7)
s I'(B) is zero. This peculiar result will arise from any theory with
o _ _ no energy scale since phase shifts are dimensionless.
This time differs fromA g/, such as in Eq(3.24, that However, QCD acquires a scale through renormaliza-

would, in particular, involve the energy derivativeloflike-  tion that gives the coupling constant an energy dependence
wise Ap” differs from Ap. Interestingly, within any single [37];:
spin-isospin channel, either correction to the density of

states Ap or Ap”, integrates over energy to unity, i.e., one _ _ 4
net state is gained. For sharp resonances, with couplings and tans= C“(E)_Cgo IN(EZA?)" (5.8

widths independent of energy, there is no difference between
A7, andA 7y, as is apparent from Sec. V A, and there is noWith this, the time delay for spherical waves becomes
difference betweehp andAp”. ) )

On studying the density of states for pions or nucleonsas ~, ~ _ 2@ _ Bo 25— Bo ca(E)
in the Appendix, one finds a change, peN pair, that is T~ CqE~ cnE o1 °7 cmE 1+c?a(E)?
equal to Ap(E)—Ap"(E), where Ap=(1/7)(dS/dE) in
any single channel, i.e., one that precisely compensates titall the time delay is put into the scattered wave, as in Sec.
discrepancy above. The same type of discrepancy and corti D, then the correct time delay for the scattered wave ac-
pensation is found when applying the considerations to guires a particularly simple form
system of pions and rho mesons, where¢ 7 p reactions
take place. If one were to ask about, in the last system, how Ar = Bo

. X | Te=—T. (5.10
manyp mesons decay into dilepton pairs, the answer would S 4mcE
involve the density of rho states within the system, rather
than the overall change in the density of states associatdyote that the time delay does not involve the coupling con-
with the resonance formation, important for thermodynamicstant and scales proportional to the inverse energy. If one
considerations. For certain questions one has to keep in mirghose the time delay equal to the inverse width for the inter-
that the time delays derived before correspond to the chang®ediate state, then one would certainly have obtained a time
in the overall density of states and not necessarily to th@roportional to 1/¢E), as the width would be proportional
existence of the resonant particles. o a.

The time for the conversion into a resonant particle in Since ans-channel scattering involves an intermediate
scattering(5.6) may diverge strongly when threshold is ap- state very far from being on-shell, the questions involving
proached, which parallels the situation when the overall dethe time delay for such a process may not be so crucial since
lay time associated with the interaction is forced onto thethese processes are rather rapid. Of greater concern is the
scattering[The conversion time for a spherical wave, thatformation of partons through bremsstrahlung involving inter-
should be identified a& 7;,n=2mAp”"«T'(E), tends to zero mediate states which are nearly on shell. Since such pro-
at the threshold.In practice, manipulations of the conver- cesses create the majority of soft particles in an ultrarelativ-
sion time, dividing this time between the scattered and foristic pp collision, the issue of when and where such particles
ward waves, may pose more difficulty than the manipula@ppear can greatly affect estimates of the initial thermalized
tions of the overall delay time, as negative conversion time€nergy density. Unfortunately, such two to three or more par-
cannot be simulated. ticle processes are outside the scope of this analysis, but
similar problems have been addressed in the context of de-
caying hadronic resonancg3g].

(5.9

C. s-channel scattering of massless partons

_ An example, V\_/here time _delays assouated with interac- V1. NUCLEON-NUCLEON INTERACTION

tion are relevant, is the collision of partons in ultrarelativistic

nuclear reactions. Partons are copiously produced early in The nucleon-nucleon system is one for which the
reactions and the goal of simulating partonic cascadeguantum-mechanical scattering-amplitudes have been most
[34-34 is to determine the equilibration time scale and ini- carefully measured in physics. It represents the most relevant
tial equilibrated energy density. Most partons at midrapiditycase of scattering for heavy-ion physics, where semiclassical
are produced far off shell and decay via bremsstrahlungsimulations utilizing single-nucleon degrees of freedom are
Thus, quantum considerations are necessary to establish thbemmonly used to model heavy-ion reactions. At moderate
duration of processes. densities and high temperatures, when cluster formation is
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FIG. 3. Spin-isospin averaged time delay [N scattering as a FIG. 4. Time delays foNN system as a function of laboratory
function of the cosine of c.m. scattering angle, at several values dfinetic energy. The solid line represents the time for the scattered
laboratory kinetic energy indicated in the figure in MeV. waveA 7 averaged over the scattering angle and the spin and isos-

pin directions. The dashed line represents the time for the forward
unlikely, it may be reasonable to assume that nucleons intewave, averaged over spin and isospin directions and divided by the
act two at a time. Using phase shifts inferred from scatteringraction of incident wave scattered,r,—A 7.
data, one can calculate quantum-mechanical scattering am-
plitudes and determine the appropriate time delays followingjgn of the laboratory energy by a solid line in Fig. 4, to-
the prescriptions outlined in the previous sections. gether with the forward delay time from E@2.19. The
First we present the calculation of the time delay for theppserved negative delay times for scattered waves reflect the
scattered wave at a given anglers(6), when averaging negative derivatives 06 wave and other phase shifts with
over the spin and isospin directions. Due to antisymmetrizarespect to energy, weighted in the average time with contri-
tion and the conservation of angular momentum, isospin, angytions to the cross section. The falling phase shifts make the
parity, the magnitude of the net nucleon spin is conserved ifhteraction, with regard to scattering, effectively repulsive
NN interactions. Thes=0 amplitude for a given isospin is ahoveE~2.5 MeV. Notably, theNN interaction is often
given by only considered repulsive when phase shifts are predomi-
1 nantly negative, although the energy derivatives of the phase
£S=0(¢)=—= >, (2/+1)P,(cosh).7,, (6.1 shifts also necessitate consideration. Both #e0 and
K 7] T=1 phase shifts fall with energy, as the Levinson’s theorem
) . requires that the deuteron formation Ti=0 channel and
where only even or odd values &f are included. That IS enhancement of the density of states in the region in
compensated by the factor before the sum(6rl) being  1—-1 channel be compensated by a depletion in states at
twice as large as if2.4). Given the conservation laws, the higher energies. In semiclassical considerations, the delay

S=1 amplitude is of the general form, time for scattering should be limited from below by
1 —2d/v, whered is interaction range and is relative veloc-

=1 z , i i i i i in Fi i

fiu’(9’¢):_E 2 VAT(2/+1){/01u’|ju) ity. While the negative delay times in Fig. 4 decrease in

magnitude with an increasing laboratory energy, their de-
X (/" (=)L’ | ) crease is faster than implied by the above limit. At very low
! energies, the times for the scattered waves become positive.
XY 1y (0,).7 1 115, (6.2 At E|5p=100 keV they begin to be governed by the singlet
scattering lengthA 7= —ag/v.
where.7,,1;=i(S,,j—8,,), and for the coupled waves  For comparison of the angular dependence, the delay time
diagonal matrix elements ars//=COSQEj expdsj,, and for a hard-sphere repulsive-scatteriiscussed more in the

off-diagonal elements S, /=i sinZEj exd(s;,+8,1), next sectiom as a function of the scattering angle is
wheree is mixing parameter. In carrying calculations up to a

laboratory energy of,,,=400 MeV, we use all partial waves 2d P

with both /" andj less than 5. The mixing of waves is not A7(0)=— . sinz, (6.3

very strong in this region. The phase shifts are generated

using a potential model that had been carefully fitted to de-

scribe theNN data([39]. and averaged over forward and backward directions, given
Using Eq.(2.14), one obtains a delay timars that de-  the constant scattering cross section,

pends on the scattering angle. This time is shown by different

lines in Fig. 3 for several values &,,. Due to the averag-

ing over initial spin and isospin and the amplitude antisym- Ary(0)= E(AT (0)+Ary(m—0))= — @ cod T _ f)

metrization, the time is symmetric with respect to 90°. The = 'S 2 S s v '

time, averaged over angles, is additionally shown as a func- (6.9
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Correspondingly, for repulsive scattering, more negative de- -1
lay times might be expected at=90° than at#=0. Indeed,
that is observed ilNN scattering at the higher laboratory
energies. In fact, in the periphery the interaction might be 2
expected attractive and the delay times might be expected to
turn to zero or even positive in the forward directions, and
not just decline in magnitude as for hard-sphere scattering,
and this can be seen for the 360 MeV scattering in Fig. 3. In
passing, let us note that to properly isolate forward and back-
ward directions, constructing an amplitude prior to the anti- —4
symmetrization, one should continue the phase shifts over
the missing partial waves. If one were to identify a hard- P I T
sphere radiusl for simulations from the delay at 90°, quite 0 20 40 60 80 100

low values would have been obtained compared to what was T (MeV)

used in simulation$16], declining fromd=0.60—0.80 fm

for E,p Within the range 1630 MeV tod=0.15-0.30 fm . - -
for E ., within the range 106 400 MeV. At low energies, the A l;/(j f5. SeEcond virial co;afflcu_ant fc;r nuclear matter, multiplied
times become more negative at 0° than at 90°, and this i < from d. (6.7, as a function of temperature.
due to3S;-3D; interference.

25/2a2(T)
|
@
T 1T I LIS B B | | L | T F T F

IlI||IIII|IIII|lIII

The forward delay times are positive in a wide energy 5 1 BT .
range 3< E,,, =150 MeV, see Fig. 4. In the lower portion of 27 a(T)= 7 —3e% _T,E/S (2T+1)(2j+1)
the range, this is due to the fact that, for lavave phase g
shifts, the real forward amplitude, multiplied by a relative dE d(sz/S
momentum, increases, although tBevave phase shifts de- X EZEG_E/T, (6.7

crease. In the higher portion of the above energy range, when
S-wave contributions are low, the forward delay times are

positive due to the positive energy derivatives of phase shiftanq B is the deuteron binding energy. Antisymmetrization
for some high partial waves which, unlike in the delays forjncreases the pressure, deuteron formation lowers the pres-
scattered waves, are not weighted by partial cross sections §yre, while at most temperatures, scattering increases the
the forward direction. _ _ _ pressure. The overall effect of interactions, following
Of some interest is the issue of eladtiN interactions at | evinson’s theorem, declines with the increase of tempera-

very high energies when amplitudes are primarily diffractivey,re. The second virial coefficieri6.7) is shown as a func-
[17]. Schematically, a purely diffractive amplitude may be tjon of temperature in Fig. 5.

represented, givenS,=0 for /</. and S,=1 for
>/, as
VII. DELAYS IN SIMULATIONS

./
f(6)= i \ (2/+1)P (cos). (6.5) A. Effect of scattering prescriptions

/=0 Without explicitly delaying or advancing particles as they
pass near each other within a simulation, the time spent by
As a diffractive amplitude is purely imaginary, its phase doegarticles in the vicinity of one another can be affected by the
not depend on energy and the time delays for the elasticallgcattering prescription. The prescription can make posi-
scattered waves identically vanish, ¢2.14). Likewise, the tive or negative. Effects of scattering prescriptions on mac-
times for the forward wave®.19 vanish. This is consistent roscopic features of reaction dynamics at Bevalac energies
with the concept of particles moving freely around the inter-have been investigated in Refd3-16, see alsd40]. We
action region. analyze two examples, hard sphere scattering and scattering

We conclude this section with a presentation of the presat the point of closest approach.

sure in a low density nuclear matter at moderate tempera- Our first example is that of hard-sphere two-particle scat-
tures, as a function of the density and temperature, such dsring. Given a volume in relative coordinates of radRis
should be, generally, reproduced in simulations. Within theand a hard-sphere potential that rises as particles are a dis-
second order in density the contributions to pres¢beyond tanced away, the expected reduction in the density of two-
the free-gas ternP,=ngT) come from nucleon antisymme- particle states within the relative volume, due to scattering,
trization, formation of deuterons, and nucleon-nucleon scatbecomesA p/py=A 7 7o=—d%/R3. Particles that make

tering, contact along a line at an angheto the direction of original
relative motion, get deflected by an angle m—2a. When

2.7\ 32 reaching the boundary of the relative volume defined with

P=ngT 1+a2(T)nB(—) ) (6.6)  the radiusR, the particles traverse a relative distance that is

mT altered by the scattering. The alteration divided by the rela-

tive velocity, gives the change in the time spent in the vicin-
where the three respective contributions to the virial coeffiity of the other particle A74(b), that depends on impact
cienta,(T) are given by parameter and can be worked out from geometry,
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2dZ-b 2dcoss  2d 6 _1< A7y K) 77
A7y(b)= 5 = S =, sing. (7.1 V=7 B )
The average change in time due to scattering is then given by B. Numerical determination of equations
an integral over the product of the probability density that a ' of state and transport coefficients
specific scattering occurred, times the change in time in that
scattering, While we have limited ourselves to the discussion of ef-
fects of two-patrticle interactions on thermodynamic proper-
oy Jdb bAT(b)  d*4d ties, many-body calculations can provide information ac-
A7 T fdbb =~ RZ3vp° (7.2 counting for interactions of a few particles at a tifid®,12.

The prescriptions for interactions in simulations may affect
In the last expression, the factatd/R? and (4/3)l/v repre-  microscopic thermodynamic quantities within a higher order
sent, respectively, the probability that a collision occurs andhan the second in density and they can also affect transport
the average time lost then in a collision. The average timgoefficients. Given the prescriptions, thermodynamic quanti-
spent within the volume of radiuR follows from dividing  ties, and transport coefficients for simulations can be deter-
the volume by cross-sectional area and velocitymined numerically and confronted with those from funda-
0= (4m3)R®/ 7R?v=(4/3)R/lv, and we find that mental calculations.
A7 7o=—d%R3 as we expected. The pressure corre- All thermodynamic quantities can be derived once one
sponding t0(6.3), (7.1), and(7.2), in the absence of statisti- knows the pressure as a function of the chemical potential

cal effects, from(3.17) and(3.18), is and temperatureP(u,T). To determine the pressure, the
system may be enclosed in a box of macroscopic volvine

) 2md® in contact with a free noninteracting gas with of chemical
P=nT+n"T——. (7.3 potential w and temperaturd, possibly only within some

external potential lower tham. The contact with the gas can

Positive delay times are obtained when scattering the pabe made through the walls in one direction, and in two re-
ticles as if off a thin spherical shell of siz# open in the maining directions periodic conditions may be used. If clus-
direction of motion(the case of a concave rather than convexters are produced within the simulation, then the interfaces to
mirror). Then expression§7.1) and (7.2) remain valid but the free gas can be made impermeable to those. Nucleons not
with changed signs. in a cluster, on the other hand, getting into the free zone,

Within the most common prescription for scattering in awould never return. At the same time, nucleons from the free
simulation, it is assumed that particles scatter when theygone with equilibrium phase-space distribution for given
come abreast of each other, at a distabeced= \o/. andT with the inclusion of statistics, would pour in into the
When deflected in a direction making an angleelative to  box. The pressure within the box could be then computed
the original direction, within a plane at an azimuthal angleusing the following virial-type expression with terms for dif-
¢ with respect to the original reaction plane, the particlesferent possible ways of accounting for interactions in a simu-

reach a distancB>d after a time longer by lation:
b B 11 .
A7y(b, )=~ = sing cosp, (7.4) P—W[g(fdtzj: pi'Vj_ZJj pij - VijA Ty
than in the apsencg of.scattering. If thg scgttering is repulsive + f th Fij 1+ E Apjj-1yj
(¢=0) and isotropic, i.e., casdistribution is flat, then the i< i<

average delay time for a given impact parameter becomes

®
equal to +J dtj dV(pU—jp dp’U)]. (7.9
0

b
Ars(b):—g;. (75

The above equation is limited to the mean field being mo-
mentum independent.
By averaging over all impact parameters one further gets With regard to(7.8), pressure is recognized as the density
of momentum flux in equilibrium, in any one direction. In
d* 7 d (7.8 the pressure is evaluated by taking a trace of the mo-
RZ3 " (78 mentum flux tensor and dividing it by 3 for the three direc-
tions; 7 is the time over which the system is investigated.
Notably, the time lost in any one collision is reduced here byThe first term on the rhs d7.8), with a sum over particles in
only a factor /4 compared to hard-sphere scattering. Bya box, accounts for the transport of momentum when par-
choosing¢= 7 in collisions, one can produce positive delay ticles move. The second term, with a sum over particle en-
times. counters, accounts for the situations when particles pass in
Generally, given required delay times such thatthe vicinity of one another and their relative motion is de-
|A 7 <(2/3)d(sin)=(ATJmax, these times may be gener- layed in a simulation byA 7. The vectom;;=(p;—p;)/2 is
ated making a fraction’ of all scatterings repulsive and a relative momentum ang;; =v;—v; is relative velocity. The
fraction 1— v attractive. This fraction is given by third term on the rhs of7.8) accounts for transport of mo-

A 7_coII: _



262 PAWEL DANIELEWICZ AND SCOTT PRATT 53

mentum with two-particle interactions treated explicitly. The VIIl. CONCLUSIONS
force Fy; =pij is that due to particle on particlei. Due to

the interaction, the relative momentum changes as particles The principal goal of simulating heavy-ion collisions is to

. infer the equation of state of nuclear matter. The effective
are separated by, . The fourth term accounts for instanta- : ! . )
{ equation of state for a simulation depends on several aspects:

neous changes of relative momentum in collisions, and thxg ! o . .
. . . . freatment of the mean field in simulation, time delays for
final term accounts for the effects of interactions treated in

the mean-field approximation. It is apparent (R8 that interactions and scattering prescriptions, inclusion of various
positive (negative forward delay times, for a given particle resonances. In this paper we have carried out a detailed in-

number, reducéenhancgthe pressure. Further, the attractive vestigation of the time delays and of s_cattenng pres_crlptlong,
. . and have shown that they should be incorporated in coordi-
scattering styleAp;; - ri; <0, reduces the pressure, while the

repulsive styleAp.. -1 >0, enhances it nation with the mean field. If that is not followed, the effec-
IoTrans oréc/coe?fli]cielhts s:uch as shear. viscosity or heat co ive equation of state may be inconsistent with two-body
ansp . o . Ity . rEcattering which constrains thermodynamic quantities to
ductivity may be determined within a simulation by impos-

. . " s within the second order in the virial expansion.

ing different concﬁnons W'thm. the free gas beypnd the two In Sec. Il expressions were derived for the average delay
walls of the box n contact with that gas. Provided that theof an outgoing scattered wave as a function of the scattering
walls are perpendicular to the axis and atx=* Ax, the

iscosity coefficient mav be determined by giving collecti eangle. In Sec. Ill, such delays in dynamics were shown to be
viscosity il Yt rmin y gving >ClVE consistent with the two-body density of states if a forward
velocities to the free gas in thedirection equal tat Av in

the t red ! Th Hicient then foll f delay or mean field were included and calculated in terms of
€ two separated regions. The coetlicient then Tollows Tromy, o ¢y arg scattering amplitude. Other ergodically consis-

an off-diagonal term of the momentum flux tensor in the bOXtent prescriptions were presented where all the effective time
delays were incorporated either entirely into the scattering or
1 ) into the mean field. Alterations to these considerations for a
n=— —( f th pij}(_ 2 piijinATlfJ Fermi-degenerate system were shown to be nontrivial in Sec.
TVAu/AX j i< IV. Sections V and VI illustrated the time-delay consider-
ations with the examples of resonance & scattering. In
+f dtz_ FYixij +z Ap}, Xij)- (7.9  Sec. VIl it was shown that repulsive and attractive scattering
1< 1< schemes can be interpreted in terms of time delays, and that
equations of state associated with these schemes may be un-
) . , , , derstood quantitatively at a two-body level. The implications
To gain an insight |'nto(7..9), oone may consider a simple scattering prescriptions for transport coefficients were also
assessment of the viscosity in a medium when ignoring th@jjscssed and a practical method of determining the equation
effects of the finite range and duration of interactions, I.€.9f state and coefficients for a simulation was presented.
investigating, in particular, only the effects associated with We conclude by giving some perspective to the consider-
the first term in(7.9). Provided that particles propagate freely ations discussed here. Most of the flow in high-enery

between collisions for an average time~1Mo(v), a par-  Gey/nucleon heavy-ion collisions stems from the one-body
ticle at a positiorx; of velocity vi would have, on the aver- feq_gas pressure. The interactions of particles affect the
age, @ momentum in thedirection such as characteristic for pressure and can increase the observed flow of a collision by
a posi'gion this particle had a timg: earlier. With this, Eq.  ~g5goy compared to a free gas. As experiments are now able
(7.9 gives to measure sidewards flow and squeeze out flow differences
to better than 20%, a detailed and careful understanding of
the simulations becomes crucial. Demonstrating that a simu-
lation reproduces experimental results to within 10—-20% has

little meaning unless thermodynamic properties of the simu-

lation are understood to within 10—-20% as well. Simulations
m(x;—v7e) (Av/AX)v* are becoming more s_ophist_icated. Ir_nportant aspects, suc_h as

the change of the dispersion relation for pions, are being

) incorporated through energy-dependent mean fields. At very

~m (%)) 7 = mn(v®) 7 - m(v) . (7.10 relativistic energy, simulations must incorporate a large num-
3 3o ber of resonances which can be very broad compared to the

temperature. It is hoped that the prescriptions and constraints

presented here will contribute to both the development of

The hard-sphere scattering is known to enhance viscosity tinproved codes and to a better understanding of existing
within the lowest order in density, but the enhancement facapproaches.

tor for viscosity is smaller than that for pressure. For a given

shear the medium W|th_ hard-sphere scattering, to lowest or- ACKNOWLEDGMENTS
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APPENDIX

In this appendix we investigate changes in two-particle 97 dN; (277)4| 22 dm dng
scattering rates induced by the presence of other particles,dp; dE; dps dE; V2 "' dp; dE;] dp; dE}
within the lowest order in density, in the context of the er-
godic theorem. To reach directly essential results we adopt _ d7 dN3 (27'F)4,///|2 dny dng
simplifying assumptions. First, we concentrate on a sub-  dp; dE; dp; dE; V° ! dp, dE; dpz dE;”
system of one of the particles engaged in scattering, denoted
as 1, and the spectator particle denoted as 2. We assume that (A4)
these two particles interact only perturbatively with all other )
particles within the system, but not necessarily with one antNne volumeV is assumed here to be large compared to the
other. If the system has many particles confined to a finitd@nge of interactions. The Ihs ¢A4) represents number of
volume and sampling is done over a long timethen we transitions that take place, per element of energy-momentum
may write an ergodic theorem for the subsystem of particle§Pacedp; dE; dpz dEg dp; dE;, from states 13 to 'B'.

1 and 2 alone: The rhs represents number of inverse transitions per energy-
momentum elemerdp; dE; dp; dEj; dp; dE;. By virtue
1 dr ,dn o ~1 dn e of energy-momentum conservation the energy-momentum
rdp dE f d dE’ dp dE : elements involving any three out of the four states in the

(A1) above are actually identical. The number of transitions in
(A4), e.g., on the I|hs, is represented in terms of the time
In the aboved7/dp dE denotes time spent in a given set of spent by particle 1 in the regiomp{,E;) times the probabil-
internal states, per unit volume of energy-momentum spacety of finding particle 3 in the region;,E3), times the
dr/dp dE denotes the number of states, &d" is relative  transition rate into §,E}) and ©4.E5).
probability that any single internal state is occupied at any Equation(A4) is fully equivalent to(A3) or (Al). Given
instant. An equivalent formulation of the ergodic theoremthat interaction of particle 3 with any other particles is per-

(A1) is that for any two statesp(E) and (',E’): turbative, the perturbative scattering of 1 and 3 is modified in
1 _1 the presence of 2, compared to free space, by a changed final
( dr ) dn e ET— dr dn e E'IT density of states. FrorfA4) it follows that, to comply with
dp dE/ dpdE dp’ dE’) dp’ dE’ ' ergodicity, it is necessary to allow particles to participate in

A2)  transitions at any time when in a given relative state. In the
transition rate and in the cross section, it is necessary to

For simplification, we next assume that 2 is much heav'e%\ccount for the changed final-state density.

than 1, whereupon we can make no distinction between rela-", ... many-body theory, a final-state density for scatter-

t(ixg)sttstes of 1 Emd |2 and f[ingle—particle states of 1. Equatiomg is typically described in terms of single-particle spectral
€n may be aiso written as functions[31,25 equal, up to a factor, to the imaginary part
-1 of single-particle Green’s functio3.8), A=—2Img. For
( dT ) d I’ll —E,IT

e example, for the case above, the number of transitions in
dp, d&,/ dp; dE which particles from §;,E;) and (p3,E3) interact and
dr |\~ dn, e populate p;,E;) and @g,;g), per unit 'time and per mo-
=\ dpragr] apl dEie 1 (A3)  mentum volumedp; dp;, given well-defined energies of 3,

would be represented as

We are now set to address the scattering of a particle 3,
representing the remainder of the system, with particle 1, in \ f | /Z2A(p] E! (A5)
the presence of 2. Transition or scattering rate within the (2m)° (P3)|. ZI°A(P1,Eq).
system are given by a transition matrix element squared mul-

tiplied by the density of final states in energy, times.2  on comparing the previous expression for transitions with

When sampling is carried out over a long time, the numbeghe one in terms of, one can conclude that, in the discussed
of transitions within the system from one set of states tqgge,

some other should be the same as from the other set to the

first. On multiplying both sides of EqA3) by common fac- v dn dn
tors and after manipulations, we can demonstrate an equiva- ——A(p;,Ey)= 1 ) (AB6)
lence of the ergodic conditiofA3) with the general condi- (27) dp; dE; dp; dE;

tion of the equality of the number of transitions in the
different directions. Specifically, we multiply both sides of This implies an integral relation between the density of rela-
(A3) by a product of average number densities of 3tive statesp andA,
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dn v A(py,Ey)~2m8[E;—e(p1)]—ulpy.e(py)]
d—aEP(E1)=WfdplA(pl,El). (A7) P, Er)=emolEam by P1.€(P1

X2 [E,—e(py)] + L=t

We now proceed to examine an explicit form Afin the 9B Ei=e(py)
J-matrix approximation in which interactions within a two- B
particle system, such as that of 1 and 2 in the above, are fully X 27 Eq—e(py)]— y(py,Ey )
accounted for. With an explicit form ok, we shall further A~ &P =P By Ei1—e(py)
examine the validity ofA7), establishing a correspondence (Alla
between different terms iA and inp. We shall then discuss
in-medium scattering rates. =2n[d[E;—e(p1)]—u(p;,.E1)8'[E1—e(p)]
From (3.8) we find -
- )
A(Py Eq)= 2 Img(py Ex) 7P EVE o))
(Allb)
= v(Py Ey) Within the.7-matrix approximation, the mean field and scat
- _ _ 2 24" 7 - , .
[Exi—e(p1) —u(py,ED) "+ [¥(p1,E1) ]7/4 tering rate due to 2 are

(A8)

dp;
E)=| 5—=f Re(p|.7(E
Here the real and imaginary parts of self-energy separately u(Ps.Ey) f (2m)* (P2)R&PL7(E)P)

depend on energy and momentum. In thematrix approxi-

mation, this dependence corresponds to a separate depen- =Re(p4| 7(E)[p1)/V., (A12)
dence of the7-matrix on energy and momentum as in the 54
Lippman-Schwinger equation. On expandiador low scat-
tering ratey, in the discussed case rate for scattering of 1 off dp,
2 given largeV, we obtain ¥(P1,E1)= —Zf (ZT)g,f(pz)lm(pIJ’"(E)lp)
au(p1,Eq) -t ,, =—2Im(p,|.7(Ey)|p)/V, (AL13)
A(plvEl)“(l_T Elx(pl)) 2mS[Ey—£(py)] ) ) ) )
1 with the center expressions following under assumption of
well-defined energies of 2, and rhs expressions representing
7 results for the specific case under discussion.
- 7(|01:El)m (A9a) On insertingA in the form(A114) into the rhs of(A7), we

find that the leading term i6A1la) producesp, from Eq.
(3.1). The second term iAlla), with a derivative of the

~2m8[Eq— #(py)]+ _au(pl'El) 6 function, gives a complete contribution top associated
1 ! IEr ey with the forward delay time,
1=2(py)
74 d 1 . 1 , ds,
X2mwo[E1—&(p1)]— 'y(pl,El)m. dE Pov<p| Re/(E)|p> = p Z 27+ 1)C0$25/d—E,

(A9D) (Al4)

compare Eq(3.11). The derivative from theS function act-

The energyZ(p,) in the above is a solution of the equation ing on p, gives a contribution associated w'mhrg'ai cf. Eq.
Ei—e(p;y) —u(p1,E1)=0. The factor multiplying the 26  (3.4), and the derivative acting on gives a contribution
in (A9a) is termed a wave-function renormalization factor, associated witmfg'as, cf. Eq. (3.5). Finally, the remaining
and wave-function renormalization and off-shell terms(#iL1a)
yield jointly, on insertion into the rhs ofA7) and after

1 1 lengthy manipulations, a scattering contributionpt@f the
) form pgovA 7 /V, whereArg is given by(3.12, compare

(3.2 and (3.7), indeed confirming the equality i(A7). The

1 1 ) manipulations involve, in particular, expressing thdunc-

—— (A10) tion and principal value ifA1l) in terms of the imaginary
and real parts of the free two-particle Green’s function, and
an extensive use of the relations between the imaginary and
see alsd41,42. Equation(A9b) follows from (A9a) on rec-  real parts of the free two-particle Green’s function and the
ognizing that, according to a dispersion relation, the energy’” matrix, following from the Lippman-Schwinger equation,
derivative of the mean field is proportional to the off-shell Eqg. (4.8) with N=1 in G,. Presence of the momengpa in
scattering rate. Thus, it is expected to be small when the ratéhe last term in(Al1la and in(A13), far from the shell de-

is small. If V is large enough, then the mean field itself is fined bye(p,)=E,, indicate the effects of near zone in the
small, and we can further expadin terms ofu, interaction of 1 and 2.

de 2i | x+ie x—ie

=lim — =
-0

€
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Generally, in a scattering rate a single-particle spectral
function A would be used for each of final-state particles. On 1+j dp; f(p2)ovATs, (A16)
the basis of the example above, one would conclude that use
of such function leads to the population of states consistent
with two-particle density. A more general relation betwéen

andp, than(A7), is for each of final-state particles. That would be analogous to
v S putting all delays into the forward delay time in the particle
_j dp ———A(p;,E+P22M—e(p,))=Ap(E), (Al5)  Propagation, discussed in Sec. Il D. A weakness of an ap-
2m of(p2) proach where just final-state densities in two-particle scatter-
ing are modified on account of scattering with other par-
ticles, is the disregard of correlations that may persist
where integration is carried out over relative momentum athroughout the interaction process. Effects of correlations be-
fixed total momentunP=p,;+p,. Use of the distribution come even apparent in a more detailed analysis of the dis-
f(p,) in (A12) and(A13) allows for various momentum val- cussed simple example with perturbative scattering. Thus a
ues of 2. Asf is not normalized to yield one particle within careful reader might notice that the matrix elementgAd)
a given volume, there is a possibility for 2 being absent fromfor transitions should not be, generally, taken between plane
V, giving a reduction in the relative weight of the correction waves but rather between eigenstates of an internal Hamil-
to the density of states due to the interaction,(Afl1). tonian of 1 and 2. Separation of the wave functions for these
In practical applications, the incorporation of the first cor-states into incident and scattered portions would, generally,
rection term inA in (Alla), associated with the forward yield two-particle and three-particle scattering terms in the
delay time, amounts to correcting single-particle energies itransition rate. Interference of the forward and scattered
the scattering rates by the mean field. The incorporation ofvaves for 1 and 2 would yield shadowing corrections in the
the scattering delays in the final states in scattering rates canatrix element for the scattering of 1 and 3. The genuine
be much more cumbersome given the form of terms irthree-particle scattering term would be characterized by the
(A11a). One possible solution to get consistency with ergoddack of momentum conservation within the subsystem of 1
icity is to multiply rates or cross sections by factors of theand 3 alone. However, such effects are beyond the scope of

form present paper.
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