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We investigate the light and heavy meson spectra in the context of the instantaneous approximation to the
Bethe-Salpeter equatiofSalpeter's equation We use a static kernel consisting of a one-gluon-exchange
component and a confining contribution. Salpeter’'s equation is known to be formally equivalent to a random-
phase-approximation equation; as such, it can develop imaginary eigenvalues. Thus our study cannot be
complete without first discussing the stability of Salpeter’s equation. The stability analysis limits the form of
the kernel and reveals that a Lorentz scalar confining interaction in the Salpeter equation leads to instabilities
(imaginary eigenvalugswhereas one transforming as the time component of a vector does not. Moreover, the
stability analysis sets an upper limit on the size of the one-gluon-exchange component; the value for the critical
coupling is determined through a solution of the “semirelativistic’ Coulomb problem. These limits place
important constraints on the interaction and suggest that a more sophisticated model is needed to describe the
light and heavy quarkonia.

PACS numbes): 11.10.St, 12.39.Pn, 14.46n

I. INTRODUCTION The starting point for most relativistic studies of the me-
son spectrum is the covariant Bethe-Salpeter equdtgn
In hadron-structure theory one is interested in describing’he Bethe-Salpeter equation can be regarded as the relativ-
the hadron as a relativistic composite system. To date, mosstic generalization of the Lippmann-Schwinger equation.
basic properties of hadrons cannot yet be derived frontlowever, the Bethe-Salpeter equation, being covariant, de-
QCD—the fundamental theory of the strong interactionspends on the zeroth component of the relative four-
Note, however, that QCD sum rules can p|ace some Cormomentun(i.e., the relative energyASide from the techni-

straints regarding quark-distribution amplitudes in meson&al difficulties encounte_red_in handling this extra degree of
and baryong1,2]. With the advent of more powerful com- freedom, one must decide in the present case how to gener-

puting facilities, lattice gauge theofi] should provide an alize the essentially nonrelativistic quark-antiquark potential

increasingly useful means of studying hadronic physics. Yet%?hfogrfg'mlfn.s'ogsTa nor.‘tt;'\;'r?l taslkt_to carry outhcor:egtlty.
at the present time it does not provide a convenient frame- € difficulty In gealing wi € relative energy has led to

work for a systematic study of a large variety of hadronic 2"y different approximations to the Bethe-Salpeter equa-

phenomena. Specifically, with the commission of state-of-tion wherein one works within a three-dimensional reduction
’ . but attempts to retain fundamental physical principles. There
the-art facilities, such as CEBAFpther nonperturbative b Py b P

. : . ; ) is no obviously correct method. Thus one should study dif-
techniques will be required which can be used to incorporatg, e nt three-dimensional reductions in the hope of isolating
phenomena at many different length scales within a singlenogel-independent results. Here we work within the instan-
theoretical framework. _ _taneous Bethe-Salpeter framewd(®alpeter's framewonk
To a large extent our current understanding of hadronig\though retardation effects and manifest covariance are
structure is based on the nonrelativistic constituent quarkost, one retains relativistic kinematics, the relativistic char-
model[4,5]. Meson properties are well reproduced by a phe-acter of the potential, and the Dirac structure of positive- and
nomenological potential consisting of the sum of a shortnegative-energy states.
range one-gluon exchand®GE) component and a long-  The use of the instantaneous approximation commonly
range confining contribution. A quantitative description of employed in the literature entails other problems besides the
meson masses, their static properties and decay rates codoss of retardation and manifest covariance; Salpeter's
among the many successes of the model. Generally, orlgound-state equation is represented byn@n-Hermitian
would prefer to have a relativistic and manifestly covariantHamiltonian. Indeed, it has been recognit@d 10| that Sal-
model. For example, a covariant formalism will enable onepeter’s equation is identical in structure to a random-phase-
to relate the wave functiofor vertex function in different  approximation(RPA) equation familiar from the study of
frames. This becomes essential for calculating hadronic formuclear collective excitationgl1]. Thus it can be rewritten
factors at finite momentum transfer. as a Hermitian eigenvalue equation—but for the square of
the energy. This suggests the possibility of imaginary eigen-
values which would signal the onset of an instability. For our
The Continuous Electron Beam Accelerator Facility. problem of interest these imaginary solutions are unphysical
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and their appearance can be precluded by limiting the form e _
of the kernel. This is achieved through a stability analysis of = Xas(X1:¥2)= 2( ([Uk,s,(X0) 1ol Viys,(¥2) 16Bs,s,

Salpeter's equation. This analysis will draw heavily from 19174252

previous results. For example, in REJ] it was shown that a X (Kq,Ko) +[ Vi s (Xl)]a[u_k <(Y2)1s
confining kernel transforming as a Lorentz scalar leads to o 2z
instabilities in Salpeter's equation—irrespective of the value XDg,s,(K1.K2)), 4

of the constituent quark mass. Moreover, the stability analy-
sis will be extended to include a short-range OGE compo- . '
nent in the kernel. In this case, the stability of Salpeter'sWhere the Salpeter amplitud8sandD are defined by

equation—as well as the extraction of a critical strong-

coupling constant—emerges from a solution of the semirela- lesz(kl,kz)s<\lf0|bsl(kl)d52(k2)|\le>, ©)
tivistic Coulomb problenj12,13. We should stress that any
study based on Salpeter's equation is not complete until the Dslsz(klakz)E(‘I’o|d;rl(k1)b;rz(k2)|‘1’5>v (6)

stability analysis is performed. The main goal of this paper,

then, is to present the stability analysis and to examine the

implications for the meson spectra. and contain all dynamical information about the bound state.
We have organized the paper as follows. In Sec. Il, SalNote, by(k) anddy(k) are second-quantized operators, and

peter's equation is presented and the method used to solvelitks(X) andVis(x) are free single-particle Dirac spinors.

is reviewed. In Sec. Ill, we study the interaction kernel for ~Salpeter’s equations are more conveniently expressed in

the particular Lorentz structures of interest. The stabilityan angular momentum basis. Projecting out the Salpeter am-

analysis for the confining part of the kernel is reviewW8d  plitudes, expressing Salpeter's equationsBoandD in the

and the analysis for the OGE component developed. As &enter of momentum frame, and introducing the partial-wave

result of the stability analysis the form of the instantaneouglecomposition of the amplitudes in terms of totaland S

kernel is constrained. We examine the consequences of theseupled to the total angular momentuhof the bound state

constraints on the heavy- and light-meson spectroscopy in

Sec. IV. Finally, our concluding remarks are presented inB ‘ 1 SMI (LM -SMIIM
= 5S1:5S ;
Sec. V. s;5,(K) suFiom | 2 1,552 s) (LM, sl IM)
XY . (K)BLsym(K), 7
Il. FORMALISM L (K BLsan(k) @)
A. Salpeter’s equation (— )1_51_52D,51,32(k)
In the Salpeter formalisril4], the bound-state spectrum
is generated as a solution to the instantaneous Bethe-Salpeter 1 1
equation in the ladder approximation. In this approximation, = <—51; =s, SMS><LML :SMgIMYY |
the irreducible Bethe-Salpeter kernel is given by smglm am |2 772 Tt
V(Xq %) = V(X1 %0). (1) X (k)Dsau(K), ®

L ) . one can write Salpeter’s equations in an angular momentum
In Ref. [9], the derivation of Salpeter's equation was illus- p4sis as

trated using Green’s function methods, which yielded the

i;)EII:owmg eigenvalue equation for the Salpeter wave functlon[+ E— 2E,Jb,s k)

=F£2 {(k;LSIVFH|Kk';L'S' I)by g 5(K")
0 (277)3 ’ ' L'S"J

E 0 . .
Xao(X1,Y2) = f d321d322G(m;r;§,,(X1 122:21,Y2, E)V g1 L's

+({k;LSIJV*T|k’;L'S'I)d g5k}, ©)]
X(21,22) X5 ,(21,22), ) He

[—E—2E(]d s(k)
where the Salpeter wave function is defined by

© dk’
- | S LSV KIS bk

L's

Xao(X1,Y2) =(Wo| o (X1) o (¥2) | We), ()
+(k;LSIJV™|k';L'S' I)d g5k}, (10
G is the free two-body propagator in the instantaneous
approximation(lA), ¥, represents the vacuum, afitk rep-  with b(k)=kB(k) andd(k)=kD(k). For local interactions,
resents the bound state with eneifgy Expanding the ferm- such as the ones considered here, the matrix elements of the

ion fields in a single-particle basis and using the properties opotential are given bya sum over greek indices is implicitly
the free two-body Green'’s function then gives assumed, and=1—«)
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(k;LSJV*HIk';L'S'J)
=(k;LSJV~|k’;L'S'J)
=2, ()" ETL L NNV AKK apiar r]-)

x.7%E

v (KD, (11

(k;LSJVTFIk';L'S'J)
—(k;LSJV™*|K’;L'S'J)

=2, (DT oK)

XAV KK D) apiar g T ELE g oKD, (12)

where

'ﬁé/;LSJ(k) = Caﬁ(k); (0:8010)
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(K;LSJHT|k";L'S'Iy=(k;LSIV* *|k’;L'S'J)
+2E,(27)38(k—K') 8,/ bsg,
17

(K;LSIJHT 7|k ;L'S' Iy=(k;LSIV* " |k';L'S'J).
(18)

One recognizes that Salpeter's eigenvalue equation, as
given by Eq.(16), has the same algebraic structure as an
RPA equatiorf7—10]. Having identified the algebrai®PA)
structure of Salpeter’s equation, the same formalism devel-
oped by Thouless in his study of nuclear collective excita-
tions[11] will be employed. Salpeter’s, and in general any
RPA-like, equation can be rewritten as a Hermitian eigen-
value equation for the square of the enefd,16. This
implies that while the square of the energy is guaranteed to
be real, the energy itself might not. The appearance of solu-
tions havingE?<0 signals, in the context of nuclear collec-
tive excitations, an instability of the ground state against the
formation of particle-hole pasr— a collective mode with
imaginary energy can build up indefinitely. Thouless has
shown that the stability of the nuclear ground state depends

X(ZAW[Y (40 ]10lIlLSDH, (13 on the Hermitian matrix
N E,tM _ Htt HT-
Caplk)=Em(~ 1) [ S| £ £5(K0 <H+ H) 19
1 if a=0;
£.(k)= K (14) being positive-definite—all its eigenvalues must be greater
“ if a=1, than zerd11,15,14. This condition is equivalent to requir-
ExtM ing that both the sum and difference matrices

andE, = Vk*+M?, with M the constituent quark masd.he H¥=(H**+H*) (20
equal-mass case is considered here; however, the extension '
to unequal masses is straightforwartihe quantum numbers B o L
L,S range only over the values allowed By, and corre- H =(H""-H""), (21

spond to the usual “nonrelativistic” quantum numbers,

while #,. can take on all values allowed by the coupling to be positive-definit¢16]. In this form, the stability condition

J, thus reflecting the role of relativity in the calculation. For of Salpeter's equation is reduced to finding the eigenvalues
E>0, the amplitudes, d satisfy the RPA normalization con- of the two Hermitian matricesl © andH ™. Thus, the exist-
dition [15] ence of a single negative eigenvalue, of eitker or H ™,
suffices to signal the instability. It is this criterion that was
employed in Ref[9] to examine the Lorentz structure of the
confining potential; also, it will be used in this work to set
limits on the strong-coupling constant for the instantaneous
OGE kernel in Salpeter’s equation. With these limits in hand,
one is then able to carry ousee Sec. IY a study of the
meson spectra in the framework of Salpeter’s equation.

= dk
3 [ aestbtail-dsl=1. a9

Equations(9) and (10) are similar to the equations in Ref.
[10] for the two-fermion case. This form is used for conve-
nience, as the two can be related by charge conjugation.

B. The RPA equation C. Numerical solution of Salpeter’s equation

Salpeter’s equation can be cast in the following compact Salpeter’s equation is solved via expansion of the Salpeter

matrix form: amplitudes in a suitable basis, thus enabling one to treat the
instantaneous confining and Coulomb kernels in configura-
H** H*~ B B tion representation and the relativistic kinetic energy opera-
( “H*~ -—H ++) ( D) = E( D) , (16)  tor in momentum representation, where they are respectively
local. Here and in Ref9], one uses the radial eigenfunctions

of the nonrelativistic harmonic oscillatdr,,, , to expand the
where the matrix elements of the “Hamiltonian™ are given two amplitudesB, gy andD, g;in terms of unknown coeffi-
by cients
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Nmax <k|V+|k’>—(Ek+M)(Ek,+M {[§2+§2 ]V (k k’)
BLsAK)= 2 BoisRuu(K), (22 =125, /| 25, {4t GelVolk,

Nmax *248k V(K KD}, (29
Disfk)= ; Dots Rk, @39 where the uppeflower) sign in the above expressions should

be used for scaldtimelike) potentials. For vector potentials,
up to n=0,... Ny, Nodes in the basis, for a finite basis. one has
(Since the interaction is spherically symmetric, the magnetic
guantum numbeM only denotes a 2+1 degeneracy and

oy Ex+M\/Epn+M 9.2
plays no dynamical role; hence it can be dropp@this pro- IV =| =g oE., |+ il ]
cedure results in a matrix equation for the unknown coeffi- k k
cientsB,, syandD, s;which can be diagonalized using the +3[§§+ Zir]}Vo(k,k'), (30)

method developed by Ullah and RowEs]. Upon diagonal-
ization, one obtain&? and the(previously unknown coef-

£ ; , - Ec+M\[(Ex+M|
ficients from which one then can reconstruct the two ampli- (kIVTTlk")= 5E 5E [kt &1
tudesB,s; and D, g3, and, ultimately, the Salpeter wave k k!
H E
function . +3[1+ 20 Vo(k k), (3
Il. STABILITY ANALYSIS OF SALPETER’S EQUATION where the kinematical variable
The stability analysis is performed by using potentials
V(r) having scalar, timelike-vector, and vector Lorentz L= k -0 5 32)
structures KT E+tM M)/’
1,1, for scalar, has been introduced to quantify the importance of relativity.
0,0 imeli In particular, for scalar and timelike potentials, relativistic
_ Viva, for timelike, p ) p ,
V(NI'p=V(r) ,lL ? (24 corrections arising from the mixing of positive and negative
Y1Y2u,  fOrvector, energy stategas characterized byk|V*~|k’)) appear as

O(k?/M?) relative to the unmixedBreit) case. This con-
which are the relevant structures for the meson problem. Th#asts with the behavior for vector potentials, where both
analysis is concentrated on the pseudoscal@=Q~) chan-  matrix elements contai®(1) terms, implying that the con-
nel; with L=S=0, this is the first channel where the insta- tribution of negative-energy states for vector potentials will
bility is likely to develop. For this case, Salpeter’s equation,impact results more than the scalar and timelike cases. This
for the reduced amplitudes b(k)=kB(k) and can be seen by taking the nonrelativistic limdy (' —0):
d(k)=kD(k), takes the following form:

Vo(k,k"), for scalar and timelike,
= dK’ <kIV**|k’>ﬁ[ :
(+E—2Ek)b(k)=J’0 W{(k|v++|k’>b(k’) Vo(k,k"), forvector, a3
+(K[VT k) d(k)}, (29 . 0, for scalar and timelike,
w gk’ (kIV |k,>—>(3Vo(k,k’), for vector.
(—E—zEk)d(k):fO W{(k|v+‘|k’>b(k’) (34
+(KIV*T[KYd(K)L. (26)  The O(1) term in V™~ in the vector case stems from the

additional spacelike¥; - ¥,) contribution relative to the sca-
In spite of the simplicity of the angular momentum contentlar and timelike cases, contrary to the usual assumption that
of this channel, the matrix elements of the potential are com#;- v» inducesO(k?/M?) corrections to the nonrelativistic
plicated by relativistic corrections. We define the angular{potential. One should also note that the y, contribution
momentum components of the potential by mixes upper and lower components via a spin-spin term, thus
giving rise to much stronger splittings than either the scalar

Vo (kk') = (4m)>2 JO drj (knV(nj(k'r), (27 OFtimelike cases.

LA . . . . . A. Stability analysis for the confining kernel
with J(x)=X]j «(x) being the Riccati-Bessel function. For , i . . . .
scalar and timelike potentials, one has In this subsection, the stability analysis carried out in Ref.

[9] is reviewed for completeness. For confining potentials,
Ex-+M\/(Ex+M 9.2 , the Fourier transformiEq. (27)] is ill defined. Hence, in ex-
2E, 2E. {[1+ il IVo(kK") amining confinement in momentum space in Réf|, the
following regularization for the spatial part of the potential
2480 V(K KD}, (280  was employed17,18:

v )=




9?2 e
V(r)y=ore mEUa_ﬂz p

(35
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As before,H" remains positive definite, while in contrast,
H™ is positive definite only foix=1/2. Hence any mix of
scalar and timelike Lorentz structures has stable solutions

The Fourier transform of the potential is now well behavedonly for x in the interval 0.5<x=<1. This fact will become

and is given by

2

N J 4o

Evidently, one is interested in studying the stability of Sal-
peter’s equation in the limit op— 0. The stability analysis
requires the explicit evaluation &f " andV~. These can be
computed with the help of Eq$28), (29), (30), and(31)

V(K KD)=(KIVE 4+ VKDY =Vo(k k) €7 (k,K),
37

Vo (kK )=(KIVT =V K )y = Vo(k k') € (k,K'),
(38

where one introduces relativistic “correction” factogs"

and ¢, separately, for scalar, timelike, and vector Lorentz

structures:
K 1, for scalar and timelike,
¢ (kK= 4, for vector, (39
and
k= 2 KK Vy(k,K') 40
& (k)= E.Ew E(Ew Vo(kK)]|' (40
S(kk' )= i + Kk' Vi(kiK) 41
§o (kk)= EEx  ExEp Vo(k,k') |’ (41)
2
&, (kk )E—ZEkEk,. (42

For all three Lorentz structures of the potentiif remains
positive definite; the eigenvalue equation fét is a simple
“nonrelativistic” Schradinger equation with a relativistic
kinetic-energy terni9]. In contrastH ™~ is guaranteed to be
positive definite only for timelike confinement; a scalar or

vector confining kernel in Salpeter's equation leads to

imaginary-energy solutions—irrespective of the constituen
guark mass. This conclusion emerges from a stud§ ofn
thek’=k limit; only &, remains positive definitéecall that
V1/Vo=1 in thek=k’ limit [9]).

important in the study of the meson spectra.

B. Stability analysis for the instantaneous OGE kernel

One now considers the short-range OGE part of the ker-
nel. The stability analysis is performed for a pure Coulomb
potential, for both timelike and vector Lorentz structures.
Note, an OGE kernel of vector Lorentz character will be
employed for the spectra analysis; the timelike results are
presented here for comparison. The spatial part of(ife
stantaneoysSalpeter kernel is

—ag
Voeer) = r (46)
with the Fourier transform o¥/ogg(r) given by
Vogel|K—K'[) = lim| ———27as 47)
- =lim|———/,
oG " (k_kl)2+ 772

where a4 is the strong-coupling constaftaken here to be
independent of the quark-antiquark separatipror equiva-
lently, of the momentum transfeé@). One has essentially
carried out all necessary manipulations in the previous sub-
section. Indeed, Eq$37), (38), (39), (40), (41), and(42) are
completely general for any form of the potential. Thus, one
only has to calculate the necessary multipoles of the potential
in momentum space to complete the analysis. One looks to
the k=K’ limit for which the Coulomb singularity structure

is manifest. Fol, andV,, one finds(in the 7—0 limit):?

1 2 772
Vo(k,k’zk)=—8w2aszln(7 +O(F)' (48)
, , 1f, [4K? 7?
Vi(k,k'=k)=—-8m ass In 7 -1+0 @l

(49

with the leading singularities cancelling in forming the ratio
t

lim
1]*}0

Vy(k,k =k)

Vo(k K =k) _ im

1]~>O

1—;+0( 2lk%) | =1
In(4k2/ 72) 7 '

(50

One could also employ a mixture of scalar and timelike

structures for the potential:
T1=xy399+(1-x)1,1, (43)

wherex denotes the fraction of timelike structure. Then,

V7 (kk')=Vo(k,k'), (44)
V= (k,k')=Vo(k,k' i 2x—1 Kk ValkK')
IOVl OB B T 2TV EEG otk

(45)

Thus, one sees tha, (k,k)— 1, as before. For the vector
case one observes, from Eg2), that the minus sign iV,
leavesV™ positive, leading to a positive-definité™ (in fact,
since V™ is repulsive,H~ does not even support bound
state$. However, in contrast to the confining potential, the
stability of the RPA matrix in the present case is not assured,

°The OGE subscript will be discarded, and future references to
V will be taken as indicating the Coulomb potential, unless other-
wise noted.
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as the “nonrelativistic” equation foH* can become un- To date, no analytic solution for the ground-state energy
bounded from below for sufficiently larges. This implies of the semirelativistic Coulomb problefiEq. (51)] exists.

the existence of an upper limit on the effective strong-Thus, we determine an upper bound for the ground-state en-
coupling constant that one can use for a timelike or vectoergy (Ey) by using a Rayleigh-Ritz variational method. That
Coulomb potential in Salpeter’s equation. This will directly is, given a trial wave functioh?), an upper bound to the
affect the determination of wave functions and spectra withirground-state energy is given by the expectation valul of
the model. Thus, it becomes necessary to determine an upper

limit on « in order to avoid the instability. This upper limit Eo<(H)=(¥[H|¥); (P[¥)=1. (53

will be determined from the eigenvalue equation feér, ) ) ]
namely, from the “semirelativistic’ Coulomb problem. [N practice, one attempts to include the relevant physics by
Note, from Eq.(39), that in the vector case one solves theincluding a set of variational parameters ifi®). Then, one
semirelativistic Coulomb problem—with a strong-coupling Minimizes Eq.(53) with respect to those parameters to de-

constant that is four times larger than the originat termine the variational bound and the “optimal¥). In
configuration space, the variational wave function is taken to
a=4a;. be
This is a reflection of the strong upper-to-lower coupling 1
induced by the spacelike component of the vector Lorentz W(r)=/7zRm), (54)
structure. Hence, for both timelike and vector cases, one has
to determine an upper limit fogg at which Salpeter’'s equa- re
tion becomes unstable, noting that the upper limit for the R(r)=Ngr—e "[1+c (yr)+cy(yr)2+---], (55
vector case will be one-fourth that in the timelike case. r
o where the normalization constant is given by
C. Determination of the ground state energy
at the “critical coupling” (27)1+26 172
NR: ) . (56)

In this section we present the best determination, to date,
of the ground-state energy of the semirelativistic Coulomb E o
problem at the critical coupling. Strictly speaking, this dis- n.m=0
cussion is not essential to the stability analysis; however, Wl
have included it for completeness. The most important resu

Cnfmcm

I'(1+n+2e)

I ote that this form of the wave function is appropriate for
. . e . S . theL =0 channel—where the instability should first develop.
of th(|s §e0t|on, pertaining to the stability analysis, is given "The expansion for the variational WavZ:‘ function is compIeF:e
Eq. (65). ; : . . ;

One is interested in the spectrum of the semirelativisticg?gé:[?:;ﬁlrgnmlbs F:?gg?/em”[egl]by|nth§aﬁ?$?glrc ;OI':JF::aor\]/vg;I:P )

Coulomb Hamiltonian L L
coupling limit (#<<1) one recovers the nonrelativistic result

a by choosinge=1, y=Ma/2, andc,=c,=---=0, i.e,,
H=2k*+M?— =i a>0. (51) ,
o
. . . . E=2M(1——>, (57)
As we mentioned in Sec. lll B, the existence of a single 8

negative eigenvalue, of eithét™ or H™, suffices to signall

the instability. If the Hamiltoniar(51) is unbounded from M3a®
below, or is bounded but has at least one negative eigen- R(r)= Te '
value, then the RPA instability develops. In 1977, Herbst

[12] was able to show thd®) if a>a =4/m, then the semi- |n contrast, in the strong-coupling limit{~ a;) one expects
relativistic Coulomb Hamiltonian is unbounded from below; that the wave function will become localized near the origin,
(b) if a<a,, then all eigenvalues are greater than or equahs the energy can benefit from the strong Coulomb attraction.

(58)

to 0. Specifically, Herbst showed that Indeed, the asymptotic behavior of the wave function near
5 the origin is known analytically22,23
o
E=2M 1—(—) ; fora<ag. (52 -
dc
tal‘(EG
However, for the RPA equations to be stable one must show — == (59
. s v o
that all eigenvalues must be positive—a result that does not —€
follow from Eq. (52) at the critical coupling. Although our 2

primary interest in the spectrum of the semirelativistic Cou- . _

lomb Hamiltonian stems from the stability analysis of Sal-Note thate—0 as« approaches the critical coupling. The

peter’'s equation, the semirelativistic Coulomb problem jvariational wave function has also an analytic representation

still of considerable theoretical interd9,20. Thus, in this N Momentum space. That is,

subsection we present a variational analysis that, to our

knowledge, represents the best estimate of the ground-state _ i
(k)= 7Rk,

energy available in the literature. (60
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TABLE I. Minimization of the variational energy with respect c;=c,=---=0. Note, most of the details related to this
to the parameters anda for fixed a, asa approaches,. minimization procedure are presented in the Appendix. Next,
we compute the variational energy by using a two-parameter
a (H)IM a € (a andc,) wave function. This procedure is straightforward
0.100 1.9975 0.0495 0.9861 but tedious:. However, ‘i‘t enabk_as uE fco determine thg impor-
0.200 1.9899 0.0988 0.9660 tance of higher-order “corrections” in the polynomial ex-
0.400 1.9582 0.1956 0.8977 pansion as well as the rate of convergence t.o the ground-state
0.600 1.9007 0.2930 0.8041 energy. Our results are summarized below:
0.800 1.8081 0.3944 0.6825 (H) [0.968583, fora=0.7926 andc;=0.0000;
1.000 1.6583 0.5071 0.5222 EVE
1200 1 3639 0.6563 0.2703 M 0.968514, fora=0.9359 andcl—0.1779(.63)
1.220 1.3106 0.6778 0.2302
1.240 1.2435 0.7033 0.1817 Moreover, an initial study with three variational parameters
1.260 1.1461 0.7374 0.1144 (a, ¢q, andc,) suggests that the two-parameter energy is
1.270 1.0581 0.7657 0.05646 accurate to, at least, one part per million. To our knowledge
1.273 0.9933 0.7854 0.01533 this represents the most accurate value for the ground-state
1.2731 0.9874 0.7871 0.01170 energy of the semirelativistic Coulomb problem presented to
1.2732 0.9786 0.7897 0.006226 date. In this way, our small contribution to Herbst work
reads: Ifa<a.=4/m, then all eigenvalue§n units of M)
. are greater than or equal to 0.968514. Note, our results are
1 \F . I(l+n+ €) consistent with those presented by Raynal and collaborators
R(k)= K ;NREO Cn¥ (K24 42)TFnTeR2 in a comprehensive study of the semirelativistic Coulomb

problem[19]. Their analysis sets lower and upper bounds—
k differing by less than 1%—for the ground-state energy
ik (6D (0.9650<E,<0.9686) ata= .

The remaining question to be answered is how, if at all,

One should note that since the constituent quark mass is t#o€s the presence of the linear confining potential alter this
only dimensionful parameter in the problem, the dimensionStability analysis? The answer is that only the value of the
less ratio(H)/M is a function of only the coupling constant finite piece is changed, at=a.. An explicit calculation
a. In what follows, all expectation values will be written in gives for the expectation value of the confining potential

xsir{(1+n+ e)tan !

units of the constituent mass and expressed in terms of the (with ¢y =Cp=---=0)
dimensionless parametar= y/M. (V) o o
For values ofa not too close to the critical couplinga( o Za_M2+ VAR (64)

=<1.25< a~1.273) the minimization procedure f¢H)/M
is straightforward and yields the variational energy and OPThus. there is naO( e
timal parametersg and €) that are displayed in Table I. '
Note, the table reflects the appropriate parameters for t

casec; =Cy=---=0. In contrast, the minimization proce- e 4se of the additional dimensionful parametethe con-
dure is highly nontrivial n_ear_the critical co_uphrﬁgnd, th!JS’ tribution from the confining potential, unlike the Coulomb
for e—0) as, both, the kinetic and potential energy divergeqqnuiption, depends on the value of the constituent mass.
as 1k (see Appendix Hence, in order to compute the varia- Hence, for a Coulomb potential of the form of E46), the

tional energy for small values of we perform a Laurent  gapility of Salpeter's equation is achieved by demanding

~1) contribution to the expectation
hvalue of (H) coming from the confining potential; only a
ﬁositive contributiong/2aM?, remains at— 0. Note that,

expansion of the expectation value Hf i.e., that
(HY h_y NS 62 4/7~1.273, fortimelike;
—_— T — 6 LRI
M € or @s<| 1/7~0.318, for vector, (69

The first term,h_;, must vanish faster thaa~ (a.— a)*?

as a approaches the critical coupling; otherwise one would

contradict Herbst's findings. Indeed, we can extract the criti- IV. MESON SPECTRA

cal coupling @.=4/7) by demanding that the coefficient of L

the singular term in the series vanishes. Note, we have The heavy quarkoniacC andbb) and the light quarkonia

shown in the Appendix thdi_,; vanishes asd.—«) inthe  (uu and ss) are investigated in the instantaneous Bethe-

C1=C,=---=0 limit [see Eq(A13)]. Salpeter framework. The analysis is intended to be qualita-
In principle, we could find the variational energy in the tive in nature, with regard to various effects stemming from

a=a, limit by minimizing hg using the trial wave function the instantaneous approximation; hence a simple generaliza-

(55). In practice, however, we can manage only a small numiion of the Cornell potentigl24] is employed. The virtue of

ber of variational parameters. Thus, we proceed by, firstthis approach is its simplicity. The few parameters of the

minimizing the expectation value ¢ using only one term model, constrained by the stability analysis, will emerge

in the polynomial expansion in Eq(55), i.e., we set from the “best” fit to the meson spectra. One wishes to

independent of the constituent quark mass.
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TABLE II. Definitions of the various models used in the calcu-  TABLE Ill. Heavy meson parameters for Breit and Salpeter
lations; “mixed” and “timelike” refer to the Lorentz structure of models with mixed(scalar-timelike) and timelike confinement,
the confining kernel. The OGE kernel is always of vector type.  plus an instantaneous vector OGE contribution. An oscillator basis
with n,L=20 andB3=0.6 GeV was employed for the parameter

Mixed Timelike optimization.
Breit [V::Q X;=0.5] [V:ZO' Xo=1] Breit Breit Salpeter  Salpeter
Salpeter [V'~#0,x,=0.5] [V~ #0,x,=1] Parameters mixed timelike mixed timelike
M. [GeV] 1.168 1.379 1.251 1.126
reproduce the interesting physi¢s.g., hyperfine structuye M, [GeV] 4.573 4.781 4.623 4.561
through relativistic effects, rather than by a fine tuning ofs [Ge\?] 0.2991 0.1937 0.2570 0.2743
many parameters. ag 0.2678 0.4875 0.2872 0.2165

For the heavy quarkonia, the mass spectra are reasonabiy
described, but details such as the fine and hyperfine structure
are less so. For the light quarkonia, the mass spectra are les®bility analysisx, and «g are restricted to the following
reasonably described: the pion cannot be accurately modmlues in the Salpeter model in order to have real eigenval-
elled within this framework without losing the remaining ues:
spectra. At the very least, a more sophisticated phenomenol-
ogy will be required to accurately describe static properties
of the heavy and light quarkonia.

For the remainder of the section, the following program is
carried out: the various models to be considered within theRecall that a typical value forg is 0.24[27]. One should
Salpeter framework are defined. Then, phenomenological fitote that the Breit{* ~=0) model has no such restrictions
to the experimental spectra for heavy mesons are carried ouh principle, saving the possibility of the spectrum becoming
and a quantitative analysis of the various approximations ininbound from below if the strong-coupling constant be-
the Salpeter framework and their effect on the spectra angomes too large, similar to the problem encountered for the
splittings is performed. The latter half of the section is con-relativistic Coulomb problem of Sec. lIl. However, for com-
cerned with the light mesons. parative purposes, is restricted to the same range in both

models.

1
0.5x,<1.0; az=—~0.318.

A. Fits to heavy mesons
) ) 2. Data and procedures
1. Form of the interaction . ) . .
One solves for eigenenergies of the Bréib coupling

The_ spatial part of _the potential is based_ on the Co_melbetvveen positive and negative energy statesd full Sal-
potential; that is, confinement is parameterized by a lineapeter equations, expanding the Salpeter partial-wave ampli-
potential plus a constant, and the asymptotically-free regimg,jes in an oscillator basis of 20 states per partial wave
is parameterized by an instantaneous OGE potential. SiNC®@ 20 or up to 19 nodes in the amplitudes insure

. . R max !
good description of the mass spectra of the heavy quarkonigyeqyate convergence of the solutions, and with an oscillator

can be obtained with a linear confining potential plus thep,rameter valug=0.6 GeV suitable for the heavy mesons.
nonrelativistic reduction of the OGE piece, this is a ”at”rallnitially there are six free parameters in the mode): «
’ . S

first choice for the Salpeter equatiof©ne can, of course, M., M, X, , andc, . The samer, x,,, anda, are used to
H H H H H c» » Na [ » Na S
gengrahze the OGE piece to include running coupling effects".it both charm and beauty, is set to zero, assuming the
motlva_ted from perturbatlvc_a QC.D' long-range part of the kernel to be less important for the
A mixture of scalar and timelike Lorentz structures for the heavy mesons. The scalar-timelike mixing parameewil

c;Snfénlnr? kernel |stcgr:ﬁ|dtered,da§ ta nurfnberl of a(;Jtthor%e allowed to take only the values 0.5 and 1.0, corresponding
[25,26 have suggested that an admixture of scalar an IM&x equally-mixed scalar and timelike structure and pure time-

like confinement is necessary to reproduce the experimentﬂ e structure, respectively. Hence, the model for the heavy

spectra and splittin'g_s. The ull vecto'r structure is UOt inc.o.r'mesons will only have four free parameters, which are deter-
porated in the confining kernel, as this leads to an 'nStab'“nfnined through minimization of thg? functior,1

similar to the scalar case. The full vector structure in the

Feynman gauge is used for the OGE kernel. Thus, the instan- N (i Eyor)?
taneous Bethe-Salpeter kernel is parameterized as Y30, a5, Mg ,Mp)= >, '2”‘—'3“’) (67)
i=1 oipt Tiexp
_ 0.0 %s
V(f)rlz—[Ur+Ca][xa717’2+(1_Xa)1112]_[7} Y1Y24:  using a nonlinear optimization routirf@g]. The E; ¢, and

(66) Tiexp re the experimental masses and associated errors cho-
sen for the fit, here the first two observed Xtates of
whereo is the confining string tensiorx,, controls the mix-  b-quarkonium, the first two observed Gstates and the first
ing between scalar and timelike confinement, ands the five observed 1 states of charmonium. These states are used
(scale-independentstrong-coupling constant. One should to determine a set of parameters for each choice of Lorentz
note thato, c,, X,, as, and the quark mass are the only structure of the confinement. Then, one observes how each
“free” parameters in the approach. From the results of theof the corresponding spectra agrees with the experimental
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TABLE IV. Charm quarkonia masses in GeV for Breit and Salpeter models with nisadar-timelike)
and timelike confinement, plus an instantaneous vector OGE contribution, for the parameters as in Table Ill.
The calculated states are aligned with the observed states according to their spin parity, starting from the
lowest mass values. An asterisk on an observed value indicates a state employed in the fits. An oscillator
basis withn,,,,=20 andB8=0.6 GeV was employed for all states.

Breit Breit Salpeter Salpeter
Meson Jm 3+ M expr. mixed timelike mixed timelike
7e 0 15, 2.979 2.984 2.977 2.958 2.968
NN 1 33, 3.097* 3.044 3.111 3.099 3.056
Xco 0" 3P, 3.415 3.360 3.326 3.372 3.338
Xe1 1* %P, 3.511 3.421 3.468 3.412 3.424
he 1t P, (3.526 3.440 3.514 3.468 3.455
Xc2 2% sp, 3.556 3.467 3.562 3.499 3.513
Te 0~ s, (3.594* 3.645 3.597 3.622 3.647
W 1 33, 3.685 3.688 3.675 3.693 3.705
W 1 5D, 3.770 3.726 3.755 3.739 3.732
W 1 3s, 4.040 4.167 4.099 4.134 4.218
o 1 5D, 4.159 4.192 4.152 4.162 4.234
o 1 3s, 4.566 4.459 4.499 4.659
o 1 %D, 4.415 4.583 4.499 4.519 4.669

data overall. Th&;y, and o; 4, are the calculated masses andexception of theh., which was taken from Ref{30]).
their errors within the modewhich were taken to be 5—-10 Graphical depictions of the spectra for eathchannel are
MeV). The incorporation of a theoretical error allows one, inshown for the Breit-Timelike model in Figs. 1 and 27
principle, to “force” a better fit to some states, at the risk of states are named by their mafi¥"1L; components. One
possibly degrading the fit with respect to the rest of the specnotes that for all cases, the parameters fall within commonly
tra; however, all states were weighted equally in this regardaccepted ranges for quark potential models.

The minimization results for the four parameters for the Figure 3 shows the convergence of the ground and first-
four models(see Table Il for the appropriate definitiorere  excited state energies as the number of states in the basis is
summarized in Table Ill, while the charm and beautyincreased; adequate convergence is achieved with 20 states
quarkonia spectra calculated for each model are summarized the basis. The numbers quoted for the higher-lying states
in Table IV and Table V. The experimental masses werdn Table IV and Table V should be noted with caution, as
taken from the Review of Particle PropertigZd] (with the  typically a 10—20 MeV shift in the energies for the fourth-

TABLE V. Beauty quarkonia masses in GeV for Breit and Salpeter models with nisaadar-timelike)
and timelike confinement, plus a vector O@&stantaneous Coulomigontribution, for the parameters as in
Table Ill. The calculated states are aligned with the observed states according to their spin parity, starting
from the lowest mass values. An asterisk on an observed value indicates a state employed in the fits. An
oscillator basis witm,,,=20 andB3=0.6 GeV was employed for all states.

Breit Breit Salpeter Salpeter
Meson J” I M expt. mixed timelike mixed timelike
Mo 0 15, 9.440 9.377 9.373 9.432
Y 1~ 33, 9.460* 9.468 9.459 9.485 9.488
Xbo ot 3p, 9.860 9.821 9.853 9.825 9.807
Xb1 1+ 3p, 9.892 9.843 9.905 9.850 9.827
Xb1 1t p, 9.850 9.921 9.841 9.826
Xb2 2+ 3p, 9.913 9.858 9.940 9.865 9.845
s 0~ 15, 9.995 9.992 9.949 9.962
Y 1” 33, 10.023 10.013 10.023 9.999 9.994
Y 1~ 3D1 10.112 10.164 10.100 10.077
Xb0 o* P, 10.232 10.245 10.230 10.214 10.211
Xb1 1+ 3p, 10.255 10.263 10.266 10.236 10.229
Xb2 2+ 3p, 10.268 10.277 10.293 10.249 10.244
M 0~ 15, 10.397 10.350 10.332 10.352
Y 1~ 33, 10.355 10.412 10.371 10.367 10.375
Y 1~ D, 10.477 10.462 10.434 10.432
Y 1~ 33, 10.580 10.748 10.655 10.675 10.702
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to-fifth eigenstates in going from 18 to 20 basis states idere. This latter approach differs drastically from the view-
encountered. In particular, the larger differences in the tablgoint adopted in this work, which is that the onset of imagi-
with respect to the experimental data for the higher excitedhary solutions should indicate that a particular interaction is
states could be indicative of an insufficient number of statephysically inappropriate within the mod¢lt is rather amus-

in the basis; of course, limitations intrinsic to our simple ing to note that, when examining a kernel that can lead to
instabilities, one can “tune” the oscillator basis to get ap-
Also, all the models appear to be somewhat deficient irparently stable solutions, but that either shifting the value of

comparison to results given by Lor{g] and Spence and g or increasing the number of states in the bdsisboth
Vary [27], which examine both Breit and Salpeter equationsreveals the instability.

for a scalar confining kernel and a vector Coulomb kernel.

model may also contribute to the discrepancy.

However, those studies allowed more freedom in determin-
ing the Salpeter solutions. Long utilizes an oscillator basis

3. Comparison of approximations to Salpeter’'s equation

but minimizes each eigenstate separately; each state has aTable VI lists the first four eigenenergies for the pseudo-
different value ofg characterizing it, rather than one value scalar and vector channels, using the Salpeter-mixed param-
for all states. While this procedure does minimize theeters from Table Ill, to illustrate the various relativistic ef-
eigenenergies with fewer states in the basis, the disadvantafgcts in Salpeter’s equatiofiThese are also illustrated in Fig.

is that the eigenstates are not orthogonal, which would be 4.)

problem in the calculation of matrix elements, and in ensur-

The results show a consistent decrease in the energy of a

ing the proper normalization of bound states. Spence andiven level as more relativistic effects are included in the

Vary use a spline bas[81] as well as an additional interac- calculation. In going from the Schdinger casenonrelativ-

tion (a so-called “Breit” interaction which makes compari- istic kinematic$ to the spinless Salpeter cagelativistic ki-

son more difficult. However, in their work, solutions with nematic$, the energy decreases simply because the nonrela-
imaginary rootgfor the light mesons in particulawere dis-  tivistic kinetic energy increases quadratically for large
carded on the claim that the imaginary roots appear far fronmomenta, while the relativistic case only increases linearly;
the real roots of interest in the complex plane when thesince the potential is the same for both cases, the states are
spline basis is chosen as in the stl@y]—a procedure that more “bound” in the relativistic case. For the Breit case
yields (apparently stable solutions of the Salpeter equationwith no lower components, the relativistic normalization
for scalar confinement, in contrast to the results presente(E,+M/2E) of the free Dirac spinors suppresses the over-
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all potential for large momenta with respect to the nonrelain the Salpeter case always leads to an added attraction, and
tivistic case, as the normalization varies from 1 in the ex-consequently to energies reduced relative to the Breit case.

treme nonrelativistic limit to3 in the extreme relativistic
limit. However, both attractive and repulsive contributions togies are decreased still further, for both the Breit and Sal-
the potential are suppressed, and the energy is still decreaspdter cases. In particular, the spacelike part of the vector
relative to the nonrelativistic case. The inclusiorZofraphs
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With the introduction of the lower components, the ener-

potential (y;-v,) makes a large contribution. The decrease
in going from Breit to Salpeter is realized from the fact that
the spacelike part connects the large component of a particle
spinor to the large component of an antiparticle spinor in
V*~, hence the contribution from th& graphs is much
larger than that of the direct graphs alone.

4. Fine structure analysis

One can obtain information on the spin dependence, and
thus on relativistic effects, of the effective potential for the
heavy quarkonia by examining thewave fine structure. In
perturbation theorywhich is a good approximation inc
andbb), to O(1/M?) one can assess the relative contribu-
tions from a Breit reduction of the potential as

AP 010 = Mot asdS1-S)

+ (XLsL . S+ afT<Slz>, (68)

FIG. 3. Convergence of the charmonium ground and first ex-
cited states for the pseudoscalar channel as the number of states in
the oscillator basis is increased, for Salpeter with mixed confinewhereass, | s, anday arise from the spin-spin, spin-orbit,
ment as in Table Ill. The basis parameterds-0.6 GeV for all

cases.

and tensor components of the potential, and
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TABLE VI. Various relativistic effects in Salpeter's equation displayed in the pseudoscalar and vector
channels for charmonium, using the parameters from the Salpeter-mixed model as in T&xdmdD label
the dominantL-wave component in the calculated energypwer on and lower off refer to the lower
components of Dirac spinors being present or not, respectively, in the calculation.

Spinless Breit Salpeter Breit Salpeter
J” Schralinger Salpeter lower-off lower-off lower-on lower-on
0~ 4.302 S) 4.140 ) 3.154 ) 3.104 §) 3.049 ) 2.958 ()
6.407 ) 5.774 ) 3.761 ) 3.740 ) 3.659 ) 3.623 )
8.464 () 7.193 ) 4.200 S) 4.187 ) 4.108 ) 4.084 )
10.499 ©) 8.480 (9 4.562 () 4,552 () 4.481 ) 4.461 )
1- 4.302 ) 4.140 ) 3.154 ) 3.149 ) 3.107 ) 3.099 )
6.407 ) 5.774 ) 3.761 () 3.758 §) 3.699 ) 3.693 §)
6.442 D) 5.880 D) 3.817 D) 3.816 D) 3.747 D) 3.739 D)
8.464 (S) 7.193 O 4.200 ) 4.198 () 4.141 ) 4.134 )
25(S+1)-3 [ +%, for s=1, the tensor and spin-orbit contributions; this can be under-
(S,-S)= = (69) stood _by r_ememberlng _that th(_e spin-spin term in the Breit
4 -3 for S=0; reduction is a contact interaction; since tRewave states
have no support at the origin, spin-spin effects are minimized
1 in this channel(They are not zero here because relativistic
L-S=5[30+1)-L(L+1)=S(S+1)] corrections in the Breit and Salpeter models regularize the
contact term). The 1P, state is off in all models, but the error
-2, for 3Py, is about 1% at mosf0.75% for the Salpeter-mixed modgel
1 for 3p For both Breit and Salpeter models, an appropriate mixture
) 1 . . . .
_ s (70) of scalar and tlmellke cgnfmement would be required for a
+1, for °Py, closer match with experiment for theP; bb state.
+0, for Py;
B. Fits to light mesons
(S12=(14(S;-1)(S,:T)~5S1- S,]) (77) 1. Form of the interaction
4 The interaction for the light mesons is taken to be the
=( - [FL?-3L-S-3(L-9?]) (72 same form as for the heavy mesons. The flavor-independent
2
(2L+3)(2L—1) OGE kernel, however, leads to degeneratand » masses;
one would need to take higher-order diagrams into account
—4 for 3p that would lead to a flavor-dependent interaction, such as
’ 0 annihilation diagrams. These, however, are nontrivial to con-
+2, for Py, sider in the instantaneous framework and are not treated in
=1 —2z, for3p,, (73)  this work. It should be noted that there are other QCD-based

candidates for flavor-dependeqq interactions that have
+0, for P, been computed by 't Hooft and others from instanton effects
[32,33. Such an interaction has been employed in a study
similar to this one by Resaet al. [34] for an effective de-

(the last two expressions for the tensor component applyingCription of the light meson spectra

for the diagonal elements onlywith .7, the unperturbed
mass. To the extent that perturbation theory is valid for : - :
heavy-quark spectroscopy, the couplings describe fundamen TABLE VII. Spin-dependent parameters for spin-spin, spin-

tal parameters of nature. Solving the four equatifs oFbit, and tensor contributions to the effective potential for charmo-
P ) 9 q §. nium. “COG” refers to the center of gravity of a given multiplet.

(68)] with the four unknowns yields the data in Tables VII All val listed . it Vv
and VIII. Perturbatively, the mass of tHé, state should be values listed are in units dfGev]

equal to the center of gravifCOG) of the 3P, multiplet Breit  Breit Salpeter Salpeter
1 Parameter  Experiment mixed timelike mixed timelike
3 _ 3 (3 /(3
COG(*Py) = g[5.7(*Py) +3.7(°P1) +.74(*Py)], COG(P,) 3525 3440 3504 3456 3.464
(74  'P: 3.526 3440 3514 3468 3.455
My 3.526 3.440 3.507 3.459 3.462
with corrections up toO(1/M?). (One notes thatZ, is ass —-0.001 —0.0002 —0.010 —0.012 0.009
equal to the COG in the limit of a zero-range spin-spin in-q, ¢ 0.035 0.029 0.063 0.043 0.051
teraction) The spin-spin contribution is, except for the 4, 0.010 0.005 0.013 —0.001 0.006

Salpeter-mixed model, an order of magnitude smaller than
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One change from the heavy quarkonia is that the constaritas been argued for on other grounds: the necessity of regu-
in the confining kernel is permitted as a free parameter. Thatrizing the divergence which appears in treating the linear
this is necessary is evinced by Fig. 5, which illustrates theconfining kernel in momentum space leads to the appearance
m-p ground-state splitting, using an up mads, =My of a negative constant in the potenti&b]. It has also been
=0.154 GeV, a string tensiom=0.2867 GeV, and initially  argued that the constant can be understood as arising from
a strong-coupling constant;=0.2427, taken from Spence the gluon condensate of the nonperturbative vacligsj.
and Vary [27]. This coupling @) is then increased to For heavy systems, its inclusion is not as important, but for
as~0.318, the maximum allowed value by the stability light systems(and heavy-light systemsvhich are affected
analysis in Sec. lll. The maximum-p splitting is less than more so by the long-range potential, its inclusion is neces-
400 MeV, still about 230 MeV less than the experimentalsary for even a fair description of spin-averaged mass spectra
value. The simplest prescription for adjusting the masses im Schralinger and relativized Schdinger(i.e., spinless Sal-
order to eliminate the difference is to incorporate a constanpete) approaches; hence, its inclusion in the Breit and Sal-
c, into the confining kernel. This “confinement intercept” peter models here is perhaps justified.

TABLE VIII. Spin-dependent parameters for spin-spin, spin-orbit, and tensor contributions to the effec-
tive potential for beauty quarkonium. “COG” refers to the center of gravity of a given multiplet. The given
1P, experimental mass is actually the calculated COG. All values listed are in urfi@ed].

Parameter Experiment Breit mixed Breit timelike Salpeter mixed Salpeter timelike
COG @Py) 9.900 9.849 9.919 9.852 9.833

p, 9.900 9.850 9.921 9.841 9.826

My 9.900 9.849 9.919 9.852 9.833

ass 0.0001 —0.001 —0.002 0.015 0.009

aLs 0.014 0.010 0.023 0.010 0.011

ar 0.003 0.002 0.005 0.002 0.002
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p mesons, for mixedscalar-timelike) and pure
p L timelike confinement. An oscillator basis with
spliting | | | ... Nmax=20 andB=0.3 GeV was used. The model
Mevy | parameters were taken from R&R27], with the
— S resultant splittings indicated by solid lines. The
150 b E— dotted lines are withwg=0.318.
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Additional complications arise from the fact that in Sal- M, are fixed by fitting to the lowest 1state, the two lowest
peter's equation—and in general, any two-body quasipotent® states, and the lowest" 2state foruu, minimizing the
tial equation—a constant term in the confining kernel doeshi-squared function
not solely yield an additive shift in the meson mass spectrum N
but provides a dynamical contribution as well, unlike the 2 -3
Schralinger or spinless Salpeter cases, where one can view it X(0,C5,5,My) & olyto
as a “negative mass” added to the Hamiltonian. Even with
other (repulsive interactions present,, can be increased to with the errors chosen as for the heavy mesdhswas then
the point where the Salpeter solutions exhibit RPA-type in-obtained by taking the parameters from the fit, and adjusting
stability; the corresponding effect on the Breit solutions isit to reproduce thep mass.
that they become unbounded from below, as with the rela- The minimization results for the four parameters for the
tivistic Coulomb problem of Sec. IIl. four models(Breit-timelike, Breit-mixed, Salpeter-timelike,
and Salpeter-mixedare summarized in Table IX, while the
light and strange quarkonia spectra calculated for each model
are summarized in Table X and Table XI; graphical depic-

As in the case of heavy quarkonia, eigenenergies of théons of the spectra for each” channel are shown for the
Breit (no coupling between positive and negative energySalpeter-mixed model in Figs. 6 and J" states are named
state$ and full Salpeter equations were solved for, expandby their main?S*L; components.
ing the Salpeter partial-wave amplitudes in an oscillator ba- The Salpeter-mixed model is the best model in this case.
sis of 20 states per partial wave to insure adequate convefhe problem with it, however, and with the Salpeter-timelike
gence of the solutions, and with an oscillator parameter valuenodel, is that in order to fit thp, ¢, had to be increased to
B=0.3 GeV suitable for the light mesons. Initially, there arethe point where ther became unstable. The constituent mass
six free parameters in the modet; a5, M, Mg, X,, and  values fall within accepted ranges for the Salpeter-mixed
c,, WhereMq is the strange quark mass, will be allowed case and the confinement slope is larger than the empirical
to take only the values 0.5 and 1.0, as beforec, , as, and  valueo~0.2 Ge\? obtained from spectroscopy. However, it

_E. 2
(Elth EI;XD) , (75)

iexp

2. Data and procedures

TABLE IX. Light meson parameters for Breit and Salpeter models with mijse@lar-timelike) and
timelike confinement, plus an instantaneous OGE contribution. An oscillator basisnyitx=20 and
B=0.3 GeV was employed for the data fitting.

Parameter Breit mixed Breit timelike Salpeter mixed Salpeter timelike
M, [GeV] 0.2862 0.3393 0.3229 0.4196

M [GeV] 0.5500 0.5720 0.5610 0.6240

o [GeV]? 0.3841 0.2576 0.3744 0.2574

c, [GeV] —1.448 —1.089 —1.427 —1.157

ag 0.2919 0.3064 0.2690 0.2690
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TABLE X. Light quarkonia masses in GeV for Breit and Salpeter models for the parameters as in Table
IX. The calculated states are aligned with the observed states according to their spin parity. An asterisk on an
observed value indicates a state employed in fitting. Ah indicates imaginary eigenvalues.

Meson J7 25"l ; Mg,  Breit mixed Breit timelike Salpeter mixed  Salpeter timelike

T 0~ s, 0.140 0.627 0.642 I I

p 1 33, 0.768* 0.771 0.770 0.768 0.769
ag 0" 3P, 0.983 1.066 0.839 1.014 0.787
by 17 p,  1.23% 1.203 1.153 1.195 1.148
a; 1t °p, 1.260¢ 1.169 1.033 1.205 1.081
o’ 0 15, 1.300 1.447 1.368 1.370 1.332
a, 2% ’p,  1.318 1.320 1.320 1.319 1.317
o' 1 3D, 1.47 1.482 1.316 1.512 1.360
? 2- D, 1.597 1.504 1.622 1.532
T 2" D, 1.670 1.607 1.566 1.627 1.573
o 1 33, 1.70 1.556 1.451 1.570 1.460
" 0 15, 1.77 2.042 1.940 2.006 1.928

is still in agreement with the lattice result=0.33"3%2 case the strange-quark mass was adjusted to reproduce the

GeV? [35], although this last comparison is not very signifi- ¢; the other states are predictions of the model.
cant because of the large error bars. The confinement offset
is comparable to that obtained from the prescription
c,~ —2.\Jo [35]. The Breit cases fit the, but cannot repro-
duce ther at all. That some difficulty should be encountered  We have used Salpeter’s equation to study the light- and
in describing the pion in these models should not be unexheavy-meson spectra. This study was preceded by a stability
pected. The mass of the is commonly explained in the analysis of Salpeter's equation that proved essential for plac-
framework of broken chiral symmetry, where it correspondsing limits on the form of the instantaneous kernel. We stress
to an almost massless Goldstone boson; such models incafat because of the RPA structure of Salpeter's equation a
porating chiral symmetry have been investigated by Grosstability analysis must always be performed—regardless of
and Milana[36]. the form of the interaction kernel.

In this case, the necessity for the coupling between posi- The two main results that emerged from the stability
tive and negative energy states for the light mesons is welinalysis—none of them original to the present work—@je
illustrated; theZ graphs provide an additional attraction that the Lorentz character of the confining kernel must be time-
may be necessary in describing theas a deeply bound state like or a mixture of scalar and timelike fornf8], contrary to
of a quark and an antiquaifalthough in the present model the usual assumption of pure scalar confinement,(@nhdn
the attraction is too strong in this channélhis need for the  upper limit of «g= 1/ was set on the strong-coupling con-
V*~ component in the Salpeter equation agrees with thetant used in the OGE kerngl2]. This value, and the cor-
results of Garat al.[25] as well, albeit for different reasons. responding value for the ground-state energy, were obtained
The ss states are well-described, with the exception of thefrom a variational solution to the semirelativistic Coulomb
0" states. It is known, however, that these scalar states cgmoblem. To our knowledge this is the best estimate pre-
not be represented as simpjg stateg37]. Note that in this  sented to date. Having placed limits on the interaction kernel

V. CONCLUSIONS

TABLE XI. Strange quarkonia masses in GeV for Breit and Salpeter models for the parameters as in
Table IX. The calculated states are aligned with the observed states according to their spin parity. An asterisk
on an observed value indicates a state employed in fitting.

Meson J7  2St1L, Mept — Breit mixed  Breit timelike — Salpeter mixed — Salpeter timelike

? 0 1s, 0.928 0.929 0.640 0.741
fo o* 3p, 0.974 1.401 1.198 1.422 1.164
@ 1 85, 1.01¢ 1.019 1.020 1.019 1.020
fo 0* 3p, 1.400 1.764 1.570 1.784 1.859
f, 1t p, 1.426 1.487 1.346 1.501 1.369
f, 1t p, 1.515 1.431 1.483 1.412
f, 2+ 3p, 1.525 1.577 1.587 1.581 1.536
fo ot P, 1.587 2.647 2.398 2.636 2.390
? 2" D, 1.920 1.777 1.927 1.788

? 2" D, 1.928 1.822 1.923 1.817
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we proceeded to carry out a detailed study of the heavy andiould appear to rule out using the Breit models for a de-
light quarkonia. scription of static meson properties. Whether or not this is
Static properties of the heavy and light quarkonia withinalso sufficient to rule out the use of Salpeter’s equation is not
Salpeter’s framework have been examined using a generalglear at this point. Overall, all of the features of meson spec-
zation of the Cornell potential. For the heavy quarkonia thetroscopy could not be simultaneously satisfied using the rela-
relativistic corrections coming into play in the various mod- tively simple kernel employed here. At the very least, a more
els were examined. These models included Salpeter angbphisticated phenomenology is required, especially for the
Breit approximations having, either, a timelike or a mixture ight mesons and in particular for the pion. It is likely that
of scalar and timelike Lorentz structures for the confininggome form of chirally-invariant model will be needggb]. It
potential. Recall that the Breit approximation is obtained byseems clear, however, that keeping the couplings between
setting \_/+7 to zero. Meson masses were adequately depositive- and negative-energy states is necessary for any re-
scribed in all the models, with the best results obtained usingjistic description of at least the light spectra, and certainly
the Br_eit model with_timelike confinement. However, a per-for a combined heavy-light analysis. Moreover, it should
turbative study of spin-dependent effettalid for the heavy  gi50 pe clear that regardless of the form of the kernel, the
guarkonia reveals that the fine structur®4{wave splitting$ stability analysis used here must be employed in any study

and hyperfine structur€’$,-°D; splitting) cannot be simul-  that has Saipeter's equation as the underlying dynamical
taneously described in any of the models by simply varyingramework.

the mixing of scalar and timelike confinement. For the light
qguarkonia, the mass spectra, except for the pion, are best

desc_ribed by the Salpeter model with mixed scalar-timelike ACKNOWLEDGMENTS
confinement. However, none of the models were able to de-
scribe the pion, or equivalently, the-p splitting. For ex- We thank D. Robson for many helpful discussions. This

ample, in the Breit model the-p splitting is a “mere” 180 research was supported by the Florida State University Su-
MeV. This difference can be pushed up to about 400 MeV inpercomputer Computations Research Institute and the U.S.
the Salpeter model at the critical coupling; still this value isDepartment of Energy Contracts No. DE-FCO05-
substantially smaller than the experimental splitting of 63085ER250000, No. DE-FG05-92ER40750, and No. DE-
MeV. The additional attraction needed to describe the pior-G05-86ER40273.
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APPENDIX: EXTRACTION OF THE COEFFICIENTS TO (V) , yT'(2€) al'(2¢) 1
—_— —_— = — —_— = — a -,
O(e) IN THE VARIATIONAL ENERGY M a MT(1+ 2¢) a 26T (2¢) (—a )E
For a variational wave function of the forms given in Eq. (A3)

(55 and Eq.(61), one wishes to calculate the matrix ele- ) .

ments of the kinetic energy operator and potential operator a¢hereI'(z) is the gamma functioi38,39. Note that Eq.
e—0. These matrix elements diverge logarithmically for (A3) is an exact result; there are no terms of higher order in
large momenta and small radii in their respective integrands¢ N the series. The kinetic piece requires a little more care;
however, one can examine the behavior of the variationa®"€ flrst_ rewrites the integrand using a standard trigonomet-
energy for smalle, and determine the critical value of the € identity:

Coulomb coupling at which the system becomes unbounded.

In order to compute the variational energy for small values 5 P
of € we expandT) and(V) as Laurent serieg38] in e: Q_ ” 2y, 2K+ M i
= | 4wkedk
M 0 M A
Ty t_
u:_1+t0+t16+..., (A]_) % l\/ZN I'(l+e¢)
M € k V7 R—(k2+ 72)(1+e)/2
v <11
U_1 X i 1
V=T+UO+016+”-. (A2) SIF{(1+6)tan 'Y)H
y 1+2€ Kk
A 2 —
One wants the leading coefficiertts, ,v _; and the zeroth- 4 ZM) [F(1+e€)] wodk M) +1
order onesty,vg as well. By minimizinghg=ty+v, we = T(1+2 j M 7K+ A2\ 17e
could find the variational energy in the= a, limit. First we I ) 0 27
calculate the expectation value df using only one term in M
the polynomial expansion in Eq(55), i.e., we setc, K
=c,=---=0. Starting with the potential, one has x{l—co§ (1+ e)tanl(;)“. (A4)
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The second integral in E§A4) is convergent, so there is no
ambiguity in settinge=0 explicitly. The first integral con-
tains a logarithmic divergence for largeone adds and sub-
tracts this divergence to obtainfwith a=y/M and
k/IM —Kk)

(M _(Me (Mo

M M M (A5)
(T)c 42 T(1+e))? (= [ JK+1-k
M al(1+2¢) fo (K+ad)ire
k>+1 2 . k)
_(—kzramco (1+e)tan 3l (AB)
(Mo 4(2a)"" 2 I'(1+e)]? (=
M~ al(1t2e) fo (Cradte
(A7)

(T)p is logarithmically divergent for large momenta, for
e€=0, so one evaluates the integral femonzero, then ex-
pands about=0 up toO(e). One then has
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One should note that in going from E@8) to Eq.(A9), one
must be careful to includall factors in constructing the
series expansion.

The remaining integrals i{iT) are convergent, and one
can sete=0 explicitly. Using

R H e
cos tan — = =,
a k24 a2
one has
(T)c 8a(~ 5 VK2+1-k  k%+1a? ALO
M 7 kZ+aZ  (k®+a?)? (A10)
8a (= k%Jk?+1—kk?®+a?
=— NIV (Al11)
T Jo (k +a%)
—Sa? Al12
— c(a). ( )

Then, in the limit thate— 0, (H)/M can be written as

(T)o _ 4(2a)'" *I(1+e]* 1 A8) (H) [/4 1 8 _ 8a-
M al(1+2e)  2ea* ™M |z majalot —In2+ —Te(a)+0(e),
(A13)
= 4a 1+8a| 2+0 A9
\7le n (e). (A9) whereTc(a) is given in closed form foa>0 by
|
(|2+| + 1-2a° ‘% 1—aj a<l
n na— - tan ;
2 2a\1-a? a
ot 1-2a? L <a+ a2—1> 1
n2+Ina— = =In
2 2aJa?-1|2 \a—a?-1

\

By demanding that the coefficient of the singular tehm, in the series vanishes we can extract the critical coupling

a.=4/m. Furthermore,
(E/M=0.968583) and the optimal parameter<0.7926).

by minimizing the zeroth-order coefficiehty we can derive the variational

energy
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