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Stability analysis of the instantaneous Bethe-Salpeter equation and the consequences
for meson spectroscopy
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We investigate the light and heavy meson spectra in the context of the instantaneous approximation to the
Bethe-Salpeter equation~Salpeter’s equation!. We use a static kernel consisting of a one-gluon-exchange
component and a confining contribution. Salpeter’s equation is known to be formally equivalent to a random-
phase-approximation equation; as such, it can develop imaginary eigenvalues. Thus our study cannot be
complete without first discussing the stability of Salpeter’s equation. The stability analysis limits the form of
the kernel and reveals that a Lorentz scalar confining interaction in the Salpeter equation leads to instabilities
~imaginary eigenvalues!, whereas one transforming as the time component of a vector does not. Moreover, the
stability analysis sets an upper limit on the size of the one-gluon-exchange component; the value for the critical
coupling is determined through a solution of the ‘‘semirelativistic’’ Coulomb problem. These limits place
important constraints on the interaction and suggest that a more sophisticated model is needed to describe the
light and heavy quarkonia.

PACS number~s!: 11.10.St, 12.39.Pn, 14.40.2n
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I. INTRODUCTION

In hadron-structure theory one is interested in describi
the hadron as a relativistic composite system. To date, m
basic properties of hadrons cannot yet be derived fro
QCD—the fundamental theory of the strong interaction
Note, however, that QCD sum rules can place some c
straints regarding quark-distribution amplitudes in meso
and baryons@1,2#. With the advent of more powerful com-
puting facilities, lattice gauge theory@3# should provide an
increasingly useful means of studying hadronic physics. Y
at the present time it does not provide a convenient fram
work for a systematic study of a large variety of hadron
phenomena. Specifically, with the commission of state-o
the-art facilities, such as CEBAF,1 other nonperturbative
techniques will be required which can be used to incorpor
phenomena at many different length scales within a sin
theoretical framework.

To a large extent our current understanding of hadron
structure is based on the nonrelativistic constituent qua
model@4,5#. Meson properties are well reproduced by a ph
nomenological potential consisting of the sum of a sho
range one-gluon exchange~OGE! component and a long-
range confining contribution. A quantitative description o
meson masses, their static properties and decay rates c
among the many successes of the model. Generally,
would prefer to have a relativistic and manifestly covaria
model. For example, a covariant formalism will enable on
to relate the wave function~or vertex function! in different
frames. This becomes essential for calculating hadronic fo
factors at finite momentum transfer.

1The Continuous Electron Beam Accelerator Facility.
5356-2813/96/53~5!/2449~19!/$10.00
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The starting point for most relativistic studies of the m
son spectrum is the covariant Bethe-Salpeter equation@6#.
The Bethe-Salpeter equation can be regarded as the re
istic generalization of the Lippmann-Schwinger equati
However, the Bethe-Salpeter equation, being covariant,
pends on the zeroth component of the relative fo
momentum~i.e., the relative energy!. Aside from the techni-
cal difficulties encountered in handling this extra degree
freedom, one must decide in the present case how to ge
alize the essentially nonrelativistic quark-antiquark poten
to four dimensions—a nontrivial task to carry out correct
The difficulty in dealing with the relative energy has led
many different approximations to the Bethe-Salpeter eq
tion wherein one works within a three-dimensional reduct
but attempts to retain fundamental physical principles. Th
is no obviously correct method. Thus one should study
ferent three-dimensional reductions in the hope of isola
model-independent results. Here we work within the inst
taneous Bethe-Salpeter framework~Salpeter’s framework!.
Although retardation effects and manifest covariance
lost, one retains relativistic kinematics, the relativistic ch
acter of the potential, and the Dirac structure of positive- a
negative-energy states.

The use of the instantaneous approximation commo
employed in the literature entails other problems besides
loss of retardation and manifest covariance; Salpet
bound-state equation is represented by anon-Hermitian
Hamiltonian. Indeed, it has been recognized@7–10# that Sal-
peter’s equation is identical in structure to a random-pha
approximation~RPA! equation familiar from the study o
nuclear collective excitations@11#. Thus it can be rewritten
as a Hermitian eigenvalue equation—but for the square
the energy. This suggests the possibility of imaginary eig
values which would signal the onset of an instability. For o
problem of interest these imaginary solutions are unphys
2449 © 1996 The American Physical Society
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and their appearance can be precluded by limiting the fo
of the kernel. This is achieved through a stability analysis
Salpeter’s equation. This analysis will draw heavily fro
previous results. For example, in Ref.@9# it was shown that a
confining kernel transforming as a Lorentz scalar leads
instabilities in Salpeter’s equation—irrespective of the va
of the constituent quark mass. Moreover, the stability ana
sis will be extended to include a short-range OGE com
nent in the kernel. In this case, the stability of Salpete
equation—as well as the extraction of a critical stron
coupling constant—emerges from a solution of the semire
tivistic Coulomb problem@12,13#. We should stress that an
study based on Salpeter’s equation is not complete until
stability analysis is performed. The main goal of this pap
then, is to present the stability analysis and to examine
implications for the meson spectra.

We have organized the paper as follows. In Sec. II, S
peter’s equation is presented and the method used to sol
is reviewed. In Sec. III, we study the interaction kernel f
the particular Lorentz structures of interest. The stabi
analysis for the confining part of the kernel is reviewed@9#
and the analysis for the OGE component developed. A
result of the stability analysis the form of the instantaneo
kernel is constrained. We examine the consequences of t
constraints on the heavy- and light-meson spectroscop
Sec. IV. Finally, our concluding remarks are presented
Sec. V.

II. FORMALISM

A. Salpeter’s equation

In the Salpeter formalism@14#, the bound-state spectrum
is generated as a solution to the instantaneous Bethe-Sal
equation in the ladder approximation. In this approximatio
the irreducible Bethe-Salpeter kernel is given by

V~x1 ,x2![V~x1 ,x2!. ~1!

In Ref. @9#, the derivation of Salpeter’s equation was illu
trated using Green’s function methods, which yielded
following eigenvalue equation for the Salpeter wave functi
xE:

xas
E ~x1 ,y2!5E d3z1d

3z2Gah8;js
~0!

~x1 ,z2 ;z1 ,y2 ;E!Vjh;j8h8

3~z1 ,z2!xj8h
E

~z1 ,z2!, ~2!

where the Salpeter wave function is defined by

xas
E ~x1 ,y2![^C0uca~x1!c̄s~y2!uCE&, ~3!

G(0) is the free two-body propagator in the instantaneo
approximation~IA !, C0 represents the vacuum, andCE rep-
resents the bound state with energyE. Expanding the ferm-
ion fields in a single-particle basis and using the properties
the free two-body Green’s function then gives
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xas
E ~x1 ,y2!5 (

k1s1 ;k2s2
~@Uk1s1

~x1!#a@V̄k2s2
~y2!#sBs1s2

3~k1 ,k2!1@Vk1s1
~x1!#a@Ūk2s2

~y2!#s

3Ds1s2
~k1 ,k2!!, ~4!

where the Salpeter amplitudesB andD are defined by

Bs1s2
~k1 ,k2![^C0ubs1~k1!ds2~k2!uCE&, ~5!

Ds1s2
~k1 ,k2![^C0uds1

† ~k1!bs2
† ~k2!uCE&, ~6!

and contain all dynamical information about the bound state
Note, bs(k) and ds(k) are second-quantized operators, and
Uks(x) andVks(x) are free single-particle Dirac spinors.

Salpeter’s equations are more conveniently expressed
an angular momentum basis. Projecting out the Salpeter a
plitudes, expressing Salpeter’s equations forB andD in the
center of momentum frame, and introducing the partial-wav
decomposition of the amplitudes in terms of totalL andS
coupled to the total angular momentumJ of the bound state

Bs1s2
~k!5 (

SMSLMLJM
K 12 s1 ; 12 s2USMSL ^LML ;SMSuJM&

3YL,ML
~ k̂!BLSJM~k!, ~7!

~2 !12s12s2D2s12s2
~k!

5 (
SMSLMLJM

K 12 s1 ; 12 s2USMSL ^LML ;SMSuJM&YL,ML

3~ k̂!DLSJM~k!, ~8!

one can write Salpeter’s equations in an angular momentu
basis as

@1E22Ek#bLSJ~k!

5E
0

` dk8

~2p!3(L8S8
$^k;LSJuV11uk8;L8S8J&bL8S8J~k8!

1^k;LSJuV12uk8;L8S8J&dL8S8J~k8!%, ~9!

@2E22Ek#dLSJ~k!

5E
0

` dk8

~2p!3(L8S8
$^k;LSJuV21uk8;L8S8J&bL8S8J~k8!

1^k;LSJuV22uk8;L8S8J&dL8S8J~k8!%, ~10!

with b(k)[kB(k) andd(k)[kD(k). For local interactions,
such as the ones considered here, the matrix elements of
potential are given by~a sum over greek indices is implicitly
assumed, andā[12a)
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^k;LSJuV11uk8;L8S8J&

5^k;LSJuV22uk8;L8S8J&

5(
LS

~21!a1bF LS ;LSJ
ab ~k!^S uu@VL~k,k8!#ab;a8b8uuS &

3F
LS ;L8S8J
a8b8 ~k8!, ~11!

^k;LSJuV12uk8;L8S8J&

5^k;LSJuV21uk8;L8S8J&

5(
LS

~21!a1b1LF LS ;LSJ
ab ~k!

3^S uu@VL~k,k8!#ab;a8b8uuS &F LS ;L8S8J
ā8 b̄8 ~k8!, ~12!

where

F LS ;LSJ
ab ~k!5Cab~k!(

l
^a0;b0ul0&

3^LS Juu@Yl~sasb!l#0uuLSJ&, ~13!

Cab~k!5A4p~21!aFEk1M

2Ek
Gja~k!jb~k!;

ja~k!5H 1 if a50;

k

Ek1M
if a51,

~14!

andEk[Ak21M2, with M the constituent quark mass.~The
equal-mass case is considered here; however, the exten
to unequal masses is straightforward.! The quantum numbers
L,S range only over the values allowed byJp, and corre-
spond to the usual ‘‘nonrelativistic’’ quantum number
whileL,S can take on all values allowed by the coupling t
J, thus reflecting the role of relativity in the calculation. Fo
E.0, the amplitudesb,d satisfy the RPA normalization con-
dition @15#

(
LS

E
0

` dk

~2p!3
@bLSJ

2 ~k!2dLSJ
2 ~k!#51. ~15!

Equations~9! and ~10! are similar to the equations in Ref
@10# for the two-fermion case. This form is used for conve
nience, as the two can be related by charge conjugation.

B. The RPA equation

Salpeter’s equation can be cast in the following compa
matrix form:

S H11 H12

2H12 2H11D S BD D 5ES BD D , ~16!

where the matrix elements of the ‘‘Hamiltonian’’ are give
by
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^k;LSJuH11uk8;L8S8J&5^k;LSJuV11uk8;L8S8J&

12Ek~2p!3d~k2k8!dLL8dSS8,

~17!

^k;LSJuH12uk8;L8S8J&5^k;LSJuV12uk8;L8S8J&.
~18!

One recognizes that Salpeter’s eigenvalue equation,
given by Eq.~16!, has the same algebraic structure as
RPA equation@7–10#. Having identified the algebraic~RPA!
structure of Salpeter’s equation, the same formalism dev
oped by Thouless in his study of nuclear collective excit
tions @11# will be employed. Salpeter’s, and in general an
RPA-like, equation can be rewritten as a Hermitian eige
value equation for the square of the energy@15,16#. This
implies that while the square of the energy is guaranteed
be real, the energy itself might not. The appearance of so
tions havingE2,0 signals, in the context of nuclear collec
tive excitations, an instability of the ground state against t
formation of particle-hole pairs — a collective mode with
imaginary energy can build up indefinitely. Thouless h
shown that the stability of the nuclear ground state depen
on the Hermitian matrix

S H11 H12

H12 H11D , ~19!

being positive-definite—all its eigenvalues must be grea
than zero@11,15,16#. This condition is equivalent to requir-
ing that both the sum and difference matrices

H1[~H111H12!, ~20!

H2[~H112H12!, ~21!

be positive-definite@16#. In this form, the stability condition
of Salpeter’s equation is reduced to finding the eigenvalu
of the two Hermitian matricesH1 andH2. Thus, the exist-
ence of a single negative eigenvalue, of eitherH1 or H2,
suffices to signal the instability. It is this criterion that wa
employed in Ref.@9# to examine the Lorentz structure of the
confining potential; also, it will be used in this work to se
limits on the strong-coupling constant for the instantaneo
OGE kernel in Salpeter’s equation. With these limits in han
one is then able to carry out~see Sec. IV! a study of the
meson spectra in the framework of Salpeter’s equation.

C. Numerical solution of Salpeter’s equation

Salpeter’s equation is solved via expansion of the Salpe
amplitudes in a suitable basis, thus enabling one to treat
instantaneous confining and Coulomb kernels in configu
tion representation and the relativistic kinetic energy ope
tor in momentum representation, where they are respectiv
local. Here and in Ref.@9#, one uses the radial eigenfunction
of the nonrelativistic harmonic oscillator,RnL , to expand the
two amplitudesBLSJ andDLSJ in terms of unknown coeffi-
cients
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BLSJ~k!5 (
n

nmax

BnLSJRnL~k!, ~22!

DLSJ~k!5 (
n

nmax

DnLSJRnL~k!, ~23!

up to n50, . . . ,nmax nodes in the basis, for a finite basi
~Since the interaction is spherically symmetric, the magne
quantum numberM only denotes a 2J11 degeneracy and
plays no dynamical role; hence it can be dropped.! This pro-
cedure results in a matrix equation for the unknown coe
cientsBnLSJ andDnLSJwhich can be diagonalized using th
method developed by Ullah and Rowe@15#. Upon diagonal-
ization, one obtainsE2 and the~previously! unknown coef-
ficients from which one then can reconstruct the two amp
tudesBLSJ and DLSJ, and, ultimately, the Salpeter wav
functionxE.

III. STABILITY ANALYSIS OF SALPETER’S EQUATION

The stability analysis is performed by using potentia
V(r ) having scalar, timelike-vector, and vector Loren
structures

V~r !G125V~r !H 1112 , for scalar,

g1
0g2

0 , for timelike,

g1
mg2m , for vector,

~24!

which are the relevant structures for the meson problem.
analysis is concentrated on the pseudoscalar (Jp502) chan-
nel; with L5S50, this is the first channel where the inst
bility is likely to develop. For this case, Salpeter’s equatio
for the reduced amplitudes b(k)[kB(k) and
d(k)[kD(k), takes the following form:

~1E22Ek!b~k!5E
0

` dk8

~2p!3
$^kuV11uk8&b~k8!

1^kuV12uk8&d~k8!%, ~25!

~2E22Ek!d~k!5E
0

` dk8

~2p!3
$^kuV12uk8&b~k8!

1^kuV11uk8&d~k8!%. ~26!

In spite of the simplicity of the angular momentum conte
of this channel, the matrix elements of the potential are co
plicated by relativistic corrections. We define the angul
momentum components of the potential by

VL~k,k8!5~4p!2E
0

`

dr ̂L~kr !V~r ! ̂L~k8r !, ~27!

with ̂L(x)[x jL(x) being the Riccati-Bessel function. Fo
scalar and timelike potentials, one has

^kuV11uk8&5SEk1M

2Ek
D SEk81M

2Ek8
D $@11zk

2zk8
2

#V0~k,k8!

72zkzk8V1~k,k8!%, ~28!
.
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^kuV12uk8&5SEk1M

2Ek
D SEk81M

2Ek8
D $@zk

21zk8
2

#V0~k,k8!

62zkzk8V1~k,k8!%, ~29!

where the upper~lower! sign in the above expressions shoul
be used for scalar~timelike! potentials. For vector potentials,
one has

^kuV11uk8&5SEk1M

2Ek
D SEk81M

2Ek8
D $@11zk

2zk8
2

#

13@zk
21zk8

2
#%V0~k,k8!, ~30!

^kuV12uk8&5SEk1M

2Ek
D SEk81M

2Ek8
D $@zk

21zk8
2

#

13@11zk
2zk8

2
#%V0~k,k8!, ~31!

where the kinematical variable

zk[
k

Ek1M
;OS kM D , ~32!

has been introduced to quantify the importance of relativit
In particular, for scalar and timelike potentials, relativisti
corrections arising from the mixing of positive and negativ
energy states~as characterized bŷkuV12uk8&) appear as
O(k2/M2) relative to the unmixed~Breit! case. This con-
trasts with the behavior for vector potentials, where bo
matrix elements containO(1) terms, implying that the con-
tribution of negative-energy states for vector potentials w
impact results more than the scalar and timelike cases. T
can be seen by taking the nonrelativistic limit (zk ,zk8→0):

^kuV11uk8&→HV0~k,k8!, for scalar and timelike,

V0~k,k8!, for vector,
~33!

^kuV12uk8&→H 0, for scalar and timelike,

3V0~k,k8!, for vector.
~34!

The O(1) term inV12 in the vector case stems from the
additional spacelike (g1•g2) contribution relative to the sca-
lar and timelike cases, contrary to the usual assumption th
g1•g2 inducesO(k2/M2) corrections to the nonrelativistic
potential. One should also note that theg1•g2 contribution
mixes upper and lower components via a spin-spin term, th
giving rise to much stronger splittings than either the scal
or timelike cases.

A. Stability analysis for the confining kernel

In this subsection, the stability analysis carried out in Re
@9# is reviewed for completeness. For confining potential
the Fourier transform@Eq. ~27!# is ill defined. Hence, in ex-
amining confinement in momentum space in Ref.@9#, the
following regularization for the spatial part of the potentia
was employed@17,18#:
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V~r !5sre2hr[s
]2

]h2

e2hr

r
. ~35!

The Fourier transform of the potential is now well behave
and is given by

V~k2k8!5
]2

]h2 F 4ps

~k2k8!21h2G . ~36!

Evidently, one is interested in studying the stability of Sa
peter’s equation in the limit ofh→0. The stability analysis
requires the explicit evaluation ofV1 andV2. These can be
computed with the help of Eqs.~28!, ~29!, ~30!, and~31!

V1~k,k8![^kuV111V12uk8&5V0~k,k8!j1~k,k8!,
~37!

V2~k,k8![^kuV112V12uk8&5V0~k,k8!j2~k,k8!,
~38!

where one introduces relativistic ‘‘correction’’ factorsj1

and j2, separately, for scalar, timelike, and vector Loren
structures:

j1~k,k8![H 1 , for scalar and timelike,

4 , for vector,
~39!

and

js
2~k,k8![F M2

EkEk8
2

kk8

EkEk8

V1~k,k8!

V0~k,k8!G , ~40!

j0
2~k,k8![F M2

EkEk8
1

kk8

EkEk8

V1~k,k8!

V0~k,k8!G , ~41!

jv
2~k,k8![22

M2

EkEk8
. ~42!

For all three Lorentz structures of the potentialH1 remains
positive definite; the eigenvalue equation forH1 is a simple
‘‘nonrelativistic’’ Schrödinger equation with a relativistic
kinetic-energy term@9#. In contrast,H2 is guaranteed to be
positive definite only for timelike confinement; a scalar o
vector confining kernel in Salpeter’s equation leads
imaginary-energy solutions—irrespective of the constitue
quark mass. This conclusion emerges from a study ofj2 in
thek85k limit; only j0

2 remains positive definite~recall that
V1 /V051 in thek5k8 limit @9#!.

One could also employ a mixture of scalar and timelik
structures for the potential:

G12[xg1
0g2

01~12x!1112 , ~43!

wherex denotes the fraction of timelike structure. Then,

V1~k,k8!5V0~k,k8!, ~44!

V2~k,k8!5V0~k,k8!F M2

EkEk8
1~2x21!

kk8

EkEk8

V1~k,k8!

V0~k,k8!G .
~45!
d

l-

tz

r
to
nt

e

As before,H1 remains positive definite, while in contras
H2 is positive definite only forx>1/2. Hence any mix of
scalar and timelike Lorentz structures has stable soluti
only for x in the interval 0.5<x<1. This fact will become
important in the study of the meson spectra.

B. Stability analysis for the instantaneous OGE kernel

One now considers the short-range OGE part of the k
nel. The stability analysis is performed for a pure Coulom
potential, for both timelike and vector Lorentz structure
Note, an OGE kernel of vector Lorentz character will
employed for the spectra analysis; the timelike results
presented here for comparison. The spatial part of the~in-
stantaneous! Salpeter kernel is

VOGE~r !5
2as

r
, ~46!

with the Fourier transform ofVOGE(r ) given by

VOGE~ uk2k8u!5 lim
h→0

F 24pas

~k2k8!21h2G , ~47!

whereas is the strong-coupling constant~taken here to be
independent of the quark-antiquark separationr , or equiva-
lently, of the momentum transferQ). One has essentially
carried out all necessary manipulations in the previous s
section. Indeed, Eqs.~37!, ~38!, ~39!, ~40!, ~41!, and~42! are
completely general for any form of the potential. Thus, o
only has to calculate the necessary multipoles of the poten
in momentum space to complete the analysis. One look
the k5k8 limit for which the Coulomb singularity structure
is manifest. ForV0 andV1 , one finds~in theh→0 limit!:2

V0~k,k85k!528p2as

1

2
lnS 4k2h2 D1OS h2

k2 D , ~48!

V1~k,k85k!528p2as

1

2 F lnS 4k2h2 D211OS h2

k2 D G ,
~49!

with the leading singularities cancelling in forming the rat

lim
h→0

V1~k,k85k!

V0~k,k85k!
5 lim

h→0
F12

1

ln~4k2/h2!
1O~h2/k2!G51.

~50!

Thus, one sees thatj0
2(k,k)→1, as before. For the vecto

case one observes, from Eq.~42!, that the minus sign inV0
leavesV2 positive, leading to a positive-definiteH2 ~in fact,
since V2 is repulsive,H2 does not even support boun
states!. However, in contrast to the confining potential, th
stability of the RPA matrix in the present case is not assur

2The OGE subscript will be discarded, and future references
V will be taken as indicating the Coulomb potential, unless oth
wise noted.
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as the ‘‘nonrelativistic’’ equation forH1 can become un-
bounded from below for sufficiently largeas . This implies
the existence of an upper limit on the effective stron
coupling constant that one can use for a timelike or vec
Coulomb potential in Salpeter’s equation. This will directl
affect the determination of wave functions and spectra with
the model. Thus, it becomes necessary to determine an up
limit on as in order to avoid the instability. This upper limit
will be determined from the eigenvalue equation forH1,
namely, from the ‘‘semirelativistic’’ Coulomb problem.
Note, from Eq.~39!, that in the vector case one solves th
semirelativistic Coulomb problem—with a strong-couplin
constant that is four times larger than the originalas :

a[4as .

This is a reflection of the strong upper-to-lower couplin
induced by the spacelike component of the vector Loren
structure. Hence, for both timelike and vector cases, one
to determine an upper limit foras at which Salpeter’s equa-
tion becomes unstable, noting that the upper limit for th
vector case will be one-fourth that in the timelike case.

C. Determination of the ground state energy
at the ‘‘critical coupling’’

In this section we present the best determination, to da
of the ground-state energy of the semirelativistic Coulom
problem at the critical coupling. Strictly speaking, this dis
cussion is not essential to the stability analysis; however,
have included it for completeness. The most important res
of this section, pertaining to the stability analysis, is given
Eq. ~65!.

One is interested in the spectrum of the semirelativis
Coulomb Hamiltonian

H52Ak21M22
a

r
; a.0. ~51!

As we mentioned in Sec. III B, the existence of a sing
negative eigenvalue, of eitherH1 or H2, suffices to signal
the instability. If the Hamiltonian~51! is unbounded from
below, or is bounded but has at least one negative eig
value, then the RPA instability develops. In 1977, Herb
@12# was able to show that~a! if a.ac[4/p, then the semi-
relativistic Coulomb Hamiltonian is unbounded from below
~b! if a<ac , then all eigenvalues are greater than or equ
to 0. Specifically, Herbst showed that

E>2MA12S a

ac
D 2; for a<ac . ~52!

However, for the RPA equations to be stable one must sh
that all eigenvalues must be positive—a result that does
follow from Eq. ~52! at the critical coupling. Although our
primary interest in the spectrum of the semirelativistic Co
lomb Hamiltonian stems from the stability analysis of Sa
peter’s equation, the semirelativistic Coulomb problem
still of considerable theoretical interest@19,20#. Thus, in this
subsection we present a variational analysis that, to o
knowledge, represents the best estimate of the ground-s
energy available in the literature.
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To date, no analytic solution for the ground-state ener
of the semirelativistic Coulomb problem@Eq. ~51!# exists.
Thus, we determine an upper bound for the ground-state
ergy (E0) by using a Rayleigh-Ritz variational method. Tha
is, given a trial wave functionuC&, an upper bound to the
ground-state energy is given by the expectation value ofH:

E0<^H&[^CuHuC&; ^CuC&[1. ~53!

In practice, one attempts to include the relevant physics
including a set of variational parameters intouC&. Then, one
minimizes Eq.~53! with respect to those parameters to de
termine the variational bound and the ‘‘optimal’’uC&. In
configuration space, the variational wave function is taken
be

C~r !5A 1

4p
R~r !, ~54!

R~r !5NR

r e

r
e2gr@11c1~gr !1c2~gr !21•••#, ~55!

where the normalization constant is given by

NR5F ~2g!112e

(
n,m50

`
cn2mcm
2n

G~11n12e!G 1/2

. ~56!

Note that this form of the wave function is appropriate fo
theL50 channel—where the instability should first develop
The expansion for the variational wave function is comple
and its form is motivated by the analytic solution of th
Dirac-Coulomb problem@21#. In particular, in the weak-
coupling limit (a!1) one recovers the nonrelativistic resul
by choosinge51, g5Ma/2, andc15c25•••50, i.e.,

E52M S 12
a2

8 D , ~57!

R~r !5AM3a3

2
e2Mar /2. ~58!

In contrast, in the strong-coupling limit (a;ac) one expects
that the wave function will become localized near the origi
as the energy can benefit from the strong Coulomb attracti
Indeed, the asymptotic behavior of the wave function ne
the origin is known analytically@22,23#

tanS p

2
e D

S p

2
e D 5

ac

a
. ~59!

Note thate→0 asa approaches the critical coupling. The
variational wave function has also an analytic representat
in momentum space. That is,

C~k!5A 1

4p
R~k!, ~60!
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R~k!5
1

k
A2

p
NR(

n50

`

cng
n

G~11n1e!

~k21g2!~11n1e!/2

3sinF ~11n1e!tan21S kg D G . ~61!

One should note that since the constituent quark mass is
only dimensionful parameter in the problem, the dimensio
less ratio^H&/M is a function of only the coupling constan
a. In what follows, all expectation values will be written in
units of the constituent massM and expressed in terms of the
dimensionless parametera[g/M .

For values ofa not too close to the critical coupling (a
&1.25,ac'1.273) the minimization procedure for^H&/M
is straightforward and yields the variational energy and o
timal parameters (a and e) that are displayed in Table I.
Note, the table reflects the appropriate parameters for
casec15c25•••50. In contrast, the minimization proce
dure is highly nontrivial near the critical coupling~and, thus,
for e→0) as, both, the kinetic and potential energy diverg
as 1/e ~see Appendix!. Hence, in order to compute the varia
tional energy for small values ofe we perform a Laurent
expansion of the expectation value ofH, i.e.,

^H&
M

5
h21

e
1h01h1e1•••. ~62!

The first term,h21 , must vanish faster thane;(ac2a)1/2

asa approaches the critical coupling; otherwise one wou
contradict Herbst’s findings. Indeed, we can extract the cr
cal coupling (ac54/p) by demanding that the coefficient o
the singular term in the series vanishes. Note, we ha
shown in the Appendix thath21 vanishes as (ac2a) in the
c15c25•••50 limit @see Eq.~A13!#.

In principle, we could find the variational energy in th
a5ac limit by minimizing h0 using the trial wave function
~55!. In practice, however, we can manage only a small nu
ber of variational parameters. Thus, we proceed by, fir
minimizing the expectation value ofH using only one term
in the polynomial expansion in Eq.~55!, i.e., we set

TABLE I. Minimization of the variational energy with respec
to the parameterse anda for fixed a, asa approachesac .

a ^H&/M a e

0.100 1.9975 0.0495 0.9861
0.200 1.9899 0.0988 0.9660
0.400 1.9582 0.1956 0.8977
0.600 1.9007 0.2930 0.8041
0.800 1.8081 0.3944 0.6825
1.000 1.6583 0.5071 0.5222
1.200 1.3639 0.6563 0.2703
1.220 1.3106 0.6778 0.2302
1.240 1.2435 0.7033 0.1817
1.260 1.1461 0.7374 0.1144
1.270 1.0581 0.7657 0.05646
1.273 0.9933 0.7854 0.01533
1.2731 0.9874 0.7871 0.01170
1.2732 0.9786 0.7897 0.006226
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c15c25•••50. Note, most of the details related to this
minimization procedure are presented in the Appendix. Ne
we compute the variational energy by using a two-parame
(a andc1) wave function. This procedure is straightforwar
but tedious. However, it enables us to determine the imp
tance of higher-order ‘‘corrections’’ in the polynomial ex
pansion as well as the rate of convergence to the ground-s
energy. Our results are summarized below:

^H&
M

5H 0.968583, fora50.7926 andc150.0000;

0.968514, fora50.9359 andc150.1779.
~63!

Moreover, an initial study with three variational paramete
(a, c1 , and c2) suggests that the two-parameter energy
accurate to, at least, one part per million. To our knowled
this represents the most accurate value for the ground-s
energy of the semirelativistic Coulomb problem presented
date. In this way, our small contribution to Herbst wor
reads: Ifa<ac54/p, then all eigenvalues~in units ofM )
are greater than or equal to 0.968514. Note, our results
consistent with those presented by Raynal and collaborat
in a comprehensive study of the semirelativistic Coulom
problem@19#. Their analysis sets lower and upper bounds—
differing by less than 1%—for the ground-state energ
(0.9650<E0<0.9686) ata5ac .

The remaining question to be answered is how, if at a
does the presence of the linear confining potential alter t
stability analysis? The answer is that only the value of th
finite piece is changed, ata5ac . An explicit calculation
gives for the expectation value of the confining potenti
~with c15c25•••50)

^V&
M

5
s

2aM2 1
s

aM2 e. ~64!

Thus, there is noO(e21) contribution to the expectation
value of ^H& coming from the confining potential; only a
positive contribution,s/2aM2, remains ate→0. Note that,
because of the additional dimensionful parameters, the con-
tribution from the confining potential, unlike the Coulomb
contribution, depends on the value of the constituent ma
Hence, for a Coulomb potential of the form of Eq.~46!, the
stability of Salpeter’s equation is achieved by demandin
that

as<H 4/p'1.273, for timelike;

1/p'0.318, for vector, ~65!

independent of the constituent quark mass.

IV. MESON SPECTRA

The heavy quarkonia (cc̄ andbb̄) and the light quarkonia
(uū and ss̄) are investigated in the instantaneous Beth
Salpeter framework. The analysis is intended to be quali
tive in nature, with regard to various effects stemming fro
the instantaneous approximation; hence a simple general
tion of the Cornell potential@24# is employed. The virtue of
this approach is its simplicity. The few parameters of th
model, constrained by the stability analysis, will emerg
from the ‘‘best’’ fit to the meson spectra. One wishes t

t
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reproduce the interesting physics~e.g., hyperfine structure!
through relativistic effects, rather than by a fine tuning o
many parameters.

For the heavy quarkonia, the mass spectra are reason
described, but details such as the fine and hyperfine struc
are less so. For the light quarkonia, the mass spectra are
reasonably described: the pion cannot be accurately m
elled within this framework without losing the remaining
spectra. At the very least, a more sophisticated phenomen
ogy will be required to accurately describe static properti
of the heavy and light quarkonia.

For the remainder of the section, the following program
carried out: the various models to be considered within t
Salpeter framework are defined. Then, phenomenological
to the experimental spectra for heavy mesons are carried
and a quantitative analysis of the various approximations
the Salpeter framework and their effect on the spectra a
splittings is performed. The latter half of the section is co
cerned with the light mesons.

A. Fits to heavy mesons

1. Form of the interaction

The spatial part of the potential is based on the Corn
potential; that is, confinement is parameterized by a line
potential plus a constant, and the asymptotically-free regim
is parameterized by an instantaneous OGE potential. Sinc
good description of the mass spectra of the heavy quarko
can be obtained with a linear confining potential plus th
nonrelativistic reduction of the OGE piece, this is a natur
first choice for the Salpeter equation.~One can, of course,
generalize the OGE piece to include running coupling effec
motivated from perturbative QCD.!

A mixture of scalar and timelike Lorentz structures for th
confining kernel is considered, as a number of autho
@25,26# have suggested that an admixture of scalar and tim
like confinement is necessary to reproduce the experimen
spectra and splittings. The full vector structure is not inco
porated in the confining kernel, as this leads to an instabil
similar to the scalar case. The full vector structure in th
Feynman gauge is used for the OGE kernel. Thus, the inst
taneous Bethe-Salpeter kernel is parameterized as

V~r !G125@sr1cs#@xsg1
0g2

01~12xs!1112#2Fas

r Gg1
mg2m ,

~66!

wheres is the confining string tension,xs controls the mix-
ing between scalar and timelike confinement, andas is the
~scale-independent! strong-coupling constant. One shoul
note thats, cs , xs , as , and the quark mass are the onl
‘‘free’’ parameters in the approach. From the results of th

TABLE II. Definitions of the various models used in the calcu
lations; ‘‘mixed’’ and ‘‘timelike’’ refer to the Lorentz structure of
the confining kernel. The OGE kernel is always of vector type.

Mixed Timelike

Breit @V1250, xs50.5# @V1250, xs51#

Salpeter @V12Þ0, xs50.5# @V12Þ0, xs51#
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stability analysis,xs andas are restricted to the following
values in the Salpeter model in order to have real eigenva
ues:

0.5<xs<1.0; as<
1

p
'0.318.

Recall that a typical value foras is 0.24 @27#. One should
note that the Breit (V12[0) model has no such restrictions
in principle, saving the possibility of the spectrum becoming
unbound from below if the strong-coupling constant be
comes too large, similar to the problem encountered for th
relativistic Coulomb problem of Sec. III. However, for com-
parative purposes,xs is restricted to the same range in both
models.

2. Data and procedures

One solves for eigenenergies of the Breit~no coupling
between positive and negative energy states! and full Sal-
peter equations, expanding the Salpeter partial-wave amp
tudes in an oscillator basis of 20 states per partial wav
(nmax520, or up to 19 nodes in the amplitudes! to insure
adequate convergence of the solutions, and with an oscillat
parameter valueb50.6 GeV suitable for the heavy mesons.
Initially, there are six free parameters in the model:s, as ,
Mc , Mb , xs , andcs . The sames, xs , andas are used to
fit both charm and beauty.cs is set to zero, assuming the
long-range part of the kernel to be less important for th
heavy mesons. The scalar-timelike mixing parameterxs will
be allowed to take only the values 0.5 and 1.0, correspondin
to equally-mixed scalar and timelike structure and pure time
like structure, respectively. Hence, the model for the heav
mesons will only have four free parameters, which are dete
mined through minimization of thex2 function

x2~s,as ,Mc ,Mb!5(
i51

N
~Ei th2Eiexp!

2

s i th
2 1s iexp

2 , ~67!

using a nonlinear optimization routine@28#. The Ei exp and
s iexp are the experimental masses and associated errors c
sen for the fit, here the first two observed 12 states of
b-quarkonium, the first two observed 02 states and the first
five observed 12 states of charmonium. These states are use
to determine a set of parameters for each choice of Loren
structure of the confinement. Then, one observes how ea
of the corresponding spectra agrees with the experiment

- TABLE III. Heavy meson parameters for Breit and Salpeter
models with mixed~scalar1timelike! and timelike confinement,
plus an instantaneous vector OGE contribution. An oscillator bas
with nmax520 andb50.6 GeV was employed for the parameter
optimization.

Parameters
Breit
mixed

Breit
timelike

Salpeter
mixed

Salpeter
timelike

Mc @GeV# 1.168 1.379 1.251 1.126
Mb @GeV# 4.573 4.781 4.623 4.561
s @GeV2# 0.2991 0.1937 0.2570 0.2743
as 0.2678 0.4875 0.2872 0.2165
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TABLE IV. Charm quarkonia masses in GeV for Breit and Salpeter models with mixed~scalar1timelike!
and timelike confinement, plus an instantaneous vector OGE contribution, for the parameters as in Tab
The calculated states are aligned with the observed states according to their spin parity, starting fro
lowest mass values. An asterisk on an observed value indicates a state employed in the fits. An os
basis withnmax520 andb50.6 GeV was employed for all states.

Meson Jp 2S11LJ Mexpt.

Breit
mixed

Breit
timelike

Salpeter
mixed

Salpeter
timelike

hc 02 1S0 2.979* 2.984 2.977 2.958 2.968
J/c 12 3S1 3.097* 3.044 3.111 3.099 3.056
xc0 01 3P0 3.415 3.360 3.326 3.372 3.338
xc1 11 3P1 3.511 3.421 3.468 3.412 3.424
hc 11 1P1 ~3.526! 3.440 3.514 3.468 3.455
xc2 21 3P2 3.556 3.467 3.562 3.499 3.513
hc 02 1S0 ~3.594!* 3.645 3.597 3.622 3.647
c 12 3S1 3.685* 3.688 3.675 3.693 3.705
c 12 3D1 3.770* 3.726 3.755 3.739 3.732
c 12 3S1 4.040* 4.167 4.099 4.134 4.218
c 12 3D1 4.159* 4.192 4.152 4.162 4.234
c 12 3S1 4.566 4.459 4.499 4.659
c 12 3D1 4.415 4.583 4.499 4.519 4.669
ly
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data overall. TheEi th ands i th are the calculated masses an
their errors within the model~which were taken to be 5–10
MeV!. The incorporation of a theoretical error allows one,
principle, to ‘‘force’’ a better fit to some states, at the risk o
possibly degrading the fit with respect to the rest of the sp
tra; however, all states were weighted equally in this rega

The minimization results for the four parameters for th
four models~see Table II for the appropriate definitions! are
summarized in Table III, while the charm and beau
quarkonia spectra calculated for each model are summari
in Table IV and Table V. The experimental masses we
taken from the Review of Particle Properties@29# ~with the
d
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e
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re

exception of thehc , which was taken from Ref.@30#!.
Graphical depictions of the spectra for eachJp channel are
shown for the Breit-Timelike model in Figs. 1 and 2.Jp

states are named by their main2S11LJ components. One
notes that for all cases, the parameters fall within common
accepted ranges for quark potential models.

Figure 3 shows the convergence of the ground and fir
excited state energies as the number of states in the bas
increased; adequate convergence is achieved with 20 sta
in the basis. The numbers quoted for the higher-lying stat
in Table IV and Table V should be noted with caution, a
typically a 10–20 MeV shift in the energies for the fourth
ing
An
TABLE V. Beauty quarkonia masses in GeV for Breit and Salpeter models with mixed~scalar1timelike!
and timelike confinement, plus a vector OGE~instantaneous Coulomb! contribution, for the parameters as in
Table III. The calculated states are aligned with the observed states according to their spin parity, start
from the lowest mass values. An asterisk on an observed value indicates a state employed in the fits.
oscillator basis withnmax520 andb50.6 GeV was employed for all states.

Meson Jp 2S11LJ Mexpt.

Breit
mixed

Breit
timelike

Salpeter
mixed

Salpeter
timelike

hb 02 1S0 9.440 9.377 9.373 9.432
Y 12 3S1 9.460* 9.468 9.459 9.485 9.488
xb0 01 3P0 9.860 9.821 9.853 9.825 9.807
xb1 11 3P1 9.892 9.843 9.905 9.850 9.827
xb1 11 1P1 9.850 9.921 9.841 9.826
xb2 21 3P2 9.913 9.858 9.940 9.865 9.845
hb 02 1S0 9.995 9.992 9.949 9.962
Y 12 3S1 10.023* 10.013 10.023 9.999 9.994
Y 12 3D1 10.112 10.164 10.100 10.077
xb0 01 3P0 10.232 10.245 10.230 10.214 10.211
xb1 11 3P1 10.255 10.263 10.266 10.236 10.229
xb2 21 3P2 10.268 10.277 10.293 10.249 10.244
hb 02 1S0 10.397 10.350 10.332 10.352
Y 12 3S1 10.355 10.412 10.371 10.367 10.375
Y 12 3D1 10.477 10.462 10.434 10.432
Y 12 3S1 10.580 10.748 10.655 10.675 10.702
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FIG. 1. Charmonium mass spectrum for Bre
with timelike confinement and a vector Coulom
contribution. The experimental numbers are
the left-hand column for each spin-parity. Th
spectroscopic notation for coupled states is th
of the leading component in the calculation.
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to-fifth eigenstates in going from 18 to 20 basis states
encountered. In particular, the larger differences in the ta
with respect to the experimental data for the higher excit
states could be indicative of an insufficient number of stat
in the basis; of course, limitations intrinsic to our simpl
model may also contribute to the discrepancy.

Also, all the models appear to be somewhat deficient
comparison to results given by Long@7# and Spence and
Vary @27#, which examine both Breit and Salpeter equation
for a scalar confining kernel and a vector Coulomb kern
However, those studies allowed more freedom in determ
ing the Salpeter solutions. Long utilizes an oscillator bas
but minimizes each eigenstate separately; each state h
different value ofb characterizing it, rather than one valu
for all states. While this procedure does minimize th
eigenenergies with fewer states in the basis, the disadvant
is that the eigenstates are not orthogonal, which would b
problem in the calculation of matrix elements, and in ensu
ing the proper normalization of bound states. Spence a
Vary use a spline basis@31# as well as an additional interac-
tion ~a so-called ‘‘Breit’’ interaction! which makes compari-
son more difficult. However, in their work, solutions with
imaginary roots~for the light mesons in particular! were dis-
carded on the claim that the imaginary roots appear far fro
the real roots of interest in the complex plane when t
spline basis is chosen as in the study@27#—a procedure that
yields ~apparently! stable solutions of the Salpeter equatio
for scalar confinement, in contrast to the results presen
is
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here. This latter approach differs drastically from the view
point adopted in this work, which is that the onset of imag
nary solutions should indicate that a particular interaction
physically inappropriate within the model.@It is rather amus-
ing to note that, when examining a kernel that can lead
instabilities, one can ‘‘tune’’ the oscillator basis to get ap
parently stable solutions, but that either shifting the value
b or increasing the number of states in the basis~or both!
reveals the instability.#

3. Comparison of approximations to Salpeter’s equation

Table VI lists the first four eigenenergies for the pseud
scalar and vector channels, using the Salpeter-mixed par
eters from Table III, to illustrate the various relativistic ef
fects in Salpeter’s equation.~These are also illustrated in Fig
4.!

The results show a consistent decrease in the energy
given level as more relativistic effects are included in th
calculation. In going from the Schro¨dinger case~nonrelativ-
istic kinematics! to the spinless Salpeter case~relativistic ki-
nematics!, the energy decreases simply because the nonr
tivistic kinetic energy increases quadratically for larg
momenta, while the relativistic case only increases linear
since the potential is the same for both cases, the states
more ‘‘bound’’ in the relativistic case. For the Breit cas
with no lower components, the relativistic normalizatio
(Ek1M /2Ek) of the free Dirac spinors suppresses the ove
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FIG. 2. Beauty quarkonium mass spectru
for Breit, with timelike confinement and a vecto
Coulomb contribution. The experimental num
bers are in the left-hand column for each spi
parity. The spectroscopic notation for couple
states is that of the leading component in the c
culation.
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all potential for large momenta with respect to the nonre
tivistic case, as the normalization varies from 1 in the e
treme nonrelativistic limit to1

2 in the extreme relativistic
limit. However, both attractive and repulsive contributions
the potential are suppressed, and the energy is still decre
relative to the nonrelativistic case. The inclusion ofZ graphs

FIG. 3. Convergence of the charmonium ground and first
cited states for the pseudoscalar channel as the number of sta
the oscillator basis is increased, for Salpeter with mixed confi
ment as in Table III. The basis parameter isb50.6 GeV for all
cases.
a-
x-

to
sed

in the Salpeter case always leads to an added attraction
consequently to energies reduced relative to the Breit ca

With the introduction of the lower components, the en
gies are decreased still further, for both the Breit and S
peter cases. In particular, the spacelike part of the ve
potential (g1•g2) makes a large contribution. The decrea
in going from Breit to Salpeter is realized from the fact th
the spacelike part connects the large component of a par
spinor to the large component of an antiparticle spinor
V12, hence the contribution from theZ graphs is much
larger than that of the direct graphs alone.

4. Fine structure analysis

One can obtain information on the spin dependence,
thus on relativistic effects, of the effective potential for th
heavy quarkonia by examining theP-wave fine structure. In
perturbation theory~which is a good approximation incc̄
andbb̄), to O(1/M2) one can assess the relative contrib
tions from a Breit reduction of the potential as

M~2S11PJ50,1,2!5M01aSŜ S1•S2&

1aLSL•S1aT^S12&, ~68!

whereaSS, aLS , andaT arise from the spin-spin, spin-orbi
and tensor components of the potential, and

x-
s in
e-
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TABLE VI. Various relativistic effects in Salpeter’s equation displayed in the pseudoscalar and ve
channels for charmonium, using the parameters from the Salpeter-mixed model as in Table III.S andD label
the dominantL-wave component in the calculated energy.Lower on and lower off refer to the lower
components of Dirac spinors being present or not, respectively, in the calculation.

Jp Schrödinger
Spinless
Salpeter

Breit
lower-off

Salpeter
lower-off

Breit
lower-on

Salpeter
lower-on

02 4.302 (S) 4.140 (S) 3.154 (S) 3.104 (S) 3.049 (S) 2.958 (S)
6.407 (S) 5.774 (S) 3.761 (S) 3.740 (S) 3.659 (S) 3.623 (S)
8.464 (S) 7.193 (S) 4.200 (S) 4.187 (S) 4.108 (S) 4.084 (S)
10.499 (S) 8.480 (S) 4.562 (S) 4.552 (S) 4.481 (S) 4.461 (S)

12 4.302 (S) 4.140 (S) 3.154 (S) 3.149 (S) 3.107 (S) 3.099 (S)
6.407 (S) 5.774 (S) 3.761 (S) 3.758 (S) 3.699 (S) 3.693 (S)
6.442 (D) 5.880 (D) 3.817 (D) 3.816 (D) 3.747 (D) 3.739 (D)
8.464 (S) 7.193 (S) 4.200 (S) 4.198 (S) 4.141 (S) 4.134 (S)
t

t

^S1•S2&5
2S~S11!23

4
5H 1 1

4 , for S51,

2 3
4 , for S50;

~69!

L•S5
1

2
@J~J11!2L~L11!2S~S11!#

55
22, for 3P0 ,

21, for 3P1 ,

11, for 3P2 ,

10, for 1P1 ;

~70!

^S12&5^12@~S1• r̂ !~S2• r̂ !2 1
3 S1•S2#& ~71!

5 K 4

~2L13!~2L21!
@S2L22 3

2L•S23~L•S!2#L ~72!

55
24, for 3P0 ,

12, for 3P1 ,

2 2
5 , for 3P2 ,

10, for 1P1

~73!

~the last two expressions for the tensor component apply
for the diagonal elements only!, with M0 the unperturbed
mass. To the extent that perturbation theory is valid f
heavy-quark spectroscopy, the couplings describe fundam
tal parameters of nature. Solving the four equations@Eq.
~68!# with the four unknowns yields the data in Tables V
and VIII. Perturbatively, the mass of the1P1 state should be
equal to the center of gravity~COG! of the 3PJ multiplet

COG~3PJ!5
1

9
@5M~3P2!13M~3P1!1M~3P0!#,

~74!

with corrections up toO(1/M2). ~One notes thatM0 is
equal to the COG in the limit of a zero-range spin-spin i
teraction.! The spin-spin contribution is, except for th
Salpeter-mixed model, an order of magnitude smaller th
ing

or
en-

II

n-
e
an

the tensor and spin-orbit contributions; this can be under-
stood by remembering that the spin-spin term in the Breit
reduction is a contact interaction; since theP-wave states
have no support at the origin, spin-spin effects are minimized
in this channel.~They are not zero here because relativistic
corrections in the Breit and Salpeter models regularize the
contact term.! The 1P1 state is off in all models, but the error
is about 1% at most~0.75% for the Salpeter-mixed model!.
For both Breit and Salpeter models, an appropriate mixture
of scalar and timelike confinement would be required for a
closer match with experiment for the1P1 bb̄ state.

B. Fits to light mesons

1. Form of the interaction

The interaction for the light mesons is taken to be the
same form as for the heavy mesons. The flavor-independen
OGE kernel, however, leads to degeneratep andh masses;
one would need to take higher-order diagrams into accoun
that would lead to a flavor-dependent interaction, such as
annihilation diagrams. These, however, are nontrivial to con-
sider in the instantaneous framework and are not treated in
this work. It should be noted that there are other QCD-based
candidates for flavor-dependentqq̄ interactions that have
been computed by ’t Hooft and others from instanton effects
@32,33#. Such an interaction has been employed in a study
similar to this one by Resaget al. @34# for an effective de-
scription of the light meson spectra.

TABLE VII. Spin-dependent parameters for spin-spin, spin-
orbit, and tensor contributions to the effective potential for charmo-
nium. ‘‘COG’’ refers to the center of gravity of a given multiplet.
All values listed are in units of@GeV#.

Parameter Experiment
Breit
mixed

Breit
timelike

Salpeter
mixed

Salpeter
timelike

COG(3PJ) 3.525 3.440 3.504 3.456 3.464
1P1 3.526 3.440 3.514 3.468 3.455
M0 3.526 3.440 3.507 3.459 3.462
aSS 20.001 20.0002 20.010 20.012 0.009
aLS 0.035 0.029 0.063 0.043 0.051
aT 0.010 0.005 0.013 20.001 0.006
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FIG. 4. Effects of various approximations t
Salpeter’s equation, for the parameters in Tab
III, for the Salpeter mixed-confinement mode
for charmonium. 02 and 12 states are in each
left-hand and right-hand column, respectivel
and the spectroscopic notation quoted is t
dominant component of the calculation.
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One change from the heavy quarkonia is that the const
in the confining kernel is permitted as a free parameter. T
this is necessary is evinced by Fig. 5, which illustrates t
p-r ground-state splitting, using an up massMu[Md
50.154 GeV, a string tensions50.2867 GeV2, and initially
a strong-coupling constantas50.2427, taken from Spence
and Vary @27#. This coupling (as) is then increased to
as'0.318, the maximum allowed value by the stabilit
analysis in Sec. III. The maximump-r splitting is less than
400 MeV, still about 230 MeV less than the experiment
value. The simplest prescription for adjusting the masses
order to eliminate the difference is to incorporate a const
cs into the confining kernel. This ‘‘confinement intercept’
ant
at
he

y

al
in
nt
’

has been argued for on other grounds: the necessity of r
larizing the divergence which appears in treating the lin
confining kernel in momentum space leads to the appear
of a negative constant in the potential@35#. It has also been
argued that the constant can be understood as arising
the gluon condensate of the nonperturbative vacuum@35#.
For heavy systems, its inclusion is not as important, but
light systems~and heavy-light systems! which are affected
more so by the long-range potential, its inclusion is nec
sary for even a fair description of spin-averaged mass spe
in Schrödinger and relativized Schro¨dinger~i.e., spinless Sal-
peter! approaches; hence, its inclusion in the Breit and S
peter models here is perhaps justified.
ec-
n

TABLE VIII. Spin-dependent parameters for spin-spin, spin-orbit, and tensor contributions to the eff
tive potential for beauty quarkonium. ‘‘COG’’ refers to the center of gravity of a given multiplet. The give
1P1 experimental mass is actually the calculated COG. All values listed are in units of@GeV#.

Parameter Experiment Breit mixed Breit timelike Salpeter mixed Salpeter timelike

COG (3PJ) 9.900 9.849 9.919 9.852 9.833
1P1 9.900 9.850 9.921 9.841 9.826
M0 9.900 9.849 9.919 9.852 9.833
aSS 0.0001 20.001 20.002 0.015 0.009
aLS 0.014 0.010 0.023 0.010 0.011
aT 0.003 0.002 0.005 0.002 0.002
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FIG. 5. Ground state splitting of thep and
r mesons, for mixed~scalar1timelike! and pure
timelike confinement. An oscillator basis with
nmax520 andb50.3 GeV was used. The mode
parameters were taken from Ref.@27#, with the
resultant splittings indicated by solid lines. The
dotted lines are withas50.318.
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Additional complications arise from the fact that in Sa
peter’s equation—and in general, any two-body quasipot
tial equation—a constant term in the confining kernel do
not solely yield an additive shift in the meson mass spectru
but provides a dynamical contribution as well, unlike th
Schrödinger or spinless Salpeter cases, where one can vie
as a ‘‘negative mass’’ added to the Hamiltonian. Even wi
other~repulsive! interactions present,cs can be increased to
the point where the Salpeter solutions exhibit RPA-type i
stability; the corresponding effect on the Breit solutions
that they become unbounded from below, as with the re
tivistic Coulomb problem of Sec. III.

2. Data and procedures

As in the case of heavy quarkonia, eigenenergies of
Breit ~no coupling between positive and negative ener
states! and full Salpeter equations were solved for, expan
ing the Salpeter partial-wave amplitudes in an oscillator b
sis of 20 states per partial wave to insure adequate con
gence of the solutions, and with an oscillator parameter va
b50.3 GeV suitable for the light mesons. Initially, there a
six free parameters in the model:s, as , Mu , Ms , xs , and
cs , whereMs is the strange quark mass.xs will be allowed
to take only the values 0.5 and 1.0, as before.s, cs , as , and
l-
n-
es
m
e
w it
th

n-
is
la-

he
gy
d-
a-
er-
lue
e

Mu are fixed by fitting to the lowest 1
2 state, the two lowest

11 states, and the lowest 21 state foruū, minimizing the
chi-squared function

x2~s,cs ,as ,Mu!5(
i51

N
~Ei th2Eiexp!

2

s i th
2 1s iexp

2 , ~75!

with the errors chosen as for the heavy mesons.Ms was then
obtained by taking the parameters from the fit, and adjus
it to reproduce thef mass.

The minimization results for the four parameters for t
four models~Breit-timelike, Breit-mixed, Salpeter-timelike
and Salpeter-mixed! are summarized in Table IX, while th
light and strange quarkonia spectra calculated for each m
are summarized in Table X and Table XI; graphical dep
tions of the spectra for eachJp channel are shown for the
Salpeter-mixed model in Figs. 6 and 7.Jp states are named
by their main2S11LJ components.

The Salpeter-mixed model is the best model in this ca
The problem with it, however, and with the Salpeter-timeli
model, is that in order to fit ther, cs had to be increased to
the point where thep became unstable. The constituent ma
values fall within accepted ranges for the Salpeter-mix
case and the confinement slope is larger than the empi
values'0.2 GeV2 obtained from spectroscopy. However,
TABLE IX. Light meson parameters for Breit and Salpeter models with mixed~scalar1timelike! and
timelike confinement, plus an instantaneous OGE contribution. An oscillator basis withnmax520 and
b50.3 GeV was employed for the data fitting.

Parameter Breit mixed Breit timelike Salpeter mixed Salpeter timelike

Mu @GeV# 0.2862 0.3393 0.3229 0.4196
Ms @GeV# 0.5500 0.5720 0.5610 0.6240
s @GeV#2 0.3841 0.2576 0.3744 0.2574
cs @GeV# 21.448 21.089 21.427 21.157
as 0.2919 0.3064 0.2690 0.2690
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TABLE X. Light quarkonia masses in GeV for Breit and Salpeter models for the parameters as in
IX. The calculated states are aligned with the observed states according to their spin parity. An asteris
observed value indicates a state employed in fitting. An ‘‘I ’’ indicates imaginary eigenvalues.

Meson Jp 2S11LJ Mexpt. Breit mixed Breit timelike Salpeter mixed Salpeter timelike

p 02 1S0 0.140 0.627 0.642 I I
r 12 3S1 0.768* 0.771 0.770 0.768 0.769
a0 01 3P0 0.983 1.066 0.839 1.014 0.787
b1 11 1P1 1.232* 1.203 1.153 1.195 1.148
a1 11 3P1 1.260* 1.169 1.033 1.205 1.081
p8 02 1S0 1.300 1.447 1.368 1.370 1.332
a2 21 3P2 1.318* 1.320 1.320 1.319 1.317
r8 12 3D1 1.47 1.482 1.316 1.512 1.360
? 22 3D2 1.597 1.504 1.622 1.532
p2 22 1D2 1.670 1.607 1.566 1.627 1.573
r9 12 3S1 1.70 1.556 1.451 1.570 1.460
p- 02 1S0 1.77 2.042 1.940 2.006 1.928
the

d
ity
c-
s
a
f

-

ed

-
el
is still in agreement with the lattice results50.3320.23
10.82

GeV2 @35#, although this last comparison is not very signifi
cant because of the large error bars. The confinement of
is comparable to that obtained from the prescriptio
cs'22As @35#. The Breit cases fit ther, but cannot repro-
duce thep at all. That some difficulty should be encountere
in describing the pion in these models should not be une
pected. The mass of thep is commonly explained in the
framework of broken chiral symmetry, where it correspon
to an almost massless Goldstone boson; such models in
porating chiral symmetry have been investigated by Gro
and Milana@36#.

In this case, the necessity for the coupling between po
tive and negative energy states for the light mesons is w
illustrated; theZ graphs provide an additional attraction tha
may be necessary in describing thep as a deeply bound state
of a quark and an antiquark~although in the present mode
the attraction is too strong in this channel!. This need for the
V12 component in the Salpeter equation agrees with t
results of Garaet al. @25# as well, albeit for different reasons
The ss̄ states are well-described, with the exception of t
01 states. It is known, however, that these scalar states
not be represented as simpleqq̄ states@37#. Note that in this
-
fset
n

d
x-

ds
cor-
ss

si-
ell
t

l

he
.
he
can

case the strange-quark mass was adjusted to reproduce
f; the other states are predictions of the model.

V. CONCLUSIONS

We have used Salpeter’s equation to study the light- an
heavy-meson spectra. This study was preceded by a stabil
analysis of Salpeter’s equation that proved essential for pla
ing limits on the form of the instantaneous kernel. We stres
that because of the RPA structure of Salpeter’s equation
stability analysis must always be performed—regardless o
the form of the interaction kernel.

The two main results that emerged from the stability
analysis—none of them original to the present work—are~1!
the Lorentz character of the confining kernel must be time
like or a mixture of scalar and timelike forms@9#, contrary to
the usual assumption of pure scalar confinement, and~2! an
upper limit ofas51/p was set on the strong-coupling con-
stant used in the OGE kernel@12#. This value, and the cor-
responding value for the ground-state energy, were obtain
from a variational solution to the semirelativistic Coulomb
problem. To our knowledge this is the best estimate pre
sented to date. Having placed limits on the interaction kern
in
isk
TABLE XI. Strange quarkonia masses in GeV for Breit and Salpeter models for the parameters as
Table IX. The calculated states are aligned with the observed states according to their spin parity. An aster
on an observed value indicates a state employed in fitting.

Meson Jp 2S11LJ Mexpt. Breit mixed Breit timelike Salpeter mixed Salpeter timelike

? 02 1S0 0.928 0.929 0.640 0.741
f 0 01 3P0 0.974 1.401 1.198 1.422 1.164
f 12 3S1 1.019* 1.019 1.020 1.019 1.020
f 0 01 3P0 1.400 1.764 1.570 1.784 1.859
f 1 11 3P1 1.426 1.487 1.346 1.501 1.369
f 1 11 1P1 1.515 1.431 1.483 1.412
f 28 21 3P2 1.525 1.577 1.587 1.581 1.536
f 0 01 3P0 1.587 2.647 2.398 2.636 2.390
? 22 3D2 1.920 1.777 1.927 1.788
? 22 1D2 1.928 1.822 1.923 1.817
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FIG. 6. Up mass spectrum for Salpeter, wi
mixed confinement and a vector Coulomb cont
bution. The experimental numbers are in the le
hand column for each spin-parity. The spectr
scopic notation for coupled states is that of t
leading component in the calculation.
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we proceeded to carry out a detailed study of the heavy
light quarkonia.

Static properties of the heavy and light quarkonia with
Salpeter’s framework have been examined using a gene
zation of the Cornell potential. For the heavy quarkonia
relativistic corrections coming into play in the various mo
els were examined. These models included Salpeter
Breit approximations having, either, a timelike or a mixtu
of scalar and timelike Lorentz structures for the confini
potential. Recall that the Breit approximation is obtained
setting V12 to zero. Meson masses were adequately
scribed in all the models, with the best results obtained us
the Breit model with timelike confinement. However, a pe
turbative study of spin-dependent effects~valid for the heavy
quarkonia! reveals that the fine structure (P-wave splittings!
and hyperfine structure (3S1-

3D1 splitting! cannot be simul-
taneously described in any of the models by simply vary
the mixing of scalar and timelike confinement. For the lig
quarkonia, the mass spectra, except for the pion, are
described by the Salpeter model with mixed scalar-time
confinement. However, none of the models were able to
scribe the pion, or equivalently, thep-r splitting. For ex-
ample, in the Breit model thep-r splitting is a ‘‘mere’’ 180
MeV. This difference can be pushed up to about 400 MeV
the Salpeter model at the critical coupling; still this value
substantially smaller than the experimental splitting of 6
MeV. The additional attraction needed to describe the p
nd

li-
e

nd

y
-
g
-

g
t
st
e
e-

n

0
n

would appear to rule out using the Breit models for a d
scription of static meson properties. Whether or not this
also sufficient to rule out the use of Salpeter’s equation is n
clear at this point. Overall, all of the features of meson spe
troscopy could not be simultaneously satisfied using the re
tively simple kernel employed here. At the very least, a mo
sophisticated phenomenology is required, especially for t
light mesons and in particular for the pion. It is likely tha
some form of chirally-invariant model will be needed@36#. It
seems clear, however, that keeping the couplings betwe
positive- and negative-energy states is necessary for any
alistic description of at least the light spectra, and certain
for a combined heavy-light analysis. Moreover, it shou
also be clear that regardless of the form of the kernel, t
stability analysis used here must be employed in any stu
that has Salpeter’s equation as the underlying dynami
framework.
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FIG. 7. Strange quarkonium mass spectru
for Salpeter, with mixed confinement and a vec
tor Coulomb contribution. The experimenta
numbers are in the left-hand column for eac
spin-parity. The spectroscopic notation fo
coupled states is that of the leading component
the calculation.
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APPENDIX: EXTRACTION OF THE COEFFICIENTS TO
O„e… IN THE VARIATIONAL ENERGY

For a variational wave function of the forms given in E
~55! and Eq.~61!, one wishes to calculate the matrix ele
ments of the kinetic energy operator and potential operato
e→0. These matrix elements diverge logarithmically f
large momenta and small radii in their respective integran
however, one can examine the behavior of the variatio
energy for smalle, and determine the critical value of th
Coulomb coupling at which the system becomes unbound
In order to compute the variational energy for small valu
of e we expand̂ T& and ^V& as Laurent series@38# in e:

^T&
M

5
t21

e
1t01t1e1•••, ~A1!

^V&
M

5
v21

e
1v01v1e1•••. ~A2!

One wants the leading coefficientst21 ,v21 and the zeroth-
order onest0 ,v0 as well. By minimizingh05t01v0 we
could find the variational energy in thea5ac limit. First we
calculate the expectation value ofH using only one term in
the polynomial expansion in Eq.~55!, i.e., we set c1
5c25•••50. Starting with the potential, one has
.
-
as
r
s;
al

d.
s

^V&
M

522aF gG~2e!

MG~112e!G522aF aG~2e!

~2e!G~2e!G5~2aa!
1

e
,

~A3!

whereG(z) is the gamma function@38,39#. Note that Eq.
~A3! is an exact result; there are no terms of higher orde
e in the series. The kinetic piece requires a little more ca
one first rewrites the integrand using a standard trigonom
ric identity:

^T&
M

5E
0

`

4pk2dk
2Ak21M2

M

1

4p

3H 1kA2

p
NR

G~11e!

~k21g2!~11e!/2

3sinF ~11e!tan21S kg D G J 2

5

4S 2 g

M D 112e

@G~11e!#2

pG~112e!
E
0

`dk

M

AS kM D 211

S k21g2

M2 D 11e

3H 12cos2F ~11e!tan21S kg D G J . ~A4!
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The second integral in Eq.~A4! is convergent, so there is n
ambiguity in settinge50 explicitly. The first integral con-
tains a logarithmic divergence for largek; one adds and sub
tracts this divergence to obtain~with a[g/M and
k/M→k)

^T&
M

5
^T&C
M

1
^T&D
M

, ~A5!

^T&C
M

5
4~2a!112e@G~11e!#2

pG~112e!
E
0

`

dkH Ak2112k

~k21a2!11e

2
Ak211

~k21a2!11ecos
2F ~11e!tan21S kaD G J , ~A6!

^T&D
M

5
4~2a!112e@G~11e!#2

pG~112e!
E
0

`

dk
k

~k21a2!11e .

~A7!

^T&D is logarithmically divergent for large momenta, f
e50, so one evaluates the integral fore nonzero, then ex
pands aboute50 up toO(e). One then has

^T&D
M

5
4~2a!112e@G~11e!#2

pG~112e!

1

2ea2e ~A8!

5S 4ap D 1e 1
8a

p
ln21O~e!. ~A9!
r

One should note that in going from Eq.~A8! to Eq.~A9!, one
must be careful to includeall factors in constructing the
series expansion.

The remaining integrals in̂T&C are convergent, and one
can sete50 explicitly. Using

cosF tan21S kaD G5
a

Ak21a2
,

one has

^T&C
M

5
8a

p E
0

`

dkFAk2112k

k21a2
2

Ak211a2

~k21a2!2G ~A10!

5
8a

p E
0

`

dk
k2Ak2112kAk21a2

~k21a2!2
~A11!

5
8a

p
T̃C~a!. ~A12!

Then, in the limit thate→0, ^H&/M can be written as

^H&
M

5F S 4p 2a DaG1e 1
8a

p
ln21

8a

p
T̃C~a!1O~e!,

~A13!

whereT̃C(a) is given in closed form fora.0 by
g

T̃C~a!55
ln21 lna2

1

2
1

122a2

2aA12a2
tan21SA12a2

a D a,1;

ln221 a51;

ln21 lna2
1

2
1

122a2

2aAa221
F12 lnS a1Aa221

a2Aa221
D G a.1.

~A14!

By demanding that the coefficient of the singular termh21 in the series vanishes we can extract the critical couplin
ac54/p. Furthermore, by minimizing the zeroth-order coefficienth0 we can derive the variational energy
(E/M50.968583) and the optimal parameter (a50.7926).
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