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Unitary, gauge invariant, relativistic resonance model for pion photoproduction
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Pion photoproduction up to 770 MeV photon laboratory energy is described by a manifestly covariant wave
equation, which includes a treatment of the final stal¢ interactions consistent with the covariant, unitary,
resonance model ofN scattering previously developed. The kernel of the equation includes nudion (
Roper (N*), delta (A), andD 5 poles and their crossed poles, as wellmgsp, andw exchange terms. The
Kroll-Rudermann term and other interaction currents ensure that the model is exactly gauge invariant to all
orders in the strong couplirg,yy - The threshold value of thg, . amplitude is in good agreement with recent
estimates obtained from chiral perturbation theory. Elastic unitarity to first order in the chaigatson
theorem is maintained up to the two-pion production threshold. The complete development of this model,
which gives a good fit to alL<2 multiples up to 770 MeV, is presentd&0556-28186)02705-7

PACS numbses): 25.20.Lj, 14.20.Gk, 24.10.Jv

I. OVERVIEW, RESULTS, AND CONCLUSIONS version of our previously published model failN scattering
[9], described in Sec. lll. The modifications in thé model
were made in order tdi) improve the threshold behavior

Pion photoproduction has been studied for many yeargscattering lengths (i) more faithfully approximate the
One of the earliest models, developed by Chewal, is  physics of thewwN channels which account for the inelas-
based on dispersion theofit]. It included nucleon Born ticity, (iii) have a better form factor for further extensions of
terms andA excitation and described tt® P, andD partial  the model, andiv) reduce the complexity of thery inter-
waves at low photon laboratory energies. Additional earlyaction currents by minimizing the energy dependence of the
work (including models using pseudoscataNN coupling 7N interaction kernel which generates these interaction cur-
was reviewed by Donnachi@]. Among later efforts is the rents. We have introduced a new form for theNA and
work based on chiral Lagrangians carried out by Olsson andrN D3 vertices which makes the calculations simpler. At all
Osypowski[3]. They used pseudovectaNN coupling and times we have tried to keep both theN and 7 photopro-
also introduceds exchange. This work was further devel- duction models as simple as possibléthout sacrificing es-
oped by Wittmanet al. [4]. In 1985 Yang[5] and Tanabe sential physicsso that they may beonsistentlyjused as in-
and Ohta[6] and later, in 1990, Nozawa, Blankleider, and put to NN scattering and deutron photodisintegration
Lee (NBL) [7] developed dynamical models of pion photo- calculations.
production. NBL used a separable interaction to describe the In this work the pion photoproduction multipole ampli-
final statewN interactions. Lee and Pearf®| improved on tudes are obtained from the solution of a relativistic wave
this description by using a reduction of the Bethe-Salpeteequation, in which the pion is restricted to its mass shell in
equation to treat the meson-nucleon interaction in the finahll intermediate states except in the pion pole diagram, which
state. They calculated photoproduction observables up to 508 needed to keep gauge invariance. The rationale for this
laboratory photon energy. However, with the construction ofapproach is described in owrN paper[9]. As in =N scat-
powerful new facilities such as the Continous Electron Beartering, in order to describe the resonances at photon labora-
Accelerator Facilitf CEBAP), it is necessary to have a good tory energy~ 300, ~450, and~760 MeV, the kernel or
description of pion photoproduction which extends up todriving terms of the relativistic integral equation include un-
higher energies. Such a description must be covariant, gauglkessedA, N*, andD 3 poles in addition to the undressed
invariant to all order of the strong coupling constants, anchucleon pole. The kernel also includes contributions derived
include not only the nucleonN) and delta A) resonances, from crossed\, A, N*, andD,; diagrams and fronm and
but also the RoperN*) resonance which plays a prominent p exchange terms. The exchange is claimed to give
role in the isosping amplitudes and th®,5 (1520 which  a significant contribution to theM ;. (3) amplitude and
makes large contributions @ waves. M _(3) amplitudes(for an explanation of the multipole no-

In this paper we present a simple, covariant, gauge invaritation see Sec. | B below and Appendix [B]. Although the
ant model forz photoproduction which works well up to p exchange contribution is claimed to be snjal], it is still
770 MeV photon laboratory energy. The model satisfies elasncluded in our model. We believe that it will contribute to
tic unitarity up to the two pion production threshold, inelasticthe M; _(1/2) andM,_(1/2) channels. Besides that we also
unitarity approximately above the two-pion productionwould like to get an estimate of the strength of they
threshold, and is fully consistent with a slightly modified interaction. Our approximation scheme makes the crossed

A. Introduction
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o y . oo (i) The 7NN coupling is taken to be a superposition of both
‘x\ (_j x i N pseudoscalar ;) and pseudovectory*ys) coupling; (ii)
>, .? oo the nucleon self-energy is constrained to be zero at the
NN AD; nucleon pole, so that the nucleon mass remains unshifted by
®) () () the interactionyiii ) contributions from the RopeN*) and
(N*«—N) transition amplitudes are iterated to all orders, giv-
ing a consistent description of the Roper resonance and its
width; and(iv) the A and D5 are treated as pure spin 3/2
particles, which the same propagators used inrtNemodel.

In the remainder of this section we will describe the his-
tory and background of some aspects of pion photoproduc-
tion such as th&2/M1 ratio, low energy theorem, unitarity,
and gauge invariance. The general theory is described in Sec.
Il. After a description of the modifications in theN model
given in Sec. lll, ther photoproduction model is described
in Sec. IV. The Appendixes discuss some technical points.

(a)

(el) (e2) (e3)

B. E2/M1 ratio

FIG. 1. Diagramatic representation of the driving terms for pion ~ The tensor interaction between quarks, such as the one
photoproduction. Pions are dashed lifith an X if it is on shel), which arises from the one-gluon-exchange interaction, gives
baryons are solid lines, and the large solid circles represent fulla smallD state admixture to the predominan®ystate wave
dressed vertex functions, as discussed in Sec. Il. functions of the nucleon and th®. This tensor interaction

leads to a resonant electric quadrupole amplitEge(3) (or

A andD,; poles zero, as in the'N model. This makes the E2) which is very sm?II compared to the resonant magnetic
model simpler and the numerical calculations easier, and idiPole amplitudeM, , (3) (or M1).[Here the amplitudes are
consistent with other approximations we have made. Thélenoted byE,.(I) andM,..(1), wherel is the orbital angu-
crossed nucleon pole is treated exactly because of its impolr momentum of the photoproduced pion, thesign refers
tance in the proof of gauge invariance, and the crossed Rop&? the totalmN angular momentum=1+1/2, andl is the
pole is also treated exactly because it has the same propertig§spin of thewN system] The nonvanishing2 amplitude
as the nucleon. All of these driving terms are shown diadS one of the signals of thB state admixture. Therefore it is
grammatically in Fig. 1. The Kroll-Ruderman terfoontact ~important to determine th&2 amplitude in order to test
diagram and the additional interaction currents needed tovarious quark model predictions.
make the model gauge invariant are described in Secs. Il and There have been several attempts to measureEthe
IV. The solution which emerges from the integral equationamplitude, but it is difficult to get an accurate value because
(which includes the Born terms shown in Fig. 1 plus the finalthe E2 amplitude is very small compared to the dominant
state interactions illustrated in Fig) automatically satisfies M1 amplitude, and the background is comparatively large
unitarity up to first order ine (referred to as the Watson [12]. The analyses of the data using several models show
theorem [11]. that although all of the calculations agree thaf is
Features of ourr photoproduction model which are con- small, there is considerable uncertainty as to its precise size.
sistent with therN scattering model include the following: Results for theE2/M1 ratio which are listed in the Review
of Particle Propertied13] are E2/M1=(—1.1+0.4)%,
(—1.5+0.2)% [4], (3.7+0.4)% [6], and (—1.3+0.5)%.

N . N Some other calculations givE2/M1=—-3.1% [7], —4%
NN Y *(r’j X e [5], and 0%[14]. These differences are a reflection of the
= _@_¢‘ ; ) fact that extraction of th&2/M 1 ratio from the large experi-
:Z)’N » W mental background requires a theoretical model for both the

A resonance and the background, and the result one obtains
is therefore sensitive to how the theoretical models are uni-

o CP/J % tarized, and to how the background is descrithgf We
N A7 expect that new, accurate data from CEBAF experiments,
NA, Dy and new, more complete models wfphotoproduction, will
el) fe2) help to clarify the situation.

The value of theE2/M 1 which we obtain from our fitat
the resonance pol/,;=M,) is

E2/M1=—1.5%. (1.2)

FIG. 2. Diagramatic representation of the final state interactiondiowever, a fit to the data below 500 MeV gives a larger
for pion photoproduction. The solid circle surrounded by an opervalue, and so this value is not very well determiféad].
circle represents the fulkN scattering amplitude. Both values are small and negative, in rough agreement with
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some of the results given above. The val{li€l) was calcu- —1.34x10°3
lated from theA-pole diagram only, and does not include Eo+r= T (1.6
any contributions from the background. Thatal E2/M 1
ratio, including background contributionss —0.63. is very close to the resulftL.4).
C. Low energy theorem D. Unitarity

~ The low energy theorenfLET) was derived for the first  sympolically, the unitarity statement can be writfeee
time by Kroll and RudermapL6] from an examination of the Eq. (2.14 below]

implications of gauge invariance in the framework of field

theory. Later Fubiniet al. [17] extended this theory by in- ImM7 =—p,MTTM7 —p,MIZMT_, (1.7
cluding the hypothesis of a partially conserved axial current

(PCAQ. In view of the LET, threshold pion production on whereM7_, M7, andM?, are themN, pion photoproduc-
the nucleon was considered to be well understood. Accordion, and compton scattering matrices for a state with quan-
ing to the original LET prediction the threshold value of the tum numbersy, andp, andp, are phase space factors for
electric dipole amplitude forr® photoproduction from pro- the 7N and yN intermediate states. In 1954 Watspil]

tons is pointed out that the second term in EG.7) is very small
because it contains no terms which are first ordee ifthe
9 WM M w\® electric chargg and can therefore be neglected. Below the
Eo+|Ler=— W( 1- ﬁ(3+’<p) +O m two-pion production threshold, the phase of the pion photo-
production amplitude for a state will therefore be equal to
. 2.3x10°° . the phase ofrN scattering in the same channel. This state-
T +correction, 12 ment can be explicitly written
where u is the pion mass. However, it was a big surprise Mg7=||\/|gy|ei5fm, (1.8

when an analysis of the Saclay ddte8] showed that the
experimental threshold amplitudg,+ for 7° photoproduc- where &% is the partial wave phase shift farN scattering.
tion was smaller than the prediction of the LET by about aThe Watson statemeriiL.8), sometimes called the Watson

factor of 5, theorem, will start breaking down above the two-pion pro-
(—05:0.3x10° ductiqn thresholq. _ .

E0+|expt= S _ (1.3 _ Unltarlty was incorporated into models based on disper-

M sion relations by Chew, Goldberger, Low, and Nambu

) ] ] ] (CGLN) [1] and by Fubiniet al.[27]. Early models based on
The Mainz analysi$19] confirmed this result, and renewed gffective Lagrangians were not unitai§,28] but were later
interest in the LET. Possible flaws in the derivation of theunitarized[3,29,3q. As pointed out by Araki and Afnaf81]
LET due to final state interactior{20], corrections to the 4,51k models based on effective Lagrangians are hard to
chiral perturbation expansid@1], or chiral symmetry break- jnterpret because it is difficult to establish the connection
ing correctiong 22—24 were proposed. A new contribution henveen the coupling constants in the Lagrangian and ob-
of order u/m (which arises from logarithmic singularities of ggrved interaction strengths.

some one-loop diagrams in the chiral perturbation expan- The importance of unitarity was recently pointed out by

sion) was discovered21], giving a corrected LET Nozawa, Blankleider, and Le@BL) [7], who claim that it
eqg u ) 3 is i_mp_osible to fit theM ;. andE, . m_ultipoles with a non- _
Eo+|ier=— NN M 3+ K+ m e L unitarity model. The same observation was made by Witt-
OTILET 8mwm? 2m PUgFZ) | \m manet al.[4] who also showed that the result for these am-
. plitudes can be improved by unitarizing the model. Tanabe
__ 1.4x10 + correction (1.4 and Ohtd 6], Yang[5], and Lee and his collaboratdrs,32]
o’ ' ' all use integral equations to automatically obtain unitarity

models.
whereF . is the pion decay constant. Then, instead of ex- Qur model uses a relativistic wave equation in which the
tracting the low energy result from the differential cross secintermediate state pion is on shell and the intermediate state
tion, Bernstein and Holsteif25] and Drechsel and Tiator nycleon is off shell. This is consistent with theN model
[26] used the total cross sectigwhich was not analyzed by previously developed9]. The same equations are used to
the Mainz group and obtained calculate both the scattering amplitude and the renormalized
(—2.040.2)x10°3 coupling constants, epsuripg thap the rer)ormalization of thg

om _ (15  Propagators and vertices is carried out in a manner that is

2 consistent with unitarity.

It is clear that the threshold value Bf,+ will continue to be

of interest, and that it may be a case where the chiral pertur-

bation expansion is slow to converge. It has been known since 1954, when Kroll and Ruderman
The result we obtain for the electric dipole amplitude at(KR) [16] wrote their well-known paper on pion photopro-

threshold, duction, that the momentum dependence of the pseudovector

E. Gauge invariance
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FIG. 3. Fits to theS;; andSg; phase shifts. The solid circles are FIG. 4. Fits to theP,, and P4, phase shifts

the Arndt phase shifts.

satisfies gauge invariance by restricting both of the interme-
diate particles to their mass shell.

In this paper we apply the method originally introduced
by Gross and Risk&36]. They show how the electromag-
S netic coupling to any two-body system described by a rela-
Born terms which included form factors. Antwerpen andy isitic two-body equatior(such as the Bethe-Salpeter equa-
Afnan [35] extended this theory to the treatment of PiONtion or the Gross equatiof9,37)) will always conserve

photpproductioq with final state .interactions, but havg NOL, rent provided the following three conditions are nét:
obtained numerical results. In their approach they require thgy,e electromagnetic currents for the interacting off-shell

dressedzNN vertex to be gauge invariant by |t$elf. The Lucleon and mesons satisfy the appropriate Ward-Takahashi
NBL model[7,32] also includes final state interactions, and (WT) identities; (ii) the interacting incoming and outgoing
) two-body systems satisfy the same two-body relativistic
TABLE |. The parameters of theN model. Those in boldface eqyation(with the same interaction kernehnd (i) the ex-
were varied during the fit; the others are either fixed or determ|necé:h‘,jm(‘:]e(0r interaction current is built up from the relativis-

7NN coupling requires introduction of an interaction current
(the famous Kroll-Ruderman tepnn order to satisfy gauge
invariance. More recently, using minimal substitution, Ohta
[33] and Nauset al. [34] obtained a gauge invariant set of

by the fit itic kernel by coupling the virtual photon to all possible
Parameter Bare Dressed places in the kernel. This method works even in the_ presence

of strong form factors for the off-shell nucleon; in this case it
9%l4m 13.5 13.3 is only necessary to modify the structure of the off-shell
A 0.200 vyNN vertex so that it satisfies the WT identity with dressed
C 0.884 propagatorgas discussed in Sec. JV
C, 0.674 Using this method, it is possible to construct a gauge in-
m* 1431.8 1442 2 variant theory even when particles are off shell, but gauge
9. l4m 3.590 5.795 invariance is achieved only through cancellations among all
F’i* 228.6 of the diagrams in the theory. To prove gauge invaria@ase
Z(m) —0.0042
Z(m*) —0.0043-0.023i
9’2 4 0.062 200
g'fN*/47r 0.0 60
A 1225.4
A* 1853.7

120

my 1301.8 1229.9 o
9?l4m 0.813 0.808 5 80
'y 123.9 «©
Ay 15155 40
mp 1520.4 1517.9 0
gl4m 0.704 0.698 |
I'p 124.5 40 ) | . I . I L I .
g'? 4w 0.031 0 100 200 300 400 500 600
g’ED/4’7T 0.0 Ty (MeV)
Ap 1829.3

FIG. 5. Fits to theP,; and P53 phase shifts.
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which is within two standard deviations of the experimental

100
results[38]

80 - pa_|exp=0.085+0.01,

50 pa |exp= —0.029+0.02. (1.10

(9]

% W0k Figure 4 shows fits to the theé;; and P53, phase shifts. In
the Py, channel the zero appears at 101 MeV pion laboratory
kinetic energy. The fits t€33, P3;, andD ;3 channels shown

20 - in Fig. 5 and Fig. 6 are very good. Because of our approxi-
mation for the inelastic channels, our fits to tRg; and
| D, inelasticity parameters are not very good especially at

00 100 200 300 400 500 600 the higher energy.
The 13 parameters given in boldface in Table | were ad-
) ) justed during the fits. The table also includes several param-
FIG. 6. Fit to theD 5 phase shift. eters which were determined by the fit or fixed by consis-
tency requirements. All of these these parameters, except for
is done in Sec. )| we use the WT identities, the relativistic the new inelasticity parameterg;gz, and g,z (where
wave equation satisfied by theN system, and must be care- B={N*,D}; see Sec. I, have been discussed in detail in
ful to introduce interaction currentén addition to the well-  Ref.[9]. We choosey,z=0. The inelasticities of thti* and
known KR interaction curreptvhich arise from the momen- D,; are described approximately by introducing o& N

tum dependence of the interaction kernel. channel, wherer* is a(fictitious) scalar particle with a mass
equal to two pion masses, or 278 MeV. The mass of the
F. Results o* was chosen so that the* N threshold would coincide

The basic features of ourN scattering model are already exactly with ther#N threshold, which seems to be critical

well described in Ref.9], and the madifications of this origi- to aﬁqood despriﬁ)tion Olf thfe inek-1lasticit|y. | litudes f
nal model are described in Sec. lll. New numerical results . The numerical results for the multipole amplitudes for

for pion-nucleonS, P, andD wave phase shifts and inelas- pion photoproduction from a proton are shown in Fi_gs. 9-21

ticities are shown in Figs. 3—8 and the new parameters ar@nd the new parameters which describe the coupll_ng Of the

given in Table I.(The interested reader may compare thes hoton to the nuclgo(xand meson resonances are given in

with the corresponding Table | and Figs. 7—13 in H6l.) able I1. The exp_enmental results shown in the figures come
Our fit to the pion-nucleon phase shifts and inelasticitie rom the interactivesaiD program of Arndt and Ropd9).

. . . . _3
are very good, with a major improveme(aver the original € amplitudes are given in units @im)x10"°. The pre-

: : e ise definitions of the parameters shown in Table Il are given
model[9]) in the S3; channelsee Fig. 3which improves the cise ) . . ; 4
scattering length. The new values of the scattering Iengthg1 Sec. IV; those in boldface were adjusted during the fit.
The parameterg,g andg,g (whereB={N* ,A,D}) de-

are . > .
scribe theyNB couplings(there are two independent forms
pa_=0.07, for each coupling; see Sec. JVthe productsg,,d,nn
(wherev={p,w}) are the strengths of thewy and wmy
couplings(the fit can determine the product of these factors
wa, =—0.05, (1.9  only), and thef yn/g,nn iS the ratio of the tensorf(yy) to
L5 ' ' , , ' 1.5
1.2 1 12k
oo 09 |-
n n
0.6 0.6 -
03| . ] 03 L
LI
0.0 L 1 ) 1 L | L | i | L 0.0 . 1 X 1 . L . 1 L 1 L b
0 100 200 300 400 500 600 o 100 200 300 400 500 600
T (MeV) Ti MeV)

FIG. 7. TheP,, inelasticity parameter. FIG. 8. TheD 3 inelasticity parameter.
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FIG. 9. Fit to the real part oEq+(1/2) amplitude. The indi- FIG. 10. Fit to the real part of thEy+(3/2) amplitude. Thep
vidual contributions are discussed in the text. exchange pole does not contribute to this channel, andthgives

a small contributior(the dashed line nearly overlaps the solid Jine
vector @,nn) Strengths of theoNN and NN couplings.

The f,un/g,nn Value given in Table Il was taken from the plusthe N* contributions(the solid ling. Since all contribu-
NN Model IA of Ref. [37], while the f ,yn/g,nn Was ad-  tions add nonlinearly, it is difficult to extract the separate

justed to improve the fit. . contributions from the figures.
Because of our choice of spin 3/2 propagator and our Qur fits to both the real and imaginary parts of the
approximation scheme which sets the crosg@e@nd D13 j=1/2 multipole amplitudes are very good. In tBg, =N

pole terms to be zero, th& and theD 3 only contribute to  channel(Fig. 9) there is a small peak near 730 MeV that we
thej=3/2 channels. Itis therefore convenient to describe outan not describe. This peak is associated withroduction,

fits to thej =1/2 andj=3/2 channels separately. not included in our model. This) production also contrib-
We begin with the =.1/2 channels, shown in Figs. 9-12. utes to theS;; channel(Fig. 10 at high energy.
These channels are driven by the nucleon Bfidpoles and Before we discuss the fits to the=3/2 channels, we wish

crossed poles, and the, w, andp exchange termésee Sec. to point out that theEy+(1/2) andM;-(1/2) amplitudes,
IV for details). These driving terms depend on five adjust-shown in Figs. 9 and 11, are particularly sensitive to all of
able paramenters: twgNN* couplings, denoted by, , and  the individual contributions. In contrast, theexchange is
9, thepmy andwmy couplings multiplied by theyNN isoscalar and does not contribute to the3/2 amplitudes
and oNN couplings, denoted by, g nn @3N Do ryGunn [the Eq+(3/2) andM;-(3/2), shown in Figs. 10 and ].2and
and the » anomalous magnetic moment coupling the Roper amplitude also gives only a very small contribu-
Ky=TFounn!Gunn. TO Show how the total result is built up tion to thesel =3/2 char_me]s(the dashed line overlaps, or
from individual contributions, the curves in the figures show@Mmost overlaps, the solid lineThe » andp exchange con-
the result when the kernél) includes only the direct nucleon tributions are very important to a description of the two
pole term, the crossed nucleon pole, the pion exchange pole™=1/2 amplitudes. The Roper contribution is also very sig-
and all the interaction currents associated with the nucleofificant, especially in thé/, - (1/2) amplitude, which cannot
(the dotted ling (ii) the terms in(i) plus the  exchange be fit without it. TheM,-(3/2) amplitude(Fig. 12 depends
pole (the dashed ling (iii ) the terms in(ii) plus p exchange ~Very much on the omega, an(_j could not be fit without vary-
pole (the dotted line, with wider space between doand N9 the (f,nn/gunn) coupling. The small value of
finally (iv) the total result, which includes the terms(iii)

TABLE Il. The new parameters in thgN the model. Those in 9
boldface were varied during the fit; the others were fixed. r
6 -

Parameter Value PR ¢s

a
Jan* —-0.231 =
Oonx 0.831 g
J1a 1.121 ©
924 1.333 ~
dip —2.340
920 —2.450 L -
gpwygpNN —-0.439 -6 1 . L . | . 1 . 1 . I .

8.168 200 300 400 3500 600 700

gam"yga)NN . ~
fonn/Gonn 7.52525 E', (MeV)
fonn/Gunn 0.76

FIG. 11. Fit to the real part d¥,-(1/2) amplitude.
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FIG. 12. Fit to the real part of th®,-(3/2) amplitude. The
exchange pole does not contribute to this channel, andthgives
a very small contributiorithe dashed line overlaps the solid line

(f ,nun/9.nn) from the one-boson-exchange modeg] did
not work.

YOHANES SURYA AND FRANZ GROSS

Re E+(3/2)

1 I
200 300 400 500 600 700

E’Ylab (MeV)

FIG. 14. Fit to the real part of thE,+(3/2) amplitude. See the
caption to Fig. 13.

values of theyNA couplings which we obtain are within
range of other calculation$40] which use the Rarita-
Schwinger propagator to describe the spin 3/2 resonances.

The j=3/2 channels, shown in Figs. 13-16, are driven by  All of the j = 3/2 amplitudes are fit reasonably well by the

the direct spin 3/2 resonance pol@®m theA andD,3), the
crossedN andN* pole diagrams, and the, p, andw ex-
change diagrams. As before, theexchange pole does not

model. The contribution of thBl* to all of these amplitudes
is very small(as indicated by the near overlap of the lines
with short and long dashes in Figs. 13 and 14 and the lines

contribute to thd = 3/2 amplitudes, and so the contributions with widely spaced dots and long dashes in Figs. 15 and 16

shown in Figs. 13 and 14 includ@® contributions from the
nucleon and pion onlydotted line as above(ii) terms in(i)
plus the omega exchange pdléne with short dashes, as
abovae, (iii) the terms in(ii) plus theN* contributions(the
line with longer dashgsand(iv) the total result, including
the A pole terms(solid ling). For thel =1/2 amplitudes, the
widely spaced dotted line includes terms(in above plus
the p exchanggas in thej =1/2 casef the line with longer
dashes adds thd* contributions, and the solid line is the
total, including theD,;. All of the parameters for the

Note that the rho exchange pole plays an important role in
the E,_(1/2) andM,_(1/2) amplitudegFigs. 15 and 16

From the results shown in Figs. 13 and 14 we calculated
the ratio of E;+(3/2) andM+(3/2) at the peak of th&
resonance, and found that the value from only the dressed
A contribution is about-1.5%.

Finally, Figs. 17—20 show the comparison of our calcula-
tion (solid line9g to the VPI analysi$39] (dashed lines The
solid circles and open triangles are the real and imaginary
parts of the amplitudes, respectively. The agreement between

crossed and exchange diagrams were already determined the two calculations is good.

the j =1/2 fit. The directA pole, which contributes only to
the P43 final state(Figs. 13 and 1% requires two new pa-
rameters(the couplingsg,, and g,,), and the directD 5
pole, which contributes only to thB 5 final state(Figs. 15
and 16, requires two moréthe couplinggy;p andg,p). The

60
40
N
5 20
= |
o 0
o
20
_ | 1 . 1 | . | . | .
200 300 400 500 600 700
E7 (MeV)

FIG. 13. Fit to the real part oM +(3/2) amplitude. The indi-
vidual contributions are discussed in the text. T contribution
is very small, and the does not contribute.

G. Form factors

Some form factors are needed to ensure that the solutions
of the integral equation exist or, alternatively, to cut off the

500 600 700
E Ly (MeV)

200 300 400

FIG. 15. Fit to the real part oE,-(1/2) amplitude. The indi-
vidual contributions are discussed in the text. T contribution
is very small(as indicated by the overlap of the long-dashed line
and the widely spaced dotted line
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Re M- (1/2)
[\] W

—

500 600 700
Elylab (MeV)

200 300 400

FIG. 16. Fit to the real part of thi®l,-(1/2) amplitude. See the
caption to Fig. 15.

integrals over therN and (the inelasti¢ o* N loops which
appear in the solution. These form factors cannot depend on
the pion mass, as is usually done in pion exchange models,
because the pion is on shell. Anticipating the extension of
this model to the description of the electroproduction of
pions, where a gauge invariant treatment of electromagnetic
interactions is possible following the procedure introduced in
Ref. [36], we choose to make the form factors depend only
on the off-shell nucleon mass. By extension, and to improve
the fits, we also introduce form factors for the baryon reso-

20

() Eg(1/2)

200 300 400 500 600 700
E7\, (MeV)

()  Eg(3/2)

Im A

200 300 400 500 600 700
E'\» (MeV)

FIG. 17. Comparison of ouE+(1/2) and (3/2) tosaiD analy-
sis. See the discussion in the text.

(@) M- (1/2)

200 300 400 500 600 700

E" (MeV)

(b) M,-(3/2)

1 L ] L 1 ) L L
200 300 400 500 600 700
E ' (MeV)

2429

FIG. 18. Comparison of ouvl;-(1/2) and (3/2) amplitudes.

nances. These form factors are identified with the baryon
itself; each baryon has a universal form factor which will be
used for that baryon, wherever it appears in the calculation.
We also require all form factors to be zero in the spacelike
region (when p2<0).

The specific form of the bayron form factors used in this
paper, which are different from those used in R6i, is

) (Ag-m3)?  |?
1elP = (A2 =g 7+ (mg—p?)?
P pt+ (u2+md)?]
mgl 1+ (u2+p?)?]

}0<p2>, (1.1

where mg=m for B={N,A,D;3}, mg=m* (the Roper
mas$ for the Roper amplitude, the form factor masses
were allowed to vary during the fit, and the theta function is
introduced to ensure that this form factor is zero 8k 0.
Note that the maximum value of the first factor is unity at
p?=m3, and that this term peaks pf=m? for the nucleon,
A, andD,; form factors, while it peaks gt?=m*2 for the
N* form factor. Unfortunately, our results are sensitive to
the form factors, which are purely phenomenological.
When the form factors accompany the intermediate
baryon in the direct baryon pole terms, the virtual mass
(squareglis simply

p?=m?+ u?+ 2m(Tigpt 1), (112
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(@) E(3/2)

200 300 400 500 600 700
E7, (MeV)

60

(b) M;+(3/2)

40

20

-20

1 i ) 1 n
200 300 400 500 600 700
E ' (MeV)

FIG. 19. Comparison of ouE;+(3/2) andM+(3/2) ampli-
tudes.

(@) Ey (172)

Im
-4 L 1 I s 1 . ) 1
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FIG. 20. Comparison of ouE,-(1/2) andM,-(1/2) ampli-
tudes.
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FIG. 21. Form factors for the nucledsolid line), Roper reso-
nance(dotted ling, A (dashed ling andD 45 (widely space dotted
line) as a function ofT ;.

and the four baryon form factors are plotted ver3yg in
Fig. 21. When the nucleon form factor accompanies a virtual
nucleon in arN loop, its masgsquared is

p2=W2+ u?—2Waw(k), (1.13

wherek is the magnitude of the pion three-momentum in the
loop, andw(k) = Vu?+k?. The nucleon form factor is plot-
ted versu for a fixedW=m+ u in Fig. 22. We emphasize
that thesamenucleon form factor is shown in both figures;
only the variable on which it depends has been changed.
Note that(because of the theta functipthe nucleon form
factor is zero beyon#t=525 MeV, cutting off the loop in-
tegral at this momentumHowever, a more gentle cutoff,
such as the ones used in RE9), does not alter the results
significantly)

H. Conclusions

The following conclusions can be drawn from the present
work:

1.0

o o o
S [« % =]
T T I

.

Form factor

e
to
I

0.0 L | L | L | L | | L
0 100 200 300 400 500 600

Pion-loop momentum (MeV)

FIG. 22. Form factor of the nucleon plotted as a function of the
pion loop momentum.
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(i) A relativistic resonance model of pion photoproduc- 4K

tion, fully consistent with therN scattering model which Mw,,(k’,k,P):Vm(k’,k,P)+if(27)4

defines the final state interactions, has been found to give a

good description of the process up to 750 photon laboratory XV (k' K", P)G(K",P)M . .(K" k,P)

energy. The model is covariant, satisfies elastic unitarity up ayr

to first order in the electric charge and is gauge invariant =V_(K' kP)+i| =

to all orders. The simplicity and consistency of the two mod- (27m)

els means that they can be used as a basis for a treatment of XM.,_(k' K" PYG(K",P)V.._(K" k,P).

the coupledNN«+ 7NN system, and its electromagnetic ex-

tension toyNN and ywNN. 22

(i) The dressedA contribution gives a ratio of |, pot r9] we have shown that pion-nucleon scattering is
E2/M1=-1.5% at theA pole, implying that theA is not \e|| described by a relativistic equation obtained from Eq.
purely anS state, but contains & state admixture. This (2.9 py putting the intermediate pion on mass shell. To be
result shows that the tensor interaction between quarkgpnsistent with this description afN scattering, we also put
should not be neglected. the intermediate pion on the mass shell in ¢, Eq.(2.1).

(iii) The threshold value of the electric dipole moment for (The only place that the pion will be off shell is in one of the
o photoproduction from protons By, = —1.34x10"% u,  pion pole driving terms, which is needed to satisfy gauge
which is in agreement with the recent value predicted byinvariance, as discussed beluf. the pion is put on shell,

chiral perturbation theory. Eqg. (2.1) becomes
Il. GENERAL THEORY d3k”
. . L . . Moy (K0, P) =V (K'.0,P) - (27)3 2wy
In this section the relativistic equation for the pion-
photoproduction scattering matrix is presented, and we show XV (K" K", P)Sy(p")M ,,(K",q,P)
that the theory is covariant, gauge invariant, and satisfies 43K
unitarity. = ! o
Y Ve KLAP) = | 5 500
XM (K" K", P)SN(P")V 7y(K",Q,P),

A. Integral equations
2.3
The Bethe-Salpeter equation for pion-photoproduction . .
can be written in two equivalent ways. Keeping the termsWherewy,=1/u+k"* is the on-shell pion energy, and

lowest order ine only and supressing all the Dirac and iso-

spin indices gives , 1
SN(p )_ m— lb"—ie (24)
d*k” is the nucleon propagator, apdandm are the pion and the
Mm(k',q,P)IVM(k',q,P)Hf(27)4 nucleon masses.
The equations are regularized by adding a form factor
XV (k" ,K",P)G(K",P)M ...(K",q,P) fn(p?) to damp the high momentum behavior of the off-shell
ayer nucleon of momenturp. Equation(2.3) includes these form
=V_(k',q,P)+i . factors in the interaction kern&l. Alternatively, it is some-
e (2m) times convenientparticularly in our discussion of gauge in-

- " " variance belowto move these form factors from the kernel
XMk K PYG(KY, P)V o, (K'.0,P), to the propagator. To this end we can introduegluced
(2.1 amplitudes andlampedpropagators as follows:

' _ CLIN2IN( L k)2
whereV . (k’,q,P) andV (k' ,k",P) are the driving terms VKK PY=TL(P=K)TIV(K K P TNL(P =),

for the yr and =7 sectors, respectively, an@(k”,P) is

the two-body wN propagator. The four-momenta of the M(k’,k,P):fN[(P—k’)z]M(k’,k,P)fN[(P—k)Z],
incoming, outgoing, and intermediate nucleons prep’,

and p”, of the outgoing and intermediate pions aké -

and k”, and of the incoming photon isy, so that Sn(P") =fR(P"2)Su(p"). 2.9
P=p+q=p’'+k'=p”"+kK" is the total four-momentum. -

The equivalence of the two forms of E@2.1) follows The symbolM will usually denote the reduced amplitude
from their Born series, which is identical. To see this, it isM (the amplitudeM with the form factors removedand S
necessary to use the equations for #H¢ scattering ampli- the damped propagator with tk&guare of thenucleon form
tude, which are factor added. It is easy to verify that the reduced amplitudes
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satisfy the same equations, but with damped propagatordsing Eq.(2.89 to replace theV ., driving term under the

substituted for “bare” propagators.

integral in this equation gives the following nonlinear equa-

We will have occasion to use the fact that the piontjon for M,

nucleon scattering matrid ..(k’,k,P) can be written in the
following form (see Ref[9]):

MﬂﬂT(k’!k!P):MCﬂ'w(k,lkip)

+§ I'g(k’,P)Gg(P)Ts(k,P), (2.6

where the sum is over baryolsin the set{N,N* ,A,D,3},
Mc.-(k',k,P) is the infinite sum of iterated contact dia-
grams,I'g(k,P) is the dressed vertex for baryds, and
Gg(P) is the dressed baryon propagattrhe definition of
the Dirac conjugatéd’z will be given in the next subsection;
note that it, and the notation used in Eg.6), differs from
that given in Ref[9]. For a complete review of our nota-
tional conventions, see Appendix)A.

The integral equation@.3) are manifestly covariant. This
is guaranteed by the covariance of the volume integration

A3k
2wy

=f d*ké, (u?—Kk>3). (2.7

M=V~ | M,.SM, — f f M SV 72 SM,, .

YT
(2.1)

A second nonlinear equation can be obtained from(E®3
by using the Dirac conjugate of theN equation

Mrr=Von— | MprSV,, (2.12

to replace theV/ ., driving term under the integral

May=Vo— | M.SM,,— J M 7SV SM,.,.
(2.13

Subtracting Eq(2.11) from Eq. (2.13 gives theelasticuni-
tarity condition

M Myw=—f M ,(S—S)M,, . (2.14

Ty

Using time reversal invariance, the Dirac conjugﬁt% can

Furthermore, these equations automatically give a solutiope related to the complex conjugateMf, .

which satisfies elastic unitarity to order(the Watson theo-
rem), as we show in the next subsection.

B. Unitarity

The proof of elastic unitarity is very similar to the one
given in Ref.[37] for NN scattering. First, we write E42.3)
and a similar one forr+N—y+N (pion photoabsorbtion
in the compact form

Moy=Voy— f VorSM,,, (2.89
Myw:Vyw_f V'yﬂTSMﬂ-wa (28b)
whereM ., M., andM .. are the scattering matrices for

In each eigenchannel, the elastic unitarity condi{@ri4)
automatically implies that the pion photoproduction ampli-
tude has the same phase as thl scattering amplitude,
which is a statement of the Watson theorghi]. However,
above the inelastic threshold, i.e., when theN intermedi-
ate states become physical, the driving terms in our equation
become complex, the elastic unitarity condition no longer
holds, and the Watson theorem no longer applies.

C. Introduction to the model

In this section we prepare the way for a demonstration of
gauge invariance by giving a brief introduction to our model
of pion photoproduction. A detailed discussion of the struc-
ture of the couplings and the definition of parameters will be
deferred to Sec. Ill. Here we will limit the discussion to
those points essential to the proof of gauge invariance.

photoproduction, photoabsorption, and pion nucleon scatter- Our amplitude for pion photoproduction is given by the

ing, andV,, V, ., andV,, are the driving termgkernely
for photoproduction, photoabsorption, antN scattering.

sum of the Born diagrams shown in Fig. 1 and their final
state interactions, shown in Fig. 2. The Born diagrartss, 1

The Dirac conjugate of the photoproduction kernel is thel(b), 1(€2, and Xe3 include (in principle) contributions

kernel for photoabsorption, but therN kernel is self-
conjugate:

V(K6 P)= V] (k,4,P) Y=V, (a.,k,P),

V(K K P)= Vi (K" K,P) yo=V (KK, P).
(2.9

Taking the Dirac conjugate of Eq2.8b, and using Eq.
(2.9, we obtain

M M__SV

yr=Vay ™ Ty (2.10

from all of the resonanceB, but the contributions of the

A andD;to diagram 1b) are zero in the approximation we
employ. Furthermore, theNN*, yNA, yND,3, p7y, and
oy couplings are all separately gauge invariant, and hence
the contributions of the baryon resonances to the diagrams
1(a) and Xb), and of thep and w to diagram 1c), can be
ignored in the proof of gauge invariance, and will not be
discussed further here. Diagram@&3 and Xf) are interac-
tion currents which arise because of the momentum depen-
dence of the elementaryrN contact interaction and the
7NN, 7NA, and wND;; couplings. In our model the
7NN* coupling does not depend on the momentum, and
hence the Roper resonance makes no contribution to diagram
1(e3.
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Note that dressed vertices are needed in diagrafils 1 pin 1/2 channgl M2 is the reduced iteration of these con-
1(c), 1(e), and If) because final state interactions cannottact interactions to all ordersee Ref[9]), and
describe anywN interactions which take plackeforethe
photon is absorbed. Interactions which take plafter the d3k”
photon is absorbed are part of the final state interactions, and f dk’= f Zop(2m)
hence diagram (&) must contain only the bare vertex in or-
der to avoid double counting. _ _In the third term of Eq(2.16), the vertexI'y(k’ —q,p) de-

_ The interaction kernel obtained from the Born diagrams iNgcribes the coupling o?a nS)cIeon to aﬁ-sﬁt(allpio%,pv)vhich
Fig. 1 has the form is, strictly speaking, an amplitude outside of the framework
of our model. However, since the reduced contact interac-
tions V; do not depend on the pion momer{see the next
wheree,, is the polarization vector of the incoming photon, section) and the reduced bare vertex depends on the pion
i is the isospin of the outgoing pion, and we remove thémomentum only through the (i\)k term in Eq.(2.17), the
overall factor ofe so that all currents will not include this reduced off-shell vertex is easily obtained by simply using
factor. The reduced curredt” for the diagrams (®)—1(d), the (correc) off-shell pion four-momentum in the formula

: " . for the on-shell vertex.
including nucleons onlyis . . . . ,
g 4 The full result for pion photoproduction, including final

(2.19

V.,(K',q,P)=—iee,J*(k',q,P), (2.15

(jiﬂ)l(a)—l(d)(klaqrp): TifNO(k',p)gN(p)Tﬁ(p’p) state interactions, will be written
+7k(p",p—k") M. (K',q,P)=—iee, 7*(K',q,P),  (2.20
X Su(p—k)Tn(k'.p)7; where the currentZ* is a sum of the Born terms and inte-

grals over therN scattering amplitudgthe diagrams shown
in Figs. 2a)—2(f)]

(k' ,q,P)=J"(k',q,P)

+]IAK k= q) Ak —q)
xTy(k'—q,p)+JE(q), (2.16

wheref,\,(k’,p) is the reducediressedmNN vertex for an

outgoing pion with four-momentunk’, fNo(k’,P) is the —f dK’I\7,,,T(k’,k”,P)§N(p”)3‘“(k”,q,P).
reducedbare wNN vertex,A is the damped pion propagator,
Tﬁ(p’,p) and ",’,“(k”,_k) are the reducedyNN and yzr (2.2

current operators, anili(q) is the reduced Kroll-Ruderman  Note that this equation is merely a statement of @),

term [Fig. 1(d)]. We adopt a convention where the single- e are now ready to prove that expressi@r2]) is gauge
particle currentgf andj* and the propagators include the invariant.
overall factor ofi which multiplies all Feynman matrix ele-
ments(rule 0 of Ref.[41]), while the vertex functions do not
(see Appendix A The additional driving terms shown in ) ) o _ _
diagrams 1e) and 1f) and the specific forms of the factors ~ Using the notation and the relativistic equations discussed

introduced in Eq(2.16 will be given as they are needed in above, we will now show that the photoproduction amplitude

D. Gauge invariance

the following discussion. obtained from the driving terms shown in Fig. 1 is gauge
The bare, reducedNN vertexT is a superposition of invariant. As mentioned in the previogs section, tie¢N*,
pseudoscalar and pseudovector couplings, YNA, yNDy3, pmy, and wmy couplings are separately

gauge invariant, and so contributions to diagrart@-11(c)
from these resonances will be ignored here. The proof will
V5 (217 follow the method introduced by Gross and Rigk&].

The reducedsingle-nucleon current operator, denoted by
whereg is the wNN coupling constant andl is the mixing T/N‘ above, and theeducedsingle-pion current operator, de-
parameter. Note that the vertex does not depen® ofihe  poted byﬂi  above, have the structure
dressed vertex, which includes all of thé&\ contact interac-

tions, satisfies Th(p' p)= TpTﬁo(p' P),

Tn(k’,p)=Tno(k',p)

Tyo(k',P)= 17N
no(k',P)=g )\_W

Tk k)= =i €3] 40K k), (2.22
_ a2, L1 Q LT "

j k™MK K, p)Sn(p =K ) Tvo(K”.P) wherep andp’ are the four-momenta of the incoming and
outgoing (off-shell) nucleons,rp=%(1+ 73) IS the charge

=fN0(k’,p)—f dK’Vé’Z(k’,k”,p) operator for the nucleotwe ignore the nucleon anomalous
magnetic moment term here because it is separately gauge
X Sy(p—K")Tn(K",p), (2.18 invariant, but it is included in the full calculatipnandk

_ andk’,i are the four-momenta and isospin of the incoming
wherevé’2 is the reducedrN contact interactioiin the isos-  and outgoing pions, respectively.



2434

The proof begins with the fact that the current operators

Tk, and j“, can be constructecso as to satisfy Ward-
Takahashi(WT) identities involving thedampedpropaga-
tors. These WT identities afeecall that the charge has been
removed so that the current is normalizedj fg= y*)

Quibo(p’ P =[Sy (P)— Sy t(p)] (2.23
and
Qi Aok’ K =[A, (k) — A, *(k")]. (2.24

The damped nucleon propaga’én( p) and the damped pion
propagatorA (k) are

= fR(p?)
SP) = e~ TPISUPY) (229

and

YOHANES SURYA AND FRANZ GROSS

f2(k?)
w>—kZ—ie

(2.26

= f2(k?)A(K?),

ks

where f\(p?) and f.(k?) are phenomenological form fac-
tors. The nucleon form factdiy(p?) has already been dis-
cussed; the pion form factai,(k?) would occur only in
diagrams {c), 1(el), and 1e2), and their final state interac-
tion contributions, but we shall see later that it cancels and
never enters into the final result. Note the these form factors
are unity when the particles are on their mass shell:
fu(m?) =1="f(u?).

Now compute the four-divergence of the nucleon pole
contributions to the Born terms(d)-1(d), given in Eq.
(2.16 above. Allowing for the fact that the final nucleon will
be off shell when the Born terms are used to calculate the
final state interactions, and that the form factors are unity
when the particle is on shell, the Ward-Takahashi identities
give

9,3 18- 10 =Ti 7oL no(K',P)SN(P)[0— Sy 1 (P) ]+ 7o 7 [ Sy H(p— k') = Sy (p’) ISn(p— k) T(K',p)
—i€jam[A"X (K —q)—0]A(k' — ) T(k' —q,p)+a,di(q)
=— 17yl no(K',P) + mp i TN(K,p) —i €37 (K’ — 0, P) + 0, d 1 () — 7p7, Sy H(p' ) Sn(p— K ) Tn(K',p)-
(2.2

Using the relativistic wave equatiq2.18 for the dressed vertex permits us to write
qﬂ(ji”)l(a)—l(d): —[7 Tpro(k',P) - TpTii:l\Jo(k/’p)Jr [ EijsTji:No(k' —q,p)—qﬂjm(Q)]
— o7, f dkVEA(K' K", p)Su(p—K")TN(K",p) +i €3 f dk'VEA(k' —a,k",p)Su(p—K ) Tn(K",p)

— 7SN (P ) Su(p—K ) T(K,p). (2.29

Next, we recall thafNo(k’,P) does not depend oR, and

observe that qﬂ(jiﬂ)l(a)—l(d): -7 Tpf dk’,vglz(p).‘SJN(p_ k") Tn(K”,p)

— 7SN (P ) Su(p—K ) T(K,p).

- = o (10
Ino(k'=0,p)=Ino(k",P)+ — ——97s. (2.29 (2.30)
Hence, since;7,— 77— —i €37 , We see that the first four Now we add in the final state interactions from diagrams

2(a)—2(d). It is convenient at this point to consider the final
state interactions in the isospin=1/2 and 3/2 states sepa-
rately. These states can be separated out by the isospin 1/2

terms in square brackets in EQ.28 will be zero provided

_ 1) A -
qM\]m(Q):ifinj( zm)ﬂg%' 2.30 and 3/2 projection operators, which are
Fip=a
This constraint will be satisfied by the Kroll-Ruderman term Z12= 3 i)
given in Sec. IV. Using this constraint, and the fact that the
reduced wN contact interactionV (k',k”,p)=V.(p) de-
pends only on theéotal momentump, the divergence of the Sl —5 — ET. - (2.32
diagrams in Figs. (B)—(d) becomes finally 82" gt
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wherei andj are the isospins of the outgoing and incoming contribute an isospin factor i €;,37, , wherej is the isospin
pions, respectively. Hence the first term in E8.31) is pure  of the pion after its interaction with the photon. This factor
1=1/2, can be decomposed into isospin 1/2 and 3/2 parts:

3/271 [8— 5 mi7]7j=0, (2.33 —iej/gr/z—.?é§’2+27’1,2 (2.3

and does not contribute to the discussionl ef3/2 gauge  For diagram 13, we need the isospin structure of the
invariance. The second term in E@.31) contributes to both 4 74+ N— A four-point current, which will be shown in

isospin channels, Sec. IV C to have the form
G J — 1 3 _1 —~ —~
.7'1,27'ij 3 Ti(1— 3 73), Jivk(q,P)= _ifj/3T}j|/‘A(q,P), (2.3
F = 713 . . . o
T32TpTi =T 312, 234 \here T; is the isospin 3/2-1/2 transition operatofand

t g .
but is zero for the Born terms because the final nucleon is OH— the 1/2-3/2 transition operatomwith the property

shell. Hence the full contribution of tHe=3/2 final states to
the photoproduction amplitude, E.21), from the terms
driven by the diagrams(&)— 1(d) is

TiT]=(8 =3 1i7)=Tdp, (2.39

andjfy(qg,P) is the reduced, isospin 3/2 interaction current,
, 3/2 R , with g the momentum of the incoming photop, its polar-
A, Fh12) 22— 2<d>—f dk M (kK" P)SN(P—K") ization index,P the momentum of the outgoing, and the
- four-vector index of the outgoingd, v, suppressedNote
X Sy (P—K")Sy(p—Kk")Tn(K",p) that the definitioin and normalization @f used in this paper
differs from that used ifi9].) When the four-point delta cur-
:J dk’M32(k’ k", P)Sy(p—k") rent is inserted into the pion loop in Fig(eB), the isospin
factor becomes
*In(Kp), (239 _iej/STT/T] TU 74— 2719 =T5. (2.39
where the isospin factors can be dropped after(E®4) has
been used. If the amplitude, as presently constructed, were This factor of T] will eventually be combined with the
gauge invariant, Eq(2.35 would give zero. We must add transition operatoff attached to the finah — 7N vertex to
several extra terms in order to get a gauge invariant result.give a factor of 73,, which is common to all of the three
These extra terms are driven by the diagrams shown idiagrams, and will be dropped. Hence the 3/2 contribu-
Figs. Ie])-1(e3d. The pion loop in diagrams(@1) and ¥e2  tion from these diagrams is

(3) 10 = f dK' TV’ K"+, P) + T ao(k',P)Gao( P)Tao(K'+ 0, P)TA(K + )] “o(K” +0,k") Sy(p— k") Tn(K",p)

- [ KT PIBao( PP Bp— KK ) (2.40

wherel'yo(k’,P) is thebarebut reducedi.e., the nucleoranddelta form factors have been remoyeéd— N vertex function

and G,q(P) is the dampedbut undressed by the higher ordeN interactiony A propagator. All four vector indices of the
propagating delta have been suppressed iNZE40), and all isospin operators have been removed, as discussed above. Using
the WT identity to take the four-divergence &.40 gives

0 Firio=— | ATV + Tk PIBao( PITaolk'+ P+, T4 (0PI B p— KTk p), (242
where we used the fact thgl'C depends orP only. In Sec. IV we will show that the interaction current satisfies the relation

0,1{4(0,P) = —Txo(K"+0,P) +T10(K",P). (2.42

Using this constraint, Eq2.41) becomes

9,34 10= — f dk'V2(k’ k", P)Sy(p—K") T(K",p), (2.43

where
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V32(k' k", P)=V32(K' K", P)+Tso(k’,P)Cao(P)Tao(K",P) (2.44)

is the full kernel forarN scattering in thd =3/2 channel.
Including the final state interactions, the full contributions generated by diagrénarg

U 752 100+ 206 = f dk’| V¥2(k’ k", P)— f dkM¥2(k’,k,P)Sy(P—Kk)V¥2(k,k",P) [Sy(p— k") T(K”",p)

fdk” 3/2(k/ K" )§N(p—k")FN(k”,p), (2.45

where, in the second step, we used the wave equatioMfor to reduce the expression. Note that the contributions from
diagrams le) and Ze), Eq. (2.49, cancel the contributions from diagram&R2-2(d), Eq. (2.35, proving that the E3/2
amplitude is gauge invariant

We now turn to a discussion of the= 1/2 amplitude. The proof for this channel is similar to the one given above, but we
must add the additional contributions from Eg.31), and also be careful to consider the different isospin operators which can
contribute to this channel. Using the results from Egs32), (2.34), (2.36, and generalizing the argument leading2045),
we get

W T @—9= =TT f dk'VE4(p)Sy(p— K TN(K",p) + 77, f dkM¥2(k’ k,P)Sy(P—k) f dk'Ve(p)
X Sy(p—K)Tn(K'\p)+ 5 ( 73) f dk'MYZ(k’ K", P)Sy(p—K") T (K",p)

7',7'3 J dk’M¥2(k’ k", P)Sy(p— k") Tn(K",p), (2.46)

where the first term is the contribution of the Born terms from diagratas-1(d), the next two terms are the final state
interactions generated by these Born terms, and the last term is the contribution from dia@aamsl Ee). To obtain the last
term in the form given above, we followed steps similar to those leading t¢2=p), eliminating the isospin 1/2 interaction
currents associated with the diagranie3l and Ze2) using a generalization of the constraigt42),

q,.1t(q,P)=—Tgo(K'+0,P) +Tgo(K",P), (2.47

whereB={N, D3} (the Roper resonance has no interaction current because, by construction, its coupling is independent of the
pion momentum In Sec. IV we will show that these constraints are satisfied.

Adding the last two terms in Eq2.46) and replacingVI by its integral equatiom7| HT/—fM'éV allows us to rewrite Eq.
(2.46 in the following form:

0 78 o=~ 7 | KTV D) T2 K PY =K' p) + 77, [ AKTAL2(K K P)

X Sy(P—k) J dK'[VYp) = V¥2(k,k",P)ISy(p—K") Tn(K",p). (2.48

Next, we recall from Eq(2.44 that Vm is the sum of a nucleon poleg(see the discussion in R¢B]). Finally, using
connected part and a resonance part. The contributions frothe fact theFNO(k” P) does not depend oR, the N—N
the resonance part to E(R.48 involves the integrals contribution can be written

|B:f dk,,?BO(k,,lP)gN(p_k")i:N(k”ip)! (249) fdk// (k/l )gN(p_k,l)FN(k//,p)- (25@

whereB={N,N*,D}. However, for different reasons, these

integrals (2.49 are all zero. The integral describing the This is just is the value of the nucleon self-energy at the
N— D3 transition is zero because the nucleon &ng are  nucleon pole, and, as discussed in Réfl, we adjust the
orthogonal in our model, and the transition to the Roper resoparameters of therN driving terms so as to ensure that this
nance is zero because the physical nucleon is defined by tlypiantity is zero. This constraint, which we call thbility
condition that it be orthogonal to the Roper resonance at theondition is an approximate way to include higher order
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interactions and ensures that the model is stable under smalttion kernel which generates these interaction currénts,
changes in the physical input. Because of these conditionsemove the pole in the spin 3/2 propagator which occurrs at

Eq. (2.48 reduces to P2=0, and(v) introduce a form factor that eliminates all
contributions from the spacelikeP€<0) cut arising from
F L YN TSy Iy I the factor\PZ. While theP2<0 region is very far from the
Al S @<= = Tpf [Vetp)=Vei(P)] physical regiori P>>(m+ )?] and plays no role in physical
< N n N scattering, it does contribute when théN-nucleon in-
X Sy(p—K)T(K",p) . g

teraction is imbedded in theNN system, and we therefore
- decided to eliminate it now. Our discussion here will focus
+ TpJ dkMZ2(k’ k,P) only on the changes being made in the original model; for a
complete discussion the reader is referred to RHf.

XBu(P—k) [ AKTVEp) - VP)]
A. Relativistic contact terms

X Su(p =K (K" p). (2.5 As in the original model, the relativistic contact terms

This term is canceled by the second type of interactiorfoMe from the crossed nucleon pdler nucleon exchange
current, illustrated in Figs.() and 2f). This interaction cur-  t€rm), the effectivep- and o-type terms required by chiral

rent contributes the following terms to the amplitude: symmetry, and an additional exchange term unconstrained
by chiral symmetry.

. ) ~ The reducedcrossed nucleon pole diagraf@expressed as
(i1 +200=—7i TpIJ dk"Jg 129, P) a function of the pion momenta instead of the nucleon mo-
_ _ menta, as was done in R¢f)]) is
X Sy(p—K")Tn(K”,p)

~ \? 1
VC,N(klrk!P):ngTiijﬁl(u)(—+|: 2

+mpif dkM¥2(k’ k,P) 2m |m°-—u

_(1_")1 ) 3.0
xéN(P—k)f dk"3% 1,,(q,P) e |2 '
X Sy(p—K)Tn(K",p), (2.52

whereQ= 1/2 (k' + k) andu=(P—k’)?. The simplest way
where the first term is the Born term shown in Figf)1the to approximate the energy dependence implicit@nis to
second is the final state interaction shown in Fiff),2and  replace it by its value when all of the external particles are on
the currentJ¥ ., is defined as in Eq(2.15. Later we will ~mass shell, which is
show that this term satisfies the constraint

—iq It 1, P)=VYAP—q)-V¥(P), (2.53 Q=pP-m. (3.2

which is precisely what is needed to cancel the contributions
from Eq. (2.51). Hence, the gauge invariance of the 1/2  We will use this approximation for the last term in E§.1),
channels has been proved. where@ is multiplied by a constant, but this approximation,
We have proved that our theory involving the driving when used with the pole term L/ m?), gives a very inac-
terms shown in Fig. 1 and the final stateN interactions curate result when extrapolated to the nucleon pole at
shown in Fig. 2 is gauge invariant provid@glthe interaction ~W=m [where, in the rest framé&®=(W,0)]. In order to have
currents satisfy the constraint®.42), (2.47, and(2.53, (i)  a better extrapolation t&/=m, which is very important for
the yNN*, yNA, yNDy3, p7y, andwmry couplings are all  the calculation of the stability condition, and also to get the
explicitly gauge invariant, andiii) the reduced one-body right threshold behavior, we approximate the pole tgtine
currents satisfy the WT identitie®.23 and (2.24. These second term in Eq(3.1)] as follows:
results will be demonstrated in the following sections.
We turn now to a detailed description of the modified
7N scattering model. ) P

2 (3.3

m<—u = 2 _ ’
IIl. PION-NUCLEON SCATTERING VPA(2m—pu)

In this section we describe the modifications to ot
scattering model previously publish¢fll. These modifica- This approximation is simpler than the one originally used in
tions were made in order ) improve the threshold behav- Ref. [9]. It is covariant, and the unwanted cut at spacelike
ior (scattering lengths (ii) more faithfully approximate the values ofP?, which can be reached when thé amplitude
physics of therarN channels which account for the inelas- is embedded inNN scattering, can be eliminated by the
ticity, (iii) reduce the complexity of they interaction cur- nucleon form factor, Eq(1.11). With these approximations,
rents by minimizing the energy dependence of #ti¢ inter-  the contact term generated by the crossed nucleon pole is
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()\2—1 P and
Ven(k' k,P)=Cg?ri7f3 +
C,N( ) g7 j'o 2m \/a(zm_lu) 5 . 9o ,
TilBo(K",P)=i7j{ ==K, 0"(P)ys, (3.10
- P 3.4 "
4m? (P=m) . @4 wherek’ is the momentum of the outgoing pidwe use a

different sign convention from that used|i@]), j is its isos-

wheref,=f[(m— u)?] is the value of the nucleon form fac- pin, P is the momentum of the incoming baryoh, is the

tor for the intermediate nucleon evaluated at #é thresh-
old.

isospin 3/2-1/2 transition operator, an@ ,,(P) is the co-
variant spin 3/2 projection operator:

Putting the pions on shell, the exact crossed pole diagram

(3.1) and the approximate expressit#4) can be compared
below the physicairN threshold. In this region, the approxi-

mation(3.4) agrees well with the exact crossed diagr@hi)
when it is averaged over the pion three-momentsoch as
would occur wherV, is used as a kernglit gives only a 7%

1

1 Py, P,+P, y P
®MV(P):_g/LV+§7/L7V+§ — A

P '
(3.11

Note that the form factors of the nucleon and baryon have

error when iterated once. The approximation is also close t§0th been removed frorf8.9) and (3.10 because these ver-

the exact crossed diagram above thresholtlyat1550 MeV
it disagrees with the exact result by only 15%.

tices arereduced and that thd™’s do not contain the isospin
operators. As discussed aboi®ec. | G the pole atP?=0

The crossed diagrams for the baryon resonance@hich appears in®,,(P) is removed by thenew form
(N*,A,D,5) are also approximated in the same way as thdactors(contained in the baryon propagators connected to the

crossed nucleon diagram. In this approximation thend

baryon verticeswhich are zero aP?=0.

D,; crossed diagrams are zero, and the Roper crossed dia-

gram becomes

m* —2m+ P

Venr (KK P) =98 77 (=

. (35

With the approximation(3.2) for @, the p- and o-like
contact terms are

Y , 9° 2 2 ,P—m
VC'(,p(k ,k,P):_CEfO 5”)\ +[7'j,7'i](1_)\) W ,
(3.9
and the freep exchange term is
~ g?
vgg(k',k,P):—cpmfg[Tj,Ti](P—m), 3.7

where, as in Ref9], the constan€ is fixed by the condition

C. Inelastic channels

The inelasticity in the?;; andD 3 channels is due to the
opening of therwN channel. In our new model we assume
that these two pions are bound together as a scalar particle
o*. The mass of this particle is taken to be the same as the
mass of two pions, 278 MeV. The reduced vertex for the
N* — o* +N transition is

~, _ K
[y (k,P)= —|(giN*+g;N* ﬁ) (3.12

and for theD — ¢* + N transition is
T i 1 ' ’ K v
I's (k,P):—; g1D+gZD% k,0"*(P), (3.13

wherek andP are the momenta of the outgoimg and the
incoming baryon resonance, respectively. We were able to fit

CfS= fﬁ,[(m+ w)?] andC, is a free parameter related to the the data quite well without including the second term in the

strength of thep exchange pole.

D3 andN* coupling(i.e., g, =g’ ,

=0).

Note that all of these contact terms depend only on the e now turn to a discussion of pion photoproduction.

total four-momentunP, and that the sum of these contribu-

tions has the simple form

. P
Vo(P)=A+A;——+BP,

Jp?

(3.9

whereA, A,, andB are constants. This result will be impor-
tant in the construction of interaction currents in the next

section.

B. A and D, vertices

The Feynman rules for the reducetNA and wND;;
vertices used in our modified model are

Jda

22k ev(P) (3.9
M

TT4(K',P) :T,-(

IV. PION PHOTOPRODUCTION

This last section is divided into four subsections. In the
first we write down all of the couplings which describe the
direct electromagnetic production of the Rop&r,andD 43
resonances from the nucleon. These expressions contain the
precise definitions of the resonance photoproduction param-
eters given in Table II, and are individually gauge invariant,
which justifies neglecting them in the discussion given in
Sec. Il. Next, we construct off-shell current operators for the
single nucleon and single pion which are consistent with the
WT identities, Eqs(2.23 and (2.24). These current opera-
tors are modified by the presence of the nucleon and pion
form factors. In the third subsection we construct the inter-
action currents implied by the momentum dependence of the
electromagnetic couplings and the contact interactign
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[given in Eq.(3.8)]. To obtain these interaction currents, we g:
use minimal substitution, and then demonstrate that they sat- Glzﬁy
isfy the necessary constraints obtained in Sec. II. Finally, we
assemble the pieces and construct the actual pion photopro-
duction driving terms which fully define the model. 92
GZZW' (4.6)

A. Electromagnetic couplings

In this subsection we define the electromagnetic transitior] "€ couplings of Refs.40] and[42] therefore differ by an
currents for the baryon resonancgdB. We have removed €x{ra term which depends ot and which can be shown to

an overall factor ok from each current. vanish at thed pole. _ .
In order to be consistent with our pion-nucleon model, we
1. Delta current introduce a newyNA current which has almost the same

. . form as the current derived from the Lagrangi@). The
Accarding 1o Jo_nes e_md Scadrps2] the yNA :c‘ransmon full current j*(P,p) is related to areduced current
current can be written in terms of a standard “normal par-—

ity” set of invariants7/*ys. For real photons this gives j 8“(P,p) by

JA(P,p)=—T4[ G171 + Go %5 ] s, (4.1 I8P, p) = (P fa(PA)]R(P,p), (4.7)

where T3 is the third component of the isospin 123/2

o ) e ‘wherefy andf, are the nucleon andl form factors, and the
transition operator, and the current conserving spin invari

reduced current is

ants are
2
O = (49" ), i o=, OAP) (P20 Gy,
ia (P.p)—Tz?A(sz) e oml 1 T g2 |75
“F'=(q"P"*=q-P'g"). (4.2 4.9

Hereq is the photon momentuny is its polarization ir,1delx, Note that the reduced transition currgdt8 has been di-

v is the polarization index of the outgoin§, andP’=3  \igeq py the square of tha form factor, canceling thes
(p+P), wherep and P are the four-momentum of the torm factors contained in the dampadpropagator to which
nucleon andi, respectively. TheS, andG, couplings are  yis cyrrent is connected. This cancellation is identical to one
often written in terms of the magnetic couplitg, and the  \yhich occurs naturally in the pion Born teras discussed in

electric couplingGe Sec. IV B 2 below, and hence is consistent with the treat-
G ment of other electromagnetic currents. It also improved our
m ili ' H 2 2\2
GMz—[(3M+m)—1+(M—m)G2}, ability .to fit the E;+ and M~ .arr-1pI|tudes. The R’. /rm)
3 M factor in the reduced current is introduced to eliminate the

pole in ®#, (P) and to improve the fit. All of these factors

m G can be incorporated without spoiling gauge invariance be-
GE_§(M —-m) M +Ga, 43 cause theyNA transition current is separately gauge invari-
ant.
whereM is the A mass. Because of the properties of the spin 3/2 projection opera-
Benmerroucheet al. [40] obtain NA transition currents tor, our coupling(4.8), the coupling derived from Ed4.4),
from the following two contributions to the Lagrangian: ~ and the coupling4.1) give the same scattering amplitude.
1 eg; T 2. Roper current
Loya=i==T PAY) F . tH.c, o .
M=o Tl 2 (V) y "yt He The reducedyNN* transition current is
eg,  — ~ 1 (P+p)“q
2 _ v n
LyNA___4m2T3q,V2 A(X)y5¢9“¢FM+ H.C., (44) Jﬁ*(P,p):Tp2—2<glN*{‘y#_ﬁ
fax(P9) Pe—p
where s and ¥, are the nucleon and delta fields, respec- ioc*"q,
tively, and tone 5| (4.9
1
2,,(X)=0,,+ §(1+4X)A+X YuYVvs (4.5 whereq, p, and P are the momenta of the photon, the

nucleon, and the Roper resonance, respectivelyg%dand

whereA andX are parameters. The interaction derived fromJay- &€ the strengths of the ;WO independent couplings. We
Eq. (4.4) using theg,,, term inX ,,(X) (and removing the divide the Roper current byy, in order to be consistent
factor of e) gives Eq.(4.1) with with the delta. Note that
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Ayl e (P.P)=0, (4.10
showing that all diagrams containing the Roper transition
current are individually gauge invariant.

3. Dy3 current

Like the A, the D43 also has two independent couplings.
The reduced 3 current is similar to thé\ current except it
has an opposite parity and isospin 1/2. The current is

2 2
) ( P ) {gw iy

TEM(PIp) |T3 f (PZ)

2m’ 1

A
4m/ }

(4.11

In order to be consistent with the treatment of thede-

scribed above, we have also divided this current by the

square of the form factor of thB,3, and multiplied by a
factor of (P?/m?2)? to eliminate the pole in the spin 3/2 pro-
jection operato®#, (P).

We now turn to a discussion of the construction of the
off-shell current operators for the nucleon and the pion.

B. Off-shell electromagnetic currents

As discussed in Sec. Il, the reduced current operators

must satisfy the WT identities, Eq&.23 and(2.24). These

involve dampedpropagators, instead of bare propagators,

and as a result the current operators will have a differen
structure from those usually encountered.

1. Nucleon current

A complete description of the general reduced off-shell
nucleon current requires 12 invariant functions:

yag

~ ’ io QV ’
0P P)=F1y*+Fo———=+Fsq“+A_(p’)

ioch"q,
X F4’y’u+F5 2 +F6q’u
ioc*"q,
+| F7y“+Fg om +Foq#|A_(p)
ioh"q,
+A_(p")|Fiov* +F11 om
+F120% A _(p), (4.12

where the negative energy projection operator is

m-p

2m

A_(p)= (4.13
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where f=fy(p?) and f’'=f
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where f(p?) is the nucleon form factor. Writing out both
sides of this equation gives

Fid+F30?+ A _(p)[Figd+F10%JA _(p)+A_(p’)
X[Faq+Feq?]+[F-4+Foq?]A_(p)

2m

2m
:f_2N(p_2)A7(p)_f_2,\‘(p—’2)A7(p ). (4.19

Equating the coefficients of the four independent Dirac ma-

trices on each side of this equation gives four relations be-
tween the invariant functions which permits us to eliminate

Fs, Fg, Fg, andF,:

(mz_pz) (mz—p’2>
Fo=Fi S| ~Fal 52|
2mq 2mo’
2m
F12:?(F7_F4),
2m m?— p?

Fs qurz"":lo M 2 (F1+F4)

2m m?—p’?\ 2m
FQZW_FN mE —?(F1+F7), (4.1

t
n(p’?). Substituting these con-
straints into Eq(4.12) gives the following general result:

14
o"'q,

_ i
Fo)v*+F; >m

To(p',p)=Foy +(F1—

14
a"'q,

2m

i
+A(|O’)[F437“+F5

~ iot'q,
+ F7'y’u+ Fg 2m

A_(p)

+A_(p")| Goy*+ (F10— Go)¥*

(4.17

wherey*= y*—q*d¢?,

(4.18

21

-P

This current operator must satisfy the Ward-Takahashi iden-

tity (2.23,

m-—p’
fX(p'?)’
(4.19

m—p B
fX(p?)

Quibo(P’,P) =Sy (P) =Sy (p") =

and, to eliminate kinematic singularities, we require that
F,—Fo=F1;—Gy=F,=F,=0 at the photon poing?=0.
Hence, for real photons the terms proportionaltovanish,

and we obtain the most general form for the current operator
of a real photon:
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~u ioc*"q, . 1o*"q,
JNo(P" p)=Foy*+F; >m +A_(p')Fs >m

+F iUWq”A
8 2m 7(p)
, ioch"q,
+A_(p) G0+F11W A_(p).
(4.19

For simplicity, in this calculation we takés;=Fg=0 and
Fo=FoxN, F11=Goxyn, Wherexy is the magnetic moment
of the nucleon. If the initial nucleon is on shell, this gives

Th(PP) = e | it i) (420
NO ) W Y N"om

Note the presence of the factor ofﬂ(p’z), which supports
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P—eA (minimal substitutiohin the | =1/2 part of the con-
tact interaction3.8). Such a replacement generates an elec-
tromagnetic interaction of the form

—iedty(q,P)A, = —eBY2y A, (4.24
and hence the current is simply
—iJE, (q,P)= —BY2ym, (4.25
Note that this current satisfies the constraint
10,3 140,P) =~ BY4=—BY4P—(P—¢)]
=ViAP-a)-VAP). (4.2

In this case the interaction was linearly dependent on mo-
mentum and the interaction current was easily obtained di-
rectly. In the general case of an interaction with a nonlinear
momentum dependence the interaction current can be ob-

our decision to divide by the resonance form factor in thetained following procedures suggested by Of3&], and

definitions of the transition currentd.8), (4.9), and(4.11).

2. Pion current

Following Gross and Risk36], a simple off-shell cur-
rent operator which satisfies the WT ident{B.24) is

TI(k'2)—TI(k?)

TEo(k' k)= (k+k')* 1+ —k_hkf} (4.2

wherek andk’ are the momenta of the incoming and outgo-
ing pion,

1
H(kz)Z[m—l}(kz—Mz). (4.22
andf _(k?) is the pion form factor. If the outgoing pion is on

shell, as occurs in the Born diagram, Fidgc)l the reduced
current reduces to

THo(k' k)=

e ("

(4.23

When this current is used in the Born diagram, Fig) 1the
factor of 1/ff,(k2) is canceled by the pion form factors in the
damped pion propagator, E(.26).

C. Interaction currents

In this subsection we derive the exact forms of the inter-

action currents introduced in Sec. Il and shown in Fidd),1
1(ed), 1(f), 2(e2), and Zf).
1. Five-point current

We begin with a discussion of the five-point current
jgl,z(q,P) shown in Fig. 1f). The discussion of gauge in-

worked out for several illustrative cases in Ref3].

2. Four-point currents

The four-point currentd{z(q,P) shown in Figs. {d) and
1(e3 appear because of the dependence of #€N,
7NA, and wND,; vertices on the momentum of the pion.
The 7NN* vertex does not depend on the pion momentum
and therefore does not contribute a four-point current. These
currents can all be obtained by minimal substitution.

We begin the discussion with theNN vertex, which
produces the familiar Kroll-Ruderman interaction current
term. The reducedrNN vertex was given in Eq(2.17).
Minimal substitution requires that we replace the pion mo-
mentumk’ by k' — »eA, wheren==1 or 0, depending on
the charge of the pion. Recalling that the operator for an
outgoing @™~ is 7=, the factor of— ne becomes

=3 (T +71_)— %(eTJr—eT,):ieTy,

2

Ty= i(T+—T_)—>—%i(er++eT_)=—ieTx,

(4.27

This substitution is summarized by—ieej37;, giving

7,—0.

(1=N)y*
2m

Jiﬁ(Q):ifijaTj gvs- (4.28

Note that the complete Kroll-Ruderman interaction current
includes two terms. The first term, obtained above from
minimal substitution, satisfies the inhomogenous constraint

(2.30, while the second term, not obtainable from minimal

variance in Sec. Il showed us that the origin of this current issubstitution, satisfieqﬂji,ﬁ(q) =0. The full Kroll-Ruderman

the dependence of theN contact interaction, Eq.3.8), on
the total pion-nucleon momentu in the channel which

current is given in Eq(4.37) below.
Next, consider theonjugateof the reducedTNA vertex

couples to the protgrwhere the isospin is 1/2 and the chargegiven in Eq.(3.9). This vertex depends on both the incoming
is e. Hence, to obtain this current we need only consider thepion momentumk [and hence has the opposite sign from
effect of the replacement of the four-momentufn by  (3.9)] and the delta momentu, but the dependence on the
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delta momentum generates no interaction current in the reshtisfies the constrair{2.47), as required for gauge invari-
frame of the delta and, hence, because of covariance, vaance.

ishes in all frames. Th& dependence generates a substitu-
tion similar to that given in Eq4.27), with all 7; replaced by

—T/. Hence, according our conventions, 1eN— A four-
point current is

—|eJ'V"“ |(|ee”3T)( ) V”(P)=—ie(—iei13Tf)TfLA,
(4.29

where'jvf‘A was introduced in Sec. I, E42.37). Hence
~ 9a
N . OH(P), (4.30

and satisfies the constrai(2.42,

~V g 14
q,314(q,P) = A)q @"(P)

%)[@Vﬂ(P)(Hq)M—W(P)kM]

Tyo(k,P)~Tao(k+0,P),

(4.31

as required for the proof of gauge invariance.

The four-point current generated from thé D5 vertex
can be obtained by the same manner. FoQhgcurrent we
have,

.= . g Y . . ~
_Ie‘]llg__“efijSTj)(?D) Y5O "#(P)=—ie(—ie€j37)jip -
(4.32
ence theD ;5 four-point current
~, _.[9p ”
Jio=i| =] vs®"“(P) (4.33

D. Driving terms

Using the electromagnetic currents described in the previ-
ous sections, this subsection gives explicit expressions for all
of the driving terms shown in Fig. 1. For convenience, the
direct and crossed nucleon pole contributipfigs. 1(a) and
1(b)], the Kroll-Ruderman termFig. 1(d)], the nucleon pole
contribution to Fig. 1e3, and the five-point currenfiFig.
1(f)] will be referred to as “nucleon” contributions. The
meson exchange diagramiBig. 1(c)] and all of the loop
contributions from off-shell piongFigs. 1el) and Xe2)]
will be referred to as “meson” contributions. The resonance
contributions to Figs. (), 1(b), and 1e3 will be discussed
separately.

1. Nucleon

The direct nucleon pole diagraffig. 1(a)] is

(1-=N)K’ 1 )
2m 7/S(m—P

1
m[v"d—dv"]KN),
(4.39

(I 1K' ,9,P)=gm| A —

X| ytry—

whereu is the photon polarization vector indexandk’ are
the photon and pion momenta, respectivélys the isospin
of the outgoing pion, andc 2[Ker Knt (kp—Kp) T3] IS
the nucleon anomalous magnetlc moment.

Note that thewNN form factor does not appear in the
direct pole diagrant4.34), because when one of the nucleons
in the yNN vertex is on shell, the reduced current becomes
Eq. (4.20, and the factor of IK,(PZ) in this equation can-
cels the form factors contained in the damped nucleon propa-
gator, Eq.(2.25. Note also that the conjugate of the driving
term (4.34) satisfies the relation

_— 1-Mk'T
(Jh”)l(a>(k',q.P)=7og(y’”Tp by =y gk )(m )7/ {7\ % Ti%o
1 (1— )\)k’
—g| Y*1p— [M“—y"d]K )( P)%{ 7|
1 (1—- )\)k’
—g| v [y"ﬁ 4y*]x )( P) At Ys5Ti

— (I N 1a(d,K',P).

(4.395
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Recalling the connectiof2.15 between the current and (jiN“)m) 1(q,P)= — 1,7,BY2y~
the kernel, this relation leads to E.9), the condition 2 P
needed to give the correct unitarity relation. d3K” fﬁ[(p—k")2]~
Since the final nucleon can be off shell, the crossed 3 ——I'n(K",p).
nucleon pole diagrarfFig. 1(b)] is (2m) 2w (M= p+K")

_ _ (4.39
(I 1my(K',a,P)=[Foj&(p’.Q)
+GOA_(p’)T‘,§(p’,Q)A_(Q)] Note that this current contributes only to the isospin 1/2
2, 2 channel.
R\~
X m—0Q In(k’,p) i (4.39
2. Mesons
where The pion pole contribution to the meson exchange dia-
gram, Fig. 1c¢), is
" 1
TH(P" Q)= 7*7p— 7 (" d—dy")x,
(k"' +k)* ~

[y72 ! — ___

is the full reduced nucleon currerft, andG, are functions (I7)10(K",0.P) = ~leijsT, w>—K? In(k.p),
of p’2 andQ? defined in Eqs(4.18 and(4.19, Ty(k’,p) is (4.40
the reduced, dressedNN vertex function, which satisfies
Eqg. (2.18, Q=p'—qg=p—k’ is the four-momentum of the
virtual intermediate nucleon, anB=p+q=p’+k’ is the ~Wherek=p—p’=k’—q is the four-momentum of the off-
total momentum. In this term theNN form factor is not  shell pion. The vertex functioi'y(k,p) describes the cou-
canceled, because both nucleons in N vertex are off  pling to anoff-shellpion, which, because pions are on shell
shell. in our propagators, does not appear as an elementary ampli-

As discussed above, the Kroll-Ruderman term, Figl),1 tude in our model. However, as discussed in Sec. I, the
has two parts. The first part, given in E4.28), is obtained simple structure of the model permits us to obtain the re-
from the momentum dependence of thBlN coupling using  duced off-shell vertex function from the reduced on-shell
minimal substitution, and the second part is needed to ensu@ne by simply using the correct off-shell pion four-
that the low energy theorefi25] is independent of the mix- momentum. Furthermore, the square of any pion form factor
ing parameter\. The complete Kroll-Ruderman term is which might be associated with the damped propagator of

therefore the pion would be canceled by the factor off;](/kz) in the
off shell current[recall Eq.(4.23], and so no such form
_ _ (I-N)y* A factor appears in the pion exchange diagi@0.
(IN) 1 =9| 1 €j37] om T gml Y a4y (e Contributions from off-shell pions also appear in the dia-

grams shown in Figs.(&1) and Xe2). Together, these dia-
grams contribute

+ 7K ) | Vs- (4.37

. . . ~ d3k”
Note that the second term is separately gauge invariant, anck‘]w)l(el)+l(e2)(k,:qu):i6j/3J —

therefore did not enter into the proof of gauge invariance (2m) 20
presented in Sec. Il < Vi (K K'+

The additional interaction current driving terms are ob- Vaa (KK +a,P)7/
tained from the interaction currents worked out above. The (2K"+q)* fﬁl[(p_k”)2]

nucleon contribution to the diagram shown in Figed is

X 2__ (1" 2 _ ”
obtained from Eq(4.28): o= (K"+q)* m—p+k

xTn(K",p), (4.4

~ ) g~ R
(Jlr\fL)l(eS)(k ,q,P):—TiT3EFNO(p yPISN(P)(1—N)y* s
whereVL{ﬂ(k’,k”nLq,P) is the reducedwN driving term,

o dk”  fRl(p—Kk")?] including all resonance contributions, for scattering of an
27) 2w (M—p+K") incoming pion with isospirj to an outgoing pion with isos-
~ pini. Again, just as in the pion pole teri@.40, the pion
XTn(K",p). (438 form factor will cancel, showing that no pion form factor

appears anywhere in the final result.
The contribution from the five-point contact current The meson driving terms also include additional contribu-
shown in Fig. 1f) is obtained directly from the five-point tions to Fig. 1c) coming fromw and p exchange. The
current, Eq.(4.25, exchange diagram is
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Letting Q=P—-k’—qg=p—k’, the crossed pole diagram
€“"Pq kg [Fig. 1b)] is

waNgwﬂ'y

plmi— (k' —q)?]

(3L7)1(c)(k',q,P):i5i3

K(J) .
BRI ] ]
am (1w (K',0,P) =g, 77| 9, 74(Q)
fa) wT Ku)
—igmeemy| g Ko g .
M 2m NF L, "
~ am LY a4y Qs
g,k "y,
mZ_(k,_q)za (442 (44&
where €y1,5= 1. Using the identity Note that theN* form factor in the current4.9) is canceled

by the form factors in the dampédf propagator, as we have
. seen in several previous cases.
Iys
E/.LV)\p :_,uv)\_l_v)\/.l,_l_)\,uv_)\v,u
Yo 6[777 Yy Ty - vyvvy 4. Delta
— Yty — iy, (4.43 In parallel with the approximations made in the\ cal-
culation, the crossedl pole contribution to Fig. (b) is taken
the w exchange diagram reduces to to be zero. This approximation almost decouples the spin 3/2
channel from the spin 1/2 channel, allowing us to fit these
different channels independently.
) The directA pole contribution to Fig. () is obtained

1+ =—(K'—q) c
from the yNA transition current, Eq4.8),

~i , fﬂ)NNgw’JT K
(I 10k yq,P):5i3—y( >m

K dy"—k.qy*+K'“q

X s (4.49

2 _(k—q)2 ' 27122
m;,—(k—q) - , ol , (P2m?)%[g "
_ (I 1(K,0,P)=T;T3| — |k, 0 )\(P)m—_F) %(”1
where g4=q?=0, and because the current is transverse, M 4
Y= —d4y". g
The p exchange diagram has the same structure as the + ZAZ(;;’ZW Vs, (4.49
o exchange diagram, except tpds isovector. Hence 4m
_ f g « where® ,, is the spin 3/2 projection operator, atl49 has
(JL“)l(c)(k’,q,P)273M(1+ ﬁ(k,_m) been simplifie_d by usingDVx@AM:—@w._ Note that the_
M A form factor in the current cancels a similar form factor in
K ¢y —k.qy +k' 4 the dampedA propagator, as we have seen several times
X s 7k 5 before.
m,—(k—a) The delta contribution to the four-point function in Fig.
(4.45  1(e3 is constructed from theyrN— A four-point current
(4.29:
3. Roper resonance
The Roper resonance has the same spin-isospin structure g 2§2(p2)
as a nucleon, and therefore the direct and crossed Roper pol@}*) ;3 (k’,q,P)= —i ej/gTiTJTT/(—A) h .

diagrams have the same structure as the nucleon pole dia-
grams. They are constructed from tipBIN* transition cur- d3k” f2(p—K")
rent, Eq.(4.9). The direct Roper pole diagraffrig. 1(a)] is x@”“(P)f B N

’77)32(1)k// (m_ P+ k”)

_ X Tn(K",p). (450
() 1a(k',a,P) =0, 775

1
m*——P> ( 9,7 (P)
Recalling that the isospin transition operators satisfy Eq.
9, (2.38), and using Eq(2.36), the isospin factor ir4.50 re-
am LY Aa—dy* ]|, (448 duces to

where . +
_IEj/3TiTj 7'/=—|,7'?f,26]-/37'/
—_\] (;-3_ \/-3 —_'4-3
Pq == T3 Tha= 274 = = T35

Y(P)=v' =5y (4.47 (4.51)



5. Dl3

The D,3 resonance contributions to diagram&)land
1(e3 are almost identical to those for the, except for a

different isospin factor and some sign changes due to the

opposite parity of thd® 5.
The directD 5 pole contributionFig. 1(a)] is

2/ m2\2
9 (P/mD)
mp+ P

(31K, a,P)=—7, Ts( . ) k,©"\(P)

9an

X
4m?

ng = -
ﬁ()l\ﬂ_ ﬂ;\'u V5. (452

The D5 contribution to the four-point curreFig. 1(e3)] is

= , go|? fB(P?)
(J::;”)l(es)(k ,Q.P):_ZTiT3(7> mk}\(@)‘”(P)
d3k/r fﬁl(p_krr)

’l::N(kH! p) .

(4.53

X | 2m2ww (m—P+K)

6. Inelasticity

As discussed in Sec. lll C, the inelasticity of thN& and
the D3 is described by a fictitious* N channel, where the
o* is a scalar meson with the mass of two pions, and th
couplings of theN* and theD 45 to this channel are given in
Sec. Il C. For simplicity, we assume that the photon doe
not coupledirectly to the inelastic channel, but it can couple
indirectly through the procesy+N—{N*,Dg}—0c* +N,
which takes placewithout going through an intermediate

7N channel These processes, which are not generated b)c,u

the final statewN interactions, have been included in our

model by adding them to the direct resonance pole drivingij

terms in Fig. 19).

To accomplish this, the bare resonance propagators fo
the N* and D, are replaced by the inelastically dressed

propagators
Gy (P _
* - —'_|,
v+ (P) Myx — P+ 3 s
vy 194 (P) e
b ( )_mD—TE'S_e" (4.59
whereEi,Sf' and>"® the self-energies of the Roper abd

resonanceslue to inelastic contributions onlyfhis replace-
ment ensures thatl of the inelastic processes excited by the
photon without passing through an intermediate state are
included in the calculation. The inelastic self-energies are
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2

’
D

. d3k
inel _ 2 Q
®a5(P)ED - fD(PZ)f (ZW)Szekak(P)

KKIR((P—K)?)
“moprkoie OnP)

. d*k  fRU(P-K)?)
inel_ , 2 N
e = _(glN*)ZfN*(PZ)f (27)32e, m—P+k—ie’
(4.55

where the intermediate four-momentuk= (e, k), and

e= \/m20*+k2.
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APPENDIX A: NOTATION AND ISOSPIN
DECOMPOSITION

In this paper we adopt conventions designed to allow us
to work as frequently as possible with terms which do not
include a factor of or the electric charge. Starting with the
Feynman rulegas found, for example, in Ref41]) we in-
troduce the following conventions:

(i) All one-body currentdi.e., three-point currentsand
propagators will banultiplied by i

(ii) All hadronic vertex functions are left unchangeg.,

do multiplication byi).

(iii) All four- and five-point currents, which would nor-
ally contain an overall factor af (rule 0 of Ref.[41]) will
multiplied by anadditional factor ofi. If rule O is omit-
ted, this is equivalent to multiplying them by 1.

(iv) The electric charge>0 will be removed from all
rrents.

Using these rules, all four- and five-point currents are
efined as in Eq(2.195, and the basic nucleon Born term is
eal. Three-point currents are all real, except for the
¥ N—A transition current, Eq(4.8), which now contains
an extra factor of.

The scatterings matrix for pion photoproduction is writ-
ten in the following form:

fi

m
- M L
VaqoEE, T

(A1)

S =1-i(2m)*s* K +p’'—q—p)

where k’=(a)k,k), q:(q1Q)1 p:(Epip)l and
p'=(E,/,p’) are the four-momenta of the pion, photon, in-
coming, and outgoing nucleon, respectively, and the energies
are =\ u?+k?, Ep= Jm?+p?, Ep = JmZ+p’2, with u
andm the masses of the pion and nucleon.

Using the fact that the photon transforms as the sum of an
isoscalar and the third component of an isovector, the isospin
structure of theM .., matrix can be written

Mo, =M1 8a+M_ 5 [7, 73]+ M2 m,  (A2)
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where 7; and 73 are the Pauli spin matrices andis the  The functionsdi\w for j 1/2 and 3/2 are written explicitly in
isospin index of the pion. The isovector transition amplitudesappendix C. The orthogonality of these functions makes it
M ™) may be expressed in terms of the amplitudeseasy to express the integrated cross sectigg in terms
M {:2%2) with isospin 1/2 and 3/2 in the final state: Ml
Now, since\ ,= +1 for real, transverse photons, we have
M ]7.7/3: M :7+ 2M Mfﬁ: M :y_ M, . (A3) eight heIici'ty amplitudes; howe\{er, parity relates all thg am-
plitudes with\ ,=1 to those withx ,=—1 (and opposite
The isoscalar amplitudk!, always leads to a final state with Signs foriy andAy-). Hence we need consider only those

isospin 1/2. The amplitudes for photoproduction from a pro-four amplitudes with\ ,=1. Remembering tha$=0, we
ton are can evaluate all of the operators

(MO IAN) =u(p’ An) O u(p,Ay). In the center of mass
system, whergp=—q and p’=—k, explicitly, for helicity

1
(M}r%)protonzg(Mvty—'—2M7_17+3M977 ) T
(+]0%4[+)=0,
(Mi/«i)proton: M :y_ M 7_77- (Ad)
- . . (+]0]+)=0,
Each of these isospin scattering matrices may be ex-
pressed in terms of the operat@®s |,
) 1 2z, i 1
<+|O*|+>:_ﬁm_zl|q”klsme cosza,
M= > O .M ,+0 M,_, (A5)
i=1,2
1 z 1
where (+]0?%|+)=—= —1|k|25in0 cos- 6, (B3)
2 mz )
1 for helicity + —,
OL=5(1x9%)éys,
121z, 1
(+]0%|-)y=—=—"cos; 0,
2 1 0 : \/E m %
Oizz(liy )2k-€ys, (AB)
o 1 1 Jqllk] 1
where, for an incoming photon traveling in thez direction, (+|O2|=)=—— e 0,
the photon polarization vectar is V2 maz,
1 z|ql[K] 1
1 2 _ 2 ; ;
— Ty +|0%|—)=—F= sing sin: 6,
6)\7_5(_)\7)(_')/)1 (A7) < | +| > \/E mz; 2
where\ ,= =1 is the photon helicity. , 1 zk2 1
(+|O,|—>=E mz sing smia; (B4)
APPENDIX B: MULTIPOLE AMPLITUDES
Denote the incoming and outgoing nucleon helicities byfor helicity —+,
Ay and\ ./, respectively, and specialize the scattering to the .
xz plane(so that¢=0). Following Jacob and Wicl44], the (—|0%]+)=0,
angular momentum decomposition of the helicity amplitudes
M, (6) is given by (—|0t|+)=0,
1 o
, - i+ ], J , , 1z k . . 1
My (6) 477; (2J+ DMy, 10 (6) (B1) <—|oi|+>=ﬁ 2r|1?|z|1 |sm0 sin 0,
whereh=\,—\y and\’=—\y, . Using the orthogonality
of thed functions, the partial wave amplitudes are 1 z,|k|? 1
2 1 . .
<—|O,|+>=E 7, Sind sin 6, (B5)
2
Mlmzzwj d costM,, () d}, . (). B2 o helicity — —,
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1227, 1 1
1 _ 122 . _
<—|O+|—>——ETSM§0, (B6) E + /~+1(A/++/B/+),
1 7
1 [allkl Mye= 27 [A=(7+2)B 4],

(—-|0t|-)y=—— 7 maz sm—a,

E v-=— /Tl[A(” 1y-— (7 +2)B 1)1

—|0%|-)=—= ! 22|q||k|sm0 0019
J2 mz % 1
M +1)-= /+1(A(/+1 +/B/+1)-)- (B8)
2 1 Zl|k|2 . 1
(=]0%|=)=— % mz sing cos; 0,
\/— 2 APPENDIX C: ROTATION MATRICES
wherez, = /Ep+ m andz,= /Ep,+m. The rotation matrices are, fgre=3,
Parity conserving amplitudes may be constructed from the P
helicity amplitudes by taking the following linear combina- dii=d 1 1=cos; 6,
tions: 22 22
/ / .
A = M1 1+M 11) diz 3=—di251=—5|n% i’ (v
/+ \/— 47T 27 ’ 2 2 22
for j=3,
A L wvhiom 1
(/+1)°T 5 g (MLIITM 1), 1
V247 22 22 d§/i=—\/3_co§%0sin§6,
22
B ! L Misem 12, />0
yr=—=—(M13 13), /
N2/ (/+2) 47 32 ~23 d1 1 cosze (1-3 sirf3 0),
B L T mba-M 13, />0 1
== ————(M13- 13), />0, 3r2 ,
(/+1) /2/(/+2) 4" 55 575 d371=\/3—00§ 08”’1250
(B7) 2
where /=j—1/2. The multipole amplitudes are obtained di” 1=sin 6(1—3 cogt g). (C2)
from the parity amplitudes using the following relations: 272
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