
6

ve

all

el,

PHYSICAL REVIEW C MAY 1996VOLUME 53, NUMBER 5

0556-281
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Pion photoproduction up to 770 MeV photon laboratory energy is described by a manifestly covariant wa
equation, which includes a treatment of the final statepN interactions consistent with the covariant, unitary,
resonance model ofpN scattering previously developed. The kernel of the equation includes nucleon (N),
Roper (N* ), delta (D), andD13 poles and their crossed poles, as well asp, r, andv exchange terms. The
Kroll-Rudermann term and other interaction currents ensure that the model is exactly gauge invariant to
orders in the strong couplinggpNN . The threshold value of theE01 amplitude is in good agreement with recent
estimates obtained from chiral perturbation theory. Elastic unitarity to first order in the chargee ~Watson
theorem! is maintained up to the two-pion production threshold. The complete development of this mod
which gives a good fit to allL<2 multiples up to 770 MeV, is presented.@S0556-2813~96!02705-7#

PACS number~s!: 25.20.Lj, 14.20.Gk, 24.10.Jv
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I. OVERVIEW, RESULTS, AND CONCLUSIONS

A. Introduction

Pion photoproduction has been studied for many ye
One of the earliest models, developed by Chewet al., is
based on dispersion theory@1#. It included nucleon Born
terms andD excitation and described theS, P, andD partial
waves at low photon laboratory energies. Additional ea
work ~including models using pseudoscalarpNN coupling!
was reviewed by Donnachie@2#. Among later efforts is the
work based on chiral Lagrangians carried out by Olsson
Osypowski@3#. They used pseudovectorpNN coupling and
also introducedv exchange. This work was further deve
oped by Wittmanet al. @4#. In 1985 Yang@5# and Tanabe
and Ohta@6# and later, in 1990, Nozawa, Blankleider, a
Lee ~NBL! @7# developed dynamical models of pion phot
production. NBL used a separable interaction to describe
final statepN interactions. Lee and Pearce@8# improved on
this description by using a reduction of the Bethe-Salp
equation to treat the meson-nucleon interaction in the fi
state. They calculated photoproduction observables up to
laboratory photon energy. However, with the construction
powerful new facilities such as the Continous Electron Be
Accelerator Facility~CEBAF!, it is necessary to have a goo
description of pion photoproduction which extends up
higher energies. Such a description must be covariant, g
invariant to all order of the strong coupling constants, a
include not only the nucleon (N) and delta (D) resonances
but also the Roper (N* ) resonance which plays a promine
role in the isospin12 amplitudes and theD13 ~1520! which
makes large contributions toD waves.

In this paper we present a simple, covariant, gauge inv
ant model forp photoproduction which works well up t
770 MeV photon laboratory energy. The model satisfies e
tic unitarity up to the two pion production threshold, inelas
unitarity approximately above the two-pion producti
threshold, and is fully consistent with a slightly modifie
533/96/53~5!/2422~27!/$10.00
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version of our previously published model forpN scattering
@9#, described in Sec. III. The modifications in thepN model
were made in order to~i! improve the threshold behavior
~scattering lengths!, ~ii ! more faithfully approximate the
physics of theppN channels which account for the inelas-
ticity, ~iii ! have a better form factor for further extensions o
the model, and~iv! reduce the complexity of thepg inter-
action currents by minimizing the energy dependence of th
pN interaction kernel which generates these interaction cu
rents. We have introduced a new form for thepND and
pND13 vertices which makes the calculations simpler. At a
times we have tried to keep both thepN andp photopro-
duction models as simple as possible~without sacrificing es-
sential physics! so that they may beconsistentlyused as in-
put to NN scattering and deutron photodisintegration
calculations.

In this work the pion photoproduction multipole ampli-
tudes are obtained from the solution of a relativistic wav
equation, in which the pion is restricted to its mass shell i
all intermediate states except in the pion pole diagram, whi
is needed to keep gauge invariance. The rationale for th
approach is described in ourpN paper@9#. As in pN scat-
tering, in order to describe the resonances at photon labo
tory energy;300, ;450, and;760 MeV, the kernel or
driving terms of the relativistic integral equation include un
dressedD, N* , andD13 poles in addition to the undressed
nucleon pole. The kernel also includes contributions derive
from crossedN, D, N* , andD13 diagrams and fromv and
r exchange terms. Thev exchange is claimed to give
a significant contribution to theM11(

1
2) amplitude and

M12(
1
2) amplitudes~for an explanation of the multipole no-

tation see Sec. I B below and Appendix B! @3#. Although the
r exchange contribution is claimed to be small@10#, it is still
included in our model. We believe that it will contribute to
theM12(1/2) andM22(1/2) channels. Besides that we also
would like to get an estimate of the strength of therpg
interaction. Our approximation scheme makes the cross
2422 © 1996 The American Physical Society
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53 2423UNITARY, GAUGE INVARIANT, RELATIVISTIC RESONANCE . . .
D andD13 poles zero, as in thepN model. This makes the
model simpler and the numerical calculations easier, an
consistent with other approximations we have made. T
crossed nucleon pole is treated exactly because of its im
tance in the proof of gauge invariance, and the crossed R
pole is also treated exactly because it has the same prope
as the nucleon. All of these driving terms are shown d
grammatically in Fig. 1. The Kroll-Ruderman term~contact
diagram! and the additional interaction currents needed
make the model gauge invariant are described in Secs. II
IV. The solution which emerges from the integral equati
~which includes the Born terms shown in Fig. 1 plus the fin
state interactions illustrated in Fig. 2! automatically satisfies
unitarity up to first order ine ~referred to as the Watso
theorem! @11#.

Features of ourp photoproduction model which are con
sistent with thepN scattering model include the following

FIG. 1. Diagramatic representation of the driving terms for p
photoproduction. Pions are dashed lines~with an3 if it is on shell!,
baryons are solid lines, and the large solid circles represent f
dressed vertex functions, as discussed in Sec. II.

FIG. 2. Diagramatic representation of the final state interacti
for pion photoproduction. The solid circle surrounded by an op
circle represents the fullpN scattering amplitude.
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~i! ThepNN coupling is taken to be a superposition of bot
pseudoscalar (g5) and pseudovector (gmg5) coupling; ~ii !
the nucleon self-energy is constrained to be zero at
nucleon pole, so that the nucleon mass remains unshifted
the interaction;~iii ! contributions from the Roper (N* ) and
(N*↔N) transition amplitudes are iterated to all orders, gi
ing a consistent description of the Roper resonance and
width; and ~iv! the D andD13 are treated as pure spin 3/2
particles, which the same propagators used in thepN model.

In the remainder of this section we will describe the hi
tory and background of some aspects of pion photoprod
tion such as theE2/M1 ratio, low energy theorem, unitarity,
and gauge invariance. The general theory is described in S
II. After a description of the modifications in thepN model
given in Sec. III, thep photoproduction model is described
in Sec. IV. The Appendixes discuss some technical point

B. E2/M1 ratio

The tensor interaction between quarks, such as the
which arises from the one-gluon-exchange interaction, giv
a smallD state admixture to the predominantlyS state wave
functions of the nucleon and theD. This tensor interaction
leads to a resonant electric quadrupole amplitudeE11( 32) ~or
E2) which is very small compared to the resonant magne
dipole amplitudeM11(

3
2) ~or M1). @Here the amplitudes are

denoted byEl6(I ) andMl6(I ), wherel is the orbital angu-
lar momentum of the photoproduced pion, the6 sign refers
to the totalpN angular momentumj5 l61/2, andI is the
isospin of thepN system.# The nonvanishingE2 amplitude
is one of the signals of theD state admixture. Therefore it is
important to determine theE2 amplitude in order to test
various quark model predictions.

There have been several attempts to measure theE2
amplitude, but it is difficult to get an accurate value becau
the E2 amplitude is very small compared to the domina
M1 amplitude, and the background is comparatively lar
@12#. The analyses of the data using several models sh
that although all of the calculations agree thatE2 is
small, there is considerable uncertainty as to its precise s
Results for theE2/M1 ratio which are listed in the Review
of Particle Properties@13# are E2/M15(21.160.4)%,
(21.560.2)% @4#, (3.760.4)% @6#, and (21.360.5)%.
Some other calculations giveE2/M1523.1% @7#, 24%
@5#, and 0% @14#. These differences are a reflection of th
fact that extraction of theE2/M1 ratio from the large experi-
mental background requires a theoretical model for both t
D resonance and the background, and the result one obt
is therefore sensitive to how the theoretical models are u
tarized, and to how the background is described@7#. We
expect that new, accurate data from CEBAF experimen
and new, more complete models ofp photoproduction, will
help to clarify the situation.

The value of theE2/M1 which we obtain from our fit~at
the resonance poleWtot5MD) is

E2/M1521.5%. ~1.1!

However, a fit to the data below 500 MeV gives a larg
value, and so this value is not very well determined@15#.
Both values are small and negative, in rough agreement w
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2424 53YOHANES SURYA AND FRANZ GROSS
some of the results given above. The value~1.1! was calcu-
lated from theD-pole diagram only, and does not includ
any contributions from the background. Thetotal E2/M1
ratio, including background contributions, is 20.63.

C. Low energy theorem

The low energy theorem~LET! was derived for the first
time by Kroll and Ruderman@16# from an examination of the
implications of gauge invariance in the framework of fiel
theory. Later Fubiniet al. @17# extended this theory by in-
cluding the hypothesis of a partially conserved axial curre
~PCAC!. In view of the LET, threshold pion production on
the nucleon was considered to be well understood. Acco
ing to the original LET prediction the threshold value of th
electric dipole amplitude forp0 photoproduction from pro-
tons is

E01uLET52
eg

pNN
m

8pm2 S 12
m

2m
~31kp! D1O S m

mD 3
52

2.331023

m
1correction, ~1.2!

wherem is the pion mass. However, it was a big surpris
when an analysis of the Saclay data@18# showed that the
experimental threshold amplitudeE01 for p0 photoproduc-
tion was smaller than the prediction of the LET by about
factor of 5,

E01uexpt5
~20.560.3!31023

m
. ~1.3!

The Mainz analysis@19# confirmed this result, and renewe
interest in the LET. Possible flaws in the derivation of th
LET due to final state interactions@20#, corrections to the
chiral perturbation expansion@21#, or chiral symmetry break-
ing corrections@22–24# were proposed. A new contribution
of orderm/m ~which arises from logarithmic singularities o
some one-loop diagrams in the chiral perturbation expa
sion! was discovered@21#, giving a corrected LET

E01uLET52
eg

pNN
m

8pm2 F12
m

2m S 31kp1
m2

8Fp
2 D G1O S m

mD 3
52

1.431023

m
1correction, ~1.4!

whereFp is the pion decay constant. Then, instead of e
tracting the low energy result from the differential cross se
tion, Bernstein and Holstein@25# and Drechsel and Tiator
@26# used the total cross section~which was not analyzed by
the Mainz group! and obtained

E015
~22.060.2!31023

m
. ~1.5!

It is clear that the threshold value ofE01 will continue to be
of interest, and that it may be a case where the chiral per
bation expansion is slow to converge.

The result we obtain for the electric dipole amplitude
threshold,
e
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E015
21.3431023

m
, ~1.6!

is very close to the result~1.4!.

D. Unitarity

Symbolically, the unitarity statement can be written@see
Eq. ~2.14! below#

ImMpg
a 52rpMpp

a*Mpg
a 2rgMpg

a*Mgg
a , ~1.7!

whereMpp
a , Mpg

a , andMgg
a are thepN, pion photoproduc-

tion, and compton scattering matrices for a state with qua
tum numbersa, andrp andrg are phase space factors fo
the pN and gN intermediate states. In 1954 Watson@11#
pointed out that the second term in Eq.~1.7! is very small
because it contains no terms which are first order ine ~the
electric charge!, and can therefore be neglected. Below th
two-pion production threshold, the phase of the pion phot
production amplitude for a statea will therefore be equal to
the phase ofpN scattering in the same channel. This state
ment can be explicitly written

Mpg
a 5uMpg

a ueidpp
a
, ~1.8!

wheredpp
a is the partial wave phase shift forpN scattering.

The Watson statement~1.8!, sometimes called the Watson
theorem, will start breaking down above the two-pion pro
duction threshold.

Unitarity was incorporated into models based on dispe
sion relations by Chew, Goldberger, Low, and Namb
~CGLN! @1# and by Fubiniet al. @27#. Early models based on
effective Lagrangians were not unitary@3,28# but were later
unitarized@3,29,30#. As pointed out by Araki and Afnan@31#
quark models based on effective Lagrangians are hard
interpret because it is difficult to establish the connectio
between the coupling constants in the Lagrangian and o
served interaction strengths.

The importance of unitarity was recently pointed out b
Nozawa, Blankleider, and Lee~NBL! @7#, who claim that it
is imposible to fit theM11 andE11 multipoles with a non-
unitarity model. The same observation was made by Wi
manet al. @4# who also showed that the result for these am
plitudes can be improved by unitarizing the model. Tanab
and Ohta@6#, Yang @5#, and Lee and his collaborators@7,32#
all use integral equations to automatically obtain unitarit
models.

Our model uses a relativistic wave equation in which th
intermediate state pion is on shell and the intermediate st
nucleon is off shell. This is consistent with thepN model
previously developed@9#. The same equations are used t
calculate both the scattering amplitude and the renormaliz
coupling constants, ensuring that the renormalization of t
propagators and vertices is carried out in a manner that
consistent with unitarity.

E. Gauge invariance

It has been known since 1954, when Kroll and Ruderma
~KR! @16# wrote their well-known paper on pion photopro-
duction, that the momentum dependence of the pseudovec
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53 2425UNITARY, GAUGE INVARIANT, RELATIVISTIC RESONANCE . . .
pNN coupling requires introduction of an interaction curre
~the famous Kroll-Ruderman term! in order to satisfy gauge
invariance. More recently, using minimal substitution, Oh
@33# and Nauset al. @34# obtained a gauge invariant set
Born terms which included form factors. Antwerpen a
Afnan @35# extended this theory to the treatment of pi
photoproduction with final state interactions, but have
obtained numerical results. In their approach they require
dressedpNN vertex to be gauge invariant by itself. Th
NBL model @7,32# also includes final state interactions, a

FIG. 3. Fits to theS11 andS31 phase shifts. The solid circles ar
the Arndt phase shifts.

TABLE I. The parameters of thepN model. Those in boldface
were varied during the fit; the others are either fixed or determi
by the fit.

Parameter Bare Dressed

g2/4p 13.5 13.3
l 0.200
C 0.884
Cr 0.674
m* 1431.8 1442.2
g
N*
2 /4p 3.590 5.795

G* 228.6
Z(m) 20.0042
Z(m* ) 20.004320.023 i
g8

1N*
2 /4p 0.062

g8
2N*
2 /4p 0.0

L 1225.4
L* 1853.7

mD 1301.8 1229.9
g

D

2/4p 0.813 0.808
GD 123.9
LD 1515.5

mD 1520.4 1517.9
gD
2 /4p 0.704 0.698

GD 124.5
g8

1D

2 /4p 0.031
g8

2D

2 /4p 0.0
LD 1829.3
nt

ta
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satisfies gauge invariance by restricting both of the interm
diate particles to their mass shell.

In this paper we apply the method originally introduce
by Gross and Riska@36#. They show how the electromag
netic coupling to any two-body system described by a re
tivisitic two-body equation~such as the Bethe-Salpeter equa
tion or the Gross equation@9,37#! will always conserve
current provided the following three conditions are met:~i!
The electromagnetic currents for the interacting off-she
nucleon and mesons satisfy the appropriate Ward-Takaha
~WT! identities; ~ii ! the interacting incoming and outgoing
two-body systems satisfy the same two-body relativis
equation~with the same interaction kernel!; and ~iii ! the ex-
change~or interaction! current is built up from the relativis-
itic kernel by coupling the virtual photon to all possible
places in the kernel. This method works even in the prese
of strong form factors for the off-shell nucleon; in this case
is only necessary to modify the structure of the off-she
gNN vertex so that it satisfies the WT identity with dresse
propagators~as discussed in Sec. IV!.

Using this method, it is possible to construct a gauge
variant theory even when particles are off shell, but gau
invariance is achieved only through cancellations among
of the diagrams in the theory. To prove gauge invariance~as

e FIG. 4. Fits to theP11 andP31 phase shifts.

FIG. 5. Fits to theP13 andP33 phase shifts.

ned



ic

-

y
-

s

i

tal

ory

xi-

at

ad-
am-
is-
t for

in

s
the

l

or
21
the
n
me

en
.

s

rs

2426 53YOHANES SURYA AND FRANZ GROSS
is done in Sec. II!, we use the WT identities, the relativist
wave equation satisfied by thepN system, and must be care
ful to introduce interaction currents~in addition to the well-
known KR interaction current! which arise from the momen
tum dependence of the interaction kernel.

F. Results

The basic features of ourpN scattering model are alread
well described in Ref.@9#, and the modifications of this origi
nal model are described in Sec. III. New numerical resu
for pion-nucleonS, P, andD wave phase shifts and inela
ticities are shown in Figs. 3–8 and the new parameters
given in Table I.~The interested reader may compare the
with the corresponding Table I and Figs. 7–13 in Ref.@9#.!

Our fit to the pion-nucleon phase shifts and inelasticit
are very good, with a major improvement~over the original
model@9#! in theS31 channel~see Fig. 3! which improves the
scattering length. The new values of the scattering leng
are

ma250.07,

ma1520.05, ~1.9!

FIG. 6. Fit to theD13 phase shift.

FIG. 7. TheP11 inelasticity parameter.
-

lts
-
are
se

es

ths

which is within two standard deviations of the experimen
results@38#

ma2uexpt50.08560.01,

ma1uexpt520.02960.02. ~1.10!

Figure 4 shows fits to the theP11 andP31 phase shifts. In
theP11 channel the zero appears at 101 MeV pion laborat
kinetic energy. The fits toP33, P31, andD13 channels shown
in Fig. 5 and Fig. 6 are very good. Because of our appro
mation for the inelastic channels, our fits to theP11 and
D13 inelasticity parameters are not very good especially
the higher energy.

The 13 parameters given in boldface in Table I were
justed during the fits. The table also includes several par
eters which were determined by the fit or fixed by cons
tency requirements. All of these these parameters, excep
the new inelasticity parametersg1B8 , and g2B8 ~where
B5$N* ,D%; see Sec. III!, have been discussed in detail
Ref. @9#. We chooseg2B8 50. The inelasticities of theN* and
D13 are described approximately by introducing as*N
channel, wheres* is a ~fictitious! scalar particle with a mas
equal to two pion masses, or 278 MeV. The mass of
s* was chosen so that thes*N threshold would coincide
exactly with theppN threshold, which seems to be critica
to a good description of the inelasticity.

The numerical results for the multipole amplitudes f
pion photoproduction from a proton are shown in Figs. 9–
and the new parameters which describe the coupling of
photon to the nucleon~and meson! resonances are given i
Table II. The experimental results shown in the figures co
from the interactiveSAID program of Arndt and Roper@39#.
The amplitudes are given in units of~fm!31023. The pre-
cise definitions of the parameters shown in Table II are giv
in Sec. IV; those in boldface were adjusted during the fit

The parametersg1B andg2B ~whereB5$N* ,D,D%) de-
scribe thegNB couplings~there are two independent form
for each coupling; see Sec. IV!, the productsgvpggvNN
~wherev5$r,v%) are the strengths of therpg andvpg
couplings~the fit can determine the product of these facto
only!, and thef vNN /gvNN is the ratio of the tensor (f vNN) to

FIG. 8. TheD13 inelasticity parameter.
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53 2427UNITARY, GAUGE INVARIANT, RELATIVISTIC RESONANCE . . .
vector (gvNN) strengths of therNN and vNN couplings.
The f rNN /grNN value given in Table II was taken from the
NN Model IA of Ref. @37#, while the f vNN /gvNN was ad-
justed to improve the fit.

Because of our choice of spin 3/2 propagator and o
approximation scheme which sets the crossedD and D13
pole terms to be zero, theD and theD13 only contribute to
the j53/2 channels. It is therefore convenient to describe o
fits to the j51/2 andj53/2 channels separately.

We begin with thej51/2 channels, shown in Figs. 9–12
These channels are driven by the nucleon andN* poles and
crossed poles, and thep, v, andr exchange terms~see Sec.
IV for details!. These driving terms depend on five adjus
able paramenters: twogNN* couplings, denoted byg

1N*
and

g
2N*

, the rpg andvpg couplings multiplied by therNN

andvNN couplings, denoted bygrpggrNN andgvpggvNN ,
and the v anomalous magnetic moment couplin
kv5 f vNN /gvNN . To show how the total result is built up
from individual contributions, the curves in the figures sho
the result when the kernel~i! includes only the direct nucleon
pole term, the crossed nucleon pole, the pion exchange p
and all the interaction currents associated with the nucle
~the dotted line!, ~ii ! the terms in~i! plus the v exchange
pole ~the dashed line!, ~iii ! the terms in~ii ! plusr exchange
pole ~the dotted line, with wider space between dots!, and
finally ~iv! the total result, which includes the terms in~iii !

FIG. 9. Fit to the real part ofE01(1/2) amplitude. The indi-
vidual contributions are discussed in the text.

TABLE II. The new parameters in thegN the model. Those in
boldface were varied during the fit; the others were fixed.

Parameter Value

g1N* 20.231
g2N* 0.831
g1D 1.121
g2D 1.333
g1D 22.340
g2D 22.450
grpggrNN 20.439
gvpggvNN 8.168
f rNN /grNN 7.52525
f vNN /gvNN 0.76
ur

ur

-

le,
on

plus theN* contributions~the solid line!. Since all contribu-
tions add nonlinearly, it is difficult to extract the separat
contributions from the figures.

Our fits to both the real and imaginary parts of th
j51/2 multipole amplitudes are very good. In theS11 pN
channel~Fig. 9! there is a small peak near 730 MeV that w
can not describe. This peak is associated withh production,
not included in our model. Thish production also contrib-
utes to theS31 channel~Fig. 10! at high energy.

Before we discuss the fits to thej53/2 channels, we wish
to point out that theE01(1/2) andM12(1/2) amplitudes,
shown in Figs. 9 and 11, are particularly sensitive to all o
the individual contributions. In contrast, ther exchange is
isoscalar and does not contribute to theI53/2 amplitudes
@theE01(3/2) andM12(3/2), shown in Figs. 10 and 12#, and
the Roper amplitude also gives only a very small contribu
tion to theseI53/2 channels~the dashed line overlaps, or
almost overlaps, the solid line!. Thev andr exchange con-
tributions are very important to a description of the tw
I51/2 amplitudes. The Roper contribution is also very sig
nificant, especially in theM12(1/2) amplitude, which cannot
be fit without it. TheM12(3/2) amplitude~Fig. 12! depends
very much on the omega, and could not be fit without vary
ing the (fvNN /gvNN) coupling. The small value of

FIG. 10. Fit to the real part of theE01(3/2) amplitude. Ther
exchange pole does not contribute to this channel, and theN* gives
a small contribution~the dashed line nearly overlaps the solid line!.

FIG. 11. Fit to the real part ofM12(1/2) amplitude.
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2428 53YOHANES SURYA AND FRANZ GROSS
( f vNN /gvNN) from the one-boson-exchange models@37# did
not work.

The j53/2 channels, shown in Figs. 13–16, are driven
the direct spin 3/2 resonance poles~from theD andD13), the
crossedN andN* pole diagrams, and thep, r, andv ex-
change diagrams. As before, ther exchange pole does no
contribute to theI53/2 amplitudes, and so the contribution
shown in Figs. 13 and 14 include~i! contributions from the
nucleon and pion only~dotted line as above!, ~ii ! terms in~i!
plus the omega exchange pole~line with short dashes, as
above!, ~iii ! the terms in~ii ! plus theN* contributions~the
line with longer dashes!, and ~iv! the total result, including
theD pole terms~solid line!. For theI51/2 amplitudes, the
widely spaced dotted line includes terms in~ii ! above plus
ther exchange~as in thej51/2 cases!, the line with longer
dashes adds theN* contributions, and the solid line is th
total, including theD13. All of the parameters for the
crossed and exchange diagrams were already determine
the j51/2 fit. The directD pole, which contributes only to
the P33 final state~Figs. 13 and 14!, requires two new pa-
rameters~the couplingsg1D and g2D), and the directD13
pole, which contributes only to theD13 final state~Figs. 15
and 16!, requires two more~the couplingsg1D andg2D). The

FIG. 12. Fit to the real part of theM12(3/2) amplitude. Ther
exchange pole does not contribute to this channel, and theN* gives
a very small contribution~the dashed line overlaps the solid line!.

FIG. 13. Fit to the real part ofM11(3/2) amplitude. The indi-
vidual contributions are discussed in the text. TheN* contribution
is very small, and ther does not contribute.
by

t
s

e

d by

values of thegND couplings which we obtain are within
range of other calculations@40# which use the Rarita-
Schwinger propagator to describe the spin 3/2 resonance

All of the j53/2 amplitudes are fit reasonably well by th
model. The contribution of theN* to all of these amplitudes
is very small~as indicated by the near overlap of the line
with short and long dashes in Figs. 13 and 14 and the lin
with widely spaced dots and long dashes in Figs. 15 and 1!.
Note that the rho exchange pole plays an important role
theE22(1/2) andM22(1/2) amplitudes~Figs. 15 and 16!.

From the results shown in Figs. 13 and 14 we calculat
the ratio ofE11(3/2) andM11(3/2) at the peak of theD
resonance, and found that the value from only the dres
D contribution is about21.5%.

Finally, Figs. 17–20 show the comparison of our calcul
tion ~solid lines! to the VPI analysis@39# ~dashed lines!. The
solid circles and open triangles are the real and imagina
parts of the amplitudes, respectively. The agreement betw
the two calculations is good.

G. Form factors

Some form factors are needed to ensure that the soluti
of the integral equation exist or, alternatively, to cut off th

FIG. 14. Fit to the real part of theE11(3/2) amplitude. See the
caption to Fig. 13.

FIG. 15. Fit to the real part ofE22(1/2) amplitude. The indi-
vidual contributions are discussed in the text. TheN* contribution
is very small~as indicated by the overlap of the long-dashed lin
and the widely spaced dotted line!.
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integrals over thepN and ~the inelastic! s*N loops which
appear in the solution. These form factors cannot depen
the pion mass, as is usually done in pion exchange mo
because the pion is on shell. Anticipating the extension
this model to the description of the electroproduction
pions, where a gauge invariant treatment of electromagn
interactions is possible following the procedure introduced
Ref. @36#, we choose to make the form factors depend o
on the off-shell nucleon mass. By extension, and to impr
the fits, we also introduce form factors for the baryon re

FIG. 16. Fit to the real part of theM22(1/2) amplitude. See the
caption to Fig. 15.

FIG. 17. Comparison of ourE01(1/2) and (3/2) toSAID analy-
sis. See the discussion in the text.
on
els,
of
of
etic
in
ly
ve
o-

nances. These form factors are identified with the baryo
itself; each baryon has a universal form factor which will b
used for that baryon, wherever it appears in the calculatio
We also require all form factors to be zero in the spacelik
region ~whenp2,0).

The specific form of the bayron form factors used in thi
paper, which are different from those used in Ref.@9#, is

f B~p2!5F ~LB
22mB

2 !2

~LB
22mB

2 !21~mB
22p2!2G

2

3Fp4@m41~m21mB
2 !2#

mB
4@m41~m21p2!2#Gu~p2!, ~1.11!

where mB5m for B5$N,D,D13%, mB5m* ~the Roper
mass! for the Roper amplitude, the form factor massesLB
were allowed to vary during the fit, and the theta function
introduced to ensure that this form factor is zero forp2,0.
Note that the maximum value of the first factor is unity a
p25mB

2 , and that this term peaks atp25m2 for the nucleon,
D, andD13 form factors, while it peaks atp25m* 2 for the
N* form factor. Unfortunately, our results are sensitive t
the form factors, which are purely phenomenological.

When the form factors accompany the intermedia
baryon in the direct baryon pole terms, the virtual mas
~squared! is simply

p25m21m212m~Tlab1m!, ~1.12!

FIG. 18. Comparison of ourM12(1/2) and (3/2) amplitudes.
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FIG. 19. Comparison of ourE11(3/2) andM11(3/2) ampli-
tudes.

FIG. 20. Comparison of ourE22(1/2) andM22(1/2) ampli-
tudes.
and the four baryon form factors are plotted versusTlab in
Fig. 21. When the nucleon form factor accompanies a virt
nucleon in apN loop, its mass~squared! is

p25W21m222Wv~k!, ~1.13!

wherek is the magnitude of the pion three-momentum in t
loop, andv(k)5Am21k2. The nucleon form factor is plot-
ted versusk for a fixedW5m1m in Fig. 22. We emphasize
that thesamenucleon form factor is shown in both figures
only the variable on which it depends has been chang
Note that~because of the theta function! the nucleon form
factor is zero beyondk.525 MeV, cutting off the loop in-
tegral at this momentum.~However, a more gentle cutoff
such as the ones used in Ref.@9#, does not alter the results
significantly.!

H. Conclusions

The following conclusions can be drawn from the prese
work:

FIG. 21. Form factors for the nucleon~solid line!, Roper reso-
nance~dotted line!, D ~dashed line!, andD13 ~widely space dotted
line! as a function ofTlab.

FIG. 22. Form factor of the nucleon plotted as a function of t
pion loop momentum.
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~i! A relativistic resonance model of pion photoprodu
tion, fully consistent with thepN scattering model which
defines the final state interactions, has been found to giv
good description of the process up to 750 photon laborat
energy. The model is covariant, satisfies elastic unitarity
to first order in the electric chargee, and is gauge invarian
to all orders. The simplicity and consistency of the two mo
els means that they can be used as a basis for a treatme
the coupledNN↔pNN system, and its electromagnetic e
tension togNN andgpNN.

~ii ! The dressedD contribution gives a ratio of
E2/M1521.5% at theD pole, implying that theD is not
purely anS state, but contains aD state admixture. This
result shows that the tensor interaction between qua
should not be neglected.

~iii ! The threshold value of the electric dipole moment f
p0 photoproduction from protons isE01521.3431023/ m,
which is in agreement with the recent value predicted
chiral perturbation theory.

II. GENERAL THEORY

In this section the relativistic equation for the pion
photoproduction scattering matrix is presented, and we sh
that the theory is covariant, gauge invariant, and satis
unitarity.

A. Integral equations

The Bethe-Salpeter equation for pion-photoproduct
can be written in two equivalent ways. Keeping the term
lowest order ine only and supressing all the Dirac and is
spin indices gives

Mpg~k8,q,P!5Vpg~k8,q,P!1 i E d4k9

~2p!4

3Vpp~k8,k9,P!G~k9,P!Mpg~k9,q,P!

5Vpg~k8,q,P!1 i E d4k9

~2p!4

3Mpp~k8,k9,P!G~k9,P!Vpg~k9,q,P!,

~2.1!

whereVpg(k8,q,P) andVpp(k8,k9,P) are the driving terms
for the gp and pp sectors, respectively, andG(k9,P) is
the two-bodypN propagator. The four-momenta of th
incoming, outgoing, and intermediate nucleons arep, p8,
and p9, of the outgoing and intermediate pions arek8
and k9, and of the incoming photon isq, so that
P5p1q5p81k85p91k9 is the total four-momentum.
The equivalence of the two forms of Eq.~2.1! follows
from their Born series, which is identical. To see this, it
necessary to use the equations for thepN scattering ampli-
tude, which are
-
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Mpp~k8,k,P!5Vpp~k8,k,P!1 i E d4k9

~2p!4

3Vpp~k8,k9,P!G~k9,P!Mpp~k9,k,P!

5Vpp~k8,k,P!1 i E d4k9

~2p!4

3Mpp~k8,k9,P!G~k9,P!Vpp~k9,k,P!.

~2.2!

In Ref. @9# we have shown that pion-nucleon scattering
well described by a relativistic equation obtained from Eq
~2.2! by putting the intermediate pion on mass shell. To b
consistent with this description ofpN scattering, we also put
the intermediate pion on the mass shell in thegN, Eq. ~2.1!.
~The only place that the pion will be off shell is in one of the
pion pole driving terms, which is needed to satisfy gaug
invariance, as discussed below.! If the pion is put on shell,
Eq. ~2.1! becomes

Mpg~k8,q,P!5Vpg~k8,q,P!2E d3k9

~2p!32vk9

3Vpp~k8,k9,P!SN~p9!Mpg~k9,q,P!

5Vpg~k8,q,P!2E d3k9

~2p!32vk9

3Mpp~k8,k9,P!SN~p9!Vpg~k9,q,P!,

~2.3!

wherevk95Am21k92 is the on-shell pion energy, and

SN~p9!5
1

m2p” 92 i e
~2.4!

is the nucleon propagator, andm andm are the pion and the
nucleon masses.

The equations are regularized by adding a form fact
f N(p

2) to damp the high momentum behavior of the off-she
nucleon of momentump. Equation~2.3! includes these form
factors in the interaction kernelV. Alternatively, it is some-
times convenient~particularly in our discussion of gauge in-
variance below! to move these form factors from the kerne
to the propagator. To this end we can introducereduced
amplitudes anddampedpropagators as follows:

V~k8,k,P!5 f N@~P2k8!2#Ṽ~k8,k,P! f N@~P2k!2#,

M ~k8,k,P!5 f N@~P2k8!2#M̃ ~k8,k,P! f N@~P2k!2#,

S̃N~p9!5 f N
2 ~p92!SN~p9!. ~2.5!

The symbolM̃ will usually denote the reduced amplitude
M ~the amplitudeM with the form factors removed! and S̃
the damped propagator with the~square of the! nucleon form
factor added. It is easy to verify that the reduced amplitud
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satisfy the same equations, but with damped propaga
substituted for ‘‘bare’’ propagators.

We will have occasion to use the fact that the pio
nucleon scattering matrixMpp(k8,k,P) can be written in the
following form ~see Ref.@9#!:

Mpp~k8,k,P!5Mcpp~k8,k,P!

1(
B

GB~k8,P!GB~P!ḠB~k,P!, ~2.6!

where the sum is over baryonsB in the set$N,N* ,D,D13%,
Mcpp(k8,k,P) is the infinite sum of iterated contact dia
grams,GB(k,P) is the dressed vertex for baryonB, and
GB(P) is the dressed baryon propagator.~The definition of
the Dirac conjugateḠB will be given in the next subsection;
note that it, and the notation used in Eq.~2.6!, differs from
that given in Ref.@9#. For a complete review of our nota
tional conventions, see Appendix A.!

The integral equations~2.3! are manifestly covariant. This
is guaranteed by the covariance of the volume integration

E d3k

2vk
5E d4kd1~m22k2!. ~2.7!

Furthermore, these equations automatically give a solut
which satisfies elastic unitarity to ordere ~the Watson theo-
rem!, as we show in the next subsection.

B. Unitarity

The proof of elastic unitarity is very similar to the on
given in Ref.@37# for NN scattering. First, we write Eq.~2.3!
and a similar one forp1N→g1N ~pion photoabsorbtion!
in the compact form

Mpg5Vpg2E VppSMpg , ~2.8a!

Mgp5Vgp2E VgpSMpp , ~2.8b!

whereMpg , Mgp , andMpp are the scattering matrices fo
photoproduction, photoabsorption, and pion nucleon scat
ing, andVpg , Vgp , andVpp are the driving terms~kernels!
for photoproduction, photoabsorption, andpN scattering.
The Dirac conjugate of the photoproduction kernel is th
kernel for photoabsorption, but thepN kernel is self-
conjugate:

V̄pg~k,q,P!5g0Vpg
† ~k,q,P!g05Vgp~q,k,P!,

V̄pp~k8,k,P!5g0Vpp
† ~k8,k,P!g05Vpp~k,k8,P!.

~2.9!

Taking the Dirac conjugate of Eq.~2.8b!, and using Eq.
~2.9!, we obtain

M̄gp5Vpg2E M̄ppS̄Vpg . ~2.10!
ors

n

-

ion

er-

e

Using Eq.~2.8a! to replace theVpg driving term under the
integral in this equation gives the following nonlinear equ
tion for M̄gp :

M̄gp5Vpg2E M̄ppS̄Mpg2E E M̄ppS̄VppSMpg .

~2.11!

A second nonlinear equation can be obtained from Eq.~2.8a!
by using the Dirac conjugate of thepN equation

M̄pp5Vpp2E M̄ppS̄Vpp ~2.12!

to replace theVpp driving term under the integral

Mpg5Vpg2E M̄ppSMpg2E E M̄ppS̄VppSMpg .

~2.13!

Subtracting Eq.~2.11! from Eq. ~2.13! gives theelasticuni-
tarity condition

Mpg2Mgp52E M̄pp~S2S̄!Mpg . ~2.14!

Using time reversal invariance, the Dirac conjugateMgp can
be related to the complex conjugate ofMpg .

In each eigenchannel, the elastic unitarity condition~2.14!
automatically implies that the pion photoproduction amp
tude has the same phase as thepN scattering amplitude,
which is a statement of the Watson theorem@11#. However,
above the inelastic threshold, i.e., when theppN intermedi-
ate states become physical, the driving terms in our equa
become complex, the elastic unitarity condition no long
holds, and the Watson theorem no longer applies.

C. Introduction to the model

In this section we prepare the way for a demonstration
gauge invariance by giving a brief introduction to our mod
of pion photoproduction. A detailed discussion of the stru
ture of the couplings and the definition of parameters will
deferred to Sec. III. Here we will limit the discussion t
those points essential to the proof of gauge invariance.

Our amplitude for pion photoproduction is given by th
sum of the Born diagrams shown in Fig. 1 and their fin
state interactions, shown in Fig. 2. The Born diagrams 1~a!,
1~b!, 1~e2!, and 1~e3! include ~in principle! contributions
from all of the resonancesB, but the contributions of the
D andD13 to diagram 1~b! are zero in the approximation we
employ. Furthermore, thegNN* , gND, gND13, rpg, and
vpg couplings are all separately gauge invariant, and he
the contributions of the baryon resonances to the diagra
1~a! and 1~b!, and of ther andv to diagram 1~c!, can be
ignored in the proof of gauge invariance, and will not b
discussed further here. Diagrams 1~e3! and 1~f! are interac-
tion currents which arise because of the momentum dep
dence of the elementarypN contact interaction and the
pNN, pND, and pND13 couplings. In our model the
pNN* coupling does not depend on the momentum, a
hence the Roper resonance makes no contribution to diag
1~e3!.
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Note that dressed vertices are needed in diagrams 1~b!,
1~c!, 1~e!, and 1~f! because final state interactions canno
describe anypN interactions which take placebefore the
photon is absorbed. Interactions which take placeafter the
photon is absorbed are part of the final state interactions, a
hence diagram 1~a! must contain only the bare vertex in or-
der to avoid double counting.

The interaction kernel obtained from the Born diagrams
Fig. 1 has the form

Ṽpg~k8,q,P!52 ieemJ̃
im~k8,q,P!, ~2.15!

whereem is the polarization vector of the incoming photon
i is the isospin of the outgoing pion, and we remove th
overall factor ofe so that all currents will not include this
factor. The reduced currentJ̃im for the diagrams 1~a!–1~d!,
includingnucleons only, is

~ J̃im!1~a!21~d!~k8,q,P!5t i G̃N0~k8,P!S̃N~P! j̃ N
m~P,p!

1 j̃ N
m~p8,p2k8!

3S̃N~p2k8!G̃N~k8,p!t i

1 j̃ p
i j m~k8,k82q!t j D̃~k82q!

3G̃N~k82q,p!1 J̃IN
im~q!, ~2.16!

where G̃N(k8,p) is the reduceddressedpNN vertex for an
outgoing pion with four-momentumk8, G̃N0(k8,P) is the
reducedbarepNN vertex,D̃ is the damped pion propagator

j̃ N
m(p8,p) and j̃ p

i j m(k8,k) are the reducedgNN and gpp
current operators, andJ̃IN

im(q) is the reduced Kroll-Ruderman
term @Fig. 1~d!#. We adopt a convention where the single
particle currentsj̃ N

m and j̃ p
i j m and the propagators include the

overall factor ofi which multiplies all Feynman matrix ele-
ments~rule 0 of Ref.@41#!, while the vertex functions do not
~see Appendix A!. The additional driving terms shown in
diagrams 1~e! and 1~f! and the specific forms of the factors
introduced in Eq.~2.16! will be given as they are needed in
the following discussion.

The bare, reducedpNN vertex G̃ is a superposition of
pseudoscalar and pseudovector couplings,

G̃N0~k8,P!5gS l2
12l

2m
k” 8Dg5 , ~2.17!

whereg is thepNN coupling constant andl is the mixing
parameter. Note that the vertex does not depend onP. The
dressed vertex, which includes all of thepN contact interac-
tions, satisfies

G̃N~k8,p!5G̃N0~k8,p!

2E dk9M̃ c
1/2~k8,k9,p!S̃N~p2k9!G̃N0~k9,p!

5G̃N0~k8,p!2E dk9Ṽc
1/2~k8,k9,p!

3S̃N~p2k9!G̃N~k9,p!, ~2.18!

whereṼc
1/2 is the reducedpN contact interaction~in the isos-
t

nd

in

,
e

-

pin 1/2 channel!, M̃ c
1/2 is the reduced iteration of these con

tact interactions to all orders~see Ref.@9#!, and

E dk95E d3k9

2vk9~2p!3
. ~2.19!

In the third term of Eq.~2.16!, the vertexG̃N(k82q,p) de-
scribes the coupling of a nucleon to anoff-shellpion, which
is, strictly speaking, an amplitude outside of the framewo
of our model. However, since the reduced contact inter
tions Ṽc do not depend on the pion momenta~see the next
section! and the reduced bare vertex depends on the p
momentum only through the (12l)k” term in Eq.~2.17!, the
reduced off-shell vertex is easily obtained by simply usi
the ~correct! off-shell pion four-momentum in the formula
for the on-shell vertex.

The full result for pion photoproduction, including fina
state interactions, will be written

Mpg
i ~k8,q,P!52 ieemJ

im~k8,q,P!, ~2.20!

where the currentJm is a sum of the Born terms and inte
grals over thepN scattering amplitude@the diagrams shown
in Figs. 2~a!–2~f!#

J im~k8,q,P!5 J̃im~k8,q,P!

2E dk9M̃pp~k8,k9,P!S̃N~p9!J̃im~k9,q,P!.

~2.21!

Note that this equation is merely a statement of Eq.~2.3!.
We are now ready to prove that expression~2.21! is gauge

invariant.

D. Gauge invariance

Using the notation and the relativistic equations discus
above, we will now show that the photoproduction amplitu
obtained from the driving terms shown in Fig. 1 is gau
invariant. As mentioned in the previous section, thegNN* ,
gND, gND13, rpg, and vpg couplings are separately
gauge invariant, and so contributions to diagrams 1~a!–1~c!
from these resonances will be ignored here. The proof w
follow the method introduced by Gross and Riska@36#.

The reducedsingle-nucleon current operator, denoted

j̃ N
m above, and thereducedsingle-pion current operator, de

noted by j̃ p
i j m above, have the structure

j̃ N
m~p8,p!5tp j̃ N0

m ~p8,p!,

j̃ p
i j m~k8,k!52 i e i j 3 j̃ p0

m ~k8,k!, ~2.22!

wherep andp8 are the four-momenta of the incoming an

outgoing ~off-shell! nucleons,tp5
1
2 (11t3) is the charge

operator for the nucleon~we ignore the nucleon anomalou
magnetic moment term here because it is separately ga
invariant, but it is included in the full calculation!, andk, j
andk8,i are the four-momenta and isospin of the incomi
and outgoing pions, respectively.
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The proof begins with the fact that the current operat

j̃ N0
m and j̃ p0

m can be constructedso as to satisfy Ward-
Takahashi~WT! identities involving thedampedpropaga-
tors. These WT identities are~recall that the charge has bee
removed so that the current is normalized toj N0

m .gm)

qm j̃ N0
m ~p8,p!5@S̃N

21~p!2S̃N
21~p8!# ~2.23!

and

qm j̃ p0
m ~k8,k!5@D̃p

21~k!2D̃p
21~k8!#. ~2.24!

The damped nucleon propagatorS̃N(p) and the damped pion
propagatorD̃p(k) are

S̃N~p!5
f N
2 ~p2!

m2p”2 i e
5 f N

2 ~p2!SN~p2! ~2.25!

and
rs

n

D̃p~k!5
f p
2 ~k2!

m22k22 i e
5 f p

2 ~k2!D~k2!, ~2.26!

where f N(p
2) and f p(k

2) are phenomenological form fac-
tors. The nucleon form factorf N(p

2) has already been dis-
cussed; the pion form factorfp(k

2) would occur only in
diagrams 1~c!, 1~e1!, and 1~e2!, and their final state interac-
tion contributions, but we shall see later that it cancels a
never enters into the final result. Note the these form fact
are unity when the particles are on their mass she
f N(m

2)515 f p(m
2).

Now compute the four-divergence of the nucleon po
contributions to the Born terms 1~a!–1~d!, given in Eq.
~2.16! above. Allowing for the fact that the final nucleon wil
be off shell when the Born terms are used to calculate t
final state interactions, and that the form factors are un
when the particle is on shell, the Ward-Takahashi identiti
give
qm~ J̃im!1~a!21~d!5t itpG̃N0~k8,P!S̃N~P!@02S̃N
21~P!#1tpt i@S̃N

21~p2k8!2S̃N
21~p8!#S̃N~p2k8!G̃N~k8,p!

2 i e i j 3t j@D̃21~k82q!20#D̃~k82q!G̃N~k82q,p!1qmJ̃IN
im~q!

52t itpG̃N0~k8,P!1tpt i G̃N~k8,p!2 i e i j 3t j G̃N~k82q,p!1qmJ̃IN
im~q!2tpt i S̃N

21~p8!S̃N~p2k8!G̃N~k8,p!.

~2.27!

Using the relativistic wave equation~2.18! for the dressed vertex permits us to write

qm~ J̃im!1~a!21~d!52@t itpG̃N0~k8,P!2tpt i G̃N0~k8,p!1 i e i j 3t j G̃N0~k82q,p!2qmJ̃IN
im~q!#

2tpt iE dk9Ṽc
1/2~k8,k9,p!S̃N~p2k9!G̃N~k9,p!1 i e i j 3t jE dk9Ṽc

1/2~k82q,k9,p!S̃N~p2k9!G̃N~k9,p!

2tpt i S̃N
21~p8!S̃N~p2k8!G̃N~k8,p!. ~2.28!
s
al
-
1/2
Next, we recall thatG̃N0(k8,P) does not depend onP, and
observe that

G̃N0~k82q,p!5G̃N0~k8,p!1
~12l!q”

2m
gg5 . ~2.29!

Hence, sincet itp2tpt i52 i e i j 3t j , we see that the first four
terms in square brackets in Eq.~2.28! will be zero provided

qmJ̃IN
im~q!5 i e i j 3t j

~12l!q”

2m
gg5 . ~2.30!

This constraint will be satisfied by the Kroll-Ruderman term
given in Sec. IV. Using this constraint, and the fact that th
reducedpN contact interactionṼc(k8,k9,p)5Ṽc(p) de-
pends only on thetotal momentump, the divergence of the
diagrams in Figs. 1~a!–~d! becomes finally
e

qm~ J̃im!1~a!21~d!52t itpE dk9Ṽc
1/2~p!S̃N~p2k9!G̃N~k9,p!

2tpt i S̃N
21~p8!S̃N~p2k8!G̃N~k8,p!.

~2.31!

Now we add in the final state interactions from diagram
2~a!–2~d!. It is convenient at this point to consider the fin
state interactions in the isospinI51/2 and 3/2 states sepa
rately. These states can be separated out by the isospin
and 3/2 projection operators, which are

I 1/2
i j 5

1

3
t it j ,

I 3/2
i j 5d i j2

1

3
t it j , ~2.32!
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wherei and j are the isospins of the outgoing and incomin
pions, respectively. Hence the first term in Eq.~2.31! is pure
I51/2,

I 3/2
i j t j5@d i j2

1
3 t it j #t j50, ~2.33!

and does not contribute to the discussion ofI53/2 gauge
invariance. The second term in Eq.~2.31! contributes to both
isospin channels,

I 1/2
i j tpt j5

1
2 t i~12 1

3 t3!,

I 3/2
i j tpt j5I 3/2

i3 , ~2.34!

but is zero for the Born terms because the final nucleon is
shell. Hence the full contribution of theI53/2 final states to
the photoproduction amplitude, Eq.~2.21!, from the terms
driven by the diagrams 1~a!– 1~d! is

qm~J 3/2
m !2~a!22~d!5E dk9M̃pp

3/2~k8,k9,P!S̃N~P2k9!

3S̃N
21~P2k9!S̃N~p2k9!G̃N~k9,p!

5E dk9M̃pp
3/2~k8,k9,P!S̃N~p2k9!

3G̃N~k9,p!, ~2.35!

where the isospin factors can be dropped after Eq.~2.34! has
been used. If the amplitude, as presently constructed, w
gauge invariant, Eq.~2.35! would give zero. We must add
several extra terms in order to get a gauge invariant resu

These extra terms are driven by the diagrams shown
Figs. 1~e1!–1~e3!. The pion loop in diagrams 1~e1! and 1~e2!
g

on

ere

lt.
in

contribute an isospin factor2 i e j l 3t l , wherej is the isospin
of the pion after its interaction with the photon. This fact
can be decomposed into isospin 1/2 and 3/2 parts:

2 i e j l 3t l 52I 3/2
j3 12I 1/2

j3 . ~2.36!

For diagram 1~e3!, we need the isospin structure of th
g1p1N→D four-point current, which will be shown in
Sec. IV C to have the form

J̃ ID
jnm~q,P!52 i e j l 3Tl

† j̃ ID
m ~q,P!, ~2.37!

where Ti is the isospin 3/2→1/2 transition operator~and
T† the 1/2→3/2 transition operator! with the property

TiTj
†5~d i j2

1
3 t it j !5I 3/2

i j , ~2.38!

and j̃ ID
m (q,P) is the reduced, isospin 3/2 interaction curre

with q the momentum of the incoming photon,m its polar-
ization index,P the momentum of the outgoingD, and the
four-vector index of the outgoingD, n, suppressed.~Note
that the definitioin and normalization ofT used in this paper
differs from that used in@9#.! When the four-point delta cur
rent is inserted into the pion loop in Fig. 1~e3!, the isospin
factor becomes

2 i e j l 3Tl
†t j5Tl

† ~I 3/2
l 322I 1/2

l 3!5T3
† . ~2.39!

This factor ofT3
† will eventually be combined with the

transition operatorTi attached to the finalD→pN vertex to
give a factor ofI 3/2

i3 , which is common to all of the thre
diagrams, and will be dropped. Hence theI53/2 contribu-
tion from these diagrams is
Using

ion
~ J̃3/2
m !1~e!5E dk9@Ṽc

3/2~k8,k91q,P!1G̃D0~k8,P!G̃D0~P!G̃D0~k91q,P!#D̃~k91q! j̃ p0
m ~k91q,k9!S̃N~p2k9!G̃N~k9,p!

2E dk9G̃D0~k8,P!G̃D0~P! j̃ ID
m ~q,P!S̃N~p2k9!G̃N~k9,p!, ~2.40!

whereG̃D0(k8,P) is thebarebut reduced~i.e., the nucleonanddelta form factors have been removed! D→Np vertex function
andG̃D0(P) is the damped~but undressed by the higher orderpN interactions! D propagator. All four vector indices of the
propagating delta have been suppressed in Eq.~2.40!, and all isospin operators have been removed, as discussed above.
the WT identity to take the four-divergence of~2.40! gives

qm~ J̃3/2
m !1~e!52E dk9@Ṽc

3/2~P!1G̃D0~k8,P!G̃D0~P!$G̃D0~k91q,P!1qm j̃ ID
m ~q,P!%#S̃N~p2k9!G̃N~k9,p!, ~2.41!

where we used the fact thatṼc depends onP only. In Sec. IV we will show that the interaction current satisfies the relat

qm j̃ ID
m ~q,P!52G̃D0~k91q,P!1G̃D0~k9,P!. ~2.42!

Using this constraint, Eq.~2.41! becomes

qm~ J̃3/2
m !1~e!52E dk9Ṽpp

3/2~k8,k9,P!S̃N~p2k9!G̃N~k9,p!, ~2.43!

where
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Ṽpp
3/2~k8,k9,P!5Ṽc

3/2~k8,k9,P!1G̃D0~k8,P!G̃D0~P!G̃D0~k9,P! ~2.44!

is the full kernel forpN scattering in theI53/2 channel.
Including the final state interactions, the full contributions generated by diagrams 1~e! are

qm~J 3/2
m !1~e)12~e!52E dk9F Ṽpp

3/2~k8,k9,P!2E dkM̃pp
3/2~k8,k,P!S̃N~P2k!Ṽpp

3/2~k,k9,P!GS̃N~p2k9!G̃N~k9,p!

52E dk9M̃pp
3/2~k8,k9,P!S̃N~p2k9!G̃N~k9,p!, ~2.45!

where, in the second step, we used the wave equation forM̃pp to reduce the expression. Note that the contributions fro
diagrams 1~e! and 2~e!, Eq. ~2.45!, cancel the contributions from diagrams 2~a!–2~d!, Eq. ~2.35!, proving that the I53/2
amplitude is gauge invariant.

We now turn to a discussion of theI51/2 amplitude. The proof for this channel is similar to the one given above, but
must add the additional contributions from Eq.~2.31!, and also be careful to consider the different isospin operators which
contribute to this channel. Using the results from Eqs.~2.31!, ~2.34!, ~2.36!, and generalizing the argument leading to~2.45!,
we get

qm~J 1/2
im !~a!–~e!52t itpE dk9Ṽc

1/2~p!S̃N~p2k9!G̃N~k9,p!1t itpE dkM̃pp
1/2~k8,k,P!S̃N~P2k!E dk9Ṽc

1/2~p!

3S̃N~p2k9!G̃N~k9,p!1
1

2
t i S 12

1

3
t3D E dk9M̃pp

1/2~k8,k9,P!S̃N~p2k9!G̃N~k9,p!

1
2

3
t it3E dk9M̃pp

1/2~k8,k9,P!S̃N~p2k9!G̃N~k9,p!, ~2.46!

where the first term is the contribution of the Born terms from diagrams 1~a!–1~d!, the next two terms are the final state
interactions generated by these Born terms, and the last term is the contribution from diagrams 1~e! and 2~e!. To obtain the last
term in the form given above, we followed steps similar to those leading to Eq.~2.45!, eliminating the isospin 1/2 interaction
currents associated with the diagrams 1~e3! and 2~e2! using a generalization of the constraint~2.42!,

qm j̃ IB
m ~q,P!52G̃B0~k91q,P!1G̃B0~k9,P!, ~2.47!

whereB5$N,D13% ~the Roper resonance has no interaction current because, by construction, its coupling is independen
pion momentum!. In Sec. IV we will show that these constraints are satisfied.

Adding the last two terms in Eq.~2.46! and replacingM̃ by its integral equationM̃→Ṽ2*M̃ S̃Ṽ allows us to rewrite Eq.
~2.46! in the following form:

qm~J 1/2
im !~a!–~e!52t itpE dk9@Ṽc

1/2~p!2Ṽpp
1/2~k8,k9,P!#S̃N~p2k9!G̃N~k9,p!1t itpE dkM̃pp

1/2~k8,k,P!

3S̃N~P2k!E dk9@Ṽc
1/2~p!2Ṽpp

1/2~k,k9,P!#S̃N~p2k9!G̃N~k9,p!. ~2.48!
r

e
e

s

t

the

is

er
Next, we recall from Eq.~2.44! that Ṽpp is the sum of a
connected part and a resonance part. The contributions f
the resonance part to Eq.~2.48! involves the integrals

I B5E dk9G̃B0~k9,P!S̃N~p2k9!G̃N~k9,p!, ~2.49!

whereB5$N,N* ,D%. However, for different reasons, thes
integrals ~2.49! are all zero. The integral describing th
N→D13 transition is zero because the nucleon andD13 are
orthogonal in our model, and the transition to the Roper re
nance is zero because the physical nucleon is defined by
condition that it be orthogonal to the Roper resonance at
om

o-
the
he

nucleon pole~see the discussion in Ref.@9#!. Finally, using
the fact theG̃N0(k9,P) does not depend onP, the N→N
contribution can be written

I N5E dk9G̃N0~k9,p!S̃N~p2k9!G̃N~k9,p!. ~2.50!

This is just is the value of the nucleon self-energy at
nucleon pole, and, as discussed in Ref.@9#, we adjust the
parameters of thepN driving terms so as to ensure that th
quantity is zero. This constraint, which we call thestability
condition, is an approximate way to include higher ord
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interactions and ensures that the model is stable under sm
changes in the physical input. Because of these conditio
Eq. ~2.48! reduces to

qm~J 1/2
im !~a!–~e!52t itpE dk9@Ṽc

1/2~p!2Ṽc
1/2~P!#

3S̃N~p2k9!G̃N~k9,p!

1t itpE dkM̃pp
1/2~k8,k,P!

3S̃N~P2k!E dk9@Ṽc
1/2~p!2Ṽc

1/2~P!#

3S̃N~p2k9!G̃N~k9,p!. ~2.51!

This term is canceled by the second type of interactio
current, illustrated in Figs. 1~f! and 2~f!. This interaction cur-
rent contributes the following terms to the amplitude:

~J 1/2
im !1~ f!12~ f!52t itpi E dk9J̃C 1/2

m ~q,P!

3S̃N~p2k9!G̃N~k9,p!

1t itpi E dkM̃pp
1/2~k8,k,P!

3S̃N~P2k!E dk9J̃C 1/2
m ~q,P!

3S̃N~p2k9!G̃N~k9,p!, ~2.52!

where the first term is the Born term shown in Fig. 1~f!, the
second is the final state interaction shown in Fig. 2~f!, and
the currentJ̃C 1/2

m is defined as in Eq.~2.15!. Later we will
show that this term satisfies the constraint

2 iqmJ̃C 1/2
m ~q,P!5Ṽc

1/2~P2q!2Ṽc
1/2~P!, ~2.53!

which is precisely what is needed to cancel the contributio
from Eq. ~2.51!. Hence, the gauge invariance of theI51/2
channels has been proved.

We have proved that our theory involving the driving
terms shown in Fig. 1 and the final statepN interactions
shown in Fig. 2 is gauge invariant provided~i! the interaction
currents satisfy the constraints~2.42!, ~2.47!, and~2.53!, ~ii !
thegNN* , gND, gND13, rpg, andvpg couplings are all
explicitly gauge invariant, and~iii ! the reduced one-body
currents satisfy the WT identities~2.23! and ~2.24!. These
results will be demonstrated in the following sections.

We turn now to a detailed description of the modifie
pN scattering model.

III. PION-NUCLEON SCATTERING

In this section we describe the modifications to ourpN
scattering model previously published@9#. These modifica-
tions were made in order to~i! improve the threshold behav-
ior ~scattering lengths!, ~ii ! more faithfully approximate the
physics of theppN channels which account for the inelas
ticity, ~iii ! reduce the complexity of thepg interaction cur-
rents by minimizing the energy dependence of thepN inter-
all
s,

n

s

action kernel which generates these interaction currents,~iv!
remove the pole in the spin 3/2 propagator which occurrs
P250, and ~v! introduce a form factor that eliminates al
contributions from the spacelike (P2,0) cut arising from
the factorAP2. While theP2,0 region is very far from the
physical region@P2.(m1m)2# and plays no role in physical
pN scattering, it does contribute when thepN-nucleon in-
teraction is imbedded in thepNN system, and we therefore
decided to eliminate it now. Our discussion here will focu
only on the changes being made in the original model; for
complete discussion the reader is referred to Ref.@9#.

A. Relativistic contact terms

As in the original model, the relativistic contact term
come from the crossed nucleon pole~or nucleon exchange
term!, the effectiver- ands-type terms required by chiral
symmetry, and an additionalr exchange term unconstrained
by chiral symmetry.

The reducedcrossed nucleon pole diagram~expressed as
a function of the pion momenta instead of the nucleon m
menta, as was done in Ref.@9#! is

Ṽc,N~k8,k,P!5Cg2t it j f N
2 ~u!S l221

2m
1F 1

m22u

2
~12l!2

4m2 GQ” D , ~3.1!

whereQ” 5 1/2 (k” 81k” ) andu5(P2k8)2. The simplest way
to approximate the energy dependence implicit inQ” is to
replace it by its value when all of the external particles are
mass shell, which is

Q” 5P” 2m. ~3.2!

We will use this approximation for the last term in Eq.~3.1!,
whereQ” is multiplied by a constant, but this approximation
when used with the pole term 1/(u2m2), gives a very inac-
curate result when extrapolated to the nucleon pole
W5m @where, in the rest frame,P5(W,0)#. In order to have
a better extrapolation toW5m, which is very important for
the calculation of the stability condition, and also to get th
right threshold behavior, we approximate the pole term@the
second term in Eq.~3.1!# as follows:

Q”

m22u
.

P”

AP2~2m2m!
. ~3.3!

This approximation is simpler than the one originally used
Ref. @9#. It is covariant, and the unwanted cut at spacelik
values ofP2, which can be reached when thepN amplitude
is embedded inNN scattering, can be eliminated by the
nucleon form factor, Eq.~1.11!. With these approximations,
the contact term generated by the crossed nucleon pole i
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Ṽc,N~k8,k,P!5Cg2t it j f 0
2S l221

2m
1

P”

AP2~2m2m!

2
~12l!2

4m2 ~P” 2m!D , ~3.4!

wheref 05 f @(m2m)2# is the value of the nucleon form fac
tor for the intermediate nucleon evaluated at thepN thresh-
old.

Putting the pions on shell, the exact crossed pole diag
~3.1! and the approximate expression~3.4! can be compared
below the physicalpN threshold. In this region, the approx
mation~3.4! agrees well with the exact crossed diagram~3.1!
when it is averaged over the pion three-momentum~such as
would occur whenVc is used as a kernel!; it gives only a 7%
error when iterated once. The approximation is also clos
the exact crossed diagram above threshold; atW51550 MeV
it disagrees with the exact result by only 15%.

The crossed diagrams for the baryon resonan
(N* ,D,D13) are also approximated in the same way as
crossed nucleon diagram. In this approximation theD and
D13 crossed diagrams are zero, and the Roper crossed
gram becomes

Ṽc,N* ~k8,k,P!5gN*
2 t it jF m*22m1P”

m* 22~m2m!2G . ~3.5!

With the approximation~3.2! for Q” , the r- and s-like
contact terms are

Ṽc,sr~k8,k,P!52C
g2

m
f 0
2Fd i jl21@t j ,t i #~12l!2

P” 2m

4m G ,
~3.6!

and the freer exchange term is

Ṽc,r
pp~k8,k,P!52Cr

g2

4m2 f 0
2@t j ,t i #~P” 2m!, ~3.7!

where, as in Ref.@9#, the constantC is fixed by the condition
Cf0

25 f N
2 @(m1m)2# andCr is a free parameter related to th

strength of ther exchange pole.
Note that all of these contact terms depend only on

total four-momentumP, and that the sum of these contrib
tions has the simple form

Ṽc~P!5A1A0

P”

AP2
1BP” , ~3.8!

whereA, A0 , andB are constants. This result will be impo
tant in the construction of interaction currents in the n
section.

B. D and D13 vertices

The Feynman rules for the reducedpND and pND13
vertices used in our modified model are

Tj G̃D0
m ~k8,P!5Tj S gD

m D kn8Q
nm~P! ~3.9!
am

-

to

es
he

dia-

e

he
-

-
xt

and

t j G̃D0
m ~k8,P!5 i t j S gDm D kn8Q

nm~P!g5 , ~3.10!

wherek8 is the momentum of the outgoing pion~we use a
different sign convention from that used in@9#!, j is its isos-
pin, P is the momentum of the incoming baryon,Tj is the
isospin 3/2→1/2 transition operator, andQmn(P) is the co-
variant spin 3/2 projection operator:

Qmn~P!52gmn1
1

3
gmgn1

1

3 S P” gmPn1PmgnP”

P2 D .
~3.11!

Note that the form factors of the nucleon and baryon hav
both been removed from~3.9! and~3.10! because these ver-
tices arereduced, and that theG ’s do not contain the isospin
operators. As discussed above~Sec. I G! the pole atP250
which appears inQmn(P) is removed by the~new! form
factors~contained in the baryon propagators connected to th
baryon vertices! which are zero atP250.

C. Inelastic channels

The inelasticity in theP11 andD13 channels is due to the
opening of theppN channel. In our new model we assume
that these two pions are bound together as a scalar partic
s* . The mass of this particle is taken to be the same as th
mass of two pions, 278 MeV. The reduced vertex for the
N*→s*1N transition is

G̃N*
8 ~k,P!52 i S g1N*8 1g

2N*
8

k”

2mD , ~3.12!

and for theD→s*1N transition is

G̃D8
m~k,P!52

1

m S g1D8 1g
2D
8

k”

2mD knQnm~P!, ~3.13!

wherek andP are the momenta of the outgoings* and the
incoming baryon resonance, respectively. We were able to
the data quite well without including the second term in the
D13 andN* coupling ~i.e., g

2D
8 5g

2N*
8 50).

We now turn to a discussion of pion photoproduction.

IV. PION PHOTOPRODUCTION

This last section is divided into four subsections. In the
first we write down all of the couplings which describe the
direct electromagnetic production of the Roper,D, andD13
resonances from the nucleon. These expressions contain
precise definitions of the resonance photoproduction param
eters given in Table II, and are individually gauge invariant
which justifies neglecting them in the discussion given in
Sec. II. Next, we construct off-shell current operators for th
single nucleon and single pion which are consistent with th
WT identities, Eqs.~2.23! and ~2.24!. These current opera-
tors are modified by the presence of the nucleon and pio
form factors. In the third subsection we construct the inter
action currents implied by the momentum dependence of th
electromagnetic couplings and the contact interactionṼc
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@given in Eq.~3.8!#. To obtain these interaction currents, w
use minimal substitution, and then demonstrate that they
isfy the necessary constraints obtained in Sec. II. Finally,
assemble the pieces and construct the actual pion photo
duction driving terms which fully define the model.

A. Electromagnetic couplings

In this subsection we define the electromagnetic transi
currents for the baryon resonancesgNB. We have removed
an overall factor ofe from each current.

1. Delta current

According to Jones and Scadron@42# thegND transition
current can be written in terms of a standard ‘‘normal p
ity’’ set of invariantsO i

nmg5 . For real photons this gives

j D
nm~P,p!52T3@G1O 1

nm1G2O 2
nm#g5 , ~4.1!

where T3 is the third component of the isospin 1/2→3/2
transition operator, and the current conserving spin inv
ants are

O 1
nm5~q”gnm2qngm!,

O 2
nm5~qnP8m2q•P8gnm!. ~4.2!

Hereq is the photon momentum,m is its polarization index,
n is the polarization index of the outgoingD, and P85 1

2

(p1P), where p and P are the four-momentum of th
nucleon andD, respectively. TheG1 andG2 couplings are
often written in terms of the magnetic couplingGM and the
electric couplingGE :

GM5
m

3 F ~3M1m!
G1

M
1~M2m!G2G ,

GE5
m

3
~M2m!FG1

M
1G2G , ~4.3!

whereM is theD mass.
Benmerroucheet al. @40# obtain ND transition currents

from the following two contributions to the Lagrangian:

LgND
1 5 i

eg1
2m

T3C̄nSnl~Y!gmg5cFml1H.c.,

LgND
2 52

eg2
4m2T3C̄nSnl~X!g5]

mcFlm1H.c., ~4.4!

wherec andCm are the nucleon and delta fields, respe
tively, and

Smn~X!5gmn1F12 ~114X!A1XGgmgn , ~4.5!

whereA andX are parameters. The interaction derived fro
Eq. ~4.4! using thegmn term in Smn(X) ~and removing the
factor ofe) gives Eq.~4.1! with
e
sat-
we
pro-

ion

r-

ri-

c-

m

G15
g1
2m

,

G25
g2
4m2 . ~4.6!

The couplings of Refs.@40# and @42# therefore differ by an
extra term which depends onX, and which can be shown to
vanish at theD pole.

In order to be consistent with our pion-nucleon model, w
introduce a newgND current which has almost the sam
form as the current derived from the Lagrangian~4.4!. The
full current j D

nm(P,p) is related to a reduced current

j̃ D
nm(P,p) by

j D
nm~P,p!5 f N~p2! f D~P2! j̃ D

nm~P,p!, ~4.7!

wheref N and fD are the nucleon andD form factors, and the
reduced current is

j̃ D
nm~P,p!5T3

Qn
l~P!

f D
2 ~P2!

S P2

m
D

2D 2Fg1D

2m
O 1

lm1
g
2D

4m2O 2
lmGg5 .

~4.8!

Note that the reduced transition current~4.8! has been di-
vided by the square of theD form factor, canceling theD
form factors contained in the dampedD propagator to which
this current is connected. This cancellation is identical to o
which occurs naturally in the pion Born term~as discussed in
Sec. IV B 2 below!, and hence is consistent with the trea
ment of other electromagnetic currents. It also improved o
ability to fit the E11 andM11 amplitudes. The (P2/m

D

2)2

factor in the reduced current is introduced to eliminate t
pole inQm

l(P) and to improve the fit. All of these factors
can be incorporated without spoiling gauge invariance b
cause thegND transition current is separately gauge invar
ant.

Because of the properties of the spin 3/2 projection ope
tor, our coupling~4.8!, the coupling derived from Eq.~4.4!,
and the coupling~4.1! give the same scattering amplitude.

2. Roper current

The reducedgNN* transition current is

j̃ N*
m

~P,p!5tp
1

f N*
2

~P2!
S g1N* Fgm2

~P1p!mq”

P22p2

12N*
ismnqn

2m D , ~4.9!

where q, p, and P are the momenta of the photon, th
nucleon, and the Roper resonance, respectively, andg

1N*
and

g
2N*

are the strengths of the two independent couplings. W

divide the Roper current byf N*
2 in order to be consistent

with the delta. Note that
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qm j̃ N*
m

~P,p!50, ~4.10!

showing that all diagrams containing the Roper transitio
current are individually gauge invariant.

3. D13 current

Like theD, theD13 also has two independent couplings
The reducedD13 current is similar to theD current except it
has an opposite parity and isospin 1/2. The current is

j̃ D
nm~P,p!52 i t3

Qn
l~P!

f D
2 ~P2!

S P2

m
D

2 D 2Fg1D2m
O 1

lm1
g
2D

4m2O 2
lmG .
~4.11!

In order to be consistent with the treatment of theD de-
scribed above, we have also divided this current by t
square of the form factor of theD13, and multiplied by a
factor of (P2/m

D

2)2 to eliminate the pole in the spin 3/2 pro

jection operatorQm
l(P).

We now turn to a discussion of the construction of th
off-shell current operators for the nucleon and the pion.

B. Off-shell electromagnetic currents

As discussed in Sec. II, the reduced current operat
must satisfy the WT identities, Eqs.~2.23! and~2.24!. These
involve dampedpropagators, instead of bare propagator
and as a result the current operators will have a differe
structure from those usually encountered.

1. Nucleon current

A complete description of the general reduced off-she
nucleon current requires 12 invariant functions:

j̃ N0
m ~p8,p!5F1g

m1F2

ismnqn

2m
1F3q

m1L2~p8!

3FF4g
m1F5

ismnqn

2m
1F6q

mG
1FF7g

m1F8

ismnqn

2m
1F9q

mGL2~p!

1L2~p8!FF10g
m1F11

ismnqn

2m

1F12q
mGL2~p!, ~4.12!

where the negative energy projection operator is

L2~p!5
m2p”

2m
. ~4.13!

This current operator must satisfy the Ward-Takahashi ide
tity ~2.23!,

qm j̃ N0
m ~p8,p!5S̃N

21~p!2S̃N
21~p8!5

m2p”

f N
2 ~p2!

2
m2p” 8

f N
2 ~p82!

,

~4.14!
n

.

e

e

rs

s,
nt

ll

n-

where f N(p
2) is the nucleon form factor. Writing out both

sides of this equation gives

F1q”1F3q
21L2~p8!@F10q”1F12q

2#L2~p!1L2~p8!

3@F4q”1F6q
2#1@F7q”1F9q

2#L2~p!

5
2m

fN
2 ~p2!

L2~p!2
2m

fN
2 ~p82!

L2~p8!. ~4.15!

Equating the coefficients of the four independent Dirac m
trices on each side of this equation gives four relations b
tween the invariant functions which permits us to elimina
F3 , F6 , F9 , andF12:

F35F7Sm22p2

2mq2 D2F4Sm22p82

2mq2 D ,
F125

2m

q2
~F72F4!,

F652
2m

q2f 82
1F10Sm22p2

2mq2 D1
2m

q2
~F11F4!,

F95
2m

q2f 2
2F10Sm22p82

2mq2 D2
2m

q2
~F11F7!, ~4.16!

where f5 f N(p
2) and f 85 f N(p82). Substituting these con-

straints into Eq.~4.12! gives the following general result:

j̃ N0
m ~p8,p!5F0g

m1~F12F0!g̃
m1F2

ismnqn

2m

1L2~p8!FF4g̃
m1F5

ismnqn

2m G
1FF7g̃

m1F8

ismnqn

2m GL2~p!

1L2~p8!FG0g
m1~F102G0!g̃

m

1F11

ismnqn

2m GL2~p!, ~4.17!

whereg̃m5gm2qmq”q” 2,

F05
1

f 82
m22p82

p22p82
1

1

f 2
m22p2

p822p2
,

G05S 1

f 82
2

1

f 2D 4m2

p822p2
, ~4.18!

and, to eliminate kinematic singularities, we require th
F12F05F102G05F45F750 at the photon pointq250.
Hence, for real photons the terms proportional tog̃m vanish,
and we obtain the most general form for the current opera
of a real photon:
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j̃ N0
m ~p8,p!5F0g

m1F2

ismnqn

2m
1L2~p8!F5

ismnqn

2m

1F8

ismnqn

2m
L2~p!

1L2~p8!FG01F11

ismnqn

2m GL2~p!.

~4.19!

For simplicity, in this calculation we takeF55F850 and
F25F0kN , F115G0kN , wherekN is the magnetic momen
of the nucleon. If the initial nucleon is on shell, this gives

j̃ N0
m ~p8,p!5

1

f N
2 ~p82!

S gm1kN

ismnqn

2m D . ~4.20!

Note the presence of the factor of 1/f N
2 (p82), which supports

our decision to divide by the resonance form factor in t
definitions of the transition currents~4.8!, ~4.9!, and~4.11!.

2. Pion current

Following Gross and Riska@36#, a simple off-shell cur-
rent operator which satisfies the WT identity~2.24! is

j̃ p0
m ~k8,k!5~k1k8!mF11

P~k82!2P~k2!

k822k2 G , ~4.21!

wherek andk8 are the momenta of the incoming and outg
ing pion,

P~k2!5F 1

f p
2 ~k2!

21G~k22m2!, ~4.22!

and f p(k
2) is the pion form factor. If the outgoing pion is o

shell, as occurs in the Born diagram, Fig. 1~c!, the reduced
current reduces to

j̃ p0
m ~k8,k!5

1

f p
2 ~k2!

~k1k8!m. ~4.23!

When this current is used in the Born diagram, Fig. 1~c!, the
factor of 1/f p

2 (k2) is canceled by the pion form factors in th
damped pion propagator, Eq.~2.26!.

C. Interaction currents

In this subsection we derive the exact forms of the int
action currents introduced in Sec. II and shown in Figs. 1~d!,
1~e3!, 1~f!, 2~e2!, and 2~f!.

1. Five-point current

We begin with a discussion of the five-point curre

J̃ C1/2
m (q,P) shown in Fig. 1~f!. The discussion of gauge in

variance in Sec. II showed us that the origin of this curren
the dependence of thepN contact interaction, Eq.~3.8!, on
the total pion-nucleon momentumP in the channel which
couples to the proton, where the isospin is 1/2 and the char
is e. Hence, to obtain this current we need only consider
effect of the replacement of the four-momentumP by
e

-

e

r-

t

is

e
he

P2eA ~minimal substitution! in the I51/2 part of the con-
tact interaction~3.8!. Such a replacement generates an el
tromagnetic interaction of the form

2 ieJ̃C1/2
m ~q,P!Am52eB1/2gmAm , ~4.24!

and hence the current is simply

2 i J̃C1/2
m ~q,P!52B1/2gm. ~4.25!

Note that this current satisfies the constraint

2 iqmJ̃C 1/2
m ~q,P!52B1/2q”52B1/2@P” 2~P” 2q” !#

5Ṽc
1/2~P2q!2Ṽc

1/2~P!. ~4.26!

In this case the interaction was linearly dependent on m
mentum and the interaction current was easily obtained
rectly. In the general case of an interaction with a nonlin
momentum dependence the interaction current can be
tained following procedures suggested by Ohta@33#, and
worked out for several illustrative cases in Ref.@43#.

2. Four-point currents

The four-point currentsJ̃IB
m (q,P) shown in Figs. 1~d! and

1~e3! appear because of the dependence of thepNN,
pND, andpND13 vertices on the momentum of the pion
ThepNN* vertex does not depend on the pion moment
and therefore does not contribute a four-point current. Th
currents can all be obtained by minimal substitution.

We begin the discussion with thepNN vertex, which
produces the familiar Kroll-Ruderman interaction curre
term. The reducedpNN vertex was given in Eq.~2.17!.
Minimal substitution requires that we replace the pion m
mentumk8 by k82heA, whereh561 or 0, depending on
the charge of the pion. Recalling that the operator for
outgoingp6 is t7 , the factor of2he becomes

tx5
1
2 ~t11t2!→ 1

2 ~et12et2!5 iety ,

ty52
1

2
i ~t12t2!→2 1

2 i ~et11et2!52 ietx ,

tz→0. ~4.27!

This substitution is summarized byt i→ iee i j 3t j , giving

J̃ IN
im~q!5 i e i j 3t j

~12l!gm

2m
gg5 . ~4.28!

Note that the complete Kroll-Ruderman interaction curre
includes two terms. The first term, obtained above fro
minimal substitution, satisfies the inhomogenous constr
~2.30!, while the second term, not obtainable from minim
substitution, satisfiesqmJ̃IN

im(q)50. The full Kroll-Ruderman
current is given in Eq.~4.37! below.

Next, consider theconjugateof the reducedpND vertex
given in Eq.~3.9!. This vertex depends on both the incomin
pion momentumk @and hence has the opposite sign fro
~3.9!# and the delta momentumP, but the dependence on th
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delta momentum generates no interaction current in the
frame of the delta and, hence, because of covariance, v
ishes in all frames. Thek dependence generates a substit
tion similar to that given in Eq.~4.27!, with all t i replaced by
2Ti

† . Hence, according our conventions, thegpN→D four-
point current is

2 ieJ̃ID
inm5 i ~ iee i j 3Tj

†!S gD

m DQnm~P!52 ie~2 i e i j 3Tj
†! j̃ ID

m ,

~4.29!

where j̃ ID
m was introduced in Sec. II, Eq.~2.37!. Hence

J̃ ID
m 5S gD

m DQnm~P!, ~4.30!

and satisfies the constraint~2.42!,

qmJ̃ID0
nm ~q,P!5S gD

m DqmQnm~P!

5S gD

m D @Qnm~P!~k1q!m2Qnm~P!km#

5G̃D0~k,P!2G̃D0~k1q,P!, ~4.31!

as required for the proof of gauge invariance.
The four-point current generated from thepND13 vertex

can be obtained by the same manner. For theD13 current we
have,

2 ieJ̃ID
nm52~ iee i j 3t j !S gDm Dg5Q

nm~P!52 ie~2 i e i j 3t j ! j̃ ID
m .

~4.32!

ence theD13 four-point current

j̃ ID
m 5 i S gDm Dg5Q

nm~P! ~4.33!
rest
an-
u-

satisfies the constraint~2.47!, as required for gauge invari-
ance.

D. Driving terms

Using the electromagnetic currents described in the prev
ous sections, this subsection gives explicit expressions for
of the driving terms shown in Fig. 1. For convenience, th
direct and crossed nucleon pole contributions@Figs. 1~a! and
1~b!#, the Kroll-Ruderman term@Fig. 1~d!#, the nucleon pole
contribution to Fig. 1~e3!, and the five-point current@Fig.
1~f!# will be referred to as ‘‘nucleon’’ contributions. The
meson exchange diagrams@Fig. 1~c!# and all of the loop
contributions from off-shell pions@Figs. 1~e1! and 1~e2!#
will be referred to as ‘‘meson’’ contributions. The resonanc
contributions to Figs. 1~a!, 1~b!, and 1~e3! will be discussed
separately.

1. Nucleon

The direct nucleon pole diagram@Fig. 1~a!# is

~ J̃N
im!1~a!~k8,q,P!5gt iFl2

~12l!k” 8

2m Gg5S 1

m2P” D
3S gmtp2

1

4m
@gmq”2q”gm#k

ND ,
~4.34!

wherem is the photon polarization vector index,q andk8 are
the photon and pion momenta, respectively,i is the isospin

of the outgoing pion, andk
N
5 1

2 @kp1kn1(kp2kn)t3# is
the nucleon anomalous magnetic moment.

Note that thepNN form factor does not appear in the
direct pole diagram~4.34!, because when one of the nucleon
in the gNN vertex is on shell, the reduced current become
Eq. ~4.20!, and the factor of 1/f N

2 (P2) in this equation can-
cels the form factors contained in the damped nucleon prop
gator, Eq.~2.25!. Note also that the conjugate of the driving
term ~4.34! satisfies the relation
~ J̃N
im!1~a!~k8,q,P!5g0gS gm†tp2

1

4m
@q” †gm†2gm†q” †#k

ND S 1

m2P” †Dg5Fl2
~12l!k” 8†

2m Gt ig0

52gS gmtp2
1

4m
@q”gm2gmq” #k

ND S 1

m2P” Dg5Fl2
~12l!k” 8

2m Gt i
52gS gmtp1

1

4m
@gmq”2q”gm#k

ND S 1

m2P” D Fl1
~12l!k” 8

2m Gg5t i

52~ J̃N
im!1~a!~q,k8,P!. ~4.35!
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Recalling the connection~2.15! between the current and
the kernel, this relation leads to Eq.~2.9!, the condition
needed to give the correct unitarity relation.

Since the final nucleon can be off shell, the cross
nucleon pole diagram@Fig. 1~b!# is

~ J̃N
im!1~b!~k8,q,P!5@F0 j̃ N

m~p8,Q!

1G0L2~p8! j̃ N
m~p8,Q!L2~Q!#

3S f N2 ~Q2!

m2Q” D G̃N~k8,p!t i ~4.36!

where

j̃ N
m~p8,Q!5gmtp2

1

4m
~gmq”2q”gm!k

N

is the full reduced nucleon current,F0 andG0 are functions
of p82 andQ2 defined in Eqs.~4.18! and~4.19!, G̃N(k8,p) is
the reduced, dressedpNN vertex function, which satisfies
Eq. ~2.18!, Q5p82q5p2k8 is the four-momentum of the
virtual intermediate nucleon, andP5p1q5p81k8 is the
total momentum. In this term thepNN form factor is not
canceled, because both nucleons in thegNN vertex are off
shell.

As discussed above, the Kroll-Ruderman term, Fig. 1~d!,
has two parts. The first part, given in Eq.~4.28!, is obtained
from the momentum dependence of thepNN coupling using
minimal substitution, and the second part is needed to en
that the low energy theorem@25# is independent of the mix-
ing parameterl. The complete Kroll-Ruderman term i
therefore

~ J̃N
im!1~d!5gF i e i j 3t j ~12l!gm

2m
1

l

8m
@gmq”2q”gm#~k

N
t j

1t jkN
!Gg5 . ~4.37!

Note that the second term is separately gauge invariant,
therefore did not enter into the proof of gauge invarian
presented in Sec. II.

The additional interaction current driving terms are o
tained from the interaction currents worked out above. T
nucleon contribution to the diagram shown in Fig. 1~e3! is
obtained from Eq.~4.28!:

~ J̃N
im!1~e3!~k8,q,P!52t it3

g

m
G̃N0~p8,P!S̃N~P!~12l!gmg5

3E d3k9

~2p!32vk9

f N
2 @~p2k9!2#

~m2p”1k” 9!

3G̃N~k9,p!. ~4.38!

The contribution from the five-point contact curre
shown in Fig. 1~f! is obtained directly from the five-poin
current, Eq.~4.25!,
d

ure

nd
e

-
e

t

~ J̃N
im!1~ f!,

1
2
~q,P!52t itpB

1/2gm

3E d3k9

~2p!32vk9

f N
2 @~p2k9!2#

~m2p”1k” 9!
G̃N~k9,p!.

~4.39!

Note that this current contributes only to the isospin 1
channel.

2. Mesons

The pion pole contribution to the meson exchange di
gram, Fig. 1~c!, is

~ J̃p
im!1~c!~k8,q,P!52 i e i j 3t j

~k81k!m

m22k2
G̃N~k,p!,

~4.40!

wherek5p2p85k82q is the four-momentum of the off-
shell pion. The vertex functionG̃N(k,p) describes the cou-
pling to anoff-shellpion, which, because pions are on she
in our propagators, does not appear as an elementary am
tude in our model. However, as discussed in Sec. II, t
simple structure of the model permits us to obtain the r
duced off-shell vertex function from the reduced on-she
one by simply using the correct off-shell pion four
momentum. Furthermore, the square of any pion form fac
which might be associated with the damped propagator
the pion would be canceled by the factor of 1/fp

2 (k2) in the
off shell current@recall Eq. ~4.23!#, and so no such form
factor appears in the pion exchange diagram~4.40!.

Contributions from off-shell pions also appear in the dia
grams shown in Figs. 1~e1! and 1~e2!. Together, these dia-
grams contribute

~ J̃im!1~e1!11~e2!~k8,q,P!5 i e j l 3E d3k9

~2p!32vk9

3Ṽpp
i j ~k8,k91q,P!t l

3
~2k91q!m

m22~k91q!2
f N
2 @~p2k9!2#

m2p”1k” 9

3G̃N~k9,p!, ~4.41!

where Ṽpp
i j (k8,k91q,P) is the reducedpN driving term,

including all resonance contributions, for scattering of a
incoming pion with isospinj to an outgoing pion with isos-
pin i . Again, just as in the pion pole term~4.40!, the pion
form factor will cancel, showing that no pion form facto
appears anywhere in the final result.

The meson driving terms also include additional contrib
tions to Fig. 1~c! coming fromv and r exchange. Thev
exchange diagram is
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~ J̃v
im!1~c!~k8,q,P!5 id i3

f vNNgvpg

m@mv
22~k82q!2#

emnlrqnkl8

3Fgr1
kv

2m
isrh~k82q!hG

5 id i3
f vNNgvpg

m S 11
kv

2m
~k” 82q” ! D

3
qnkl8emnlrgr

mv
22~k82q!2

, ~4.42!

wheree012351. Using the identity

emnlrgr5
ig5

6
@gmgngl1gnglgm1glgmgn2glgngm

2gngmgl2gmglgn#, ~4.43!

thev exchange diagram reduces to

~ J̃v
im!1~c!~k8,q,P!5d i3

f vNNgvpg

m S 11
kv

2m
~k” 82q” ! D

3g5

k” 8q”gm2k.qgm1k8mq”

mv
22~k2q!2

, ~4.44!

where q”q”5q250, and because the current is transver
gmq”52q”gm.

The r exchange diagram has the same structure as
v exchange diagram, except ther is isovector. Hence

~ J̃r
im!1~c!~k8,q,P!5t3

f rNNgrpg

m S 11
kr

2m
~k” 82q” ! D

3g5

k” 8q”gm2k.qgm1k8mq”

mr
22~k2q!2

.

~4.45!

3. Roper resonance

The Roper resonance has the same spin-isospin stru
as a nucleon, and therefore the direct and crossed Roper
diagrams have the same structure as the nucleon pole
grams. They are constructed from thegNN* transition cur-
rent, Eq.~4.9!. The direct Roper pole diagram@Fig. 1~a!# is

~ J̃N*
im

!1~a!~k8,q,P!5g
N*

t ig5S 1

m*2P”
D S g

1N*
g̃m~P!

2
g
2N*

4m
@gmqX2q”gm# D tp , ~4.46!

where

g̃ m~P!5gm2
Pmq”

P•q
. ~4.47!
e,

the

ture
pole
dia-

Letting Q5P2k82q5p2k8, the crossed pole diagram
@Fig. 1~b!# is

~ J̃N*
im

!1~b!~k8,q,P!5g
N*

tpt i S g1N* g̃m~Q!

2
g
2N*

4m
@gmq”2q”gm# D 1

m*2Q”
g5 .

~4.48!

Note that theN* form factor in the current~4.9! is canceled
by the form factors in the dampedN* propagator, as we have
seen in several previous cases.

4. Delta

In parallel with the approximations made in thepN cal-
culation, the crossedD pole contribution to Fig. 1~b! is taken
to be zero. This approximation almost decouples the spin 3
channel from the spin 1/2 channel, allowing us to fit thes
different channels independently.

The directD pole contribution to Fig. 1~a! is obtained
from thegND transition current, Eq.~4.8!,

~ J̃D
im!1~a!~k8,q,P!5TiT3S gD

m
D kn8Q

n
l~P!

~P2/m
D

2!2

mD2P”
Fg1D

2m
O 1

lm

1
g
2D

4m2O 2
lmGg5 , ~4.49!

whereQnl is the spin 3/2 projection operator, and~4.49! has
been simplified by usingQnlQl

m52Qnm . Note that the
D form factor in the current cancels a similar form factor in
the dampedD propagator, as we have seen several tim
before.

The delta contribution to the four-point function in Fig.
1~e3! is constructed from thegpN→D four-point current
~4.29!:

~ J̃D
im!1~e3!~k8,q,P!52 i e j l 3TiTj

†t l S gD

m D 2 f D
2 ~P2!

mD2P”
kl8

3Qlm~P!E d3k9

~2p!32vk9

f N
2 ~p2k9!

~m2P” 1k” 9!

3G̃N~k9,p!. ~4.50!

Recalling that the isospin transition operators satisfy E
~2.38!, and using Eq.~2.36!, the isospin factor in~4.50! re-
duces to

2 i e j l 3TiTj
†t l 52 iI 3/2

i j e j l 3t l

52I 3/2
i j @I 3/2

j3 22I 1/2
j3 #52I 3/2

i3 .

~4.51!



t

l

i

e

ith
he

us
ot

-

re
s
he

-
gies

an
pin

53 2445UNITARY, GAUGE INVARIANT, RELATIVISTIC RESONANCE . . .
5. D13

The D13 resonance contributions to diagrams 1~a! and
1~e3! are almost identical to those for theD, except for a
different isospin factor and some sign changes due to
opposite parity of theD13.

The directD13 pole contribution@Fig. 1~a!# is

~ J̃D
im!1~a!~k8,q,P!52t it3S gDm D kn8Q

n
l~P!

~P2/m
D

2 !2

mD1P”

3Fg1D
2m

O 1
lm2

g
2D

4m2O 2
lmGg5 . ~4.52!

TheD13 contribution to the four-point current@Fig. 1~e3!# is

~ J̃D
im!1~e3!~k8,q,P!522t it3S gDm D 2 f D2 ~P2!

mD1P”
kl8Qlm~P!

3E d3k9

~2p!32vk9

f N
2 ~p2k9!

~m2P” 1k” 9!
G̃N~k9,p!.

~4.53!

6. Inelasticity

As discussed in Sec. III C, the inelasticity of theN* and
theD13 is described by a fictitiouss*N channel, where the
s* is a scalar meson with the mass of two pions, and
couplings of theN* and theD13 to this channel are given in
Sec. III C. For simplicity, we assume that the photon do
not coupledirectly to the inelastic channel, but it can coup
indirectly through the processg1N→$N* ,D13%→s*1N,
which takes placewithout going through an intermediate
pN channel. These processes, which are not generated
the final statepN interactions, have been included in ou
model by adding them to the direct resonance pole driv
terms in Fig. 1~a!.

To accomplish this, the bare resonance propagators
the N* and D13 are replaced by the inelastically dress
propagators

GN* ~P!5
2 i

mN*2P” 1SN*
inel ,

GD
mn~P!5

2 iQmn~P!

mD2P” 1SD
inel , ~4.54!

whereSN*
inel andSD

inel the self-energies of the Roper andD13

resonancesdue to inelastic contributions only. This replace-
ment ensures thatall of the inelastic processes excited by th
photon without passing through an intermediatepN state are
included in the calculation. The inelastic self-energies are
the

he

es
e

by
r
ng

for
d

e

Qab~P!SD
inel5S g1D8

m
D 2f D2 ~P2!E d3k

~2p!32ek
Qal~P!

3
klkr f N

2
„~P2k!2…

m2P” 1k”2 i e
Qrb~P!,

SN*
inel

52~g
1N*
8 !2f N*

2
~P2!E d3k

~2p!32ek

f N
2
„~P2k!2…

m2P” 1k”2 i e
,

~4.55!

where the intermediate four-momentumk5(ek ,k), and
ek5Am

s*
2 1k2.
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APPENDIX A: NOTATION AND ISOSPIN
DECOMPOSITION

In this paper we adopt conventions designed to allow
to work as frequently as possible with terms which do n
include a factor ofi or the electric chargee. Starting with the
Feynman rules~as found, for example, in Ref.@41#! we in-
troduce the following conventions:

~i! All one-body currents~i.e., three-point currents! and
propagators will bemultiplied by i.

~ii ! All hadronic vertex functions are left unchanged~i.e.,
nomultiplication by i ).

~iii ! All four- and five-point currents, which would nor
mally contain an overall factor ofi ~rule 0 of Ref.@41#! will
be multiplied by anadditional factor of i . If rule 0 is omit-
ted, this is equivalent to multiplying them by21.

~iv! The electric chargee.0 will be removed from all
currents.

Using these rules, all four- and five-point currents a
defined as in Eq.~2.15!, and the basic nucleon Born term i
real. Three-point currents are all real, except for t
g1N→D transition current, Eq.~4.8!, which now contains
an extra factor ofi .

The scatteringSmatrix for pion photoproduction is writ-
ten in the following form:

Spg
f i 512 i ~2p!4d4~k81p82q2p!

m

A4 qvkEpEp8

Mpg
f i ,

~A1!

where k85(vk ,k), q5(q,q), p5(Ep ,p), and
p85(Ep8,p8) are the four-momenta of the pion, photon, in
coming, and outgoing nucleon, respectively, and the ener
arevk5Am21k2, Ep5Am21p2, Ep85Am21p82, with m
andm the masses of the pion and nucleon.

Using the fact that the photon transforms as the sum of
isoscalar and the third component of an isovector, the isos
structure of theMpg matrix can be written

Mpg5Mpg
1 d i31Mpg

2 1
2 @t i ,t3#1Mpg

0 t i , ~A2!
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where t i and t3 are the Pauli spin matrices andi is the
isospin index of the pion. The isovector transition amplitud
Mpg

(1,2) may be expressed in terms of the amplitud
Mpg

(1/2,3/2) with isospin 1/2 and 3/2 in the final state:

Mpg
1/25Mpg

1 12Mpg
2 , Mpg

3/25Mpg
1 2Mpg

2 . ~A3!

The isoscalar amplitudeM0 always leads to a final state with
isospin 1/2. The amplitudes for photoproduction from a pr
ton are

~Mpg
1/2!proton5

1

3
~Mpg

1 12Mpg
2 13Mpg

0 !,

~Mpg
3/2!proton5Mpg

1 2Mpg
2 . ~A4!

Each of these isospin scattering matrices may be
pressed in terms of the operatorsO6

i ,

M5 (
i51,2

O1
i M i11O2

i M i2 , ~A5!

where

O6
1 5

1

2
~16g0!e”g5,

O6
2 5

1

2
~16g0!2 k•eg5 , ~A6!

where, for an incoming photon traveling in the1 ẑ direction,
the photon polarization vectore is

elg
5

1

A2
~2lgx̂2 i ŷ!, ~A7!

wherelg561 is the photon helicity.

APPENDIX B: MULTIPOLE AMPLITUDES

Denote the incoming and outgoing nucleon helicities b
lN andlN8, respectively, and specialize the scattering to t
xz plane~so thatf50). Following Jacob and Wick@44#, the
angular momentum decomposition of the helicity amplitud
Ml8l(u) is given by

Ml8l~u!5
1

4p(
j

~2 j11!Ml8l
j dl,l8

j
~u!, ~B1!

wherel5lg2lN andl852lN8 . Using the orthogonality
of thed functions, the partial wave amplitudes are

Ml8l
j

52pE d cosuMl8l~u!dll8
j

~u!. ~B2!
s
s

-

x-

y
e

s

The functionsdll8
j for j 1/2 and 3/2 are written explicitly in

Appendix C. The orthogonality of these functions makes
easy to express the integrated cross sections total in terms
Ml8l

j .
Now, sincelg561 for real, transverse photons, we ha

eight helicity amplitudes; however, parity relates all the a
plitudes with lg51 to those withlg521 ~and opposite
signs forlN andlN8). Hence we need consider only thos
four amplitudes withlg51. Remembering thatf50, we
can evaluate all of the operator
^lN8uO6

i ulN&5ū(p8,lN8)O6
i u(p,lN). In the center of mass

system, wherep52q and p852k, explicitly, for helicity
11,

^1uO1
1 u1&50,

^1uO2
1 u1&50,

^1uO1
2 u1&52

1

A2
z2
mz1

uquukusinu cos
1

2
u,

^1uO2
2 u1&5

1

A2
z1
mz2

uku2sinu cos
1

2
u; ~B3!

for helicity 12,

^1uO1
1 u2&5

1

A2
z1z2
m

cos
1

2
u,

^1uO2
1 u2&52

1

A2
uquuku
mz1z2

cos
1

2
u,

^1uO1
2 u2&5

1

A2
z2uquuku
mz1

sinu sin
1

2
u,

^1uO2
2 u2&5

1

A2
z1uku2

mz2
sinu sin

1

2
u; ~B4!

for helicity 21,

^2uO1
1 u1&50,

^2uO2
1 u1&50,

^2uO1
2 u1&5

1

A2
z2uquuku
mz1

sinu sin
1

2
u,

^2uO2
2 u1&5

1

A2
z1uku2

mz2
sinu sin

1

2
u; ~B5!

for helicity 22,
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^2uO1
1 u2&52

1

A2
z1z2
m

sin
1

2
u, ~B6!

^2uO2
1 u2&52

1

A2
uquuku
mz1z2

sin
1

2
u,

^2uO1
2 u2&5

1

A2
z2uquuku
mz1

sinu cos
1

2
u,

^2uO2
2 u2&52

1

A2
z1uku2

mz2
sinu cos

1

2
u,

wherez15AEp1m andz25AEp81m.
Parity conserving amplitudes may be constructed from t

helicity amplitudes by taking the following linear combina
tions:

Al 152
1

A2
1

4p
~M1

2
1
2

j
1M

2
1
2
1
2

j
!,

A~ l 11!25
1

A2
1

4p
~M1

2
1
2

j
2M

2
1
2
1
2

j
!,

Bl 15
1

A2l ~ l 12!

1

4p
~M1

2
3
2

j
1M

2
1
2
3
2

j
!, l .0,

B~ l 11!252
1

A2l ~ l 12!

1

4p
~M1

2
3
2

j
2M

2
1
2
3
2

j
!, l .0,

~B7!

where l 5 j21/2. The multipole amplitudes are obtained
from the parity amplitudes using the following relations:
e

El 15
1

l 11
~Al 11l Bl 1!,

M l 15
1

l 11
@Al 12~ l 12!Bl 1#,

E~ l 11!252
1

l 11
@A~ l 11!22~ l 12!B~ l 11!2#,

M ~ l 11!25
1

l 11
~A~ l 11!21l B~ l 11!2!. ~B8!

APPENDIX C: ROTATION MATRICES

The rotation matrices are, forj5 1
2,

d1
2
1
2

1/2
5d

2
1
2 2

1
2

1/2
5cos12 u,

d1
2 2

1
2

1/2
52d

2
1
2
1
2

1/2
52sin12 u; ~C1!

for j5 3
2,

d3
2
1
2

3/2
52A3 cos2 1

2 u sin
1

2
u,

d1
2
1
2

3/2
5cos

1

2
u~123 sin2 1

2 u!,

d3
2 2

1
2

3/2
5A3 cos12 usin2

1

2
u

d1
2 2

1
2

3/2
5sin12 u~123 cos2 1

2 u!. ~C2!
-
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