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1/N. expansion of the quark condensate at finite temperature

D. Blaschke, Yu. L. Kalinovsky, G. Rike, S. Schmidt, and M. K. Volkov
MPG Arbeitsgruppe “Theoretische Vielteilchenphysik,”
Universita Rostock, D-18051 Rostock, Germany
(Received 27 October 1995

Previously the quark and meson properties in a many quark system at finite temperature have been studied
within effective QCD approaches in the Hartree approximation. In the present paper we consider the influence
of the mesonic correlations on the quark self-energy and on the quark propagator within a systewqatic 1/
expansion. Using a general separable ansatz for the nonlocal interaction, we derive a self-consistent equation
for the 1N, correction to the quark propagator. For a separable model with cutoff form factor, we obtain a
decrease of the condensate of the order of 20% at zero temperature. A lowering of the critical temperature for
the onset of the chiral restoration transition due to the inclusion of mesonic correlations is obtained with results
that seem to be closer to those from lattice calculations.

PACS numbds): 24.85+p, 12.38.Aw, 12.40.Yx, 14.40.Aq

[. INTRODUCTION description will lead to corrections to the temperature behav-
ior of the quark condensate since the medium allows for
QCD motivated effective theories are the most promisingnesonic degrees of freedom. The relation of a generalized
approaches to the low energy behavior of QCD and mesogap equation to the thermodynamical potential of a quark
physics in terms of quark and gluon degrees of freedom antheson plasma has been considered in Ref]. The present
symmetries. Starting from chiral quark model Lagrangians #aper is a first step for a consistent description of a meson
perturbative approach to the occurrence of a chiral conder@s at finite temperature within a chiral quark model.
sate below a critical temperatufe in a mean-field approxi- 1 ne paper is organized as follows. In Sec. Il the nonlocal
mation is usually considered. Simultaneously, the pseudosc&ira! quark model is briefly introduced, which is used in
lar Goldstone boson—the pion—occurs. Perturbation theorgec' Il to ‘{e“"e a generalized formula for the quark con-
can be formulated in N, whereN, is the number of colors ensate 'm/(llNC) expansion. In Sec. IV we include dy-
[1]. The leading order is the Hartree approximatitResults namical fluctuations into the_ self-ene_rgy and treat the sc_:alar
. and pseudoscalar contributions within the pole approxima-
are reporteq n Ref$2_5]').A moreiger)eral approach, where tion. The numerical results for a calculation within the NJL
a nonlocal instantaneous interaction is applied, has been PrRiodel at finite temperature are discussed in Sec. V.
sented in Refd.6—11]. A still open but very important ques-
tion is the influence of mesonic degrees of freedom, which
are neglected in the Hartree approximation. These degrees of
freedom are supposed to be dominant in the low-temperature Our starting point is the chiral-symmetric effective La-
limit. For the NJL model, an effective NI expansion which  grangian in the quark sector of the general form
accounts for the mesonic fluctuations has been considered in L
[12]. However, the set of diagrams for the self-energy in =0 1(P)(y.P*—My)q1(p) + L, (1)
next-to-leading order considered in this reference was not
complete. This has been observed in R&8] where the role  where the interaction term
of the scalar isovector mesons in théll/approximation at
zero temperature was also discussed. It was shown thatinthe

Il. THE MODEL

1 ¢
- Eq 1(PDATH(P2)

1/N. expansion the Schwinger-Dyson equation for the quark it

self-energy is different from the gap equation for the quark . s

condensate and has to be solved separately. A complete col- XK(P1,P2,P1/,P2:)q 2:(P21) A 115,01 (P1r)  (2)
lection of diagrams in N, was given in Ref[14] and re-

cently studied in the chiral limitn,=0 atT=0 in Ref.[15].  is given as a nonlocal generalization of the current-current

At T=0, effects of the order of 10—~20% have been obtainedype interaction. Here the matricésy, denote the decompo-
in these approaches, showing that mesonic fluctuations plagition into the color €), flavor (f), and Dirac D) channels.
an important role. In this work we restrict ourselves to scalar and pseudoscalar
In this work, we consider the influence of mesonic corre-channels. Therefore we choos&?,=[1.-1¢-1p];» and
lations on the quark condensate at finite temperature. It i&7,=[1c- 7¢-ivs]1o.
expected that such a calculation beyond the Hartree level of The gluonic degrees of freedom do not occur explicitly in
this effective approach to the low-energy sector of QCD.
They are assumed to form a condensate which is responsible
*Permanent address: Bogolubov Laboratory of Theoretical Physfor the nonperturbative character of the quark-quark interac-
ics, JINR Dubna, Russia. tion in this domain. We make the phenomenological ansatz
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FIG. 1. The Dyson equation with the full self-energy.

of an instantaneous interaction kernel, which can be formu-
lated in a covariant way11]. We employ here a separable

I
form for the nonlocal 4-point interaction of the form 0 X H
L
., Ko [lpit+pal| [IPi+pal
K(plvp2!p17p2):_N_g 2 2 . . . .
c FIG. 2. The Dyson equation in self-consistent Hartree approxi-
mation.
X 591‘P2vpi_pé' (3)

. . ) which defines upon insertion i%) the propagator in Hartree
The N, dependence arises from the Fierz transformation OBpproximation

the quark current-current interaction in the color singlet

channel considered hefsee, e.g.[17]). For our numerical Hiey— =11y _ S Hr - (e HTy — 1

calculations in Sec. V we ud¢.=3. The dependence of the GT(=(Go (k) =2 ki GT]) ®
form factor on the modulus of the three-momentumThe Hartree self-energy) is a Dirac scalar and appears as a
(lpl=p) has been discussed for different shapes, e.g., 2 term in the propagator P
Gaussian onég(p)=exd — (p/A gaus)?]) or the well-known asste propagator,

NJL-type interaction[g(p)=0(1—p/Ay;)] (see [10]). K

Note that the potential does not depend on the energy and we m™(p)=my—g(p) _°<®>H, 9
therefore obtain the NJL model with a three-momentum cut- Nc

off. The spectral properties of the quark model defined by the

Lagrangian(1) are obtained from the single-particle propa- With a momentum dependence due to the nonlocality of the
gator interaction kernel3). The quark condensate in Hartree ap-

proximation is[cf. Egs.(6)—(8)]
G12(P1P2) =[G(P1)1c1t]126p, p,: 4
Ta\H— H
which is a diagonal matrix in color, flavor, and momentum (qa) _NCNfEK 9(k)Tr[G7(k)]

space. The matrix elelnem(p) obeys the DySOﬂ equation
=—2N:N i k H(k) 1-2f[E(k

(10

G(p)=[Go (P —=(p)] 7Y, (5)

where Ggl(p)zyﬂp”“—mo is the vacuum Green function
(see Fig. 1. The self-energy(p) is defined by an analysis (f5 getails see Refd2-5,10). In this approximation, the

of all one-particle irreducible diagrams contributing to themagnitude as well as the temperature dependence of the dy-

propagator. Having the single-particle propagator at our disqamical mass generation is determined from the condensate
posal, the physical quantity of interest which is straightfor-op, “Note that the restoration of the chiral symmetry at tem-

Wardly_ evaluated is the quark condensate. For our separable, "+ .-« above the critical onE (200 MeV,[10]) is gov-
potential we introduce the nonlocal quark condensate as  gneq by the Fermi distribution function of quarks in the

medium,f[E(k) ]={exd (E(k))/T]+1} %, where the quasi-
(qq)= NcNfE g(p)Tr[G(p)], (6) particle dispersion relation
P

: E(k)=Vk*+[m"(k)]* 11
whereTr stands for the trace over the Dirac space only. The

finite temperature investigations are performed using thegntains the momentum-dependent Hartree ni@ss
Matsubara techniqugl8-20, wherepo=iw, with the fer- It is, however, questionable whether the Hartree approxi-
mionic Matsubara frequencias,=(2n+1)«T, and2, is  mation is appropriate for the description of the nonperturba-
short forT=,,dp/(2)°. In order to obtain estimates for the tjye low-energy region of QCD where free quarks should be
quark condensate one has to make approximations for thehsent due to confinement. Since mesonic correlations are
self-energy. o o supposed to dominate the low-energy excitation spectrum of
The first step towards a systematic investigation of thene quark matter system, one has to study their influence on
Dyson equation(5) is the self-consistent Hartree approxima- the results obtained within the Hartree approximation. A sys-
tion (see Fig. 2 tematic perturbation theory for strong interactions, however,
is lacking. Instead, one resorts to an expansion of diagrams
Hipm-oHYy — H to orders 1N., which we will investigate in this work at
(PG KONfg(p); glTricTl, (@) finite temperatures.
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Ill. 1/ N, EXPANSION

The self-energy in the self-consistent Hartree approxima-

tion appears of the ordef[1] as the leading term in the
1/N. expansion, as can be seen from Ef). In order to
improve this approximation, we will study next-to-leading
order diagrams, i.e.(?[ 1/N.] contributions. Therefore we
make the following Anstze for the self-energy and for the
guark propagator:

2<p)=2H[p;GJ+Niaz[p;e]m[wi]. (12

G<p>=e”<p>+Niae<p>+ﬁrllN§>, (13

where the corrections to the self-energy depend in the ger{)—

eral case on the full Green functio®(p) and on the
4-momentum p. The corrections to the self-energy

KE et al. 53
G(p)=(Go (p)—3[pG] !
=| Gy X(p)—2H[p;GM]
1 -1
—N—[E”[p;ﬁG]Jr S2[p; G+ A(1N,)]
(14

Expanding the M, contribution in the denominator and
comparing with(13), we obtain a self-consistent equation for
8G(p) in the form

8G(p)=G"(p)=H[p;5G1GH(p)
+GH(p)s=[p;G"IG" (p). (15

Note, that this consistent N/ expansion for the quark
ropagator is a new result of this paper. In particular, the first
erm on the right-hand sidehs) of (15) has not been con-
sidered in some of the previous approacteee[12,21]). In
order to get a closed expression, we use the fact that the

02[p;G] are not yet specified and will be discussed in thefunctional dependence of the Hartree self-energy on the

following section. Using the N. approximation(12) for
2[p;G] in the Dyson equatiofb), the 1N, expansion to the
propagator is given as

% g(p)Tr[éG<p>]=—KoNf§ g%p)Tr[G“(p)G“(p)];

> g(p)Tr[GH(p)s3[p;G"

1
- 1-39(0)%5

where the scalar quark loop integrHI(0) is defined in Ap-
pendix A. The 1IN, expansion of the quark condensate cor-
responding to that of the propagatd®) and the definiton of
the quark condensaté) reads

(ag)=(qa)"+ &(qq) + [ 1NZ]. 17)

1/N. corrections to the quark propagaté® is known from
Eq. (7). After insertion of>"[p; 5G] on the rhs of Eq(15),
we obtain

g(k)Tr[%(k)]@ a(p)Tr[G"(p) 83[p;GH1GH (p)]

1GR(p)1, (16)

IV. MESONIC CORRELATIONS

Within the chiral quark model as defined in Sec. Il, the
complete set of diagrams contributingdij 1/N.] to the self-
energy is given in Fig. 4. The double line corresponds to the
random-phase approximatiaiRPA)-type partial resumma-
tion of the chain of bubble diagrams, where the quark-
antiquark loop in Hartree approximation defines the polariza-
tion functions J(p—k) in the scalar and pseudoscalar

The 1N, correction to the condensate is obtained in closechannel ¢p=o,7) (see Appendix A

form using the resul16)

5<®>=Z~Nf§ a(pTr[GH(p)62[p;GH1GM(p)]
(18)

with a prefactoriZz=1[1-J?(0)] as derived in(16) coming
from the 1N, contributions to the Hartree self-energy
>H[p,8G] (see in Fig. 3. This prefactor leads to a consid-
erable rescaling4~4) which has first been pointed out in
Refs.[13,15 for the NJL model at zero temperature and is

The @[ 1/N,] self-energy contribution is given by

. ~ [p+K| GH(k)
52[p,GH]—Ko§k: g’ 2 /|1-37(p—k)
e ¥sGH(K) s
(N3 1)m : (19

The denominators 4 J%(p—k) occur due to the resumma-
tion and thus strong correlations can be described. Note
that the 1N, self-energy is a dynamical quantity and has
not yet been solved in its complexity. The most dram-
atic effect is the occurrence of collective excitations in the

obtained here for the more general case of a nonlocal sepguark-antiquark channel when REP= My=1 [and

rable interaction at finite temperature.

ImJ¢(P:M¢):O] which correspond to mesonic bound
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<G> — + z. % + O(UN:) _ @
H

H
on o
FIG. 3. 1N, expansion of the quark condensate. [ — ) = e +
H

states. In what follows we restrict ourselves to the consider-

ation of bound states only and use an expansion of the po- £, 4. 1N, approximation for the self-energy. The scalar and
larization function at the mesonic polépole approxima- pseudoscalar correlations are described by a RPA-type partial sum-
tion), which leads to the introduction of meson propagatorsmation of bubble diagrams.

and meson-quark-antiquark form factgg, 4 (see Appendix

A):
lp+K|

2

d3k
_ $qq
1 1 g(Zﬁqa(MqS) 5<qq> 1— Jo’(o)f(z )39(p)f(2 )3

1-J3%(P)  M3-P%2 NiKg 20 dpo 1
f fz M2 (ke e
The full treatment of the RPA approximation that contains . —p)
bound and scattering states is possible for the separable in- XGH(k)Fd’GH(p)]. (21)
teraction and will be regarded in an additional work.

Using the expressiof19), (20) for the self-energy and the
short notation withl'>=1p andI""=i s, we obtain After evaluation of the Dirac trace

*zl—zTr[GH(P)Td’GH(k)F"SGH(D)]= +m(p)

[ m(p) = m(k)
M~ (k—p)

[p?—m*(p) J[K*—m(K) ][ (k—p)*— M]

1
X([pZ—mZ(p)F[(k—p)?—M’;‘,]
- —[m(p)=m(k)]?
[P~ m2(p) A2 —m2(K) I (k—p)°—MZ]
1
- [pz—mz(p)]z[kz—mz(k)]) '

we perform the Matsubara summatitsee Appendix Band obtain as the final result for theNL/mesonic contribution§21)
to the quark condensate

(22

2
~ Y4qq _
5(da)’=1- J”(O)f(27)3g(p 2391 2 E2(p) 2E(p) T 2E(K)

_ 1+2n[E (k- p)]) N ( [{1— fIE(p)]—f[E(K) JH{1+n[E(p) + E(K) ]+ n[E4(k—p)]}
2E 4(k—p) EX(P)E(KE4(k—p)E4(k—p)+E(p) +E(K)]

d*k ,(Ip+K {ZmH(p) 1-2f[E(p)] f[E(p)]{l—f[E(p)]})<1—2f[E(k)]

[EZ(D)[mH(D)imH(k)]

N E¢ (k— IO)+2E(|O)+E(|<) E(PfE(p) {1-f[E(p)]}

+[E(k)—>—E(k)]}

+[E(p)H—E(p)])}, (23

with the energie€ ,(k—p) = v/(k— p)°+ quS and the bosonic distribution functior(E) =[exp(E/T)—1]"L. The upper sign
holds for the scalar, the lower one for the pseudoscalar meson, respectively’] TiN.] contribution(23) consists of two
parts, and the numerical analysis shows that the contribution due to mesonic correlations is dominated by the first one, i.e.,

|p+K|
2

m™(p){1-2f[E(P)]} (1-2f[E(K)] 1+2n[E4(k—p)]

E3(p) 2E(k)  2E4k—p /)
(24)

2
— 9%qq d3k
5<qq>¢~ 1_J0(0)j (277)39( )J’ (2 )3
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which has a simpler structure th&23).
In order to compare our results with previous works we will now discus3 th® case. At zero temperature the Fermi and
Bose distribution functions vanish. In tie=0 limit of Egs. (10) and(23) we obtain

2_ 3 3 H
— ., Y% dp d*k [ [p+K\[ m"(p) ( 1 1 )
{MZ=[m"(p) =m" (k) 12 E 4(k—p) + 2E(p) + E(k) Im"(p) . [mM(p)=mH(k)]
E¥(P)E(K)E 4(k—p)[E 4(k—p)+E(p) +E(K)]° E(PE(K)E4(k—p)[Ey(k—p)+E(p)+E(K)]]

(29

In the following section we present the numerical evaluationintegrals over the variables kz, wherez=cog, if 6 de-
and discussion of the aboveNy/ corrections to the quark notes the angle between the momekitand p.

condensate. At first we want to discuss th€=0 limit. An open ques-
tion which occurs in the conventional NJL model is the
V. NUMERICAL RESULTS AND DISCUSSION choice of the cutoff for the second momentum integral in

Egs.(23) and(25) overk. A very crude approximation pre-

In Sec. Il we have introduced a general nonlocal interac ” ) = X
tion kernel in separable form. In order to compare the nuSented in Ref[21] is the omission of the second integral by

merical results with previous approaches within the NJLassuming thak=0. In Refs.[13,15 the additional cutoffA

model, we will restrict ourselves in this paper to the discuswas discussed. Referenfk3] assumes thak=Ay;_and in

sion of a cutoff form factor: Ref.[15] upper and lower limits are determined from a cal-
culation off . in @[1/N.]. In the formulation we have cho-

[p+ k|) :®( 1— lp+K| sen, such a problem does not exist since the integrals

2 2A N1 are regularized in the separable approach by the proper
treatment of the form factors. The parametey; in the
The chiral quark model with soft form factofe.g., a Gauss-  cutoff form factor (26) regularizes the integral over p. The
ian ong has been discussed in Ref,10]. . _upper limit of the k integration is given byA=—pz

After_flxmg the parameters of the model as descrlbed in, VAL, —pA(1-7%) and runs between Apy <A
ﬁre)gzr:)%)r(oﬁi’rr\:\;etiglg%;Hfgrjrzgsqouzli/lrlé\?)(gr;dn%nfcit?hg (;?JZrEar-<3A naL- Note that in solving(23) one has to check the

b : i integral limits for each term separately due to different com-
massm =300 MeV, in agreement with the well-known data binations of form factors partly hidden in the momentum-
of the literature[2—3]. . : . ependent quark mag¢8). Thus we have removed the ambi-

In the next step, d|scuss§d n sec. IV, we haV(_e InCIUde(guity in regularizing the second momentum integration
Qynamlcal self—energy contributions due to mesonic Co”e'a\'/vhich occurred in the previous approaches to tHé, Téx-
tions. Compared with the Hartree teith0) where we have pansion in the NJL model.

o e o o ooy, TN ESUL for Sich  caleiation (-0 i
Matsubara frequenciesk{.p,) reduce to three-dimensional r?or fixed model parameters the absolute value of the conden-
'+0 sate is decreased by 20% compared to the Hartree approxi-
mation. For comparison, a decrease of the quark mass due to
300.0 . the mesonic correlations inN{ at T=0 has been obtained
in Ref.[13]. This result can be understood qualitatively since
the Hartree contributiofiL0) and the 1IN, mesonic contribu-
tion (23) to the quark condensate have opposite signs, the
latter one being smaller in magnitude.

Let us consider the finite temperature case. In order to
compare the temperature behavior of the quark condensate in
both modelgHartree approximation and Hartree approxima-
tion with mesonic correlationsve have to fix the parameters

. (26)

250.0

200.0

—— Hartree + mesonic correlations
150.0 | such that the same values for the observables=af are

- <qg>"" (T) [MeV]

———- Hartree a v ; :
obtained(see Appendix A The numerical evaluation of the

final result for the quark condensate is shown in Fig. 5. Pay-

100.0,5 100.0 200.0 ing attention to the shape of the chiral phase transition, we
Temperature T [MeV] observe that the inclusion of N, mesonic correlations shifts

the chiral symmetry restoration to lower temperatures when

FIG. 5. The quark condensate as a function of the temperature ifompared with the simple Hartree approximation. This find-

self-consistent Hartree approximatiéaotted ling and with inclu-  ing is mainly due to the smallerq coupling constank, for
sion of mesonic correlationsolid line). the model with mesonic correlations.
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VI. CONCLUSIONS The temperature-dependent meson masses are obtained from

In conclusion we have obtained the following new results:the solution of the Bethe-Salpeter equation

(i) a consistent N, expansion for the self-energy as well as 1-J[Py=M +(T),P=0]=0, (A2)
for the propagator and a closed formula for the quark con-

densate up to the orderNy, (i) a finite temperature result where the polarization operatod€(P,) after evaluation of
for the 1N quark condensate within the Matsubara formal-the Dirac trace and angular integration are given by
ism, and(iii) a consistent regularization of the two-loop dia-

grams. - 2KN; ) E(q)
The numerical evaluation for a NJL-type model shows I7(Po)=—— qung (Q)W
that compared with the Hartree approximation mesonic cor-
relations lead to a decrease of the absolute value of the quark X{1-2f[E(q)]}, (A3)
condensate af=0. After having compensated for this effect
of quantum fluctuations at=0 by readjusting the model - 2K Nt g?(q) @
parameters A,mq,K;), the account for thermally excited J7(Po)= 2 quqz E(q) E2(q)—(Py/2)?

mesonic correlations shifts the onset of the chiral-symmetry

restoration to lower temperatures in comparison to the Har- x{1-2f[E(a)]}. (Ad)
tree approximation. This behavior seems to be closer to the ) _ _
recent results of lattice calculations where the condensateh® guark meson coupling constants introduced in (2Q)
remains unchanged with temperature up to the chiral transB'® €valuated in the rest frame of the pair (P=0), where
tion which occurs aff~150 MeV for N=2 [22].

The inclusion of quark-antiquark correlations is of princi-
pal interest because the treatment of the medium in free qua-
siparticle approximation seems not to be appropriate at low-
temperatures. In contrast, in this region the mesonic degrees ~—
of freedom are expected to be relevant. This is supported by 2KoN¢ 2PodPyg
:Egrﬁgtdg]r?;rlr?i ég%g\grttizr;g?;a;uurgrﬂﬂz(ssgg S“S;X@?ﬁﬁ; Using Eqgs.(A3) and (A4), they are given by the integrals
pressurgare dominated by mesonic contributigri$]. The 1 E(q)
presented M. expansion should be considered as a first step g;an(M )= TJ daePOA( Q) ————
in including mesonic correlations. However, at temperatures 27 (E“(q)—M7/4)
where the chiral phase transition occurs, higher orders of the X (1—2 f[E(q)]) (A6)
1/N. expansion may become important. '

Within the present approach, the treatment of the two- 1 G
particle correlations was given in the usual pole approxima- Q;qza(Ma)Z _2f dgcg?(q) 5 —
tion (20) for the qq T matrix. A next step in the evaluation 2m E(a) [E%(q)—M_/4]
of quark-antiquark correlations is the inclusion of the contri- X (1-2f[E(q)]).
bution of scattering states, which will be considered in a
forthcoming paper. In this way the account of the correctionsrhe pion decay constant which we use for the parameter
due to two-particle correlations will be completed on thefixing at zero temperature is calculated [Hy]
basis of the approach presented here.

1
-2
JpqatMe) = 2K N, WJ¢(P)|P2:M§}

1 ¢
J (P010)|P0:M¢- (A5)

f _\/N_Cgﬂ'qqfd qz ( ) mH(Q)
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APPENDIX A: TABLE OF INTEGRALS AND given in Table | for the Hartree approximation with
PARAMETER FIXING and without the M, contribution from mesonic correlations,
The polarization operators introduced in E¢9) of the respectively. The parameters for the Hartree approximation
main text are defined as are similar to those of the standard NJL modgske

Refs.[3,4,12,13,15,2].

J¥(P)=— KONfé g%(qTr[[*G"(q+P/2) APPENDIX B: MATSUBARA SUMMATION

The following formulas summarize the results of the one-
xI'*GH(q—P/2)]. (A1) and two-loop Matsubara sums performed in this paper:
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TABLE I. Sets of parameters for the Hartree approximation
with and without the inclusion of mesonic correlations for a fixing
scheme described in the text.

Approximations A (MeV) my (MeV) Ko (GeV™?)
Hartree 660 5.35 9.45
Hartreet-mesonic
correlations 765 4.4 6.49
dkg 1 1-2f[E(K)]
— =— , Bl
J 2m ki—E?(k) 2E(k) (B1)
f dpp 1 1 (1—2f[E(p>]
2m [p—E%(p)]? 4E%(p)\ 2E(p)
_fE(mH1-fE(P]}

T

+[E(p)H—E(p)]), (B2)

D. BLASCHKE et al.

53
f % 1 __1+2n[E¢(k—p)]
27 (ko= Ppo)?—E5(k—p) 2E,(k—p)
(B3)
E :
27 [(ko—Po)?—E5(k—p)1[k5—E2(K)]
_ fIE(K)]+N[E4(k—p)]
4[po+E 4(k—p)—E(K) JE(K)E 4(k—p)
+[E(K)— —E(K) ]| +[E4(k—p)— —E4(k—p)],
(B4)

% 1
2m [po—EA(P)I[Po+Eg(k—p)—E(K)]

_ fEPI-fEK)]
2E(I[E (k=P ~E(K +E(P)]

J

+[E(p——E(P].

(B5)
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