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Real part of the heavy-ion optical potential derived from relativistic mean field theory
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An energy density derived from the relativistic mean-field theory has been used to calculate the real optica
potential of40Ca-40Ca nuclei at different energies. We used two sets of mean-field parameters which correctly
produce the binding energy and saturation density of nuclear matter. We studied the effect of the relativisti
corrections on the real ion-ion potential. It is found that the heavy ion potential calculated using field theory
approach agrees well with that derived from nonrelativistic energy density.

PACS number~s!: 24.10.Ht, 24.10.Jv, 25.70.Bc
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I. INTRODUCTION

Recently, successful attempts have been made to ap
the Dirac-Brueckner-Hartree-Fock~DBHF! approach to the
nuclear matter problem@1#. Unlike the nonrelativistic
Brueckner-Hartree-Fock~BHF! case, the DBHF approach
due to its complexity, is much more elaborate when appli
to a finite system. The existing calculations for finite nucl
either employ the nuclear matter results with some kind
local density approximation or parametrize the DBHF resu
for nuclear matter in terms of an effective Lagrangian whic
leads to the same prediction for nuclear matter as the origi
DBHF calculation @2#. These calculations have been ex
tended, in the same way, to the nucleon-nucleus@3# and the
nucleus-nucleus@4# scattering problems. The nucleus
nucleus interaction potential in Ref.@4# has been calculated
microscopically using Dirac-Brueckner theory for nuclea
matter. The effective mass of the nucleon, in these calcu
tions, was first determined by solving the Dirac-Brueckne
Goldestone equation for nuclear matter at rest and, at
same time, the matrix elements ofNN interaction between
two nucleons in nuclear matter were obtained. These ma
elements have been used to derive a potential energy den
for two colliding nuclear matter by solving the nonrelativis
tic Brueckner-Goldestone equation. Some authors have st
ied the nucleon-nucleus scattering problem using relativis
mean-field theory~RMFT! @5,6# with the Lagrangian param-
eterized either to reproduce the DBHF results for nucle
matter @3# or to fit the known properties of nuclear matte
and some finite nuclei@7#. The nonrelativistic limit of the
mean-field theory Hamiltonian is essentially equivalent
the Skyrme Hamiltonian@8# which has been quite useful in
studying nuclear structure and in obtaining the real part
the nucleus-nucleus potential@9#. It may be stated that@10#
relativistic mean-field models, when applied to nuclear stru
ture, achieve about the same agreement with experimen
the density dependent interactions in the nonrelativis
Hartree-Fock approximation. The conceptual advantage
being fully relativistic and thus automatically produces th
spin-orbit force which has fundamental importance
nuclear physics. After deriving the nucleon-nucleus potent
using RMFT@3,7#, a natural extension to the theory is to us
532813/96/53~5!/2352~6!/$10.00
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it to derive the real part of the ion-ion potential. There are
two motivations for extending the relativistic mean-field
theory to the nucleus-nucleus scattering problem. The fir
motivation is to test if it is possible to describe nuclear mat
ter, finite nuclei, and nuclear scattering within the same rela
tivistic approach. The second is to assess the importance
relativistic effects on the nucleus- nucleus interaction poten
tial.

We derive in the present work the real part of the
40Ca-40Ca interaction potential in the frame work of RMFT.
We briefly describe the mean-field method in the next sec
tion. Sections III and IV derive the real part of the nucleus
nucleus potential and discuss the relativistic effects prese
in the MFT. We discuss, in Sec. V, our results. Our conclu
sions are summarized in Sec. VI.

II. RELATIVISTIC MEAN-FIELD APPROACH
IN NUCLEAR MATTER

For symmetric nuclear matter, the Lagrangian describin
the interaction of nucleonsw with a scalar fields and a
vector fieldvm is given by@7#

L52w̄S gm

]

]xm
1M Dw2

1

2 S ]s

]xm
D 22U~s!2

1

4
FmnFmn

2
1

2
mn
2vmvm1 ignw̄glwvl2gsw̄ws, ~1!

whereFmn is the field stress tensor and

U~s!5
1

2
ms
2s21

1

3
bs31

1

4
cs4. ~2!

M , ms and mn are respectively the mass of the nucleon
scalar meson, and vector meson;gs andgn are the scalar and
vector coupling constants.

For rotationally and translationally invariant nuclear mat-
ter, the field equations in the mean-field approximation are

ms
2s1bs21cs352gsrs , ~3!

vW 50, ~4!
2352 © 1996 The American Physical Society
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mn
2v05gnrn , ~5!

~2 iaW •¹W 1bM* !wkW5~E2gnv0!wkW . ~6!

The positive energy solutions of the Dirac equation are t
usual plane wave solutions with a reduced ma
M*5M1gzs. They are

wk'S x

sW •kWx

~k21M* 2!1/21M*
D exp~ ikW• r̄ !. ~7!

The source termsrs and rn are given as a summation o
nucleons up to the top of the Fermi sphereKf where

rs5
4

~2p!3
Ekf

d3K w̄kwk5
4

~2p!3
Ekf

d3K
M*

~k21M* 2!
,

~8!

rn5
4

~2p!3
Ekf

d3K wk
1wk5

2

~3p3!
Kf
3. ~9!

The energy density,e, is given by

e5t2~M2M* !rs1S gn

mn
D 2rn

21U~s!, ~10!

wheret is given by

t54 Ekf dkW

~2p!3 F k21MM*

Ak21M* 2
2M G . ~11!

III. REAL PART OF THE ION-ION POTENTIAL

We use the energy density formalism@9# to calculate the
real part of the optical model potential between two nucl
In this approach, we derive the ion-ion potential in the fo
lowing way @4#.

~1! We first calculate the total energy of one nucleusE as

E5E drW R~rW !, ~12!

whereR(rW) is an energy density functional given by

R5e~r!1Hcorr~r!1HCoul~r!. ~13!

In Eq. ~13!, e~r! is given by Eq.~10!, Hcorr~r! is a surface
term of the form

Hcorr~r!5
\2

8M
h~¹W r!2, ~14!

and HCoul~r! is the Coulomb energy density. The surfac
strength parameter,h, is adjusted to reproduce the bindin
energy and rms radius of the nucleus considered. We ass
the following Fermi type matter density distribution for th
nucleus:

r5
r0

@11exp~r2R0!/a#
. ~15!
he
ss

f
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The half radius parameterR0 is taken as a variational param-
eter to minimize the total energy of the nucleus.

~2! The real part of the nuclear potential between tw
nuclei is defined as the difference between their energy
distanceR and at infinity@9#, namely

U~R!5E~kr ,R!2E~kr ,`!. ~16!

kr is the distance of the centers of two Fermi spheres whic
represent the local densities of target and projectile nuclei.
is related to the energy of the incident particle,EL ~target is
assumed to be at rest!, by the following equation:

E~kr ,`!5MT1MP1EL , ~17!

whereMT andMP are respectively the masses of the targe
and projectile nuclei. The total energy of the combined sy
temE(kr ,R) is obtained by integrating the Hamiltonian en-
ergy density of the combined system of the two nuclei give
by

Hc~r!5Hcorr
c ~r!1ec~r!, ~18!

wherer is the density of the combined system. When the tw
nuclei are far away the total energy is

E~kr ,`!5E $HT~rT!1HP~rP!%drW, ~19!

whereHT(P) is the energy density of the target~projectile!
nucleus given by an equation similar to Eq.~18!.

In the sudden approximation, the density of the combine
system isr5rP1rT . The kinetic energy density,t~r!, and
the source density,rs , of the combined system are calculated
at each integration point by performing the integration ove
the volume of the two spheres which represent the local de
sities of the target and projectile nuclei at the point consid
ered. If the two spheres overlap, the Pauli exclusion princip
is taken into consideration by expanding the spheres to avo
the double occupancy region.

IV. NONRELATIVISTIC APPROXIMATION

It should be noted that in the following section terms u
to orderr3 have been kept in the energy density. As pointe
out in Ref.@5#, the description of this approximation as non
relativistic is not strictly accurate since terms of relativistic
origin have been kept in the energy density functional. Th
Hamiltonian energy density,e~r! @given by Eq.~10!# can be
written as

e5t1p, ~20!

wheret andp are respectively the kinetic and potential en
ergy densities. The potential energy term of Eq.~20! can be
written as
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p52~M2M* !rs1
1

2 S gn

mn
D 2rn

21
1

2 Sms

gs
D 2~M*2M !2

1
1

3

b

gs
3 ~M*2M !31

1

4

c

gs
4 ~M*2M !4. ~21!

The fourth term in the last equation reduces in the nonre
tivistic approximation to a repulsive effective three-body in
teraction or density dependent two-body interaction@5#.
Also, it has been shown in Ref.@5# that the energy density
due to exchange of scalar mesons is given
@2~1/2!(g s

2/ms
2)r s

2#. In the nonrelativistic limit it is equiva-
lent to the two terms @2(1/2)(g s

2/ms
2)r21(1/2)(g s

2/
ms

2)(rt/M* )#. The second term weakens the contribution
the energy density from the scalar interaction and it has
same effect as a momentum dependent interaction@5#.

V. NUMERICAL RESULTS AND DISCUSSION

We perform our calculations, in the present work, takin
the40Ca-40Ca scattering process as an example. We consi
RMFT with two sets of parameters. The first set is that d
rived by Boguta and Moskowsky@5# and we call it the BM
model. The second is the so-called BB~Boguta and Bodmer!
model used in Ref.@7#. These two models differ largely in
the value ofM* /M . While for the BM modelM* /M'0.7 at
the saturation density of nuclear matter, its value is 0.935
the BB model.

Figure 1 shows the difference in the kinetic energy b
tween the composite and separate systems.Ut , for two val-
ues of the relative momentum,kr . For the BM model, this
difference is strongly attractive at small values of the sep
ration distanceR. This is due to the kinetic energy of the
combined system that depends on the effective mass, wh
becomes smaller at higher density values~M* /M'0.7 and
0.5 for r50.16 and 0.32 fm23, respectively!. On the other
hand, at an integration pointrW, the density of the target,rT ,
and that of the projectile,rP , correspond to two spheres in
momentum space which strongly overlap at small values
kr . The procedure of expanding the two overlapping sphe
to larger radii to avoid the double occupancy region in
creases the kinetic energy density of the combined syst
calculated at the pointrW. This effect dominates atkr50.5
fm21 andUt becomes positive forR.4 fm. Forkr53 fm21,
the two Fermi spheres are well separated in moment
space and the effective mass effect makesUt negative for all
distances.

For the BB model, the effect of effective mass onUt is
nearly absent~M* /M'0.921 forr50.32 fm23 and 0.937 for
r50.16 fm23! and the difference in kinetic energy betwee
the combined system and the separate system is positiv
nearly all values ofkr . It behaves like the nonrelativistic
case.

Figure 2 shows the difference in potential energy~Up!
between the composite system and separate system.Up con-
tains a term which is quadratic inr and other terms contain
powers of ~12M* /M !. For the BM model, whereM* /M
varies significantly withr, it is shown thatUp is strongly
energy dependent. It is strongly repulsive at small distanc
and becomes weakly attractive in surface and tail regions~as
shown in Fig. 2!. For the BB model whereM* /M varies
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slowly with r, Up is attractive and nearly energy indepen
dent as shown in Fig. 2. The difference inUp between BM
and BB models is due to the difference in parameters b
tween the two models. For example, the strength of the se
ond term of Eq.~21! for the BM model is about 40 times its
strength for the BB model.

Figure 3 shows the contribution ofU from the term
@2~1/3!b(12M* /M )3M3# present in the Hamiltonian en-
ergy density~let us name itU3!. As pointed out in Sec. IV,
this term reduces~1/16!t3r

3 and it corresponds, in the non-
relativistic approximation, to the contribution of the ion-ion
potential from a three-body force. The figure shows thatU3
is weakly energy dependent and it is repulsive for the BM
model. On Fig. 3 we have also displayed the nonrelativist
approximation ofU3 for a value of the parametert3 that
corresponds to Skyrme parameter set S III@9#. Compared
with the contribution ofU from this term, relativistic correc-
tion makesU3 less repulsive at all nucleus-nucleus separ
tion distancesR.

Figure 4 represents the contribution ofU from the energy
density@2~1/2!(g s

2/ms
2)r s

2#. It represents the scalar interac
tion energy density~as pointed out in Sec. II!, which is due
to the exchange of scalar mesons. In the nonrelativistic a
proximation it becomes @2(1/2)(g s

2/ms
2)r21(1/2)(g s

2/

FIG. 1. The difference in the kinetic energy between the com
posite and separate systems for the nuclear pair40Ca-40Ca calcu-
lated using both BB and BM model. Dashed curves~1! and ~2!
correspond to the BM model withKr50.5 and 3 fm21, respectively;
solid curves~3! and ~4! are those for the BB model withKr50.5
and 3 fm21, respectively.
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FIG. 2. The same as Fig. 1 but for the contribution of the r
40Ca-40Ca potential from the potential energyUp .

FIG. 3. Comparison between theU3 term and its corresponding
term in the nonrelativistic approximation~1/16t3r

3!. The compari-
son has been made for the nuclear pair40Ca-40Ca using the BM
model. Curves labeled by~1! and ~2! correspond respectively to
EL/A;6.3 and 197.8 MeV.
ms
2)(rt/M* )#. The second term is the relativistic weakening

of the scalar density and has the same effect as a moment
dependence of the scalar interaction. As shown in Fig. 4, t
effect of the relativistic weakening of the scalar density o
the nucleus-nucleus potential is large and increases as
energy increases.

Figure 5 shows the total interaction potential for the
nuclear pair40Ca-40Ca at different values of the incident en-
ergy per particle,EL/A, calculated using the BM model. The
ion-ion potential shows strong repulsion in the inner region
The surface and tail regions are attractive. The value of t
minimum of the curve increases as the value ofEL/A in-
creases tillEL/A'54 MeV, then it starts to decrease and th
curve calculated atEL/A'200 MeV is higher than that cor-
responding toEL/A'6 MeV. The shape and the energy de
pendence of the ion-ion potential is similar to that calculate
using the Skyrme energy density@11#.

Figure 6 is the same as Fig. 5 but the40Ca-40Ca potential
has been calculated using the BB model. Except fo
EL/A'5.2 MeV, the ion-ion potential derived from the BB
model is strongly attractive in the inner region. In the surfac
and tail regions~R.7 fm! its value is nearly the same as tha
derived from the BM model forEL/A,100 MeV. For
greater values ofEL/A, it becomes more attractive in the
surface region compared to that of the BM model. This i
because its energy dependence decreases asEL/A becomes
more than 100 MeV. The behavior ofU(R) calculated from

al

FIG. 4. Curves~a! and~b! represent the contribution ofU from
the energy density term@2~1/2!(gs

2/ms
2)r s

2# calculated for the
nuclear pair40Ca-40Ca using the BM model atEL/A;6.3, 197.8
MeV. Curve~c! represents the contribution ofU from the nonrela-
tivistic approximation term@2~1/2!(gs

2/ms
2)r2#.
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the BB model can be easily understood from Figs. 1 and
For small values ofEL/A, Ut is strongly repulsive~due to
the effect of the Pauli exclusion principle! andUp is attrac-
tive. As EL/A increases, the contribution ofU from the ki-
netic energy densityUt becomes smaller and sinceUp is
nearly energy independent the total potential becomes attr
tive.

It is generally believed@12# that the heavy ion elastic
scattering data fits the potential value only at the vicinity
the strong absorption radiusRSA. We now compare the ion-
ion potential value obtained from experiment atR5RSA with
the corresponding quantities calculated using the BM a

FIG. 5. The real part of the optical potential for the nuclear pa
40Ca-40Ca calculated using the BM model. Curves labeled by~a!,
~b!, ~c!, ~d!, ~e!, and~f! correspond respectively toEL/A;6.3, 24.8,
54.5, 94.2, 142.4, and 197.8 MeV.
2.

ac-

f

nd

BB models. The values ofRSA andU~RSA! are taken from
Ref. @13#. Table I shows the normalization factorsN1 andN2
required for the BM potential and the BB potential to fit th
experimental data at the strong absorption radius for
pairs of interacting nuclei. Except for the heavier p
40Ca-40Ca the predicted potential from the BB model or fro
the BM model at the strong absorption radius agrees w
with that extracted from experiments at low energy per p
jectile particle~3.8–4.7 MeV!. The ion-ion potential derived
from the BM model is a little bit better than that derive
from the BB model. For the40Ca-40Ca pair, the two models
predicted a weak potential that needs a factor of 1.6 in o
to agree with experiment. At higher energy~EL/A544 MeV!

ir FIG. 6. The same as Fig. 5 but calculated by using the
model. Curves labeled by~a!, ~b!, ~c!, ~d!, and ~e! correspond re-
spectively toEL/A;5.3, 46.5, 124.1, 230.8, and 359.3 MeV.
rong
TABLE I. The normalization factorsN1 andN2 require by BM and BB potentials, respectively, to fit the experimental values at the st
absorption radius for five pairs of interacting nuclei.NM3Y andNDDM3Y are the normalization factors for the nonrelativistic potentialsM3Y
andDDM3Y, respectively.

System
EL

~MeV!
RSA
~fm! NM3Y NDDM3Y N1 N2

12C140Ca 45 9.0 1.01 0.70 0.98 0.89
12C140Ca 51 9.1 0.92 0.63 0.91 0.85
16O140Ca 74.4 9.3 1.03 0.71 1.06 1.03
40Ca140Ca 143.6 10.7 0.99 0.64 1.62 1.60
40Ar160Ni 1760 10.15 0.60 0.56 0.53 0.39
12C190Zr 98 10.0 0.96 0.72 0.74 0.57



nd

he
e

-

ls
-

t

53 2357REAL PART OF THE HEAVY-ION OPTICAL POTENTIAL . . .
the two models predict a more attractive potential than th
required to fit the data atRSA. This potential should be nor-
malized by 0.4 for BB and 0.53 for BM models. Table
contains the normalization factorsNM3Y andNDM3Y needed
by the nonrelativistic ion-ion real potential calculated usin
the well known nucleon-nucleon potentialsM3Y and
DDM3Y of Refs. @14, 15# to fit the data at the strong ab-
sorption radius. The table shows that the relativistic ion-io
potentials agree well with the nonrelativistic potentials a
RSA.

VI. SUMMARY

We have studied the real part of the optical potential b
tween two nuclei using relativistic mean-field theory with
two sets of parameters namely; a BM model with effectiv
mass of about 0.6 at the saturation density and a BB mo
whose effective mass is about unity. The two models pr
at
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t
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e
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duce the nuclear matter data and both the binding energy a
rms radii of the nuclei considered. The difference in effective
mass between the two models has a large effect on both t
shape and energy dependence of the ion-ion potential. In th
inner and surface regions of the ion-ion potential, the BB
model predicts a deeper potential compared with that pre
dicted by the BM model. At the strong absorption radius we
have found that the potentials predicted by the two mode
agree well with those extracted from experiment for projec
tile energy per particle 3.8–4.7 MeV. At higher projectile
energy, RMFT predicts more attractive potential than tha
required by experiment.
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