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Real part of the heavy-ion optical potential derived from relativistic mean field theory
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An energy density derived from the relativistic mean-field theory has been used to calculate the real optical
potential of*°Ca#°Ca nuclei at different energies. We used two sets of mean-field parameters which correctly
produce the binding energy and saturation density of nuclear matter. We studied the effect of the relativistic
corrections on the real ion-ion potential. It is found that the heavy ion potential calculated using field theory
approach agrees well with that derived from nonrelativistic energy density.

PACS numbes): 24.10.Ht, 24.10.Jv, 25.70.Bc

I. INTRODUCTION it to derive the real part of the ion-ion potential. There are
two motivations for extending the relativistic mean-field
Recently, successful attempts have been made to apptipeory to the nucleus-nucleus scattering problem. The first
the Dirac-Brueckner-Hartree-FodP®BHF) approach to the motivation is to test if it is possible to describe nuclear mat-
nuclear matter problem1]. Unlike the nonrelativistic ter, finite nuclei, and nuclear scattering within the same rela-
Brueckner-Hartree-FockBHF) case, the DBHF approach, tivistic approach. The second is to assess the importance of
due to its complexity, is much more elaborate when appliedelativistic effects on the nucleus- nucleus interaction poten-
to a finite system. The existing calculations for finite nucleitial o
either employ the nuclear matter results with some kind of,, We derive in the present work the real part of the
local density approximation or parametrize the DBHF results Ca" Ca interaction potential in the frame work of RMFT.
for nuclear matter in terms of an effective Lagrangian which'We briefly describe the mean-field method in the next sec-
leads to the same prediction for nuclear matter as the origindion. Sections lll and IV derive the real part of the nucleus-
DBHF calculation[2]. These calculations have been ex- nucleus potential _and d|s_cuss the relativistic effects present
tended, in the same way, to the nucleon-nucl@sand the in the MFT. We discuss, in Sec. V, our results. Our conclu-
nucleus-nucleus[4] scattering problems. The nucleus- SiOns are summarized in Sec. VI.
nucleus interaction potential in R4#] has been calculated
microscopically using Dirac-Brueckner theory for nuclear Il. RELATIVISTIC MEAN-FIELD APPROACH
matter. The effective mass of the nucleon, in these calcula- IN NUCLEAR MATTER
tions, was first determined by solving the Dirac-Brueckner-
Goldestone equation for nuclear matter at rest and, at tht%e interaction of nucleong with a scalar fieldo and a
same time, the matrix elements NfN interaction between . o
. ; .vector fieldw, is given by[7]
two nucleons in nuclear matter were obtained. These matrix ”
elements have been used to derive a potential energy density J 1/ 9o
oo 3
y23

For symmetric nuclear matter, the Lagrangian describing

2
1
for two colliding nuclear matter by solving the nonrelativis- L=— 5 W) —U(o)— 4 FuoFuw

tic Brueckner-Goldestone equation. Some authors have stud- ®
ied the nucleon-nucleus scattering problem using relativistic 1, R o
mean-field theoryRMFT) [5,6] with the Lagrangian param- 5 Mw,0, 19,07\~ Jseeo, 1

eterized either to reproduce the DBHF results for nuclear

matter[3] or to fit the known properties of nuclear matter \wnhereF s the field stress tensor and

and some finite nucldi7]. The nonrelativistic limit of the w

mean-field theory Hamiltonian is essentially equivalent to 1 ,, 1 .1 ,

the Skyrme Hamiltoniaf8] which has been quite useful in U(o)=5 mso™+ 3 bo™+ 7 co™ @
studying nuclear structure and in obtaining the real part of

the nucleus-nucleus potentie]. It may be stated thdtl0] M, mg and m, are respectively the mass of the nucleon,
relativistic mean-field models, when applied to nuclear strucscalar meson, and vector mesgg;andg, are the scalar and
ture, achieve about the same agreement with experiment &ctor coupling constants.

the density dependent interactions in the nonrelativistic For rotationally and translationally invariant nuclear mat-
Hartree-Fock approximation. The conceptual advantage ier, the field equations in the mean-field approximation are
being fully relativistic and thus automatically produces the

spin-orbit force which has fundamental importance in m§a+ bo?+col=—geps, 3
nuclear physics. After deriving the nucleon-nucleus potential
using RMFT[3,7], a natural extension to the theory is to use ®»=0, (4)
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miwozgva (5)  The half radius paramet& is taken as a variational param-
eter to minimize the total energy of the nucleus.
(—ia-V+BM*)gi=(E—g,w0) @5 (6) (2) The real part of the nuclear potential between two

nuclei is defined as the difference between their energy at
The positive energy solutions of the Dirac equation are thelistanceR and at infinity[9], namely
usual plane wave solutions with a reduced mass

M*=M+g,0. They are U(R)=E(k, ,R) —E(k, ,). (16)

X
o~ o EX exp(iIZW. @) k, is the distance of the centers of two Fermi spheres which

5 =175 represent the local densities of target and projectile nuclei. It
ke+M*)Her M* ; o ; ;
( is related to the energy of the incident partidig, (target is
assumed to be at resby the following equation:

The source termg, and p, are given as a summation of
nucleons up to the top of the Fermi sph&gwhere
E(k,2)=M1+Mp+E_, (17
_ 4 kadsK o 4 jkfdsK M*
P (2m) L (2m) (k*+M*) whereM; andM are respectively the masses of the target
(8) and projectile nuclei. The total energy of the combined sys-
temE(k, ,R) is obtained by integrating the Hamiltonian en-

4 kg 2 . . L
= 3 t o =— K3 ergy density of the combined system of the two nuclei given
The energy densityg, is given by
g 2 HC(P): Hgorﬁ(P)erc(P), (18)
e=7—(M=M*)pst| =] pi+U(0), (10
v wherep is the density of the combined system. When the two
wherer is given by nuclei are far away the total energy is
k dk [K+MM* . . .
7-=4J 23 W—M . (11 E(kr,oo)=f{H (p7)+H (pp)}dr, (19
Ill. REAL PART OF THE ION-ION POTENTIAL whereH™(®) is the energy density of the targ@irojectile
. . nucleus given by an equation similar to E@8).
We use the energy density formalig®] to calculate the In the sudden approximation, the density of the combined

real part of the optical model potential between two nuclei.System isp=pp+ pr. The kinetic energy density(p), and
In this approach, we derive the ion-ion potential in the fol-the source densityy, of the combined system are calculated
lowing way [4]. at each integration point by performing the integration over
(1) We first calculate the total energy of one nuclélas  he yolume of the two spheres which represent the local den-
sities of the target and projectile nuclei at the point consid-
E:f dr .7(P), (12  ered. If the two spheres overlap, the Pauli exclusion principle
is taken into consideration by expanding the spheres to avoid

where.Z(r) is an energy density functional given by the double occupancy region.

S=e(p)+Heorlp) +Heoulp)- (13 IV. NONRELATIVISTIC APPROXIMATION
In Eq. (13), e(p) is given by Eq.(10), H..(p) is a surface It should be noted that in the following section terms up
term of the form to orderp® have been kept in the energy density. As pointed

out in Ref.[5], the description of this approximation as non-

Hoorl(p) = (ﬁ )2 (14) re!a.tivistic is not strictly accurate since terms of rglativistic
coP)=gpg Y P) origin have been kept in the energy density functional. The

Hamiltonian energy densitg(p) [given by Eqg.(10)] can be

and Heou(p) is the Coulomb energy density. The surfacewritten as

strength parameteny, is adjusted to reproduce the binding

energy and rms radius of the nucleus considered. We assume

the following Fermi type matter density distribution for the

nucleus:

2

e=r7+m, (20

where 7 and 7r are respectively the kinetic and potential en-
_ Po 15 &9y densities. The potential energy term of E2f)) can be
P [1+expr—Rp)/a]’ written as
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The fourth term in the last equation reduces in the nonrela-
tivistic approximation to a repulsive effective three-body in-
teraction or density dependent two-body interactid.
Also, it has been shown in Ref5] that the energy density
due to exchange of scalar mesons is given by
[—(1/2)(g2/m2)p2]. In the nonrelativistic limit it is equiva-
lent to the two terms[—(1/2)(g%/m2)p2+(1/2)(g?
m2)(p7/M*)]. The second term weakens the contribution of
the energy density from the scalar interaction and it has the
same effect as a momentum dependent intera¢Bhn

50

KINETIC ENERGY U [MeV|

V. NUMERICAL RESULTS AND DISCUSSION 50

We perform our calculations, in the present work, taking
the *%Ca°Ca scattering process as an example. We consider
RMFT with two sets of parameters. The first set is that de-
rived by Boguta and Moskowskyb] and we call it the BM 100
model. The second is the so-called BBoguta and Bodmeér
model used in Refl7]. These two models differ largely in
the value ofM*/M. While for the BM modeM*/M~0.7 at
the saturation density of nuclear matter, its value is 0.935 for
the BB model.

-150

Figure 1 shows the difference in the kinetic energy be- DISTANCE R [fm]
tween the composite and separate systduns.for two val-
ues of the relative momenturk, . For the BM model, this FIG. 1. The difference in the kinetic energy between the com-

difference is strongly attractive at small values of the sepaposite and separate systems for the nuclear Paia“°Ca calcu-
ration distanceR. This is due to the kinetic energy of the lated using both BB and BM model. Dashed curnés and (2)
combined system that depends on the effective mass, whiatorrespond to the BM model witk, =0.5 and 3 fm%, respectively;
becomes smaller at higher density valybt*/M~0.7 and  solid curves(3) and (4) are those for the BB model witk,=0.5
0.5 for p=0.16 and 0.32 frm® respectively. On the other and 3 fm %, respectively.
hand, at an integration poimt the density of the targepy,
and that of the projectilegp, correspond to two spheres in slowly with p, U is attractive and nearly energy indepen-
momentum space which strongly overlap at small values oflent as shown in Fig. 2. The differencelin, between BM
k, . The procedure of expanding the two overlapping sphereand BB models is due to the difference in parameters be-
to larger radii to avoid the double occupancy region in-tween the two models. For example, the strength of the sec-
creases the kinetic energy density of the combined systemnd term of Eq(21) for the BM model is about 40 times its
calculated at the point. This effect dominates a,=0.5  strength for the BB model.
fm ! andU_becomes positive foR>4 fm. Fork, =3 fm 2, Figure 3 shows the contribution df from the term
the two Fermi spheres are well separated in momenturh—(1/3)b(1—M*/M)3M?3] present in the Hamiltonian en-
space and the effective mass effect malesiegative for all  ergy density(let us name itUs). As pointed out in Sec. IV,
distances. this term reduce$1/16)t3p° and it corresponds, in the non-
For the BB model, the effect of effective mass Onis  relativistic approximation, to the contribution of the ion-ion
nearly absentM*/M~0.921 forp=0.32 fm > and 0.937 for  potential from a three-body force. The figure shows that
p=0.16 fm ) and the difference in kinetic energy betweenis weakly energy dependent and it is repulsive for the BM
the combined system and the separate system is positive miodel. On Fig. 3 we have also displayed the nonrelativistic
nearly all values ofk, . It behaves like the nonrelativistic approximation ofU; for a value of the parametey that
case. corresponds to Skyrme parameter set §J9]. Compared
Figure 2 shows the difference in potential enefty,)  with the contribution oU from this term, relativistic correc-
between the composite system and separate sykteroon-  tion makesU; less repulsive at all nucleus-nucleus separa-
tains a term which is quadratic gjmand other terms contain tion distancesR.
powers of (1-M*/M). For the BM model, wheréM™*/M Figure 4 represents the contribution@ffrom the energy
varies significantly withp, it is shown thatU  is strongly  density[—(1/2)(g2/m?2)p?2]. It represents the scalar interac-
energy dependent. It is strongly repulsive at small distanceon energy densityas pointed out in Sec.)llwhich is due
and becomes weakly attractive in surface and tail regiass to the exchange of scalar mesons. In the nonrelativistic ap-
shown in Fig. 2. For the BB model wheré1*/M varies  proximation it becomes[—(1/2)(g2/m2)p?+(1/2)(g?/
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FIG. 4. Curveqa) and(b) represent the contribution &f from
the energy density terni—(1/2)(g2/m2)p?] calculated for the
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FIG. 2. The same as Fig. 1 but for the contribution of the realnuCIear pair”Ca-"Ca using the BM model a,/A~6.3, 197.8
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FIG. 3. Comparison between thb; term and its corresponding
term in the nonrelativistic approximatioi/160°). The compari-
son has been made for the nuclear fd€a“°Ca using the BM
model. Curves labeled bgl) and (2) correspond respectively to
E /A~6.3 and 197.8 MeV.

MeV. Curve(c) represents the contribution &f from the nonrela-
tivistic approximation terni—(1/2)(g2/m?) p?.

m2)(p7/M*)]. The second term is the relativistic weakening
of the scalar density and has the same effect as a momentum
dependence of the scalar interaction. As shown in Fig. 4, the
effect of the relativistic weakening of the scalar density on
the nucleus-nucleus potential is large and increases as the
energy increases.

Figure 5 shows the total interaction potential for the
nuclear pai*®Ca“°Ca at different values of the incident en-
ergy per particleg, /A, calculated using the BM model. The
ion-ion potential shows strong repulsion in the inner region.
The surface and tail regions are attractive. The value of the
minimum of the curve increases as the valueEfA in-
creases tilE, /A~54 MeV, then it starts to decrease and the
curve calculated &, /A~200 MeV is higher than that cor-
responding t&E, /A~6 MeV. The shape and the energy de-
pendence of the ion-ion potential is similar to that calculated
using the Skyrme energy densjti/1].

Figure 6 is the same as Fig. 5 but t€a“*°Ca potential
has been calculated using the BB model. Except for
E /A~5.2 MeV, the ion-ion potential derived from the BB
model is strongly attractive in the inner region. In the surface
and tail regiongR>7 fm) its value is nearly the same as that
derived from the BM model forE, /A<100 MeV. For
greater values oE /A, it becomes more attractive in the
surface region compared to that of the BM model. This is
because its energy dependence decreas&s /& becomes
more than 100 MeV. The behavior bf(R) calculated from
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FIG. 5. The real part of the optical potential for the nuclear pair  F!G- 6. The same as Fig. 5 but calculated by using the BB
40Ca*%Ca calculated using the BM model. Curves labeledy ~ Model- Curves labeled bia), (b), (c), (d), and(e) correspond re-
(b), (©), (d), (e), and(f) correspond respectively & /A~6.3, 24.8, spectively toE, /A~5.3, 46.5, 124.1, 230.8, and 359.3 MeV.

54.5, 94.2, 142.4, and 197.8 MeV.

BB models. The values dRg, and U(Rg,) are taken from
the BB model can be easily understood from Figs. 1 and 2Ref.[13]. Table | shows the normalization factd{g andN,
For small values oE, /A, U is strongly repulsivedue to  required for the BM potential and the BB potential to fit the
the effect of the Pauli exclusion principlandU . is attrac- experimental data at the strong absorption radius for five
tive. As E /A increases, the contribution &f from the ki-  pairs of interacting nuclei. Except for the heavier pair
netic energy density) . becomes smaller and sint¢_is  “°Ca“Ca the predicted potential from the BB model or from
nearly energy independent the total potential becomes attrathe BM model at the strong absorption radius agrees well
tive. with that extracted from experiments at low energy per pro-

It is generally believed12] that the heavy ion elastic jectile particle(3.8—4.7 MeV. The ion-ion potential derived
scattering data fits the potential value only at the vicinity offrom the BM model is a little bit better than that derived
the strong absorption radilg,. We now compare the ion- from the BB model. For th8°Ca#°Ca pair, the two models
ion potential value obtained from experimenfat Rgp with predicted a weak potential that needs a factor of 1.6 in order
the corresponding quantities calculated using the BM ando agree with experiment. At higher ener@; /A=44 MeV)

TABLE I. The normalization factorsl; andN, require by BM and BB potentials, respectively, to fit the experimental values at the strong
absorption radius for five pairs of interacting nuch!M3Y andNPPM3Y are the normalization factors for the nonrelativistic potenfiaByY
andDDM3Y, respectively.

EL Rsa
System (MeV) (fm) NM3Y NPDOMSY N, N,
2c+40%ca 45 9.0 1.01 0.70 0.98 0.89
2c+40%ca 51 9.1 0.92 0.63 0.91 0.85
160+4Ca 74.4 9.3 1.03 0.71 1.06 1.03
“Oca+*Cca 143.6 10.7 0.99 0.64 1.62 1.60
401 4 6ONj 1760 10.15 0.60 0.56 0.53 0.39

12c+90z¢ 98 10.0 0.96 0.72 0.74 0.57
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the two models predict a more attractive potential than thatiuce the nuclear matter data and both the binding energy and
required to fit the data @g,. This potential should be nor- rms radii of the nuclei considered. The difference in effective
malized by 0.4 for BB and 0.53 for BM models. Table | mass between the two models has a large effect on both the
contains the normalization factol"'3Y andNPM3Y needed shape and energy dependence of the ion-ion potential. In the
by the nonrelativistic ion-ion real potential calculated usinginner and surface regions of the ion-ion potential, the BB
the well known nucleon-nucleon potential§13Y and model predicts a deeper potential compared with that pre-
DDM3Y of Refs.[14, 1§ to fit the data at the strong ab- dicted by the BM model. At the strong absorption radius we
sorption radius. The table shows that the relativistic ion-iorhave found that the potentials predicted by the two models
potentials agree well with the nonrelativistic potentials atagree well with those extracted from experiment for projec-
Rsa- tile energy per particle 3.8—4.7 MeV. At higher projectile
energy, RMFT predicts more attractive potential than that

VI. SUMMARY required by experiment.

We have studied the real part of the optical potential be-
tween two nuclei using relativistic mean-field t_heory Wl_th ACKNOWLEDGMENTS
two sets of parameters namely; a BM model with effective
mass of about 0.6 at the saturation density and a BB model We thank Dr. Larry Slater from the American University
whose effective mass is about unity. The two models proin Cairo for his language correction support.
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