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Inversion solution to heavy-ion optical model potential at intermediate energies
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In this paper we show by solving the inversion problem at high energies that the fundamental McIntyre
parametrization of theSmatrix, for heavy-ion collisions, will correspond to a Woods-Saxon-type optical model
potential. The parameters of such a Woods-Saxon potential are directly related to the corresponding paramete
of the McIntyre parametrization. The inversion solution results were tested for the available experimental data
and were found to be in good agreement.

PACS number~s!: 25.70.2z, 11.55.Bq, 24.10.Ht
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I. INTRODUCTION

Several attempts have been made lately to desc
elastic-scattering processes between heavy ions in term
the optical limit to Glauber’s model@1#. This simple model
could provide a good description of nucleus-nucleus scat
ing over a large energy range since its only inputs are
experimental nucleon-nucleon amplitudes and the rms r
of the nuclei involved.

The optical limit can be obtained from the basic assum
tions of Glauber theory which implies thatE@U andl!a,
with a as the distance on which the potentialU exhibits
significant variations,l is the wavelength, andE is the en-
ergy of the incident particle@2#.

For the use of the Glauber approach, the simultane
fulfillments of two conditions are required@2#; namely, the
validity of the eikonal approximation, in the framework o
which the deviations from rectilinear motion of the incide
particle are considered to be small and the validity of t
adiabatic approximation where the positions of the nucle
in the nucleus are assumed to be fixed during the flight ti
of the incident particle through the nucleus. At high ener
both conditions are satisfied simultaneously.

On the other hand, it has been shown that the use of
McIntyre parametrization of theS matrix for high-energy
heavy-ion collisions gives excellent fits to the elast
scattering data@3#. Actually, the McIntyre parametrization o
theS matrix proved to give good fits to the heavy-ion da
with as few as three parameters@4#.

Moreover, the optical-model analysis of heavy-ion elast
scattering experiments in the intermediate-energy range i
cates that the data are sensitive to the real part of the nucl
nucleus interaction for distances smaller than the stro
absorption radius@5#.

Thus based on the McIntyre parametrization of theSma-
trix and taking Glauber’s high-energy approximation into a
count, we solve for the heavy-ion optical-model potent
adopting a certain inversion procedure.

*Permanent address: Department of Physics, University of
fateh, P.O. Box 13217, Tripoli, Libya.
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In Sec. II we give details of our inversion solution. Then
in the next section we use the McIntyre parametrization o
theS matrix to obtain the phase-shift parameters which ar
used to construct a Woods-Saxon-type optical-model pote
tial.

Our calculations and results are given in Sec. IV and
where a comparison of our potential and the optical-mode
potentials, which give best fits to the data in the case o
12C-12C elastic scattering atElab51016 MeV@6,7#, is made.

In Sec. V we give a concluding discussion. It is also to be
noted that an important related appendix is encountered
the end of this paper.

II. THE SOLUTION OF THE INVERSION PROBLEM

Within the framework of Glauber’s eikonal approximation
@8#, we can relate the elastic-scatteringS-matrix element
S(b) directly to the corresponding optical-model potential
U(r ) in the following way:

S~b!5exp@ ix~b!#, ~1!

whereb is the corresponding impact parameter andx(b) is
the phase shift given by

x~b!5
2k

E E
b

` rU ~r !dr

Ar 22b2
, ~2!

whereU(r ) is the potential.
Further, writingx(b) in the form x(b)5xR(b)1 ix I(b)

and the corresponding optical potential asU(r )5V(r )
1 iW(r ) @V(r ) andW(r ) are real# we get

xR~b!52
k

E E
b

` rV~r !

Ar 22b2
dr ~3!

and

x I~b!52
k

E E
b

` rW~r !

Ar 22b2
dr. ~4!l-
2334 © 1996 The American Physical Society
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53 2335INVERSION SOLUTION TO HEAVY-ION OPTICAL MODEL . . .
Equations~3! and ~4! are of Abel’s type and the inverse
solution to these equation are given by@9#:

V~r !5
2E

kp

1

r

d

dr Er
` xR~b!bdb

Ab22r 2
~5!

and

W~r !5
2E

kp

1

r

d

dr Er
` x I~b!bdb

Ab22r 2
. ~6!

Equations~5! and ~6! give the potential in its general form.
To proceed further, we assume that our heavy-ion scat

ing regime is quasiclassical so that at high energies the ab
inversion solution may be adopted.

III. THE USE OF MCINTYRE PARAMETRIZATION

The McIntyre parametrization@3# for the elastic particle
wave matrix elementsl is normally given by@4#:

sl5usl uexp~2ide!, ~7!

where

usl u5F I1expS l 02 l

a D G21

~8!

and

d l5
m

11exp@~ l2 l 0!/a#
. ~9!

As can be seen from these two formulas the grazing a
gular momentuml 0 and its related widtha can be, in general,
different; therefore one may be dealing with either three
five parameters for theS matrix. Moreover, the grazing an-
gular momentuml 0 and the corresponding widtha are re-
lated to the reduced radiusr 0 and diffusivity d through the
following semiclassical relationship:

l 01
1

2
5kR0 ~10!

and

a5kd ~11!

with

R05r 0~AP
1/31AT

1/3!, ~12!

whereAP andAT are the mass numbers for the incident an
target nuclei, respectively.

In the above relations Coulomb effects are neglected; t
is because we are dealing with a high-energy scattering p
cess and because we are mainly interested in the nuc
potential.
er-
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Adopting the McIntrye parametrization, writing theSma-
trix in the form of Eq.~7! and taking into account Eq.~1!, we
obtain

ix~b!5 lnusl u12id l ~13!

from Eqs.~8!, ~9!, and~13!, we have

ixR~b!2x I~b!52 lnF11expS l 02 l

a D G
1

2im

11exp~~ l2 l 8!0 /a8!
. ~14!

With Eq. ~14! in mind and using Eqs.~10! and ~11!, we
obtain.

xR~b!5
2m

11exp@~b2b08!/d8#
~15!

and

x I~b!5 lnF11expS b02b

d D G , ~16!

whereb is the impact parameter normally given bykb5l
11/2 andb05R0 .

Analytical calculations of the optical-model potential
given by Eqs.~5! and ~6!, with the above phases is pract
cally very difficult; this is because the potentials cannot
well extracted atr50. Therefore, we shall for the momen
approximate the phasesxR(b) andx I(b) by the formulas

xR~b!52m (
n51

N

cnexpS 2nb2

a2 D ~17!

and

x I~b!5 (
n51

N

bnexpS 2nb2

b2 D . ~18!

These formulas can be shown to reproducexR andxI to a
high degree of accuracy with a restricted number of ter
and allow us to calculate the potential analytically@10#.

To show that this is the situation we present such a fit,
the nuclear density in the case of40Ca, in Fig. 1. We note that
12 terms were taken into account.

Now, inserting Eqs.~17! and~18! into Eqs.~5! and~6! we
get

V~r !52
4mE

pka (
n51

N

cnApn expS 2
nr2

a2 D ~19!

and

W~r !52
2E

pkb (
n51

N

bnApn expS 2
nr2

b2 D . ~20!
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It may, now, be apparent that the use of Eqs.~19! and~20!
greatly simplified the evaluation of our optical-model pote
tial and thus ended our inversion procedure. Yet, in w
follows and utilizing the above relations we develop
method which allows forV(r ) andW(r ) to be written in the
familiar Woods-Saxon forms.

To see that, let us rewriteV(r ) andW(r ) in the forms

V~r !52S 4mE

pka D f ~R8,D8,r ! ~21!

and

W~r !52S 2E

pkb D f ~R,D,r !, ~22!

where

f ~x0 ,a0 ,x!5
1

11exp@~x2x0!/a0#
. ~23!

With the above parametrization and as is shown in
Appendix, the following relations, between the parameters
the corresponding phase shifts, will hold. For the real pa

FIG. 1. A plot of the nuclear densityr(r ) for 40Ca ~solid curve!
with Woods-Saxon parameters taken asr05431023 fm23, R51.07
fm, anda50.545 fm; the dashed curve corresponds to the appr
mate density with 12 terms taken from the expansion of the fo
~21! and ~22!.
n-
at
a

he
of
t,

I 4~R8,D8!

I 2~R8,D8!
5
3

2

I 3~b08 ,d8!

I 1~b08 ,d8!
~24!

and

I 6~R8,D8!

I 4~R8,D8!
5
5

4

I 5~b08 ,d8!

I 3~b08 ,d8!
. ~25!

For the imaginary part,

I 4~R,D!

I 2~R,D!
5
3

4

I 4~b0 ,d!

I 2~b0 ,d!
~26!

and

I 6~R,D!

I 4~R,D!
5
5

6

I 6~b0 ,d!

I 4~b0 ,d!
, ~27!

whereI n(x0 ,a0) is an integral given by

I n~x0 ,a0!5E
0

` xndx

11exp@~x2x0!/a0#
~28!

and which can be evaluated analytically@11# ~see the Appen-
dix!.

Now, in a real application to any system we can evalu
the phase-shift parameters~b’s andd’s! from a fitting proce-
dure and hence the right-hand side of Eqs.~24!–~27!. Then,
in each case we get two nonlinear simultaneous equat
which we can solve by using a certain iteration proced
such as the Newton-Raphson method.

Once we get theR’s andD’s, then there remains only th
task of evaluating the parametersa andb in Eqs. ~21! and
~22!. For that purpose we insert Eqs.~21! and~22! into Eqs.
~3! and ~4! to get

xR~b!5
4m

pa E
b

` rdr

Ar 22b2$11exp@~r2R!/D#%
~29!

and

x I~b!5
2

pb E
b

` rdr

Ar 22b2$11exp@~r2R!/D#%
. ~30!

Taking into account Eqs.~15! and ~16! and puttingb50
in the resulting expressions, we find that

a5
2

p
@11exp~2b08/d8!#I 0~R8,D8! ~31!

and

b5
2

p

I 0~R,D!

ln@11exp~b0 /d!#
, ~32!

whereI 0(R8,D8) is given by

xi-
ms
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I 0~R8,D8!5R81D8ln@11exp~2R8/D8!# ~33!

and I 0(R,D) is given by a similar expression inR andD.
Now, Eqs.~21! and ~22! can be rewritten in form

V~r !5
2V0

11exp@~r2R8!/D8#
~34!

and

W~r !5
2W0

11exp@~r2R!/D#
, ~35!

whereV0(54mE/pha) andW0(52E/phb) represent the
depths of the optical-model potential.

Thus, we have succeeded, through our inversion pro
dure, in obtaining Woods-Saxon-type optical-model pot
tials with parameters that can be determined directly fr
the McIntyre parametrization of the phase shift.

IV. APPLICATION TO 12C-12C SYSTEM AT E lab51016
MeV

We shall apply, here, the preceding formalism to the sy
metric system12C-12C and as it can be seen, the prese
method yields a five-parameter fit to any data. These par
eters arem, R8, R, D8, andD, and for the12C-12C system
these are obtained on the basis of the phase-shift ana
carried out by Mermaz@4#. In doing that Coulomb effects on
the parameters are to be substracted.

The reduced radiusr 0 and diffusivityd are related to the
grazing angular momentum and angular momentum w
through the following semiclassical relationship@4#:

l 05kR0S 12
2h

kR0
D 1/2 ~36!

and

a5kdS 12
h

kR0
D S 12

2h

kR0
D 1/2. ~37!

Using the data from Mermaz@4# for l 0, l 08 , a, anda8 and
calculating the other related parameters~such ash, k, etc.!,
we get the phase-shift parameters asb054.981 87 fm,b08
53.075 95 fm,d50.598 26 fm, andd850.922 54 fm. Note
that Coulomb effects have been substracted off in evalua
the parameters cited above.

Now with these parameters at hand and with referenc
the Appendix, we can evaluateI i(b08 ,d8) ~i51,3,5! and
I i(b0 ,d) ~i52,4,6! and use them with Eqs.~24!–~27! to
write down two sets of nonlinear simultaneous equations
$R8,D8% and $R,D%, respectively.

Using an iteration procedure such as the modifi
Newton-Raphson method we can solve forR, D, R8, andD8.
Their values are

R53.811 417, D50.6671, R853.3558,

and
ce-
n-
om

m-
nt
am-

lysis

dth

ting

to

for

ed

D850.87.

Moreover we get from Eqs.~31! and ~32! that a52.224 51
andb50.291 75. Accordingly we obtain

V05112.276 MeV and W0591.745 MeV.

V andW can be calculated now and the results are given
Figs. 2 and 3 with a comparison made with the best
Woods-Saxon geometry adopted for the same system@6,7#.

From these figures we clearly see that our procedure i
good agreement with the best-fit Woods-Saxon potentia
far as the real part is concerned; while it gives a much dee
potential for the imaginary one.

On the other hand, if we parametrize the absorption co
ficient by h(b)[uSl u

2 rather thanuSl u as is taken by many
authors@5#. Then we have

xR5
2m

11exp@~ l2 l 08!/a#
~38!

and

x I~b!5
1

2
lnF11expS l 02 l

a D G . ~39!

FIG. 2. The real part of the optical-model potential for12C-12C
scattering atElab51016 MeV. The solid curve corresponds to th
inversion solution; while the dashed and dotted curves refer to
experimental data from@6,7#, respectively.
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Thus, the only change we obtain, due to this new para
etrization, is that Eq.~16! is multiplied by a factor of one-
half so that all related equations must be multiplied by t
same factor. The final expected result is that the depth of
imaginary potentialW0 will be reduced by a factor of one-
half and hence becomes much closer to the best-fit poten
This is illustrated in Fig. 4 and where the curves have t
same meanings as before.

V. CONCLUDING DISCUSSION

We have seen, through our inversion procedure, that
were able to relate the McIntyre parametrization of theS
matrix to a Woods-Saxon-type optical-model potential.

The assumption that the ions have straight-line trajec
ries through the scattering processes made it possible to
the semiclassical approach and thus to make a corresp
dence between the high-energy approximation and
partial-wave expansion for the scattering amplitude.

It is to be emphasized that Coulomb effects contribu
negligibly ~>1%! to the various parameters of the McIntyr
parametrization in our case of the12C-12C scattering.

As to the result obtained for the depth of the imagina
part of the optical potential, it can be understood on t
lights of the parametrization procedure we have followe
The multiplication factor present inW0 can be reduced if we
parametrize the absorption coefficient ash(b)[uSl u

2 rather
thanuSl u given by Eq.~1!; this was shown to be the case an

FIG. 3. The imaginary part of the optical-model potential fo
12C-12C scattering atElab51016 MeV. The solid curve correspond
to the inversion solution; while the dashed and dotted curves re
to the experimental data from@6,7#, respectively.
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the depth of the imaginary potential got reduced by a fact
of one-half and became much closer to the best-fit potenti

We should point out, also, that many relations between t
I n’s other than those obtained in Eqs.~24!–~27! are satisfied
with our values of the potential parameters; for instance a
other set of equations between theI n’s may be

I 8~R8,D8!

I 6~R8,D8!
5
7

6

I 7~b08 ,d8!

I 5~b08 ,d8!
~40!

and

I 8~R,D!

I 6~R,D!
5
7

8

I 8~b0 ,d!

I 6~b0 ,d!
. ~41!

These two equations are exactly satisfied by the same val
obtained previously for the optical potential parameter
more details are given in the Appendix.

In addition, we should note that within the WKB approxi-
mation the inverse scattering method was applied to obta
an optical potential from a strong absorption fit to data fo
12C-12C scattering and that theS matrix, there, was repre-
sented by a rational function. The present results are cons
tent with those obtained previously@12–14#. Moreover, writ-
ing the S matrix as a sum of Gaussians enabled us

r

fer

FIG. 4. The imaginary part of the optical-model potential fo
12C-12C scattering atElab51016 MeV. The solid curve corresponds
to the inversion solution~second parametrization!; while the dashed
and dotted curves refer to the experimental data from@6,7#, respec-
tively.
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construct a Woods-Saxon-type optical-model potential a
hence to get the potential down tor50.

Finally, it is to be mentioned that, in principle, Coulom
effects can be incorporated in the present calculations;
the situation, then, will be much more involved@15#.
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APPENDIX

In this appendix we give detailed calculations of the p
rametersR, D, R8, andD8 in terms of the impact parameter
~b0 andb08! and diffusivities~d andd8!.

Comparing Eqs.~15! and~16! with Eqs.~17! and~18!, we
have

1

11exp@~b2b08!/d8#
5(

n
cnexpS 2nb2

a2 D ~A1!

and

lnF11expS b02b

d D G5(
n

bnexpS 2nb2

b2 D . ~A2!

Now, introducing the integral

I n~x0 ,a0!5E
0

` xndx

11exp@~x2x0!/a0#
~A3!

and using Eqs.~A1! and ~A2! we get

I n~b08 ,d8!5(
n

cnE
0

`

bn expS 2nb2

a2 Ddb ~A4!

and

I n~b0 ,d!5
2d

b2 (
n

bnnE
0

`

bn11 expS 2nb2

a2 Ddb. ~A5!

Accordingly we have, forI n(b08 ,d8),

I n~b08 ,d8!5
1

2 S n21

2 D !an11(
n

cn
n~n11!/2 n51,3,5,...,11.

~A6!

Also, for I n(b0 ,d), we find

I n~b0 ,d!5dS n

2D !bn(
n

bn
nn/2 , n52,4,...,12. ~A7!

Thus, from Eq.~A6!, we obtain
nd

b
but

nd
r

a-
s

I n12~b08 ,d8!

I n~b08 ,d8!
5S n11

2 Da2

(
n

cn /n
~n13!/2

(
n

cn /n
~n11!/2

, n51,3,...,9.

~A8!

Similarly, from Eq.~A7!, we get

I n12~b0 ,d!

I n~b0 ,d!
5S n

2
11Db2

(
n

bn /n
n/211

(
n

bn /n
n/2

, n52,4,...,10.

~A9!

On the other hand, from Eqs.~19! and~20! and Eqs.~21!
and ~22!, we get

1

11exp@~r2R8!/D8#
5(

n
cnAnp expS 2nr2

a2 D
~A10!

and

1

11exp@~r2R!/D#
5(

n
bnAnp expS 2nr2

b2 D .
~A11!

Again, from these relations, we obtain

I n12~R8,D8!

I n~R8,D8!
5S n11

2 Da2

(
n

cn /n
n/211

(
n

cn /n
n/2

, n52,4,...,10.

~A12!

We, also, get

I n12~R,D!

I n~R,D!
5S n11

2 Db2

(
n

bn /n
n/211

(
n

bn /n
n/2

, n52,4,...,10.

~A13!

Comparing Eq.~A8! with Eq. ~A12!, we find

I n12~R8,D8!

I n~R8,D8!
5S n11

n D I n11~b08 ,d8!

I n21~b08 ,d8!
, n52,4,...,10.

~A14!

Again, comparing Eq.~A9! with Eq. ~A13!, we find

I n12~R,D!

I n~R,D!
5S n11

n12D I n12~b0 ,d!

I n~b0 ,d!
, n52,4,...,10.

~A15!

Further, from the analytic relation forI n(x0 ,a0), we have
@11#



2340 53H. M. FAYYAD, T. H. RIHAN, AND A. M. AWIN
I n~x0 ,a0!5
x0

n11

n11
1 (

m50

n

@12~21!m#
n!x0

n2m

~n2m!!
a0
m11~1222m!j~m11!2 (

k51

`

~21!n1kexpS 2
kx0
a0

D n!
a0

n11

kn11 ,

~A16!
wherej(z) is the Riemann zeta function.
Equation~A16! can be simplified somewhat@11#; since

the infinite sum in the last term can be neglected. For th
case of n52, with typical values ofx052.0608 fm and
a050.513 fm for16O, the last term, if neglected would only
introduce an error inI 2 which amounts to;0.02%.

From Eq.~A16!, we find that
e
I 0~x0 ,a0!5x02 (

k51

`

~21!kexpS 2
kx0
a0

D a0
k

~A17!

or

I 0~x0 ,a0!5x01a0lnF11expS 2
x0
a0

D G . ~A18!
.
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