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Inversion solution to heavy-ion optical model potential at intermediate energies
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In this paper we show by solving the inversion problem at high energies that the fundamental Mclintyre
parametrization of th& matrix, for heavy-ion collisions, will correspond to a Woods-Saxon-type optical model
potential. The parameters of such a Woods-Saxon potential are directly related to the corresponding parameters
of the Mclintyre parametrization. The inversion solution results were tested for the available experimental data
and were found to be in good agreement.

PACS numbgs): 25.70-~z, 11.55.Bq, 24.10.Ht

[. INTRODUCTION In Sec. Il we give details of our inversion solution. Then
in the next section we use the Mcintyre parametrization of

Several attempts have been made lately to describthe S matrix to obtain the phase-shift parameters which are
elastic-scattering processes between heavy ions in terms gfed to construct a Woods-Saxon-type optical-model poten-
the optical limit to Glauber’s moddlL]. This simple model tial.
could provide a good description of nucleus-nucleus scatter- Our calculations and results are given in Sec. IV and
ing over a large energy range since its only inputs are thévhere_a comp_ariso_n of our p_otential and the_ optical-model
experimental nucleon-nucleon amplitudes and the rms ragfotentials, which give best fits to the data in the case of
of the nuclei involved. C-12C elastic scattering d,,,=1016 MeV[6,7], is made.

The optical limit can be obtained from the basic assump- In Sec. V we give a concluding discussion. Itis also to be
tions of Glauber theory which implies th&s>U and\<a, noted that an important related appendix is encountered at
with a as the distance on which the potentidl exhibits ~ the end of this paper.
significant variations) is the wavelength, an# is the en-
ergy of the incident particlg2]. Il. THE SOLUTION OF THE INVERSION PROBLEM

For the use of the Glauber approach, the simultaneous

fulfillments of two conditions are requird@]; namely, the Within the framework of Glauber’s eikonal approximation

f [8], we can relate the elastic-scatteriggmatrix element

validity of the eikonal approximation, in the framework o : X ) .
which the deviations from rectilinear motion of the incident S(b) _dlrectly to the corrgspondlng optical-model potential
U(r) in the following way:

particle are considered to be small and the validity of the
adiabatic approximation where the positions of the nucleons )
in the nucleus are assumed to be fixed during the flight time S(b)=exdix(b)], 1)

of the incident particle through the nucleus. At high energy . L .
both conditions are satisfied simultaneously. whereb is the corresponding impact parameter at) is

On the other hand, it has been shown that the use of thtlgJe phase shift given by

Mclintyre parametrization of th& matrix for high-energy

heavy-ion collisions gives excellent fits to the elastic- —k (= rU(r)dr

scattering daté3]. Actually, the Mcintyre parametrization of x(b)=— o D2 )
the S matrix proved to give good fits to the heavy-ion data

with as few as three parametgd. whereU(r) is the potential.

Moreover, the optical-model analysis of heavy-ion elastic-  Fyrther, writing x(b) in the form y(b) = xr(b) +i x,(b)

scattering experiments in the intermediate-energy range indiyng the corresponding optical potential &Kr)=V(r)
cates that the data are sensitive to the real part of the nucleus=jw(r) [v(r) andW(r) are rea) we get

nucleus interaction for distances smaller than the strong
absorption radiugs].

Thus based on the McIntyre parametrization of Shea- by — ko= rv(r) q 3
trix and taking Glauber’s high-energy approximation into ac- Xr(b)= EJo rZ—p? ' ®)
count, we solve for the heavy-ion optical-model potential
adopting a certain inversion procedure. and

. . : N K (= rW(r)
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Equations(3) and (4) are of Abel's type and the inverse  Adopting the Mclintrye parametrization, writing ti&ema-
solution to these equation are given [8}: trix in the form of Eq.(7) and taking into account E¢l), we
obtain

2E1 d (= xx(b)bdb . .
ViO=1—Tar N 5 ix(b)=In|s|+2i 4 (13

from Egs.(8), (9), and(13), we have

and
| <
2E1 d (= x,(b)bdb ixr(b)—x;(b)=—In1+exp —
wiry= 2219 [~ x(bbdd ©) Xr(0) = xi(b) p( A
kmrdr ), Jp?2—r2
2ip
Equations(5) and (6) give the potential in its general form. + Trexp(I—1g/a)’ (14

To proceed further, we assume that our heavy-ion scatter-
ing regime is quasiclassical so that at high energies the above With Eg. (14) in mind and using Egs(10) and (11), we

inversion solution may be adopted. obtain.
Ill. THE USE OF MCINTYRE PARAMETRIZATION 21
o . . XR(O) = 4 (b—by)/d] (19
The Mclintyre parametrizatiof3] for the elastic particle 0
wave matrix elemens; is normally given by{4]: and
si=|s/|exp(2i &), (7) bo—b
x;(b)=In 1+ex;{ ) , (16)
where d

-1 whereb is the impact parameter normally given kp=/
|+exp( Oa ” @ L2 andb=Ry.

|sil= Analytical calculations of the optical-model potentials,
given by Egs.(5) and (6), with the above phases is practi-
and cally very difficult; this is because the potentials cannot be
well extracted ar =0. Therefore, we shall for the moment
m approximate the phasas(b) andy,(b) by the formulas
5'_1+exp{(l —lg)/al” © y
—nb?
As can be seen from these two formulas the grazing an- xr(b)=2pu 21 Cn€XP —_2 ) (17)
n=

gular momentunh, and its related widtla can be, in general,
different; therefore one may be dealing with either three o nd
five parameters for th& matrix. Moreover, the grazing an-
gular momentum and the corresponding width are re- N
lated to the reduced radiug and diffusivity d through the b)— E b —nb?
following semiclassical relationship: xi(b)= 2, bnexp —z7—

52 (18
These formulas can be shown to reprodygeand y; to a
lo+ 5 =kRy (100 high degree of accuracy with a restricted number of terms
and allow us to calculate the potential analyticdly].
and To show that this is the situation we present such a fit, for
the nuclear density in the case®d€a, in Fig. 1. We note that
12 terms were taken into account.

a=kd (1) Now, inserting Eqs(17) and(18) into Egs.(5) and(6) we
with get
_ 13, A3 N 2
mKa =1 o
whereAp andA; are the mass numbers for the incident and
target nuclei, respectively. and
In the above relations Coulomb effects are neglected; this
is because we are dealing with a high-energy scattering pro- N 5
cess and because we are mainly interested in the nuclear W(r):_Z_E E b ﬁ ex;{ _1)_ (20)
potential. = B



2336 H. M. FAYYAD, T. H. RIHAN, AND A. M. AWIN 53

14(RA) 3 15(b5,d")

° I(RA7) 2 14(bg,d") 29
and
s I6(R',A") 5 15(bj,d") 5
14(R",A") 4 14(by,d")"
For the imaginary part,
3
_ 14(R,A) 3 14(b,d) (26)
5 12(RA) ~ 4 15(bo,d)
e \ and
l6(R,A) 5 14(bg,d)
1(RA) 6 14bp,0)’ @
1 wherel (Xg,80) is an integral given by
| _fw x’dx 28
‘ | | I »(X0,80) = o 1+exd (x—xo)/ao] (28)
0
0 1 2 3 4 5 6 ! and which can be evaluated analyticdllyi| (see the Appen-
dix).
r (fm)

Now, in a real application to any system we can evaluate
FIG. 1. A plot of the nuclear density(r) for “°Ca(solid curve  the phase-shift parameteis's andd’s) from a fitting proce-
with Woods-Saxon parameters takerpgs4x10~3fm~3 R=1.07  dure and hence the right-hand side of E@}—(27). Then,
fm, anda=0.545 fm; the dashed curve corresponds to the approxiin each case we get two nonlinear simultaneous equations
mate density with 12 terms taken from the expansion of the formgvhich we can solve by using a certain iteration procedure
(21) and(22). such as the Newton-Raphson method.
Once we get th&'s andA'’s, then there remains only the
It may, now, be apparent that the use of H49) and(20)  task of evaluating the parametersand 8 in Egs. (21) and
greatly simplified the evaluation of our optical-model poten-(22). For that purpose we insert Eq21) and(22) into Egs.
tial and thus ended our inversion procedure. Yet, in what3) and(4) to get
follows and utilizing the above relations we develop a
method which allows foW(r) andW(r) to be written in the

familiar Woods-Saxon forms. Yr(b)= A [~ rdr (29)
To see that, let us rewrité(r) andW(r) in the forms ma Jo \r?—p?1+exd (r—R)/A]}
and
4uE
V(r)=—(—)f(R’.A’,r) (21
mKa
(b)= 2 (= rdr (30
and XV™ 7B |y rT—b2{1+exd(r—R)/AT}
e Taking into account Eqg15) and(16) and puttingb=0
__ in the resulting expressions, we find that
W(r) (—Wkﬂ)fm,A,r), (22
2
where a=;[1+exp(—b(’)/d’)]|0(R’,A’) (31
1 and
FX0.20. %)= 1 e (x—xo)/ag] @
2 1o(R,A)
With the above parametrization and as is shown in the p= 7 In[1+exp(by/d)]’ (32

Appendix, the following relations, between the parameters of
the corresponding phase shifts, will hold. For the real part, wherelo(R",A") is given by
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Io(R",A")=R'"+A’'In[1+exp —R'/A")] (33

andly(R,A) is given by a similar expression iR and A.
Now, Eqgs.(21) and(22) can be rewritten in form

-20

V) = L exd (r—R)/A] (39
and 0
V(S E— (35 0

~ 1+exd(r—R)/A]’

Vir}MeV)

whereVy(=4uE/mha) and Wy(=2E/7hB) represent the
depths of the optical-model potential.

Thus, we have succeeded, through our inversion proce-
dure, in obtaining Woods-Saxon-type optical-model poten-
tials with parameters that can be determined directly from -100
the Mclintyre parametrization of the phase shift.

IV. APPLICATION TO 2C-2C SYSTEM AT E p=1016 -120
MeV

We shall apply, here, the preceding formalism to the sym- Lol
metric system*?C-’C and as it can be seen, the present _1400 1 2 3 4 5 6 71 8 9 10
method yields a five-parameter fit to any data. These param-
eters areu, R’, R, A’, and A, and for the’®C-'°C system r(tm)
these are obtained on the basis of the phase-shift analysis
carried out by Mermag4]. In doing that Coulomb effects on FIG. 2. The real part of the optical-model potential f6€-'*C
the parameters are to be substracted. scattering at,,,=1016 MeV. The solid curve corresponds to the

The reduced radius, and diffusivity d are related to the inversion solution; while the dashed and dotted curves refer to the
grazing angular momentum and angular momentum widtlexperimental data frorf6,7], respectively.
through the following semiclassical relationshi:

A'=0.87.
27] 1/2
|o:kRo( 1- KR (360 Moreover we get from Eqg31) and (32) that @=2.224 51
and 8=0.291 75. Accordingly we obtain
and
Vp=112.276 MeV and Wy=91.745 MeV.
7 27’ 1/2
a=kd| 11— —|{1-+—=]| . (37 . .
KRy KRy V andW can be calculated now and the results are given in

) Figs. 2 and 3 with a comparison made with the best-fit
Using the data from Merma] for Io, I5, a, anda’ and  woods-Saxon geometry adopted for the same sy§&i
calculating the other related parametéssch asn, k, etc), From these figures we clearly see that our procedure is in
we get the phase-shift parametersigs-4.981 87 fm,b;  good agreement with the best-fit Woods-Saxon potential as
=3.075 95 fmd=0.598 26 fm, andl'=0.922 54 fm. Note far as the real part is concerned; while it gives a much deeper
that Coulomb effects have been substracted off in evaluatingotential for the imaginary one.
the parameters cited above. On the other hand, if we parametrize the absorption coef-
Now with these parameters at hand and with reference tficient by 7(b)=|S|? rather than|S| as is taken by many
the Appendix, we can evaluatg(by.d’) (i=1,3,59 and authors[5]. Then we have
li(bg,d) (i=2,4,6 and use them with Eqs24)—(27) to
write down two sets of nonlinear simultaneous equations for

{R’,A’} and{R,A}, respectively. _ 2p (39)
Using an iteration procedure such as the modified XR 1+exd (I—-1g)/a]

Newton-Raphson method we can solve RrA, R, andA’.

Their values are and

R=3.811417, A=0.6671, R’'=3.3558,

1 lo—I
X|(b):§|n 1+exp<T”. (39

and
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W(r)(MeV)

W(r(MeV)

-70+

-100 | | | ] | ] | | | -80 | | | 1 | | | | |
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FIG. 3. The imaginary part of the optical-model potential for FIG. 4. The imaai . .

: . .4 ginary part of the optical-model potential for
12C12C scattering aE;,,=1016 MeV. The solid curve corresponds 120.12¢ scattering aEjy,—=1016 MeV. The solid curve corresponds
to the inversion solution; while the dashed and dotted curves refetro the inversion solutig(second parametrizatigrwhile the dashed
to the experimental data frofi6, 7], respectively. and dotted curves refer to the experimental data ff6/|, respec-

tively.
Thus, the only change we obtain, due to this new param-
etrization, is that Eq(16) is multiplied by a factor of one-  the depth of the imaginary potential got reduced by a factor
half so that all related equations must be multiplied by thepf one-half and became much closer to the best-fit potential.
same factor. The final expected result is that the depth of the e should point out, also, that many relations between the
imaginary potentialW, will be reduced by a factor of one- | ‘s other than those obtained in Eq24)—(27) are satisfied

half and hence becomes much closer to the best-fit potentiakith our values of the potential parameters; for instance an-
This is illustrated in Fig. 4 and where the curves have theyther set of equations between this may be

same meanings as before.

lg(R",A") B 7 14(bg,d")
Is(R",A") 6 15(bg,d")

V. CONCLUDING DISCUSSION (40

We have seen, through our inversion procedure, that we
were able to relate the Mcintyre parametrization of #ie and
matrix to a Woods-Saxon-type optical-model potential.
The assumption that the ions have straight-line trajecto-
ries through the scattering processes made it possible to use lg(R,A) _ z lg(Do.d)
the semiclassical approach and thus to make a correspon- l6(R,A) 8 1g(bo,d)
dence between the high-energy approximation and the
partial-wave expansion for the scattering amplitude. These two equations are exactly satisfied by the same values
It is to be emphasized that Coulomb effects contributeobtained previously for the optical potential parameters;
negligibly (=1%) to the various parameters of the McIntyre more details are given in the Appendix.
parametrization in our case of tHé&C-12C scattering. In addition, we should note that within the WKB approxi-
As to the result obtained for the depth of the imaginarymation the inverse scattering method was applied to obtain
part of the optical potential, it can be understood on thean optical potential from a strong absorption fit to data for
lights of the parametrization procedure we have followed*C-*°C scattering and that th8 matrix, there, was repre-
The multiplication factor present W, can be reduced if we sented by a rational function. The present results are consis-
parametrize the absorption coefficient a&)=|S|? rather  tent with those obtained previougl¥2—14. Moreover, writ-
than|S| given by Eq.(1); this was shown to be the case anding the S matrix as a sum of Gaussians enabled us to

(41)
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construct a Woods-Saxon-type optical-model potential and

hence to get the potential down tte-=0. (b d’) il 2 Cp/n( 32
Finally, it is to be mentioned that, in principle, Coulomb 2o, )0,2 " . v=13,...9
effects can be incorporated in the present calculations; but !,(bg,d") 2 RN e
the situation, then, will be much more involvets). 7 "
(A8)
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APPENDIX n
(A9)

In this appendix we give detailed calculations of the pa-
rametersR, A, R’, andA’ in terms of the impact parameters ~ On the other hand, from Eqél9) and(20) and Egs(21)

(b, andby) and diffusivities(d andd’). and(22), we get
Comparing Eqs(15) and(16) with Egs.(17) and(18), we
have 1 —nr?
1+exp:(r—R’)/A’]:; CoVnT exp —z )
1 —nb? (A10)
1+exd(b—bg)/d'] =2 C“ex“( o2 ) (A1) and
and
1 —nr?
, 1+exr[(r—R)/A]:; by ex B2 )
bo—b —nb ALl
In 1+ expl — = bex at (A2) (A11)
n

Again, from these relations, we obtain
Now, introducing the integral

E c. /nv2t1
n

w ) fm x’dx (A3) l,+2(R",A") v+1| , 24 10
(X0,80) = AT a , v=24,..,10.
1+ — I (R",A 2
0 EXF[(X Xo)/ao] V( ) 2 Cn/nVIZ
n
and using Eqgs(Al) and (A2) we get (A12)
> We, also, get
—nb
I,(bg,d")= 2 fb ex )db (A4)
2 bn/nvl2+1
| R,A +1
and v2(RA) (L), . v=2,4,..,10.
I (R,A) 2 2
> b,/n*
2d o —nb? n
|V(b0,d):E22 bnnf b”*1 ex —7—|db. (A5) (A13)
n 0
Comparing Eq(A8) with Eq. (A12), we find
Accordingly we have, fot (b} ,d"),
l,.2(R,AYY  [v+1) 1,4(b§,d")
| b’ d, _1 y—1 | V+12 Cn 13 1 Ii(zR/,A/) = » |VJ_r1(bZ,d,)’ V=2,4,..-,10.
W(bo.d")=5 | ——|la v 9..,1L (A14)
(A6) Again, comparing Eq(A9) with Eg. (A13), we find
Also, for | (by,d), we find
l,.o(R,A +1\ 1,.(bp.d
vt 2( )= v +2(bg )1 v=2.4....10.
v b, L(RA) w42/ 1,(by.d)
l(bo,d)=d| 5 18" —m. v=24,..12. (A7) (A15)
n

Further, from the analytic relation far(xq,ay), we have
Thus, from Eq.(A6), we obtain [11]
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gt vixg™™ ” » kxo| agtt

— _ m___ Y am —_o—m _ _ v Y _—

(0,20 = g+ 2 [1=(~ D" = ral ™ 1-2Mem+ )= 3, (- 1) exp( 2 |V T
(A16)

|

where&(z) is the Riemann zeta function. % kxo| ag

Equation(A16) can be simplified somewhaii1]; since Io(xo,ao)zxo—E (—1)kex;<—a—) * (A17)
= 0

the infinite sum in the last term can be neglected. For the
case of v=2, with typical values ofx,=2.0608 fm and
a,=0.513 fm for'®0, the last term, if neglected would only
introduce an error in, which amounts to~0.02%.

From Eq.(A16), we find that lo(Xo,80) =Xo+apln

-
lrexg - || (A18)

0
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