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Modified three-body full-folding optical model potential

T. H. Rihan*
Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Moscow Region) 141980, R

~Received 5 September 1995!

The optical model potential for nucleon elastic scattering is investigated within the context of a three-body
model. It is shown that the standard full-folding optical model potential is obtained as a special case of an
approximate solution to such a three-body problem. A new full-folding-type optical model potential together
with its corresponding factorizedtr version are then obtained in the above three-body picture under some
plausible approximations.

PACS number~s!: 24.10.Ht, 21.45.1v, 25.40.Cm
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I. INTRODUCTION

The basic ingredient in the multiple-scattering theory
the optical model potential is, as is well known, the scatt
ing amplitude of the projectile on a bound-target nucle
This amplitude is, however, a complicated many-body ope
tor. Therefore, a common practice is to approximate it
another operator that does not contain the full complexity
the target Hamiltonian. Most of these approximations res
in an optical potential which is calculated by folding th
target density with an effective projectile-bound targ
nucleon interaction~the so-called folding model!. Assuming,
however a single-particle description of the target sta
with the projectile interacting with only one target nucleon
a time while the remaining nucleons act as spectators~and/or
a passive core!, the above scattering amplitude becomes
solution to a three-body problem@1#. This three-body mode
for the projectile-bound target nucleon amplitude has the
vantage that the reactive content of the corresponding op
model potential becomes better understood and recoil eff
are included correctly. An approximate solution to the abo
three-body problem was then advanced@2#, for the case
when the projectile is very light as compared to the tar
nucleon. Further, an extension of such a solution to the c
of arbitrary projectiles was subsequently developed by
@3#. In actual applications, however, these three-body so
tions require~in principle! the knowledge of the off-shel
projectile-bound target nucleont-matrix element and the
complete set of that bound nucleon-core states. There
besides the need to introduce a plausible form~normally
separable! for the projectile-bound target nucleont matrix,
the resulting optical model potential becomes largely dep
dent on the models used to generate the full target nucle
core spectrum@2#.
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In the present work we shall show at first that the stand
full-folding expression for the optical model potential@4# can
be directly obtained from our extended three-body solut
@3# adopting the same underlying assumptions. Moreover
present a consistent treatment within our three-body
proach to avoid the above-mentioned problem of tar
structure models. This then results in a new full-folding e
pression for the optical model potential. This full-folding e
pression, besides being more exact, has the advantage
the projectile-bound target nucleont matrix appearing in it
comes half-on-shell. Further, based on the above resu
new factorizedtr structure for the optical model potenti
which reflects the above three-body picture is also de
oped.

In Sec. II, we derive, starting from our three-body so
tion, the standard full-folding expression for the optic
model potential. Then, we present the details of our tre
ment which leads to a new full-folding expression. Furth
we develop our factorizedtr approximation. In Sec. III we
draw the main conclusions of the present work.

II. THE OPTICAL MODEL POTENTIAL

In this section, let us consider the solution to the thr
body optical model potential as given in@3#. The three bod-
ies are the projectilep with massmp , an active target
nucleon j ~with which the projectile interacts! with mass
mj , and an inert corec comprising the rest of the targe
nucleus with massmc . Upon introducing a complete set o
states$f̄n% that describes the active target nucleon-core r
tive motion together with its corresponding set of eigenv
ues$en%, then to a very good approximation the first-ord
optical model potential can be given~in momentum space!
by ~cf. Eq. ~2.15! of @3#!:
Egypt.
^k8uVopt~E!uk&5
A21

A (
j51

A

(
n
E dQdQ8^f̄ j uQ82ck8&^Q2ckuf̄ j&^Q8uf̄n&^f̄nuQ&F ^k82aQ8uVuk2aQ&

1(
l
E dx

^k82aQ8uVux
l
&^x

l
ux&^x2aDuVuk2aQ&

E11e j2en2El1~ac\2/2m̄ !Q82 G . ~1!

*On leave from Department of Mathematics and Theoretical Physics, Atomic Energy Authority, P. O. Code 13759, Cairo,
2328 © 1996 The American Physical Society



ion with

er

the

odels for
usually
gy

um-

53 2329MODIFIED THREE-BODY FULL-FOLDING OPTICAL MODEL . . .
Herek andk8 are the initial and final projectile momenta, respectively, and A is the number of target nucleons whileE is the
projectile’s energy.x

l
is another complete set of states that describes the projectile’s active target nucleon relative mot

its corresponding set of eigenvaluesEl , while V is the interaction potential governing that motion. The summation overj in
the above equation runs only over all occupied states in the target nucleus ground state while the summation ovn will
exhaust the whole spectrum of the active target nucleon-core states. In Eq.~1! a5mp /(mp1mj ), c5mc /(mj1mc), and
m̄5mj•mc /(mj1mc), while D5Q2Q8. One can infer, however, that for a local potentialV,
^x2aDuVuk2aQ&5^xuVux2aQ8& ~translation invariance!, and henceforth Eq.~1! can be recast in the form

^k8uVopt~E!uk&5
A21

A (
j51

A

(
n
E dQdQ8^f̄ j uQ82ck8&^Q2ckuf̄ j&^Q8uf̄n&^f̄nuQ&F ^k82aQ8uVuk2aQ&

1(
l

^k82aQ8uVux
l
&^x

l
uVuk2aQ8&

E11e j2en2El1~ac\2/2m̄ !Q82G . ~2a!

But, by definition

tp j~«!5V1V
1

«12h
V,

wheretp j is the free projectile-active target nucleont matrix, andh is the corresponding Hamiltonian. Then, introducing
above-mentioned complete set of states$x

l
% ~which is such thathux

l
&5Elux

l
&) one can write~in obvious notations!

^p8utp j~«!up&5^p8uVup&1(
l

^p8uVux
l
&^x

l
uVup&

«12El
. ~2b!

Consequently, Eq.~2a! can be rewritten in the following equivalent form:

^k8uVopt~E!uk&5
A21

A (
j51

A

(
n
E dQdQ8f j

1~Q82ck8!f j~Q2ck!fn~Q8!fn
1~Q!^k82aQ8utp j~E !uk2aQ8&, ~3!

whereE5E11e j2en1(ac\2/2m̄)Q82 and ^xufm&5fm(x).

A. Standard full-folding model

Starting from the above equation, one can readily explore the details of the approximations underlying various m
the first-order optical model potential. For example, the so-called full-folding model, for nucleon-nucleus scattering, is
derived under the following assumptions@4#: ~a! setting the single-particle energyen equal to its corresponding free ener
~this amounts to assuming plane waves for the intermediate set of states$f̄n%!. Adopting such an assumption, Eq.~3! will read
~invoking completeness!:

^k8uVopt~E!uk&5
A21

A (
j51

A E dQf j
1~Q2ck8!f j~Q2ck!^k82aQutp j~E0!uk2aQ&, ~4!

whereE05E11e j2@\2Q2/2(mp1mj )#$11(mp1mj )/mc)%. ~b! Neglecting the recoil of the core, which amounts to ass
ing thatmc is very large as compared tomj ~and/ormp). Noting further that for nucleon scatteringa51/2, Eq.~4! will take
exactly the usual form of the full-folding approximation, which reads@4#

^k8uVopt~E!uk&5
A21

A (
j51

A E dQf j
1~Q2ck8!f j~Q2ck!K k82Q/2Utp jSE11e j2

\2Q2

4mp
D Uk2Q/2L . ~5!
-
a
o d

-
full-
However, in order that Eq.~5! becomes amenable for calcu
lations, still another simplification is made, by assuming th
at nucleon energiesE above 100 MeV it is reasonable t
consider average energies^en& characteristic for protons and
neutrons.
t
B. Full treatment

We shall now show, however, that our expression@cf. Eq.
~3!# for the optical model potential can be further simplifie
~in an almost exact way! without recourse to any such ap
proximations as those introduced above for the standard
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folding optical potential or introducing any specific model
describe target states as in previous three-body approa
@2#. For this purpose, let us at first expand the opera
tp j(E) in Eq. ~3! around some optimum valueĒ of the ef-
fective energyE , i.e.,

tp j~E !5tp j~ Ē!1~E2Ē!dtp j~E !/dE uE5Ē1••• ~6a!

we shall then chooseĒ such that

(
n
E dQ dQ8f j

1~Q82ck8!f j~Q2ck!fn~Q8!fn
1~Q!

3^k82aQ8u~E2Ē!dtp j~E !/dE u
E5Ē

uk2aQ8&50.
~6b!
to
ches
tor

Further, for the sake of clarity, let us introduce the followin
notations:

T ~ Ē,k,k8,Q8!5^k82aQ8udtp j~E !/dE u
E5Ē

uk2aQ8&
~7a!

and

T n~ Ē,k,k8,Q8!5f j
1~Q82ck8!fn~Q8!T ~ Ē,k,k8,Q8!.

~7b!

In that way, the condition given by Eq.~6b! can be cast in
the form ~observing completeness!
E dQSE1
ac\2Q2

2m̄ Df j
1~Q2ck8!f j~Q2ck!T ~ Ē,k,k8,Q!1(

n
E dQ dQ8~e j2en!f j~Q2ck!fn

1~Q!T n~E ,k,k8,Q8!

[E dQ Ēf j
1~Q2ck8!f j~Q2ck!T ~ Ē,k,k8,Q!. ~8!

Next, making use of the Schro¨dinger equation in momentum space for each off j andfn
1 , one directly obtains

~e j2en!f j~Q2ck!fn
1~Q!5

\2

2m̄
$~Q2ck!22Q2%f j~Q2ck!fn

1~Q!1
1

~2p!3
E dy$Ujc~Q2y!f j~y2ck!fn

1~Q!

2Ujc~y2Q!f j~Q2ck!fn
1~y!%, ~9!
la-

be

.

are

d
n-
whereUjc is the interaction between the active nucleonj and
the corec in the target nucleus. Inserting Eq.~9! into Eq.~8!
and noting that the second term on the RHS of Eq.~9! will
vanish identically while integrating overQ @since
Ujc(x)5Ujc(2x)#, one arrives at the following expressio
for the optimal effective energyĒ:

Ē5E1
ac\2

2m̄
Q21

ac\2

2m̄
$c2k222ckQ%5

\2

2m
~k2aQ!2,

~10!

wherem5mp•mj /(mp1mj ) is the reduced mass of the in
cident particle-active target nucleon system. Moreover, i
shown in the Appendix that higher order terms in the exp
sion given in Eq.~6a! will give negligible contribution to the
above optical model potential@cf. Eq. ~3!# and can be safely
neglected. Summing up, then by inserting Eqs.~6! and ~10!
into Eq. ~3!, one finally arrives at the following approximat
expression for the optical model potential:

^k8uVopt~E!uk&5
A21

A (
j51

A E dQ f j
1~Q2ck!f j~Q2ck!

3^k82aQutp j~ Ē!uk2aQ&. ~11!

This expression will thus constitute our main result for mo
fied full-folding-type optical model potential. It is not only
more exact than those expressions given in previous
n

-
t is
an-

e

di-

ap-

proaches, but also simpler and more amenable for calcu
tions as the two-bodyt matrix appearing in the integrand in
Eq. ~11! comes half-on-shell.

To that end, it seems that the above treatment may
limited to the case when thet matrix tp j(E) is a slowly
varying function of the energyE @where the series~6a! can
be trusted#. It is very interesting, however, to note that Eq
~11! can be obtained in another~more obvious! way free
from the above~seeming! limitation. Indeed, one at first ob-
serves that the denominator of the second term in the squ
brackets in Eq.~2a! can be expanded in the form

1

E11e j2en2El1~ac\2/2m̄ !Q82

5(
l50

~2 ! l ~e j2en!
l

$E12El1~ac\2/2m̄ !Q82% l 11 . ~12a!

Further, by applying Eq.~9! as many times as necessary an
adopting the mathematical observations given in the Appe
dix, one arrives at~after some manipulations!:

E dQ~e j2en!
l f j~Q2ck!fn

1~Q!

'S \2

2m̄
$~Q2ck!22Q2% D l f j~Q2ck!fn

1~Q!. ~12b!
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Then, inserting Eq.~12a! into Eq. ~2a! while observing Eq.
~12b!, one directly obtains Eq.~11!.

C. Optimal approximation

Equation ~11! can be, however, further simplified. T
show this, let us rewrite it in the following form:

^k8uVopt~E!uk&5
A21

A (
j51

A E dQ f j
1~Q1cq!f j~Q!

3^k82acq2aQutp j~Ē!uk2aQ&,

~13a!

whereĒ5(\2/2m)(bk2aQ)2 andq5k2k8 is the momen-
tum transfer, whileb512ac. It has been shown@5#, that by
expanding thet-matrix element in the above equation arou
some preferable valueQ 0 and choosing that value such th

E dQ~Q2Q0!f j
1~Q1cq!f j~Q!50, ~13b!

then it may be reasonable to take out thet-matrix element
from under the integral sign in Eq.~13a! at that valueQ 0 .
Such a process will lead to the following optimal approx
mation for the optical model potential @with
Q052(c/2)q#:

^k8uVopt~E!uk&5~A21!r~cq!^p8utp j~Ep!up&, ~14!

where p5bk1(ac/2)q; p85bk82(ac/2)q; Ep5(\2/
2m)p2, and the single-particle densityr is given by:

r~cq!5E dQf j
1~Q1cq!f j~Q!

~here for simplicity we assumed the same single-particle d
sity for both protons and neutrons in the target nucleu!.
Equation~14! will thus constitute a modifiedtr approxima-
d
t

i-

en-
s

tion for the optical model potential@note that thet matrix in
Eq. ~14! is fully on shell#. It has been also argued@5# that
such an optimal approximation is very reliable in the sen
that higher order corrections in the above expansion of
t matrix can be neglected except perhaps at very large s
tering angles. Further, it is also interesting at this point
note that if one assumes the core to be infinitely heavy~i.e.,
c51), Eq. ~14! will reduce exactly to the optimal approxi
mation derived~in the spirit of a three-body problem! by
Gurvitz et al. @6# in that special case~cf. Eq. ~21! of @6#!.

III. CONCLUSIONS

In summary, we have shown, based on an approxim
solution to the three-body equations for the optical mo
potential, that a new modified~full-folding-type! expression
for such a potential is obtained. Also, a new factorizedtr
form was derived for that potential. This modified optic
model potential is more exact than previous versions in t
recoil effects are treated properly and the full active tar
nucleon-core spectrum is considered. It is in this way that
effective energy in the projectile-active target nucleont ma-
trix is approximately given by Eq.~10b!, and consequently
tp j in the integrand in Eq.~11! is half-on-shell. Had one
truncated the full active target nucleon-core spectrum,
would have obtained an off-shelltp j amplitude ~as in the
usual full-folding models!. Therefore, care must be exercise
in interpreting the results based on previous approac
where the whole spectrum of the bound target nucleon st
is not fully accounted for.

The author would like to thank V. K. Lukyanov and S. M
Eliseev for useful discussion and helpful comments.

APPENDIX A

One can easily see that the second-order term in the
pansion given in Eq.~6a!, will lead to the following correc-
tion termDVopt(k8,k) for the optical potential:
DVopt~E!5
A21

2A (
j51

A

(
n
E dQ dQ8f j

1~Q82ck8!fn
1~Q!f j~Q2ck!fn~Q8!~E2Ē!2

3^k82aQ8ud2tp j~E !/dE2u
E5Ē

uk2aQ8&. ~A1!

Let us for the sake of clarity introduce the following notations:

T~Q,Q8!5^k82aQ8ud2tp j~E !/dE2u
E5Ē

uk2aQ8&,

G~Q,Q8!5
\2

2m̄
$Q22Q82%,

and

F~Q,x!5
\2

2m̄
@~Q2ck!22x2#,

so thatE2Ē5e j2en2$G(Q,Q8)1F(Q,Q)%. Consequently,DVopt(E) can be cast in the form

DVopt~E!5I 11I 21I 3 ,
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where

I 15
A21

2A (
j51

A

(
n
E dQ dQ8f j

1~Q82ck8!fn
1~Q!f j~Q2ck!fn~Q8!T~Q,Q8!@G~Q,Q8!1F~Q,Q8!#2 ~A2a!

and

I 252
A21

A (
j51

A

(
n
E dQ dQ8~e j2en!f j

1~Q82ck8!fn
1~Q!f j~Q2ck!fn~Q8!T~Q,Q8!@G~Q,Q8!1F~Q,Q8!#,

~A2b!

while

I 35
A21

2A (
j51

A

(
n
E dQ dQ8~e j2en!

2f j
1~Q82ck8!fn

1~Q!f j~Q2ck!fn~Q8!T~Q,Q8!. ~A2c!

It may be now apparent that Eq.~A2a! can be recast in the form~using completeness!

I 15
A21

2A (
j51

A

(
n
E dQ f j

1~Q2ck8!f j~Q2ck!T~Q,Q!F2~Q,Q!. ~A3!

Further, observing that Eq.~9! will take the following form in the above notations:

~e j2en!fn
1~Q!f j~Q2ck!5F~Q,Q!fn

1~Q!f j~Q2ck!1
1

~2p!3
E dy$Ujc~Q2y!fn

1~Q!f j~y2ck!

2Ujc~y2Q!fn
1~y!f j~Q2ck!%, ~A4!

one can then write~after some manipulations and using completeness!

I 252
A21

A (
j51

A E dQ@T~Q,Q!F2~Q,Q!f j
1~Q2ck8!f j~Q2ck!#2

A21

~2p!3A
B~k,k8!, ~A5!

where

B~k,k8!5E dQdyUjc~Q2y!@T~Q,Q!$G~Q,Q!1F~Q,Q!%f j
1~Q2ck8!f j~y2ck!

2T~Q,y!$G~Q,y!1F~Q,Q!%f j
1~y2ck8!f j~Q2ck!#.

In the same way, one finds that

I 35
A21

2A (
j51

A E dQT~Q,Q!F2~Q,Q!f j
1~Q2ck8!f j~Q2ck!1

A21

2~2p!3A
C~k,k8!, ~A6!

where

C~k,k8!5E dQ dyUjc~Q2y!F~Q,Q!@T~Q,Q!f j
1~Q2ck8!f j~y2ck!2T~Q,y!f j

1~y2ck8!f j~Q2ck!#.

Summing up, then

DVopt~E!5
A21

2~2p!3A
@C~k,k8!22B~k,k8!#. ~A7!

Now as for realistic potentials~e.g., Woods-Saxon! Ujc~ q! is sharply peaked atq'0 with an exponential decrease times
oscillating function. So that,DVopt to a very good approximation will vanish. Moreover,DVopt will display 1/E

2 fall off @due
to d2tp j(E)/dE

2# with respect toVopt in the case of intermediate and/or high energies.
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