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Modified three-body full-folding optical model potential
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The optical model potential for nucleon elastic scattering is investigated within the context of a three-body
model. It is shown that the standard full-folding optical model potential is obtained as a special case of an
approximate solution to such a three-body problem. A new full-folding-type optical model potential together
with its corresponding factorizetp version are then obtained in the above three-body picture under some
plausible approximations.

PACS numbgs): 24.10.Ht, 21.45tv, 25.40.Cm

I. INTRODUCTION In the present work we shall show at first that the standard
full-folding expression for the optical model potentid] can
be directly obtained from our extended three-body solution

Fhe opticgl model potentigl i;, as is well known, the scatterm] adopting the same underlying assumptions. Moreover, we
ing amplitude of the projectile on a bound-target nucleonpresent a consistent treatment within our three-body ap-

This amplitude is, however, a complicated many-body operaproach to avoid the above-mentioned problem of target
tor. Therefore, a common practice is to approximate it bystrycture models. This then results in a new full-folding ex-
another operator that does not contain the full complexity obyression for the optical model potential. This full-folding ex-
the target Hamiltonian. Most of these approximations resulpression, besides being more exact, has the advantage that
in an optical potential which is calculated by folding the the projectile-bound target nucledrmatrix appearing in it
target density with an effective projectile-bound targetcomes half-on-shell. Further, based on the above result, a
nucleon interactiorithe so-called folding modelAssuming, new factorizedtp structure for the optical model potential
however a single-particle description of the target stateswhich reflects the above three-body picture is also devel-
with the projectile interacting with only one target nucleon atoped.

a time while the remaining nucleons act as spectatd/or In Sec. Il, we derive, starting from our three-body solu-
a passive conethe above scattering amplitude becomes thdion, the standard full-folding expression for the optical
solution to a three-body problefd]. This three-body model model potential. Then, we present the details of our treat-
for the projectile-bound target nucleon amplitude has the adment which leads to a new full-folding expression. Further,
vantage that the reactive content of the corresponding opticale develop our factorizetp approximation. In Sec. Il we
model potential becomes better understood and recoil effectéraw the main conclusions of the present work.

are included correctly. An approximate solution to the above

three-body problem was then advancdgd, for the case II. THE OPTICAL MODEL POTENTIAL

when the projectile is very light as compared to the target

nucleon. Further, an extension of such a solution to the case In this section, let us consider the solution to the three-
of arbitrary projectiles was subsequently developed by u®ody optical model potential as given [i8]. The three bod-
[3]. In actual applications, however, these three-body soluies are the projectilgp with massm,, an active target
tions require(in principle) the knowledge of the off-shell nucleonj (with which the projectile interactswith mass
projectile-bound target nucleotrmatrix element and the m;, and an inert coree comprising the rest of the target
complete set of that bound nucleon-core states. Therefor@ucleus with massn.. Upon introducing a complete set of
besides the need to introduce a plausible fdmormally  states{ ¢, } that describes the active target nucleon-core rela-
separablgfor the projectile-bound target nucleanmatrix,  tive motion together with its corresponding set of eigenval-
the resulting optical model potential becomes largely dependes{e,}, then to a very good approximation the first-order
dent on the models used to generate the full target nucleomptical model potential can be givéin momentum spage
core spectrunj2]. by (cf. Eq. (2.15 of [3]):

The basic ingredient in the multiple-scattering theory of

A-12 — -
(K Vo E)K)=—73-2, 2 fdeQ’<¢j|Q’—Ck’><Q—Ck|¢j><Q’|¢n><¢n|Q>[<k'—aQ’|V|k—aQ>

f (k' —aQ'|[Vlx ){x,|x)}(x—aA|V|k—aQ) W

dx E*+e€—e,—E\+(ach?/2u)Q’?
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Herek andk’ are the initial and final projectile momenta, respectively, and A is the number of target nucleon& vitee
projectile’s energyyx, is another complete set of states that describes the projectile’s active target nucleon relative motion with

its corresponding set of eigenvaluég, while V is the interaction potential governing that motion. The summation puer
the above equation runs only over all occupied states in the target nucleus ground state while the summationilbver
exhaust the whole spectrum of the active target nucleon-core states. I{1)Eg=m,/(m,+m;), c=m¢/(m;+m), and
mu=mj-m./(m;+my), while A=Q-Q’. One can infer, however, that for a local potentiaV,
(x—aA|V|k—aQ)=(x|V|x—aQ’) (translation invariande and henceforth Eq1) can be recast in the form

>

<k |Vopt(E)|k>_TE 2 fdeQ <¢1|Q —ck’ ><Q Ck|¢j><Q |¢n><¢n|Q> <k, aQ |V|k aQ>

=1

(k'—aQ’|Vlx, )x,|VIk—aQ")

T ETre—enE\t(achZ2m)Q2]’

(2a)

But, by definition

1
tpj(8)=V+V8+—_V,

h

wheret; is the free projectile-active target nuclebmatrix, andh is the corresponding Hamiltonian. Then, introducing the
above-mentioned complete set of stafgs} (which is such thah|XA)=EA|XA>) one can writg(in obvious notations

(P'IVIx Xx,IVIp)
(P ltps(e)lp)=(p"IVIP)+ 2 —— 5 —— (2b)

Consequently, Eq.2a can be rewritten in the following equivalent form:

A-14

(K’ |V0pt(E)|k>__2 2 fdeQ b (Q"—ck’) (Q—ck) #n(Q") ¢y (Q)(k' —aQ'[ty;(# 3

whereZ=E" + €, — e, + (ach2/2u) Q"2 and(X| ) = dm(X).

A. Standard full-folding model

Starting from the above equation, one can readily explore the details of the approximations underlying various models for
the first-order optical model potential. For example, the so-called full-folding model, for nucleon-nucleus scattering, is usually
derived under the following assumptiofdl: (a) setting the single-particle energy, equal to its corresponding free energy
(this amounts to assuming plane waves for the intermediate set of &tgfesAdopting such an assumption, E&) will read
(invoking completeness

A-124 .
(K Vop( BNy = =3~ %, | dQa} (@-ck)6(@-cki(k’ - a0ty (Eg)k-a0), @

whereEq=E* + €] —[ﬁ2Q2/2(mp+ m;) {1+ (my+m;)/mc)}. (b) Neglecting the recoil of the core, which amounts to assum-
ing thatm, is very large as compared to; (and/orm,). Noting further that for nucleon scatterirg=1/2, Eq.(4) will take
exactly the usual form of the full-folding approximation, which refdls

A 22
A-1
(K'|Vopl E) k)= T,Zl f dQ¢j+(Q—ck’)¢j(Q—ck)< k' = QI2|ty| E*+€— 4_mp) k—Q/2> . 5
However, in order that Eq5) becomes amenable for calcu- B. Full treatment

lations, still another simplification is made, by assuming that \ye shall now show, however, that our expresdic Eq.

at nucleon energiek above 100 MeV it is reasonable to (3)] for the optical model potential can be further simplified
consider average energiés,) characteristic for protons and (in an almost exact waywithout recourse to any such ap-
neutrons. proximations as those introduced above for the standard full-
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folding optical potential or introducing any specific model to Further, for the sake of clarity, let us introduce the following
describe target states as in previous three-body approachestations:

[2]. For this purpose, let us at first expand the operator
tp;(#) in Eq. (3) around some optimum valu€ of the ef-

fective energy?, i.e., &K K, Q) =(k" —aQ’|dt,(£)/d4],_tk—aQ’)

o o (79
oy (£) =toi( D)+ (£— )ty (£ (68
we shall then choos# such that and
s . Ta(Z kK, Q)= (Q'—ck ) dn(Q).7T 4k k' ,.Q").
S [ 00 Q4 (@~ k) (Q-ckby(@ (@ I IKICQITAQITANMQIAKIQ,
X<k'—aQ'|(5—5dtpj(5)/d‘51,,:jk—aQ'>:0- In that way, the condition given by E@6b) can be cast in

(6b) the form (observing completeness

CﬁzQz

[ aqfe+2

)qb, (Q—ck')¢;(Q— ck). 714k k' Q)+E JdQ dQ’'(€5— €n) #(Q—ck) b, (Q).7n(Z k,k',Q")
Ef dQ #a] (Q—ck) ¢(Q—ck). 7L kK, Q). ®
Next, making use of the Schaimger equation in momentum space for eachppfand ¢, , one directly obtains

%2 1
(6j—€n) ) (Q—ck)p, (Q)= ﬁ{(Q—ck)Z—Q2}¢j(Q—ck)¢,T(Q)+ Wf dy{U;c(Q-y) ¢;(y—ck) ¢, (Q)
Ujc(Yy—Q)¢;(Q—ck) ¢ ()}, 9

whereUj, is the interaction between the active nucl¢aand  proaches, but also simpler and more amenable for calcula-
the corec in the target nucleus. Inserting E@®) into Eq.(8)  tions as the two-body matrix appearing in the integrand in

and noting that the second term on the RHS of @g.will Eg. (11) comes half-on-shell.
vanish identically while integrating overQ [since To that end, it seems that the above treatment may be
Ujc(x)=Ujc(—x)], one arrives at the following expression limited to the case when the matrix t,;(#) is a slowly
for the optimal effective energy: varying function of the energy [where the serieg6a) can
be trusted It is very interesting, however, to note that Eq.
ach? , ach® h? ) (11) can be obtained in anothémore obvious way free
Z=E+ 20 Q™+ Z_M—{C k®—2ckQ}= ﬂ(k_aQ) : from the aboveseeming limitation. Indeed, one at first ob-

(10) serves that the denominator of the second term in the square

brackets in Eq(2a) can be expanded in the form
where u=m,-m;/(m,+m;) is the reduced mass of the in-

cident particle-active target nucleon system. Moreover, it is 1

shown in the Appendix that higher order terms in the expan- E'+e—e,—E\+(ach?2m)Q’2

sion given in Eq(6a) will give negligible contribution to the ;o

above optical model potentiftf. Eq. (3)] and can be safely (— )/(eJ— €

neglected. Summing up, then by inserting E@.and (10) T ET—E,+(ach2u)Q 3 T (123

into Eq. (3), one finally arrives at the following approximate

expression for the optical model potential: Further, by applying Eq9) as many times as necessary and

A adopting the mathematical observations given in the Appen-
(K |Vou(E)[K) = A;12 f do ¢j+(Q—ck)¢>j(Q—ck) dix, one arrives atafter some manipulatiojs
=1

X (k' —aQ|t,(7)|k—aQ). (11) f dQ(€j— )’ ¢;(Q—ck) by (Q)

This expression will thus constitute our main result for modi-
fied full-folding-type optical model potential. It is not only
more exact than those expressions given in previous ap-

(24((? ck)?—Q? ¢, Q—ck) ¢, (Q). (12b
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Then, inserting Eq(123 into Eq. (2a) while observing Eq. tion for the optical model potentighote that the: matrix in

(12b), one directly obtains Eq11). Eq. (14) is fully on shell. It has been also argud8] that
such an optimal approximation is very reliable in the sense
C. Optimal approximation that higher order corrections in the above expansion of the

t matrix can be neglected except perhaps at very large scat-
tering angles. Further, it is also interesting at this point to
note that if one assumes the core to be infinitely he@ey,

Equation (11) can be, however, further simplified. To
show this, let us rewrite it in the following form:

A_1A c=1), Eq.(14) will reduce exactly to the optimal approxi-
(K'|Vop( E) k)= - f dQ ¢j+(Q+ cq) ¢;(Q) mation derived(in the spirit of a three-body problenby
A =1 Gurvitz et al. [6] in that special caséf. Eq. (21) of [6]).
X(k'—acq-aQlty(E)[k—aQ), lll. CONCLUSIONS
(133

In summary, we have shown, based on an approximate

whereE_z(ﬁZ/Z,u)(bk—aQ)z andg=k—k’ is the momen- solution to the three-body equations for the optical model
tum transfer, whildo=1—ac. It has been showf5], that by ~ Potential, that a ngw'modifi('aduII—foIding—type) expression
expanding thé-matrix element in the above equation aroundfor such a potential is obtained. Also, a new factorizgd

some preferable valu®, and choosing that value such that form was derived for that potential. This modified optical
model potential is more exact than previous versions in that

N recoil effects are treated properly and the full active target
f dQ(Q—Qo) ¢; (Q+¢q)¢;(Q)=0, (13b nucleon-core spectrum is considered. It is in this way that the
effective energy in the projectile-active target nucléana-
then it may be reasonable to take out thematrix element trix is approximately given by Eq10b), and consequently
from under the integral sign in Eq13a at that valueQ,. t,; in the integrand in Eq(11) is half-on-shell. Had one
Such a process will lead to the following optimal approxi- truncated the full active target nucleon-core spectrum, one
mation for the optical model potential [with  would have obtained an off-shet}; amplitude (as in the
Qo= —(c/2)q]: usual full-folding models Therefore, care must be exercised
, ) in interpreting the results based on previous approaches,
(K'[Vop(E)|K)=(A=1)p(ca)(p’[tpi(Ep)[P), (14 \where the whole spectrum of the bound target nucleon states

where p:bk+(aC/2)q, p/:bkr_(aclz)q; Ep=(ﬁ2/ IS not fU”y accounted for.
2u,)p?, and the single-particle densityis given by: The author would like to thank V. K. Lukyanov and S. M.
Eliseev for useful discussion and helpful comments.
cq)= [ dQ¢; (Q+cq)d;

plca) f Q¢ (Q+ca)¢(Q) APPENDIX A
(here for simplicity we assumed the same single-particle den- One can easily see that the second-order term in the ex-
sity for both protons and neutrons in the target nudleus pansion given in Eq(6a), will lead to the following correc-
Equation(14) will thus constitute a modifietlp approxima-  tion termAV,(k’ k) for the optical potential:

>

A-1 —
Ao B)= 55 T [ dQ 40 ¢ (Q'~ oK) (Q) (@K 6,(Q)(#= 7

=1

><<k’—aQ’|d2tpj(é§)/d552|/:jk—aQ’). (A1)
Let us for the sake of clarity introduce the following notations:

T(Q,Q")=(k’—aQ'|d’;(£)/d~?

/:?H(_ aQ,>’

hZ
G(Q,Q’)Zﬁ{QZ—Q'z},

and

ﬁZ

F(QX)= 5= (Q—ck)*~x],

so that#— #= €j—€,—1G(Q,Q") +F(Q,Q)}. ConsequentlyAV,(E) can be cast in the form

AVOp[(E)=|1+|2+|3,
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where
A-l r g+ ’ ’ + ! ’ ! 12
lh=—A 121 ; f dQ dQ’ ¢ (Q"—ck’) ¢, (Q) ¢;(Q—ck) pn(Q)T(Q,Q)[G(Q, Q") +F(Q,Q")] (A2a)
and
A-1 + +
lo=— Tj; En: f dQ dQ’(€j—€,) 5 (Q'—ck’) ¢, (Q) §;(Q—ck) hn(Q")T(Q,Q")[G(Q,Q") +F(Q,Q")],
(A2b)
while
A-1l . 2 4+ ’ +
l3=Fa 2, 2 de dQ' (€= en)®j (Q' —ck") ¢y (Q);(Q—ck) $y(Q)T(Q.Q"). (A2)
It may be now apparent that E¢A2a) can be recast in the forifusing completenegs
A-124
=A% 2 f dQ ¢/ (Q—ck’)$;(Q—ck) T(Q.QFAQ.Q). (A3)
Further, observing that Eq9) will take the following form in the above notations:
1
(€= €n) ¢ (Q)(Q—ck)=F(Q,Q) ¢, (Q) $;(Q—ck) + (ZT):J,f dy{Ujc(Q—Y) én (Q) #(y—ck)
—Uje(y= Q)¢ (¥) $(Q—ck)}, (Ad)
one can then writéafter some manipulations and using completeness
— A_lﬁ 2 + ’ A-1 ’
Iz__szl dQ[T(Q,QF4(Q,Q)¢; (Q—ck )¢;(Q—Ck)]—WB(k,k ), (A5)
where
B(k,k’)=f dQdyUc(Q-Y)[T(Q,Q{G(Q,Q)+F(Q,Q)} ¢ (Q—ck’) ¢;(y—ck)
—T(QY{G(Q,Y)+F(Q,Q)} & (y—ck’) ¢;(Q—ck)].
In the same way, one finds that
_A_lﬁ 2 + ' A-1 ,
I3_T;:1 JdQT(Q.Q)F (Q.Q) ¢ (Q—ck’)¢;(Q—ck)+ mC(k.k ), (A6)
where
C(k,k’)=f dQ dyU;c(Q—y)F(Q,Q[T(Q,Q)¢; (Q—ck’) p;(y—ck)—T(Q,y) b; (y—ck’) ¢;(Q—ck)].
Summing up, then
AVp(E) = 5=—3=[C(K,K' )~ 2B(K,k")]. (A7)

- 227)3A

Now as for realistic potentialee.g., Woods-SaxgrlJ¢( q) is sharply peaked aj~0 with an exponential decrease times an
oscillating function. So thatAV,,; to a very good approximation will vanish. Moreovery ., will display 1/E? fall off [due
to dztpj(és’)/défz] with respect toV, in the case of intermediate and/or high energies.
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