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Angular correlations in internal pair conversion of aligned heavy nuclei
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We calculate the spatial correlation of electrons and positrons emitted by internal pair conversion of C
lomb excited nuclei in heavy-ion collisions. The alignment of the nucleus results in an anisotropic emissio
the electron-positron pairs that is closely related to the anisotropic emission ofg rays. However, the angular
correlation in the case of internal pair conversion displays additional features which provide the possibility
a deeper understanding of the nuclear structure. Our results are of particular interest for the electron-po
coincidence experiments currently analyzed at GSI~Darmstadt! and at Argonne.@S0556-2813~96!03505-4#

PACS number~s!: 23.20.Nx, 25.70.De
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I. INTRODUCTION

Heavy-ion collisions at energies in the vicinity of the
nuclear Coulomb barrier lead to an alignment of the collidin
nuclei. This implies that the magnetic substates are no lon
equally populated. To describe deexcitation processes
lowing heavy-ion collisions such asg-ray emission or inter-
nal conversion, we have to account for this specific popu
tion by weighting the transition matrix elements with th
occupation probability of, rather than just averaging over, t
decaying substates.

The population of the various nuclear substates is inc
porated in the formalism by introducing the density matrix o
the excited quantum system or, in the case of rotational sy
metry of the problem, by a set of statistical tensors whic
obey the same transformation law as the spherical harm
ics. This concept enables us to treat the polarization or alig
ment of excited nuclei appropriately. First calculations of th
angular correlation of electrons and positrons emitted in
ternal pair conversion taking into account the alignment
nuclei were accomplished by Goldring@1#, Rose @2#, and
Warburton @3#. These calculations were performed withi
Born approximation, neglecting the influence of the nucle
charge on the outgoing electron and positron. But for intern
pair conversion~IPC! of highly charged nuclei, the Born
approximation is not justified as can be verified by the co
responding positron spectra@4–6#.

Therefore we reconsider in the following the internal pa
conversion of heavy nuclei which are aligned, e.g., by Co
lomb excitation or transfer reactions. We determine the a
gular correlation of the emitted electron and positron wi
respect to a reference axis in space. As already known for
angular correlation ofg rays, the problem will be simplified
if we choose a coordinate system in which the density mat
is diagonal. The statistical tensors depend as well on
choice of the coordinate system. If the entries of the statis
cal tensors are given in a specific coordinate system, we
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able to calculate the angular correlation with respect to thez
axis of this system.

The occupation probabilities of the magnetic substate
caused by Coulomb excitation can be calculated with, e.g
the COULEX code of Alder and Winther@7#. However, one
should take into account the change of population by elec
tromagnetic transitions from higher-lying states. Special at
tention should be paid to a proper choice of the coordinate
system when dealing with theCOULEX code@7,8#. For pure
Coulomb excitation we will assume thez axis to point along
the asymptotic target recoil axis. With respect to this axis the
excited nuclei may exhibit prolate or oblate alignment.

Our investigations are particularly relevant for the under-
standing and interpretation of the electron-positron coinci-
dence experiments which are presently performed by th
EPOS and ORANGE groups at the UNILAC collider of GSI
~Darmstadt! @9# and by the APEX collaboration at Argonne
@10#. These experimental setups were designed to measu
the production rate of electron-positron pairs emitted in
heavy-ion collisions with ion energies close to the nuclear
Coulomb barrier. The experimental devices allow one to de
tect electrons and positrons as well asg rays in coincidence
with the scattered ions, enabling also the determination o
the corresponding relative angles. For the analysis and un
derstanding of the experimental spectra, one relies on infor
mation of all the processes which can cause the formation o
electron-positron pairs. Here the internal pair conversion
contributes typically between 20% up to 80% of the total
pair production yield.

II. DENSITY MATRIX AND STATISTICAL TENSORS

The density matrix—and for spherical symmetry the set
of statistical tensors—is the appropriate tool for including
statistical properties such as occupation probabilities o
quantum mechanical states into the calculations. Here w
briefly summarize the essential properties of the density ma
trix and subsequently turn to the concept of the statistica
tensors, which obey the same transformation law as irreduc
ible tensors. For the density matrixrMiMi8

(Ji) of dimension

(2Ji11)3(2Ji11), we note the following.
2313 © 1996 The American Physical Society
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~1! The density matrix is Hermitian:

rM
i8Mi

* ~Ji !5rMiMi8
~Ji !.

~2! The trace of the density matrix equals 1:

Tr$r%51⇔(
Mi

rMiMi
~Ji !51.

~3! Tr$r2%<1 and Tr$r2%51⇔ the system is in a pure state
We define the statistical tensorsr̂ n

[n] as irreducible tensors
of rankn with n52n,...,n:

r̂n
@n#~Ji !5 (

Mi ,Mi8
~21!Ji2Mi8A2n11S JiM i

Ji
M i8

n
2n D

3rMiMi8
~Ji !. ~1!

The argumentJi reminds us thatn is related to the angula
momentum of the magnetic substates by 0<n<2Ji . From
the normalization of the density matrix, it follows tha
r̂0

@0#(Ji)51/A2Ji11.
The density matrix has~2Ji11!2 independent compo

nents. To describe a system by statistical tensors instea
the density matrix, we need 2Ji11 density tensors of rank
n50 up to rankn52Ji . Since the density tensor of rankn
has 2n11 components, we get again(n50

2Ji ((n52n
n 1)

5(2Ji11)2 independent components.
The statistical tensors transform under rotations accord

to

r̂n
@n#~Ji !5(

n8
Dn8n

@n#* ~aW !r̂n8
@n#

~Ji !, ~2!

where the Wigner rotation matrix of rankn is denoted by
D [n] and the set of Euler angles byaW . In defining the Euler
angles we follow Rose@11# and Eisenberg and Greiner@12#.
For systems with rotational symmetry it is thus more adv
tageous to employ the concept of the statistical tensors w
incorporating statistical statements concerning the syst
The components of the statistical tensors are changed u
rotations and so are the occupation numbers of the magn
substates.

From the set of 2Ji11 statistical tensors, we obtain th
density matrix by utilizing the relation

rMiMi8
~Ji !5~21!Ji2Mi8(

n,n
A2n11

3S Ji
M i8

Ji
2Mi

n
2n D r̂n

@n#~Ji !. ~3!

For certain symmetries of the system we can reduce the
dependent components of the statistical tensors. Here we
the consequences for the statistical tensors in three sp
cases which will become relevant for us.

~1! In the case ofaxial symmetrythe density matrix is
diagonal and its diagonal components are just the proba
ties for the occupation of the corresponding magnetic s
statesrMiMi

5pMi
:

.
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r̂n
@n#~Ji !5d0n(

Mi

~21!Ji2MipMi
S JiM i

Ji
2Mi

n
0D .

One can always choose a basis such that the density matr
diagonal, but in general this will not be a basis of wav
functions with good angular momentum.

~2! In the case ofspherical symmetry, there is no direction
singled out in space. The density matrix is proportional to th
identity matrix. The diagonal elements are given byrMiMi

51/(2Ji11). All statistical tensors vanish with exception o
the tensor of rank 0, i.e.,

r̂n
@n#~Ji !5d0nd0n

1

A2Ji11
.

~3! From Eq.~1! it can be shown that for alignment of the
nuclear states, defined bypMi

5p2Mi
, the statistical tensors

of odd rank vanish.

III. ANGULAR CORRELATION OF g RAYS

Before we enter into the calculations concerning the a
gular correlation in internal pair conversion, we summariz
some results already known for in-beamg-ray spectroscopy.
This will help us to interpret the angular correlation patter
in the case of internal pair conversion. The angular corre
tion of photons emitted after Coulomb excitation is esse
tially determined by the statistical tensors, i.e., by the occ
pation numbers of the magnetic substates of the decay
nucleus. In choosing a reference axis for which the dens
matrix is diagonal, just the zeroth components of all statis
cal tensors survive and we obtain for the transition probab
ity the well-known relations

dPg

dV
5

2av

A2Ji11
uVg

~t!~L !u2 (
I even

FI~LLJfJi !

3 r̂0
@ I #~Ji !PI~cosq! ~4!

for a transition of parity t5E/M and multipolarity
L. V g

(t)(L) denotes the corresponding reduced matrix el
ment for the nuclear transition. Here we employed the co
relation coefficients@13–15#

FI~LLJfJi !5~2 !Jf1Ji21A2I11A2Ji11~2L11!

3S L1 L
21

I
0D H LJi L

Ji

I
Jf

J . ~5!

This results in an anisotropic emission of photons with r
spect to the alignment axis. The number of minima of th
angular distribution corresponds to the multipolarity of th
nuclear transition.

In the case of spherical symmetry, the photon emission
isotropic,

dPg

dV
5

2av

2Ji11
uVg

~t!~L !u2, ~6!

or integrated over the solid angleV,
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Pg5
8pav

2Ji11
uVg

~t!~L !u2. ~7!

IV. TRANSITION PROBABILITIES
FOR INTERNAL PAIR CONVERSION

We turn now to the formulation of the triple correlation o
the electron and positron directions with reference to a sy
metry axis, which is taken as quantization axis.

For a statistical ensemble of nuclei, we write the transiti
probability for internal pair conversion,

Pe1e252p (
Mi ,Mi8 ,M f ,l,l8

E d3pE d3p8

3d~v2W82W!UplrMiMi8
Upl* , ~8!

where the density matrixrMiMi8
represents the occupation o

the magnetic substatesuJiM i&. Here we assumed a nuclea
transition from an initial stateuJiM i& to the final stateuJfM f&
where the initial state is populated according to the dens
matrix rMiMi8

. Since we do not require the density matrix t

be diagonal, the summation extends over bothMi andMi8 .
Thed function ensures energy conservation: The transiti
energyv is transferred to the electron~total energyW8! and
to the positron~total energyW!. The summation is taken
over the spins and the momenta of the outgoing leptons.

The matrix element for internal pair conversion is writte
in lowest order ofa in the retarded form

Upl52aE dVnE dVe@rn~rWn!re~rWe!2 jWn~rWn!• jWe~rWe!#

3
eivurWn2rWeu

urWn2rWeu
, ~9!

rWe being the electronic coordinate andrWn the nuclear coordi-
nate.

Since we neglect in our work the penetration of the ele
tron wave functions, we do not have to specify the nucle
transition charge and current densitiesrn and jWn . The elec-
tronic transition charge and current densities read

re5c f
†c i , jWe5c f

†aW c i ~10!

~aW is the three vector of the spatial Dirac matrices in th
standard representation!. These expressions are evaluate
utilizing the scattering solutions@see Eqs.~A5! and ~A8! in
Appendix A# for the electron and positron wave functions i
order to define the emission direction and thus an open
angle. Inserting the spherical wave expansion of these w
functions results in a decomposition of the matrix eleme
Eq. ~9!,

Upl5 (
k8,m8

(
k,m

ak8m8
~2 !* bkm

~1 !Uk8m8km . ~11!

Uk8m8km denotes the transition matrix element which has t
same structure asUpl , but is evaluated using the spherica
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spinor solutions of the Dirac equation, Eq.~A1!. This matrix
element was calculated in@5#. Here we cite the result:

Uk8m8km54p iav~21!Jf2M f S Jf
2M f

L
M

Ji
M i

DVg
~t!~L !

3~21! j 82m8S j 8
2m8

L
M

j
m DMk8k

~t!
~L !. ~12!

V g
(t)(L) is just the reduced nuclear matrix element of Eq.~7!,

and

Mk8k
~t!

~L !52 i ~21! j 811/2
A2 j11A2 j 811A2L11

4pAL~L11!

3S j
21/2

j 8
1/2

L
0DRk8k

~t! , ~13!

with the parity selection rule

l1 l 81L1l~t!50 mod 2 Hl50 for t5electric,
l51 for t5magnetic.

~14!

Rk8k
(t) contains the integration over the radial electron wave

functions and will be defined later.
Inserting this matrix element into the pair conversion

probability, Eq.~8!, yields

Pe1e252p (
Mi ,Mi8 ,M f

r
MiMi8

@Ji # (
l,l8

E dW dV

3E dW8 dV8 d~v2W82W! (
k8,m8

(
k,m

(
k̄8,m̄8

3(
k̄,m̄

Ak8,m8; k̄ 8m̄8Bkm; k̄ m̄Uk8m8kmU k̄ 8m̄8 k̄ m̄
* ,

~15!

where we abbreviated

Ak8m8; k̄ 8m̄85W8p8(
l8

ak8m8
~2 !* a k̄ 8m̄8

~2 ! ~16!

and

Bkm; k̄ m̄5Wp(
l

bkm
~1 !b k̄ m̄

~1 !* . ~17!

From Eq. ~15! we obtain the differential pair conversion
probability with respect to thekinetic positron energy
E5W2m and the solid angles of both electron,V8, and
positron,V,

Pe1e25E
0

v22m

dEE dVE dV8
d3Pe1e2

dE dV dV8
. ~18!

The integration over the electron energyW8 is trivially per-
formed because of thed function. From this relation it is
obvious that we may proceed from the solid anglesV to Ṽ
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by choosing another reference axis in space. The integran
Eq. ~18! is invariant under rotations since the Jacobian of t
transformation equals 1. The integrand should thus be re
sented by a series of triple correlation functions, which
d in
is
re-
re

defined in Eq.~22!.
Inserting the explicit expressions of the coefficientsA and

B, Eqs.~B2! and~B4!, leads to the following expression fo
the differential pair conversion probability:
l pair
rical

e

d3Pe1e2

dE dV dV8
58~pav!2uVg

~t!~L !u2(
M ,M̄

(
Mi ,Mi8

(
M f

r
MiMi8

@Ji # S Jf
2M f

L
M

Ji
M i

D S Jf
2M f

L

M̄

Ji
M i8

D (
k,k8, k̄,k̄8

~21! j 81 j̄ 8

3Mk8k
~t!

~L !M k̄ 8 k̄
~t!* ~L !A2 j̄ 811A2 j 811A2 j11A2 j̄11 exp$ i @d8~W8,k8!2 d̄8~W8,k̄8!1d~2W,k!

2 d̄~2W,k̄ !#% (
I 8,I ,a,a8

A2I 811A2I11YI 8a8~Vp8!YIa~Vp!S j 81/2 j̄ 8
21/2

I 8
0 D S j

1/2
j̄

21/2
I
0D

3 (
m,m8,m̄ ,m̄8

~21!m̄2m̄811S j̄ 8
2m̄8

L

M̄
j̄
m̄ D S j 8

2m8
L
M

j
m D S j̄ 8

2m̄8

j 8
m8

I 8
2a8D S j̄

2m̄
j
m

I
a D . ~19!

Here we inserted Eq.~12!. Introducing the statistical tensors we are left with

d3Pe1e2

dE dV dV8
52~4pav!2uVg

~t!~L !u2~21!Jf2Ji1L11(
n,n

A2n11~21!nr̂n
@n#~Ji !H LJi L

Ji

n
Jf

J (
I ,I 8

A2I11A2I 811

3~21! I 8 (
a,a8

YI 8a8~Vp8!YIa~Vp!S Ia I 8
a8

n
2n D (

k,k8,k̄ ,k̄8
~21! j̄ 1 j̄ 8Aukk8k̄k̄8uH j̄j

I

j̄ 8
j 8
I 8

L
L
n
J Mk8k

~t!
~L !

3M k̄ 8 k̄
~t!* ~L !exp$ i @d8~E8,k8!2 d̄8~E8,k̄8!1d~2E,k!2 d̄~2E,k̄ !#%S j 81/2 j̄ 8

21/2
I 8
0 D S j

1/2
j̄

21/2
I
0D .

~20!

This is the most general form for the pair conversion probability. Now we assume that we are dealing with interna
conversion of aligned nuclei~n50!. We may choose an appropriate coordinate system by transformation of the sphe
harmonics:

YIa~Vp!5(
b

exp~ iaf!dab
@ I # ~q!exp~ ibd!YIb~0,0!

5A2I11

4p
exp~ iaf!da0

@ I #~q!,

YI 82a~Vp8!5(
b8

exp~2 iaf!d2ab8
@ I 8#

~q!exp~ ib8d!YI 8b8~Q,0!. ~21!

HereQ denotes the opening angle of the electron-positron pair,q is the polar angle of the positron with respect to th
symmetry axis, and the dihedral angled indicates the rotation of the electron-positron plane around the positron axis@Fig.
2~b!#. Please note that the convention of@1–3# differs in the definition of the angles from the one employed here.

This enables us to define the triple correlation function by

PII 8n~q,Q,d!5(
a

S Ia I 8
2a

n
0DYIa~Vp!YI 82a8~Vp8!

5
A2I11A2I 811

4p (
b8

~21!b8S I0 I 8
b8

n
b8 Ddb80

@n#
~q!db80

@ I 8#
~Q!exp~ ib8d!. ~22!

Our triple correlation function is related to the one introduced by Biedenharn@13# by a factor
4p i2I2I 82n/[(2I11)(2I 811)]1/2.

The pair conversion probability is normalized by the probability forg emission, Eq.~7!, which yields the pair conversion
coefficient
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d4b

dE d cosQd cosq dd
5
2av~2L11!

L~L11!
~2Ji11!~21!Jf2Ji1L11(

n
A2n11r̂0

@n#~Ji !H LJi L
Ji

n
Jf

J
3(

I ,I 8
~2I11!~2I 811!~21! I 8(

b8
~21!b8S I0 I 8

b8
n

2b8Ddb80
@n#

~q!db80
@ I 8#

~Q!exp~ ib8d!

3 (
k,k8,k̄ ,k̄8

~21! j1 j̄ 8ukk8k̄k̄8uH j̄j
I

j̄ 8
j 8
I 8

L
L
n
J Rk8k

~t!
~L !Rk̄ 8 k̄

~t!* ~L !

3exp$ i @d8~W8,k8!2 d̄8~W8,k̄8!1d~2W,k!2 d̄~2W,k̄ !#%

3S j 81/2 j̄ 8
21/2

I 8
0 D S j

1/2
j̄

21/2
I
0D S j

1/2
j 8

21/2
L
0D S j̄

1/2
j̄ 8

21/2
L
0D . ~23!
s
m-
is
tic

ite

-

i-
Here we inserted the explicit expressions for the electron
matrix elements, Eq.~13!. Integration over the azimuthal
angle is trivially performed resulting in an additional facto
of 2p.

The radial matrix elements read, for electric pair conve
sion @parity ~2!L#,

Rk8k
~e!

5L~R11R21R32R4!1~k2k8!~R31R4! ~24!

and, for magnetic pair conversion@parity ~2!L11#,

Rk8k
~m!

5~k1k8!~R51R6!. ~25!

The radial integrals introduced in these equations are tak
over products of the radial electron wave functions~A4! and
the Hankel functions of first kind,h L

(1)(vr ):

R15E
0

`

dr r 2gW8,k8~r !g2W,k~r !hL
~1!~vr !,

R25E
0

`

dr r 2fW8,k8~r ! f2W,k~r !hL
~1!~vr !,

R35E
0

`

dr r 2gW8,k8~r ! f2W,k~r !hL21
~1! ~vr !,

R45E
0

`

dr r 2fW8,k8~r !g2W,k~r !hL21
~1! ~vr !,

R55E
0

`

dr r 2gW8,k8~r ! f2W,k~r !hL
~1!~vr !,

R65E
0

`

dr r 2fW8,k8~r !g2W,k~r !hL
~1!~vr !. ~26!

In the case of a pointlike nucleus, these integrals can
rewritten in terms ofF2 functions@4# which can be evaluated
numerically. For the representation of the nucleus as a h
mogeneously charged sphere, the radial integrals are co
puted using a Gauss-Chebyshev quadrature@16#. The Whit-
taker functions which occur in the expressions for th
electron wave functions are computed with theCOULCCcode
ic

r

r-

en

be

o-
m-

e

of @17#. Since the integrands are oscillating functions, it i
advantageous to deform the integration contour in the co
plex plane in such a way that it runs along the imaginary ax
@5#. Since the electron wave functions have the asympto
behavior exp(ipr ) while the Hankel functions behave like
exp(ivr ), wherev5W1W8, the integrand for larger as-
sumes the form

exp~ i @2p2p81W1W8#r !. ~27!

For r complex with the imaginary part going to infinity, our
procedure thus guarantees that the integrand falls off qu
fast. In most cases atr520 000 fm, the integrand is smaller
than 1025 of its maximum value.

We want to consider the angular correlation for two spe
cial cases.

~I! If we integrate Eq.~23! over the positron polar angleq
and the dihedral angled, the remaining function depends
only on the opening angleQ of the electron-positron pair. In
this case only then50 contribution survives. We get the
opening angle distribution as a series of Legendre polynom
als which was already calculated in@18#:

d2b

dE d cosQ
5(

I
aIPI~cosQ!. ~28!

The expansion coefficients are given by

aI5
8pav

L~L11!
~2 !L1I11~2I11! (

k,k8,k̄ ,k̄8
ukk8k̄k̄8u

3Rk8k
~t!

~L !Rk̄ 8 k̄
~t!* exp$ i @d8~W8,k8!2 d̄8~W8,k̄8!

1d~2W,k!2 d̄~2W,k̄ !#%S j 81/2 j̄ 8
21/2

I
0D

3S j
1/2

j̄
21/2

I
0D S j

1/2
j 8

21/2
L
0D

3S j̄
1/2

j̄ 8
21/2

L
0D H j̄j 8 j̄ 8

j
L
I J . ~29!



l

s

n
a

b
o
a
e

h

e

ust
d

-
e
all

p-
t.
n
l

r,

d

y

s
ic

e

s-
h
in
s
-

s-
o-
e

2318 53C. R. HOFMANN, G. SOFF, J. REINHARDT, AND W. GREINER
They have to be evaluated numerically. The same resu
achieved if one assumes that the initial nuclear substates
equally populated.

At this point we apologize for giving an incorrect expre
sion for the opening angle distribution in@18#, which was
caused by employing the wrong set of scattering solutio
This error resulted in the wrong sign of the scattering ph
shifts of the positron. The opening angle distribution show
the right qualitative behavior, but wrong conversion pro
abilities. The statement that the maximum of the distributi
shifts from 0° to 180°, if one considers overcritical nucle
charges~Z>173!, remains unchanged. This error appear
also in the expression for the electric monopole (E0) con-
version. One should reverse the sign of the scattering ph
shifts of the positron. The pair conversion coefficient for t
electric monopole conversion reads

dh

dE d cosQ
5
1

2

dh

dE
~11e cosQ!, ~30!

wheredh/dE is the differential pair conversion coefficien
@6#—which remains unchanged—and« is the corrected an-
isotropy coefficient:

«52
C21C11

C21
2 1C11

2 cos~D1121!, ~31!

with

Dkk85d8~W8,k!2d8~W8,k8!1d~2W,k!2d~2W,k8!.
~32!

C11,C21 are defined by

Ck55 lim
r→0

f2W,k~r ! fW8,k
8 ~r !

r 2 j21 for k.0,

lim
r→0

g2W,k~r !gW8,k
8 ~r !

r 2 j21 for k,0,

~33!

where f ~f 8! andg ~g8! are the radial wave functions of th
Dirac spinor of the positron~electron!. In numerical calcula-
tions these constants are evaluated at the nuclear radiusd
and d8 are the corresponding Coulomb phase shifts for
extended nucleus@19#.

~II ! If we integrate Eq.~23! over the opening angleQ of
the electron-positron pair and the dihedral angled, we end up
with

d2b

dE d cosq
5(

n
bnPn~cosq!, ~34!

where the coefficients read
t is
are

-

s.
se
ed
-
n
r
d

ase
e

t

.
an

bn54pav
~2L11!~2Ji11!

L~L11!
~2 !Jf2Ji11A2n11r̂0

@n#~Ji !

3H LJi L
Ji

n
Jf

J (
k,k8,k̄

~2 ! j1 j̄ 1 j 811/2ukk8k̄u

3 H Lj L

j̄
n
j 8JRk8k

~t!
~L !Rk8 k̄

t* ~L !

3exp$ i @d~2W,k!2 d̄~2W,k̄ !#%S j
1/2

j̄
21/2

n
0D

3S j
1/2

j 8
21/2

L
0D S j̄

1/2
j 8

21/2
L
0D . ~35!

This corresponds to the experimental setup where one is j
interested in the angular distribution of the positron emitte
in internal pair conversion of an aligned or polarized
nucleus.

V. RESULTS

In the following we will discuss the characteristic proper
ties of IPC angular distributions using a few representativ
results. Since we are interested in Coulomb effects, they
refer to a uraniumlike nucleus~Z592!. The chosen energies
and multipolarities are generic and are not intended to re
resent particular nuclear transitions known from experimen

The opening angle distribution of electron and positro
emitted by IPC depicts for electric transitions the typica
pattern: It has its maximum atQ50° and its minimum for
Q5180°. For magnetic transitions in heavy nuclei, howeve
the situation might be different. Figures 1~a! and 1~b! depict
the opening angle distribution for anE1 and anM1 transi-
tion of a uraniumlike nucleus as a result of our distorte
wave Born approximation~DWBA! in comparison with the
Born approximation~BA!. This demonstrates how the angu-
lar correlation of the electron-positron pairs is influenced b
the strong Coulomb field of the nucleus. In Fig. 1~b! we
plotted also the opening angle distribution for theM1 tran-
sition taking into account the finite extension of the nucleu
under consideration. This verifies that the magnet
transitions—and especially theM1 transition—are very sen-
sitive to the charge distribution of the nucleus@5#. For theE1
transition in Fig. 1~a!, on the other hand, the effect of the
finite nuclear size amounts to less than 0.1%.

In the following we discuss the triple angular correlation
of electron and positron for IPC of aligned nuclei. We tak
the symmetry axis as quantization axis as in Eq.~23!. The
opening angleQ of electron and positron, the polar angleq
of the positron, and the dihedral angled form a complete set
of angles to fix the emission directions of electron and po
itron with respect to the symmetry axis. The angles whic
describe the directions of the emitted leptons are displayed
Fig. 2~b!. Note that our choice of the coordinate system i
different from that introduced in the Born approximation cal
culations of@1–3# in whichq denotes the polar angle of the
intermediate photon. However, since the Coulomb field di
turbs the momentum balance, we cannot determine the m
mentum of the intermediate photon from the momenta of th
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outgoing leptons, which would be necessary to calculate
photon polar angle.

Depending on the experimental setup and reactions, v
ous coordinate systems may be established in which the
tistical tensors are determined. Here we concentrate on
Coulomb excitation of heavy ions in collisions with bea
energies at or below the Coulomb barrier. In this case
usually chooses a coordinate system, where thez axis is
pointing along the apex line of the scattering hyperbola
wards the projectile and thex axis is perpendicular to the
scattering plane@Fig. 2~a!#. The y axis is then chosen suc
that they component of the projectile velocity is positiv
@7,8,20#. In the sudden approximation it can be shown th
the nuclear states are excited with a population of the m

FIG. 1. Opening angle distribution of electron-positron pa
emitted by IPC of randomly oriented uraniumlike nuclei~a! for an
E1 transition, ~b! for an M1 transition. The transition energy
amounts in both cases to 2 MeV, and the kinetic positron ene
was taken to be 800 keV. The solid lines correspond to the DW
calculations, and dotted lines display the outcome of the Born
proximation. The effect of the finite nuclear extension in the case
M1 transitions can be deduced from the dashed line which refl
the point nucleus approximation.
the

ari-
sta-
the

ne

to-

at
ag-

netic substates reaching a maximum aroundMi50; i.e., the
nucleus is aligned in the plane perpendicular to thez axis
~asymptotic recoil direction of the target! @15#. This is called
oblate alignment. Taking into account the deexcitation of th
nucleus byg cascades starting from high spin, the oblat
alignment changes into a prolate alignment with respect
the z axis for the low-spin states.

If the collision energy is increased, the nuclear alignmen
changes to a polarization with respect to a reference ax
perpendicular to the scattering plane@8,20#. Classically, this
corresponds to the situation where the drag caused by surf
friction puts the nuclei into a spinning motion.

After having chosen a coordinate system and having d
termined the degree of alignment or polarization for the Cou
lomb excited nuclei—the corresponding statistical tenso
can be calculated with, e.g., theCOULEX code of @7#—one
can employ Eq.~23! to determine the angular distribution of
the electron-positron pairs emitted by internal pair conve
sion of these nuclei. We plot in Fig. 3 the spatial correlatio
of the electron-positron pairs with respect to the referenc
axis assuming oblate alignment of a uraniumlike nucleu
From the spectrum of the emitted pairs@5,21#, we know that
for large-Z nuclei the pair emission probability increases to

rs

rgy
A
ap-
of
cts

FIG. 2. ~a! The coordinate system which is chosen to describ
the alignment of the Coulomb excited nuclei in heavy-ion colli
sions. q denotes here the scattering angle of the projectile in th
laboratory system.~b! Definition of the angles which are used to
describe the directions of electron and positron in space.Q is the
opening angle of the electron-positron pair,q denotes the polar
angle of the positron with respect to the quantization axis, and t
dihedral angled indicates the angle about which the electron
positron emission plane is rotated around the positron axis.
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wards the maximum positron energy. Thus the angular
relations are plotted for a case where nearly the full transi
energy~minus the electron rest mass! is transferred to the
positron. One recognizes a strong dependence of the
conversion probability on the polar angle of the positron w
respect to the reference axis. This behavior resembles
anisotropic emission of the intermediary photon@15#. The
angular distribution depends weakly on the dihedral angd
of the electron-positron pair~Fig. 4!. For transitions betwee
nuclear states of high angular momentum, the opening a
distribution does not change drastically when the posit
polar angle is varied.

In order to elucidate the influence of the statistical tens

FIG. 3. Angular correlation of electron-positron pairs inE1-IPC
for a transition from a 12 to a 01 state, assuming oblate alignme
of uraniumlike nuclei in the initial state. The conversion probabi
is plotted versus the opening angle of the emitted lepton pair
various polar angles of the positron with respect to thez axis. The
transition energy amounts tov51800 keV, the kinetic positron en
ergy toE5700 keV. The dihedral angled was fixed to 0°.

FIG. 4. Angular correlation of electron-positron pairs inE1-IPC
for the same transition and energies as in Fig. 3. The pair con
sion probability is plotted for fixed polar angleq590° and severa
values of the dihedral angled.
or-
ion

pair
ith
the

e

ngle
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rs,

i.e., the occupation of the initial nuclear state on the angu
correlation of the emitted electron-positron pairs, we prese
the angular distribution with respect to the polar angle of th
emitted positron. Figure 5 shows the polar angle distributio
assumingE1, E2, andE3 transitions to the 01 ground state
of nuclei which exhibit oblate alignment. Figure 6 display
the polar angle distribution for aE1 transition to the 01

ground state of a nucleus for oblate and prolate alignme
and for polarization.

VI. CONCLUSION

We presented the first calculation of the spatial correlati
of electron-positron pairs emitted in internal pair conversio
in heavy nuclei, which consistently takes into account th
strong Coulomb field of finite size nuclei. The angular co
relation of electron-positron pairs with respect to a given ax
in space was derived in terms of statistical tensors whi

t
ity
for

-

ver-

FIG. 5. Polar angle distribution assumingE1, E2, andE3 tran-
sitions to the 01 ground state of a nucleus showing oblate align
ment. The transition energy amounts to 1800 keV, the kinetic po
itron energy was fixed to 700 keV.

FIG. 6. Polar angle distribution assuming anE1 transition to the
01 ground state of a nucleus with oblate alignment, prolate alig
ment, and polarization. The transition energy amounts to 1800 ke
the kinetic positron energy to 700 keV.
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reflect the population of the nuclear magnetic substates. T
conversion probability changes drastically when either t
opening angle of the pair or the polar angle of the positron
varied while the dependence on the dihedral angle is rat
weak.

With our computations the results of Goldring@1#, Rose
@2#, and Warburton@3#, which were obtained within Born
approximation, i.e.,Z50, could be extended up to nuclea
charge numbers far beyond the critical value ofZ5173 @19#.
For nuclear charge numbers in the regime of lead and u
nium, we obtained striking deviations to the angular correl
tion derived within Born approximation which was alread
expected from the electron-positron pair spectra calcula
earlier @4,5#. The Born approximation cannot be considere
as being valid in this regime. In particular, this is verified b
the opening angular distribution of the electron-positro
pairs resulting from nuclearM1 transitions which exhibits a
maximum yield for back-to-back emission, whereas the Bo
approximation predicts a minimum. Furthermore, in the ca
of magnetic transitions we find a strong dependence of
pair emission rate on the nuclear size.

Our calculations concerning the spatial correlation supp
ment the well-known results fromg-ray angular correlation
experiments in heavy-ion collisions. We emphasize that t
shape of the electron-positron angular correlation can be e
ployed to deduce the population probabilities of the nucle
rotational substates and thus to discriminate prolate and
late alignment as well as to determine the multipolarity
nuclear transitions. This complements the outcome fro
g-ray spectroscopy. The angular correlation of positrons
tegrated over the spatial electron angle resembles the typ
photon distribution. The difference in shape is caused
longitudinally polarized photons which occur as intermedia
state in internal pair conversion. The so-called longitudin
matrix elements are a new feature which yields addition
informations. Since theg-ray angular distribution involves
just even-rank statistical tensors, it does not allow one
discriminate between alignment and polarization. One m
overcome this shortcoming by measuring either the phot
polarizations or, as suggested by our calculations, by stu
ing the electron-positron pair distribution.

Applied to the electron-positron coincidence experimen
currently analyzed at GSI~Darmstadt! and at Argonne, our
presented results can be utilized to determine precisely
nuclear background contribution. Since all the experimen
setups are now equipped with detectors for the angular d
tribution of emitted particles, the experimental collaboration
rely on accurate theoretical results of the various proces
that contribute to the recorded spectra.
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APPENDIX A: ELECTRON WAVE FUNCTIONS
FOR POINTLIKE AND EXTENDED NUCLEI

In our calculations we employed the following form o
the spherical continuum wave functions of the electron mo
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ing in the Coulomb field of a pointlike nucleus@22#:

xW,k,m~rW !5S gW,k~r !xkm~ r̂ !

i f W,k~r !x2km~ r̂ ! D . ~A1!

The spinor spherical harmonics are defined as

xkm~V!5(
k,m

S lm 1/2
l U jm DYlm~V!xl , ~A2!

where the basis spinors are given as usual by

x1/25S 10D , x21/25S 01D . ~A3!

Defining the relativistic Sommerfeld parameter asy5
2ZaW/p where p5AW22m2, the radial wave functions
read, for a point nucleus,

gW,k~r !5AW1m

pp

1

r

uG~g2 iy !u
2G~2g11!

3e2py/2~2pr !g$~g2 iy !e2 i ~pr2h!

31F1~g112 iy ,2g11;2ipr !1c.c.%,

fW,k~r !5AW2m

pp

i

r

uG~g2 iy !u
2G~2g11!

3e2py/2~2pr !g$~g2 iy !e2 i ~pr2h!

31F1~g112 iy ,2g11;2ipr !2c.c.%, ~A4!

with

h5
1

2
argS 2

k1 iym/W

g2 iy D , g5Ak22~Za!2.

For an extended nucleus we construct the continuum so
tions as in@19# by employing a power series ansatz for the
electron wave function inside the nucleus which is matche
to the linear combination of wave functions to the Coulom
potential at the nuclear radius. From the matching conditio
the normalization factor and the phase shift can be deduce

The continuum solutions of the Dirac equation can b
written as wave functions which asymptotically represen
plane waves of momentumpW and spinl. These wave func-
tions are obtained as a series expansion into spherical h
monics@22,23#.

For positive energies this expansion reads

cW,pW ,l
~6 ! 5(

k,m
akm

~6 !xW,k,m , ~A5!

with the coefficients

akm
~6 !5

1

AWp
i le6 i @d~W,k!1p~ l11!/2#(

m
Ylm* ~ p̂!S lm 1/2

l U jm D
~A6!

and the Coulomb phase shift
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d~W,k!5h2argG~g2 iy !2
p

2
g ~A7!

and, for negative energies~2W,0! @23#,

c2W,pW ,l
~6 ! 5(

k,m
bkm

~6 !x2W,k,m , ~A8!

with the coefficients

bk,m
~6 !5

1

AWp
i l ~2k!11e6 i @d~2W,k!1p l ~2k!#(

m
Yl ~2k!m* ~ p̂!

3S l ~2k!

m
1/2
l U jm D ~A9!

and the Coulomb phase shift

d~2W,k!5h2argG~g2 iy !2
p

2
g. ~A10!

These wave functions obey the normalization condition

E d3r @cW,pW ,l
~6 ! ~rW !#†cW8,pW 8,l8

~6 !
~rW !5d3~pW 2pW 8!dll8 .

~A11!

In the case of an extended nucleus, the phase shifts hav
be determined numerically.

APPENDIX B: EVALUATION
OF THE COEFFICIENTS A AND B

We start with the coefficientsA, which contain the elec-
tron scattering wave function and its complex conjugate. I
serting the explicit form of these coefficients, Eq.~A6!, we
get

Ak8m8; k̄ 8m̄85 (
l8,m8,m̄8

exp$ i @d8~W8,k8!2 d̄8~W8,k̄8!#%

3A2 j 811A2 j̄ 811~21! l 8~k8!21/21m8

3Yl 8~k8!m8~Vp8!Y l̄ 8~ k̄ 8!m̄8
* ~Vp8!

3~21! l̄ 8~ k̄ 8!21/21m̄8S l 8~k8!

m8
1/2
l8

j 8
2m8D

3S l̄ 8~ k̄8!

m̄8

1/2
l8

j̄ 8
2m̄8D , ~B1!

which can be transformed into
e to

n-

Ak8m8; k̄ 8m̄85
1

A4p
exp$ i @d8~W8,k8!2 d̄8~W8,k̄8!#%

3~21!m811/2A2 j 811A2 j̄ 811

3 (
I 8,a8

A2I 811YI 8a8~Vp8!S j 81/2 j̄ 8
21/2

I 8
0 D

3S j̄ 8
2m̄8

j 8
m8

I 8
2a8D . ~B2!

Additionally, we get the parity selection rule

l 8~k8!1 l̄ 8~ k̄8!1I 850 mod 2

and the angular momentum selection rule

u l 8~k8!2 l̄ 8~ k̄8!u<I 8< l 8~k8!1 l̄ 8~ k̄8!.

Next, we proceed to evaluate the coefficientsB, which are
composed from the positron scattering wave functions, E
~A9!:

Bkm; k̄ m̄5 (
m,m̄,l

~21!11m1m̄exp$ i @d~2W,k!

2d~2W,k̄ !#%A2 j11A2 j̄11Yl ~2k!m* ~2Vp!

3Y l̄ ~2 k̄ !m̄~2Vp!S l ~2k!

m
1/2
2l

j
2m D

3S l̄ ~2k̄ !

m̄
1/2
2l

j̄
2m̄ D . ~B3!

This can be rewritten as

Bkm; k̄ m̄5~21!m̄11/2
1

A4p
exp$ i @d~2W,k!

2 d̄~2W,k̄ !#%A2 j11A2 j̄11(
I ,a

A2I11YIa~Vp!

3S j
1/2

j̄
21/2

I
0D S j̄

2m̄
j
m

I
a D . ~B4!

Furthermore, we obtain the parity and angular momentu
selection rules

l ~2k!1 l̄ ~2k̄ !1I50 mod 2,

u l ~2k!2 l̄ ~2k̄ !u<I< l ~2k!1 l̄ ~2k̄ !.
.

@1# G. Goldring, Proc. Phys. Soc. London A66, 341 ~1953!.
@2# M. E. Rose, Phys. Rev.131, 1260~1963!.
@3# E. K. Warburton, Phys. Rev.133, B1368~1964!.
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