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Angular correlations in internal pair conversion of aligned heavy nuclei
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We calculate the spatial correlation of electrons and positrons emitted by internal pair conversion of Cou-
lomb excited nuclei in heavy-ion collisions. The alignment of the nucleus results in an anisotropic emission of
the electron-positron pairs that is closely related to the anisotropic emissipmays. However, the angular
correlation in the case of internal pair conversion displays additional features which provide the possibility for
a deeper understanding of the nuclear structure. Our results are of particular interest for the electron-positron
coincidence experiments currently analyzed at @&rmstadt and at Argonne[S0556-281®6)03505-4

PACS numbd(s): 23.20.Nx, 25.70.De

[. INTRODUCTION able to calculate the angular correlation with respect tazthe
axis of this system.

Heavy-ion collisions at energies in the vicinity of the  The occupation probabilities of the magnetic substates
nuclear Coulomb barrier lead to an alignment of the collidingcaused by Coulomb excitation can be calculated with, e.g.,
nuclei. This implies that the magnetic substates are no longdh€ COULEX code of Alder and Winthe[7]. However, one
equally populated. To describe deexcitation processes fofhould take into account the change of population by elec-
lowing heavy-ion collisions such agray emission or inter- fromagnetic transitions from higher-lying states. Special at-
nal conversion, we have to account for this specific populateéntion should be paid to a proper choice of the coordinate
tion by weighting the transition matrix elements with the System when dealing with theouLEX code[7,8]. For pure
occupation probability of, rather than just averaging over, thécoulomb excitation we will assume tizeaxis to point along
decaying substates. the asymptotic target recoil axis. With respect to this axis the

The population of the various nuclear substates is incorexcited nuclei may exhibit prolate or oblate alignment.
porated in the formalism by introducing the density matrix of ~Our investigations are particularly relevant for the under-
the excited quantum system or, in the case of rotational synstanding and interpretation of the electron-positron coinci-
metry of the problem, by a set of statistical tensors whichdence experiments which are presently performed by the
obey the same transformation law as the spherical harmor=POS and ORANGE groups at the UNILAC collider of GSI
ics. This concept enables us to treat the polarization or aligndParmstadt [9] and by the APEX collaboration at Argonne
ment of excited nuclei appropriately. First calculations of thel10]- These experimental setups were designed to measure
angular correlation of electrons and positrons emitted in inthe production rate of electron-positron pairs emitted in
ternal pair conversion taking into account the alignment of€avy-ion collisions with ion energies close to the nuclear
nuclei were accomplished by Goldrifg], Rose[2], and Coulomb barrier. The experimental devices allow one to de-
Warburton[3]. These calculations were performed within tect electrons and positrons as well,asays in coincidence
Born approximation, neglecting the influence of the nucleatith the scattered ions, enabling also the determination of
charge on the outgoing electron and positron. But for internalh€ corresponding relative angles. For the analysis and un-

pair Conversion(|PC) of h|gh|y Charged nuclei, the Born derstanding of the experimental SpeCtra, one relies on .infor-
approximation is not justified as can be verified by the cor-mation of all the processes which can cause the formation of

responding positron spectfd—6. electron-positron pairs. Here the internal pair conversion
Therefore we reconsider in the following the internal paircontributes typically between 20% up to 80% of the total

conversion of heavy nuclei which are aligned, e.g., by CouPair production yield.

lomb excitation or transfer reactions. We determine the an-

gular correlation of the emitted electron and positron with ||. DENSITY MATRIX AND STATISTICAL TENSORS

respect to a reference axis in space. As already known for the ) _ )

angular correlation of rays, the problem will be simplified ~ The density matrix—and for spherical symmetry the set

if we choose a coordinate system in which the density matrif Statistical tensors—is the appropriate tool for including

is diagonal. The statistical tensors depend as well on thétatistical properties such as occupation probabilities of

choice of the coordinate system. If the entries of the statistiduantum mechanical states into the calculations. Here we

cal tensors are given in a specific coordinate system, we afdfiefly summarize the essential properties of the density ma-
trix and subsequently turn to the concept of the statistical

tensors, which obey the same transformation law as irreduc-
*Electronic address: hofmann@ptprs8.phy.tu-dresden.de ible tensors. For the density matrify, v/ (J;) of dimension
TElectronic address: jr@th.physik.uni-frankfurt.de (2J;+1)X(2J3;+1), we note the following.
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(1) The density matrix is Hermitian:

R M i Ji n
P3N =80, (=) Mipy | o
* M; i\ M M; 0
PMi'Mi(Ji):pMiMi’(Ji)-

One can always choose a basis such that the density matrix is
(2) The trace of the density matrix equals 1: diagonal, but in general this will not be a basis of wave
functions with good angular momentum.

(2) In the case ofpherical symmetpthere is no direction
singled out in space. The density matrix is proportional to the
identity matrix. The diagonal elements are given ;m(iMi
(3) Trip?l<1 and Tfp*}=1¢ the s?/stem isin a pure state. =1/(2J,+1). All statistical tensors vanish with exception of
We define the statistical tensg#$" as irreducible tensors the tensor of rank 0,ie.,

of rankn with v=—n,... n:

Tr{P}:l‘:’% pum,(Ji)=1.

1

. , J J n ptN(3) = 8n 80, ——.

P, = > (=13 M /—2n+1(Mli MI.’ _V) Py (Ji on%0 23+1
M M/ !

] 1 (3) From Eq.(1) it can be shown that for alignment of the

X pwmy (Ji)- @) huclear states, defined Bt =P, the statistical tensors

. . of odd rank vanish.
The argument); reminds us thanh is related to the angular vanis

momentum of the magnetic substates bg®<2J;. From
the normalization of the density matrix, it follows that

P31 =123+ 1. Before we enter into the calculations concerning the an-
The density matrix hag2J;+1)* independent compo- gular correlation in internal pair conversion, we summarize
nents. To describe a system by statistical tensors instead g@bme results already known for in-beantay spectroscopy.
the density matrix, we needJ2+1 density tensors of rank This will help us to interpret the angular correlation pattern
n=0 up to rankn=2J;. Since the density tensor of ramk in the case of internal pair conversion. The angular correla-
has Z21+1 components, we get agaiEiiO(E”?nl) tion of photons emitted after Coulomb excitation is essen-

Ill. ANGULAR CORRELATION OF vy RAYS

=(2J;+1)? independent components. tially determined by the statistical tensors, i.e., by the occu-
The statistical tensors transform under rotations accordingation numbers of the magnetic substates of the decaying
to nucleus. In choosing a reference axis for which the density

matrix is diagonal, just the zeroth components of all statisti-
cal tensors survive and we obtain for the transition probabil-

- — Anlx  ~y~[n] . .
P[vn](Ji)—Z Py (@)p, (i), 2) ity the well-known relations
where the Wigner rotation matrix of ramk is denoted by aP, 2a0
7" and the set of Euler angles lay. In defining the Euler a0 V23,1 V5 (L] lgen':l(l-'-‘]f‘]i)
angles we follow Rosgll] and Eisenberg and Greingk2].
For systems with rotational symmetry it is thus more advan- X pi1(3;) P, (cosd) 4

tageous to employ the concept of the statistical tensors when

incorporating statistical statements concerning the systenfor a transition of parity 7=E/M and multipolarity
The components of the statistical tensors are changed under V‘;’(L) denotes the corresponding reduced matrix ele-
rotations and so are the occupation numbers of the magnetinent for the nuclear transition. Here we employed the cor-

substates. relation coefficient$13—15
From the set of 2;+1 statistical tensors, we obtain the
density matrix by utilizing the relation Fi(LLIJ)=(—)Y i~ 121+ 123, +1(2L+1)
, L L I\fL L I
pMiMi,(Ji):(_l)‘]i_MinE van+1 X 1 -1 0)[31 Ji Jf]. ©
J; Ji N g This results in an anisotropic emission of photons with re-
XImr =M, —pfPr () (3)  spect to the alignment axis. The number of minima of the

' angular distribution corresponds to the multipolarity of the
For certain symmetries of the system we can reduce the iruclear transition.
dependent components of the statistical tensors. Here we list In the case of spherical symmetry, the photon emission is
the consequences for the statistical tensors in three speci@Ptropic,
cases which will become relevant for us.

(1) In the case ofaxial symmetrythe density matrix is @: 2aw |V(T)(L)|2 ©6)
diagonal and its diagonal components are just the probabili- dQ 23+1'7 '
ties for the occupation of the corresponding magnetic sub-
statespy,m, = Pwm;: or integrated over the solid ang(e,
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Taw oo ) spinor solutions of the Dirac equation, E&1). This matrix
Py 23 +1 |VyT (L[> (7) element was calculated [b]. Here we cite the result:
I
Js L J
=4 7i Ji—M i |\ /(7
UK/,U-’K,U._4 Iaw( 1) f f( I”lf M Mi>V7 (L)

IV. TRANSITION PROBABILITIES
FOR INTERNAL PAIR CONVERSION

X(_l)j/_'u,( j’, J

S M MMS)K(L). (12

We turn now to the formulation of the triple correlation of

; At : V(I(L) is just the reduced nuclear matrix element of &),
the electron and positron directions with reference to a sym_ ” (L)is] &

! T L ; and
metry axis, which is taken as quantization axis.
For a statistical ensemble of nuclei, we write the transition : 7
o . ) S - 2j+12)"+1y2L+1
probability for internal pair conversion, MEJ)K(L): —j(—1)i"+12 V2] +112] v

4mJL(L+1)
— E 3 3R’ . Ly

M; M/ Mg 0 —-1/2 1/2 0 (3

— r_ ’ * . . .
X (=W =W)Uppmm; Ypi» ®  with the parity selection rule

where the density matrigy v’ represents the occupation of A=0 for r=electric,

the magnetic substaté3;M;). Here we assumed a nuclear I+1"+L+X(7)=0 mod 2 {)\=1 for 7=magnetic.
transition from an initial state);M;) to the final statéJ;M ) (14
where the initial state is populated according to the density

matrix [IVEVIE Since we do not require the density matrix to Rff,)K contains the integration over the radial electron wave

be diagonal, the summation extends over kidthandM/ . functions and will be defined later. . .
The & function ensures energy conservation: The transition [NSerting this matrix element into the pair conversion
energyw is transferred to the electrdiotal energyW’) and ~ Probability, Eq.(8), yields
to the positron(total energyW). The summation is taken
over the spins and the momenta of t'he outgoing Igptons. Pote-=21 E p[Ji] 2 dW dQ

The matrix element for internal pair conversion is written Mi M/ M MM
in lowest order ofa in the retarded form

L xde’ dQ’ S(w—W'—W) >
Up|: —a'J anJ dVel pn(rn)pe(re) =in(rn)-je(re)] k! R
i > > o *
Xeu [Fn—Fel © XKZ# AK’,M’;K’M'BKM:WUK’M’KMUFFW'
[Fh—rq
n e (15)
r. being the electronic coordinate angthe nuclear coordi-
nate. where we abbreviated
Since we neglect in our work the penetration of the elec-
tron wave functions, we do not have to specify the nuclear ' (—)* (—)

.. ’ . = A=W LA 1
transition charge and current densitigsandj,. The elec- Bl P ; A (16
tronic transition charge and current densities read

" -l and
pe=ithi, Je=¥rai (10
(a is the three vector of the spatial Dirac matrices in the BK#;KM—Wp; bﬁ;)b%* . a7

standard representatipnThese expressions are evaluated
utilizing the scattering solutionjsee Eqs(A5) and (A8) in

Appendix A] for the electron and positron wave functions in
order to define the emission direction and thus an openin
angle. Inserting the spherical wave expansion of these wa )
functions results in a decomposition of the matrix elementPOSitron.£,

Eq (9)’ w—2m . d3Pe+e_
Pe+e—= fo dEf dﬂf dQ m (18)

The integration over the electron energ¥/ is trivially per-
U/, denotes the transition matrix element which has theformed because of thé function. From this relation it is
same structure ad,, but is evaluated using the spherical obvious that we may proceed from the solid andle$o ()

From Eq. (15 we obtain the differential pair conversion
robability with respect to thekinetic positron energy
=W-m and the solid angles of both electrof},, and

Up= > al, rb(Hu

k'
K/u“l K,

11

K'w Kkt
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by choosing another reference axis in space. The integrand thefined in Eq(22).

Eq. (18) is invariant under rotations since the Jacobian of this Inserting the explicit expressions of the coefficieAtand
transformation equals 1. The integrand should thus be reprd3, Eqs.(B2) and(B4), leads to the following expression for
sented by a series of triple correlation functions, which arehe differential pair conversion probability:

d*Pete- (3] ( J L J)( J L J-) e
- - - = (7) | f ! f — : — )i+’
dE an an7 - S V(L % 2_,% Pum\ =M¢ M MJI =M M M KET( Y

XM (LMIEL) 2] + 172+ 132) + 1\2j + 1 expli[ 8/ (W', k') — 8" (W', k) + 8(— W, k)
—5( W, k) ]} 2 V21 +1N21 1Y (Q )Ym(Qp)(l/z _] )(1]/2 ] )

i 12 0 ~1/2 0

L g( oL j)(j_' i )(T j I)
= , 7, A — . 19
—p' M opl=p Mopfl=p o —almp op @ (19

Here we inserted Eq12). Introducing the statistical tensors we are left with

7

X X (mpmmt

’ ’
TN

APyt o ) L L
___c*c (7) 2 Ji—J+L+1 "[n] )
dE a0 g7 ~ 24ma@ VP, \2n k(-1 a0 g

Jnf}E V2I+ 1421+ 1

, _ it
I n LT — ., -
X (—1)! 2 Y1 (Qp )Yla(np)< o ) > 0 kw1000 LM )
K I I’ n

o L i’ g K ; e |
XM (L)expli[8' (E' k')~ 8 (E' &)+ &(— E k) — 6~ EK)]}(1/2 _11/2 0)(11/2 _11/2 0).
(20)

This is the most general form for the pair conversion probability. Now we assume that we are dealing with internal pair

conversion of aligned nucldiv=0). We may choose an appropriate coordinate system by transformation of the spherical
harmonics:

Y1u(Qp) =2 exgiag)dll(9)expiBo)Y, 40,0
B

21+1
= — expliag)d,g(9),

Yo Q)= exp(—ia¢)dE£B,(ﬁ)eX[Xi,8’5)Y|/B/(,O). (21)
,8,
Here ® denotes the opening angle of the electron-positron paiis the polar angle of the positron with respect to the
symmetry axis, and the dihedral angfdndicates the rotation of the electron-positron plane around the positrorFigis

2(b)]. Please note that the convention[@f3] differs in the definition of the angles from the one employed here.
This enables us to define the triple correlation function by

I I’
Piin(9,0,0)= 2, (a L O)Ym(n Y1 ar(Qp)

N2+ 1y2r'+1

S0
in %H)ﬁ(o b

d) (ﬁ)d[' J(@)expip’ 8. (22)

Our triple correlation function is related to the one introduced by Biedenhgt3] by a factor
Ai~' VT 21+ 1) (217 +1)]V2

The pair conversion probability is normalized by the probability foemission, Eq(7), which yields the pair conversion
coefficient



53 ANGULAR CORRELATIONS IN INTERNAL PAIR CONVERSION . .. 2317

d*g B 2aw(2L+1)
dE dco®d cosd d6  L(L+1)

1,17

Kk Kk, K

3+ (-1 BT

X (21+1)(21'+1)(-1)" X (—1)ﬁ’((|) ['3

L n
J J;

N\ [ o
, _B,)dﬁ,o(ﬁ)dﬁ,o(G))exmB o)
B

_ gL
X 2 (DT ek 100 LRI (DREIHL)
I I

X expli[ 8" (W', k') — & (W' &)+ 8(— W, k) — 8(— W, x) ]}

X

JV JI I/
12 -1/2 0

| RV T R S A I A 23
1/2 —1/2 o/\12 —-1/2 0o)l12 —-1/2 0}

Here we inserted the explicit expressions for the electroniof [17]. Since the integrands are oscillating functions, it is
matrix elements, Eq(13). Integration over the azimuthal advantageous to deform the integration contour in the com-
angle is trivially performed resulting in an additional factor plex plane in such a way that it runs along the imaginary axis

of 2.

[5]. Since the electron wave functions have the asymptotic

The radial matrix elements read, for electric pair conver-behavior expipr) while the Hankel functions behave like

sion [parity (—)"],

exp(wr), where o=W+W’, the integrand for large as-
sumes the form

R, =L(Ri+Ry+R;—Ry)+(k—k')(Rg+Ry) (24)

and, for magnetic pair conversigparity (—)-1],

R =(k+«")(Rs+Re).

expli[—p—p ' +W+W']r). (27)

(25 Forr complex with the imaginary part going to infinity, our

procedure thus guarantees that the integrand falls off quite

The radial integrals introduced in these equations are takefast. In most cases at=20 000 fm, the integrand is smaller

over products of the radial electron wave functi¢Ad) and

the Hankel functions of first kinch ((wr):

Ry~ | "dr PGu ()9 w (o)
Ry~ [ dr 2 o) DR o),
Ro= [ 01 10 o () (D20,
Rs= f:dr rsz’,K’(r)gfw,x(r)hl(_lf)l(wr)a
Rs= [ dr 12w (O DR (o),

Rﬁzf dr r2fy (NG w(NhP(or).
0

In the case of a pointlike nucleus, these integrals can be

than 10°° of its maximum value.

We want to consider the angular correlation for two spe-
cial cases.

(I) If we integrate Eq(23) over the positron polar anglé
and the dihedral anglé, the remaining function depends
only on the opening angl® of the electron-positron pair. In
this case only then=0 contribution survives. We get the
opening angle distribution as a series of Legendre polynomi-
als which was already calculated [ih8]:

d?g _s
m— : a,P,(co@). (28)

The expansion coefficients are given by

8maw
_ _\L+1+1 T
a —L(L+1) (—) (2|+1)K,KZ,:K,K’ |k kK|
26 xR (LR Xexpli[ 8" (W', k") — &' (W' k")

j !

_ — ' |
- S(—Wok)— (—W,K)]}<1/2 P 0)

rewritten in terms of, functions[4] which can be evaluated _ _

numerically. For the representation of the nucleus as a ho-
mogeneously charged sphere, the radial integrals are com-
puted using a Gauss-Chebyshev quadraftiéé The Whit- S —
taker functions which occur in the expressions for the
electron wave functions are computed with t@uLcc code

ol ] j L[] i L
12 —1/2 0/\12 —-1/2 0O

L0yt 29
12 —12 o/lj" | 1|
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They have to be evaluated numerically. The same result is (2L+1)(2J;+1) - R
achieved if one assumes that the initial nuclear substates aba=4maw LL+1) (=) 2n+1p5(3))
equally populated.

At this point we apologize for giving an incorrect expres-

L L n T,
_\itiFiT+12 ’
) Jf] 2 () |rexc"

sion for the opening angle distribution [A8], which was X .

caused by employing the wrong set of scattering solutions. KK

This error resulted in the wrong sign of the scattering phase L L n|l_, .
shifts of the positron. The opening angle distribution showed [ i j’] R (LR L)

the right qualitative behavior, but wrong conversion prob-
abilities. The statement that the maximum of the distribution _ — [ j n
shifts from 0° to 180°, if one considers overcritical nuclear ><exp[|[5(—W,K)—5(—W,K)]}( 12 —-1/2 0
charges(Z=173), remains unchanged. This error appeared
also in the expression for the electric monopdid} con-
version. One should reverse the sign of the scattering phase
shifts of the positron. The pair conversion coefficient for the

X

j "Ly "L (35
12 —-1/2 0)\1/2 —-1/2 0}

electric monopole conversion reads

dzy ldy

dE dco® _ 2 gE (1T € cod), (30)

whered#/dE is the differential pair conversion coefficient
[6]—which remains unchanged—andis the corrected an-
isotropy coefficient:

C.1Cyy

e=2—F—%—
C2,+C%4

C01A+1,1), (31)

with

A =0"(W k)= 68" (W' k")+8(—W,k)— (=W, k).

(32
C,1,C_; are defined by
fow (M fyr (1)
lim —— ¥ for k>0,
r—0 r
C,= , 33
gD (D) 33
lim 7T for k<O,
r—0 r

wheref (f’) andg (g’) are the radial wave functions of the
Dirac spinor of the positrofelectron. In numerical calcula-
tions these constants are evaluated at the nuclear radfus.

This corresponds to the experimental setup where one is just
interested in the angular distribution of the positron emitted
in internal pair conversion of an aligned or polarized
nucleus.

V. RESULTS

In the following we will discuss the characteristic proper-
ties of IPC angular distributions using a few representative
results. Since we are interested in Coulomb effects, they all
refer to a uraniumlike nucleuZ=92). The chosen energies
and multipolarities are generic and are not intended to rep-
resent particular nuclear transitions known from experiment.

The opening angle distribution of electron and positron
emitted by IPC depicts for electric transitions the typical
pattern: It has its maximum &=0° and its minimum for
©®=180°. For magnetic transitions in heavy nuclei, however,
the situation might be different. Figure¢al and Xb) depict
the opening angle distribution for &l and anM 1 transi-
tion of a uraniumlike nucleus as a result of our distorted
wave Born approximatiodDWBA) in comparison with the
Born approximation(BA). This demonstrates how the angu-
lar correlation of the electron-positron pairs is influenced by
the strong Coulomb field of the nucleus. In Figbjlwe
plotted also the opening angle distribution for tklel tran-
sition taking into account the finite extension of the nucleus
under consideration. This verifies that the magnetic
transitions—and especially thé 1 transition—are very sen-
sitive to the charge distribution of the nucld&g. For theE1
transition in Fig. 1a), on the other hand, the effect of the
finite nuclear size amounts to less than 0.1%.

In the following we discuss the triple angular correlation
of electron and positron for IPC of aligned nuclei. We take

and &' are the corresponding Coulomb phase shifts for athe symmetry axis as quantization axis as in E2§). The

extended nucleufl9].

(I) If we integrate Eq(23) over the opening angl® of
the electron-positron pair and the dihedral angjleve end up
with

2
s > b,P,(cosd), (34)

dE dcosdy n

where the coefficients read

opening angléd of electron and positron, the polar angle

of the positron, and the dihedral angléorm a complete set

of angles to fix the emission directions of electron and pos-
itron with respect to the symmetry axis. The angles which
describe the directions of the emitted leptons are displayed in
Fig. 2(b). Note that our choice of the coordinate system is
different from that introduced in the Born approximation cal-
culations off 1-3] in which 9 denotes the polar angle of the
intermediate photon. However, since the Coulomb field dis-
turbs the momentum balance, we cannot determine the mo-
mentum of the intermediate photon from the momenta of the
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rojectile

p

d*B/(dE dcos®) [107/keV]

0.0 (a)
0 20 40 60 80 100 120 140 160 180

0 [deg]

7.0

(b)

FIG. 2. (a) The coordinate system which is chosen to describe

d*B/(dE dcos®) [107/keV]

3.0
the alignment of the Coulomb excited nuclei in heavy-ion colli-
20 sions. ¥ denotes here the scattering angle of the projectile in the
laboratory system(b) Definition of the angles which are used to
o (b) describe the directions of electron and positron in spa€®is the
opening angle of the electron-positron pafr,denotes the polar
0.0 angle of the positron with respect to the quantization axis, and the
0 20 40 60 80 100 120 140 160 180  gGineqyg) angled indicates the angle about which the electron-
© [deg] positron emission plane is rotated around the positron axis.

FIG. 1. Opening angle distribution of electron-positron pairs ) ) .
emitted by IPC of randomly oriented uraniumlike nudlaji for an ~ netic substates reaching a maximum arothg-=0; i.e., the

E1 transition, (b) for an M1 transition. The transition energy nucleus is aligned in the plane perpendicular to zhaxis
amounts in both cases to 2 MeV, and the kinetic positron energyasymptotic recoil direction of the targétl5]. This is called
was taken to be 800 keV. The solid lines correspond to the DWBAgblate alignment. Taking into account the deexcitation of the
calculations, and dotted lines display the outcome of the Born apnucleus byy cascades starting from high spin, the oblate
proximation. The effect of the finite nuclear extension in the case oflignment changes into a prolate alignment with respect to
M1 transitions can be deduced from the dashed line which reflectthe 7z axis for the low-spin states.
the point nucleus approximation. If the collision energy is increased, the nuclear alignment
changes to a polarization with respect to a reference axis
outgoing leptons, which would be necessary to calculate thperpendicular to the scattering plai8&20]. Classically, this
photon polar angle. corresponds to the situation where the drag caused by surface
Depending on the experimental setup and reactions, varffiction puts the nuclei into a spinning motion.
ous coordinate systems may be established in which the sta- After having chosen a coordinate system and having de-
tistical tensors are determined. Here we concentrate on thermined the degree of alignment or polarization for the Cou-
Coulomb excitation of heavy ions in collisions with beam lomb excited nuclei—the corresponding statistical tensors
energies at or below the Coulomb barrier. In this case onean be calculated with, e.g., tl@uLEX code of[7]—one
usually chooses a coordinate system, where zhexis is  can employ Eq(23) to determine the angular distribution of
pointing along the apex line of the scattering hyperbola tothe electron-positron pairs emitted by internal pair conver-
wards the projectile and the axis is perpendicular to the sion of these nuclei. We plot in Fig. 3 the spatial correlation
scattering plangFig. 2(@)]. They axis is then chosen such of the electron-positron pairs with respect to the reference
that they component of the projectile velocity is positive axis assuming oblate alignment of a uraniumlike nucleus.
[7,8,20. In the sudden approximation it can be shown thatFrom the spectrum of the emitted paiBs21], we know that
the nuclear states are excited with a population of the magor largeZ nuclei the pair emission probability increases to-
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[&)]

S~

N W

d’B/(dE dcosd) [107/keV]

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180 ¥ [deg]
O [deg]

d*B/(dE dcos® dcosd dé) [10°%/(keV rad)]

FIG. 5. Polar angle distribution assumigg , E2, andE3 tran-

FIG. 3. Angular correlation of electron-positron pairsSa-IPC  Sitions to the 0 ground state of a nucleus showing oblate align-
for a transition from a I to a 0" state, assuming oblate alignment ment. The transition energy amounts to 1800 keV, the kinetic pos-
of uraniumlike nuclei in the initial state. The conversion probability itron energy was fixed to 700 keV.
is plotted versus the opening angle of the emitted lepton pair for
various polar angles of the positron with respect tozfeis. The ;o the occupation of the initial nuclear state on the angular
transition energy amounts to=1800 keV/, the kinetic positron en- ¢ ra|ation of the emitted electron-positron pairs, we present
ergy toE=700 keV. The dihedral anglé was fixed to 0%, the angular distribution with respect to the polar angle of the

emitted positron. Figure 5 shows the polar angle distribution
wards the maximum positron energy. Thus the angular corassuminggl, E2, andE3 transitions to the D ground state
relations are plotted for a case where nearly the full transitiorof nuclei which exhibit oblate alignment. Figure 6 displays
energy (minus the electron rest masis transferred to the the polar angle distribution for &1 transition to the 0
positron. One recognizes a strong dependence of the pajround state of a nucleus for oblate and prolate alignment
conversion probability on the polar angle of the positron withand for polarization.
respect to the reference axis. This behavior resembles the
anisotropic emission of the intermediary photdib]. The
angular I?jistribution depends weakly on %/heIO dihedral aidgle VI. CONCLUSION
of the electron-positron paifig. 4). For transitions between  We presented the first calculation of the spatial correlation
nuclear states of high angular momentum, the opening anglef electron-positron pairs emitted in internal pair conversion
distribution does not change drastically when the positronn heavy nuclei, which consistently takes into account the
polar angle is varied. strong Coulomb field of finite size nuclei. The angular cor-

In order to elucidate the influence of the statistical tensorsgelation of electron-positron pairs with respect to a given axis

in space was derived in terms of statistical tensors which

7 i

— 6=0°, 1330" . 10 F=~<_ —— oblate
° B o| TN -~ prolate
5} ——— 5675, 112.5° 8 . ~— pol.
....... 7 \\\\
at 6 \

d’BI(dE dcosd) [107/keV]
N w B [4;]

O L ' L 1 1 L L L 0
o] 20 40 60 80 100 120 140 160 180

O [deg]

d*BI(dE dcos® dcosd d6) [10°%/(keV rad)]

FIG. 4. Angular correlation of electron-positron pairsg-IPC FIG. 6. Polar angle distribution assuming&h transition to the
for the same transition and energies as in Fig. 3. The pair conve®* ground state of a nucleus with oblate alignment, prolate align-
sion probability is plotted for fixed polar angi#=90° and several ment, and polarization. The transition energy amounts to 1800 keV,
values of the dihedral anglé the kinetic positron energy to 700 keV.
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reflect the population of the nuclear magnetic substates. Thiag in the Coulomb field of a pointlike nucle(i22]:
conversion probability changes drastically when either the

opening angle of the pair or the polar angle of the positron is o[ Gw(D) xeu(T)
varied while the dependence on the dihedral angle is rather Xw,,w(F) = ifw,K(r)X—w(f) ' (AL)
weak.

With our computations the results of Goldripgj], Rose  The spinor spherical harmonics are defined as
[2], and Warburtor{ 3], which were obtained within Born
approximation, i.e.Z=0, could be extended up to nuclear
charge numbers far beyond the critical valu&Zef173[19]. Xieu(€1)= %
For nuclear charge numbers in the regime of lead and ura- ’
nium, we obtained striking deviations to the angular correlayhere the basis spinors are given as usual by
tion derived within Born approximation which was already
expected from the electron-positron pair spectra calculated 1
earlier[4,5]. The Born approximation cannot be considered X112~ 0), X-12=
as being valid in this regime. In particular, this is verified by
the opening angular distribution of the electron-positronpefining the relativistic Sommerfeld parameter §s-

pairs resulting from nucleavl 1 transitions which exhibits a —ZaW/p where p=W?—m?, the radial wave functions
maximum yield for back-to-back emission, whereas the Bormgaqg for a point nucleus

approximation predicts a minimum. Furthermore, in the case
of magnetic transitions we find a strong dependence of the \/ml IT(y—iy)|
pair emission rate on the nuclear size. Ow (r)= -

Our calculations concerning the spatial correlation supple- ' mp 1 2I'(2y+1)

Yim(Dxn,  (A2)

[ 1/2 |j
m N |u

0
1) . (A3)

ment the well-known results from-ray angular correlation X e~ ™2(2pr) Y (y—iy)e  (Pr=m
experiments in heavy-ion collisions. We emphasize that the
shape of the electron-positron angular correlation can be em- XF(y+1-iy,2y+1;2ipr)+c.c},

ployed to deduce the population probabilities of the nuclear
rotational substates and thus to discriminate prolate and ob- o (1) W—mi |['(y—iy)
W, k r= .

late alignment as well as to determine the multipolarity of 7p r 20(2y+1)

nuclear transitions. This complements the outcome from _

y-ray spectroscopy. The angular correlation of positrons in- x e ™2(2pr){(y—iy)e P
tegrated over the spatial electron angle resembles the typical i .

photon distribution. The difference in shape is caused by X Fi(y+1-iy,2y+1;2ipr)—c.cy, (Ad)

longitudinally polarized photons which occur as intermediate
state in internal pair conversion. The so-called Iongitudina?""th
matrix elements are a new feature which yields additional .
informations. Since the~ray angular distribution involves n= 1 ar% _ M
just even-rank statistical tensors, it does not allow one to 2 Y-y
discriminate between alignment and polarization. One may
overcome this shortcoming by measuring either the photofror an extended nucleus we construct the continuum solu-
polarizations or, as suggested by our calculations, by studylions as in[19] by employing a power series ansatz for the
ing the electron-positron pair distribution. electron wave function inside the nucleus which is matched
App“ed to the e|ectron_positron coincidence experimentéo the linear combination of wave functions to the Coulomb
currently analyzed at GSDarmstadt and at Argonne, our potential at the nuclear radius. From the matching condition
presented results can be utilized to determine precisely th&€ normalization factor and the phase shift can be deduced.
nuclear background contribution. Since all the experimental The continuum solutions of the Dirac equation can be
setups are now equipped with detectors for the angular digvritten as wave functions which asymptotically represent
tribution of emitted particles, the experimental collaborationsPlane waves of momentum and spin\. These wave func-
rely on accurate theoretical results of the various processdi¥ns are obtained as a series expansion into spherical har-

that contribute to the recorded spectra. monics[22,23. _ _ _
For positive energies this expansion reads

. y=VKk’—(Za)?.
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APPENDIX A: ELECTRON WAVE FUNCTIONS al,) =—==i'e" WO VD)
FOR POINTLIKE AND EXTENDED NUCLEI VWp m (AMG)

In our calculations we employed the following form of
the spherical continuum wave functions of the electron mov-and the Coulomb phase shift



2322

) a
S(W,k)=n—ard'(y=iy)— 5 v (A7)
and, for negative energigs-W<0) [23],
lr/j(—ivzlyﬁy)\ = E bE(i)X—W,K,,u ’ (AS)
Ky
with the coefficients
(%) 1 (=) +LaEi[S(—W, k) + 7l (— k)] * ~
bK'M:WpI e ’ % Y|(—K)m(p)
I(—x) 112 |]j
m A ‘M) (A9)
and the Coulomb phase shift
. w
(=W, k)=n—ard'(y=iy)— 75 7. (A10)

These wave functions obey the normalization condition

| TS T Whi g)= (=530
(A11)

In the case of an extended nucleus, the phase shifts have to

be determined numerically.

APPENDIX B: EVALUATION
OF THE COEFFICIENTS A AND B

We start with the coefficientd, which contain the elec-

C. R. HOFMANN, G. SOFF, J. REINHARDT, AND W. GREINER 53

_t expli[ 8" (W', k") — &' (W', &)}

Attt Jan
X (=) 2R+ 12 +1

! j/ , I/
xS \/mea'(Qp’)(llz —11/2 0)
I,

i ")

o s B2
o (82)

Additionally, we get the parity selection rule
I"(k")+1" (") +1'=0 mod 2
and the angular momentum selection rule
(k") =1 (&D|<I"<I"(k")+1"(K").

Next, we proceed to evaluate the coefficieBtswhich are

composed from the positron scattering wave functions, Eq.

(A9):

B = > (1) et rexp(i[ 8(—W, k)

KL, KL
m,mA

—3(—W, k) V2] + 1V2) + 1Y)~ €2p)

- (—k) 12 |
AT S 13| R

(- 12
X\ ="y _ﬁ. (B3)

tron scattering wave function and its complex conjugate. InThis can be rewritten as

serting the explicit form of these coefficients, EA6), we
get

Aty = EW expli[ &' (W', k") — &' (W' &)}
Aom',

XN2] +1V2) +1(—1)! (-2

*

XYI’(K’)m’(Qp’)Y?(ﬁ)W(Qp’)
T — I,(K,) 1/2 j,
X(_l)l (k") l/2+,u( Y N _M’

8 V) 2 g )

m/ )\/ _7 (Bl)

which can be transformed into

B

KK

_ ,T+1/2L i _
(-1) mexpﬂ[&( W, k)

—8(—W, ) 1}2] + 1V2j + 1IE V214 1Y, ,(Qp)

N

X — .
—p ou o«

(B4)

j j I
12 —-1/2 0

Furthermore, we obtain the parity and angular momentum

selection rules

[(—k)+1(—k)+1=0 mod 2,

(=)= l(= R <I<I(=K) + ().
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