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Unified picture of the BCS nuclear model by use of the 1/N expansion
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Several BCS-type approximations encountered in the literarature were correlated using a 1/N expansion over
a set of dispersion type energy equations, which are the exact solution of a system of fermions interacting
through a pure pairing force. One of the interesting results obtained is that the BCS1QRPA approximation
coincides with the first order term of the 1/N expansion.
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I. INTRODUCTION

For nearly three decades the nuclear pairing model h
played an important role in the description of nuclear spec
@1#. For many reasons discussed elsewhere@2# the mean field
Bardeen-Cooper-Schrieffer~BCS! method @3# is the most
useful approximation to solve this model. Since it is a me
field theory, it violates a symmetry of the system, namely t
particle number conservation. Throughout the literatu
@4–15# there are many attempts to improve the BCS appro
mation. Reversing this procedure and starting with an ex
solution of the pairing Hamiltonian, we would be able t
derive and correlate the existing refinements to the BCS
proximation. As a consequence it is possible to presen
unified picture of the various solutions of the BCS pairin
model. A straightforward diagonalization of the pairin
Hamiltonian, either in the usual shell-model basis or in qu
sispin basis, cannot serve our purpose since both methods
essentially numerical. Alternatively, Richardson and She
man @16# have derived a set of dispersion-type equations
an exact solution of the pairing Hamiltonian. Physically th
set of dispersion-type equations plays a similar role to t
gap equation in the BCS theory and contains all the relev
physics. Mathematically, these equations represent a tw
dimensional problem describing an equilibrium distributio
of a collection of parallel lines of charge. As the number
particles (2N) tends to infinity, such a collection of paralle
lines of charge coalesce to form a sheet of charge@17#.

On the other hand, the 1/N expansion has been a popula
tool in different branches of physics. In this paper this co
cept will be used to present a unified view of several im
provements of the BCS nuclear model. Using complex va
able analysis, Richardson@17# was able to perform an
expansion in powers of 1/N of the total energy of the system
obtained through a set of dispersion equations, where BC
the zero-order expansion. This expansion allows a comp
son among the different BCS refinements in the literature.
carry out this comparison, we have derived analytical expr
sions in a 1/N expansion up to third order in a symmetric an
530556-2813/96/53~5!/2243~5!/$10.00
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solvable two-level model. We have found that the express
to the first-order correction in this 1/N expansion corre-
sponds to the BCS1quasiparticle random phase approxima
tion ~QRPA!. The present paper is organized as follows.
Sec. II we review the 1/N expansion of the set of dispersion
type equations. In Sec. III, the various existing refinemen
to the BCS theory are presented. The comparison of
1/N expansion and the BCS-like theories are presented
Sec. IV along with some conclusions and general remark

II. 1/N EXPANSION OVER THE DISPERSION TYPE
OF ENERGY EQUATION

A system ofN pairs of particles interacting with a stan
dard pairing force is described by the Hamiltonian

H5(
jm

e j cjm
† cjm2

g

4 (
jm, j 8m8

~2 ! j2m~2 ! j 82m8

3cj 8m8
† cj 82m8

† cj2mcjm , ~2.1!

wherecjm
† (cjm) is the creation~annihilation! operator in the

single particle shell (e j ) orbit. g is the pairing strength. An
exact solution for this Hamiltonian was obtained long ago b
Richardson and Sherman@16# starting with the following
wave function:

uC&5)
i51

N S (
j

AV j

2e j2Ei
Aj
†D uO&. ~2.2!

Here, the pair creation operator Aj
†5(1/

AV j )(m(2) j2mcjm
† cj2m

† is introduced withV j5( j11/2) as
the half degeneracy of the levelj . With these wave functions
and performing some algebraic manipulations, the groun
state energy and the excited seniority zero states are given

E52(
i51

N

ei . ~2.3!
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The ei are the roots, in general complex, of the followin
coupled system of equations:

2
N

G
1(

iÞ l

N
1

el2ei
2
1

2(j
V j

el2e j
50, ~2.4!

where the sum overj extends over theM single particle
states andl51,2, . . . ,N. In the above expression, the pairin
strength is taken to beg5G/N. It is also assumed thatV j
are extensive quantities and therefore of orderN. It is inter-
esting to note that all terms in Eq.~2.4! are proportional to
N.

Equation~2.4! represents a problem in two-dimension
electrostatics, i.e., the equilibrium distribution of a collectio
of parallel lines of charge. Therefore, the complex numb
ei may be thought of as being the locations ofN free lines of
charge of unit strength in the complex plane. These free li
of charge lay in a uniform external field,2N/G, and in the
field generated by a number of fixed lines of charge, w
strength2V j /2, located ate j on the real axis.

The electrostatic field generated by such a distribution
any positionz in the complex plane is given by

F~z!5(
i

1

z2ei
2
1

2(j
V j

z2e j
2
N

G
. ~2.5!

The solutions of Eq.~2.4! can be sought through an ex
pansion in powers of 1/N. In order to perform such an ex
pansion it is necessary to choose some limiting form for
field whenN→`. Following Richardson@17#, we assume
that all the results already obtained by BCS theory co
from the above function. The leading termF0(z) of a
1/N expansion represents the ground state, where the n
ber of lines of charge increase and coalesce to form a sh
As a result, the poles ofF(z) arising from the first term of
~2.5! merge and form a branch cut. Further, it may be
sumed that this branch cut extends from the pointa to the
point a* , since the roots of Eq.~2.4! occur always in com-
plex conjugate pairs. Therefore it is suggested that@17#

F0~z!52
1

2
A~z2a!~z1a* !(

j

V j

Ej~z2e j !
. ~2.6!

Here a5l1 iD is yet to be determined and
Ej5A(e j2a)(e j1a* ). From the above function it is pos
sible to obtain all BCS-theory equations, namely the g
equation, the number equation, and the ground-state ene
It is also possible to identify the real and imaginary parts
a with the well-known parameters of the BCS theo
l ~chemical potential! andD ~energy gap!, respectively. Up
to here, only the basic equations of BCS were obtain
From the dispersion equations one can also
1/N corrections to the BCS approximation. This was o
tained in Ref.@17# providing the following expression for the
energy:

E5~2l2G!N1G22 (
m51

M21

h~m!. ~2.7!
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In Eq. ~2.7! eachh(m) is a term of an expansion of the
field H( j ) produced by the free charges of unity strengt
located at the positions of the fixed charges

H~ j !5(
i51

N
1

e j2ei
5

1

2p i R F~z!

e j2z
dz, ~2.8!

namely

H~ j !5
h~0!

Ej
1 (

m51

M21
h~m!

Ej~xm2e j !
, ~2.9!

where thexm are the real zeros ofF0(z).
Expanding h(m) in powers of 1/N gives the

BCS ground-state energy and the different orders of im
provement. Richardson@17# has presented explicit formulas
for the first- and second-order energy corrections,h1(m) and
h2(m), respectively. In this paper the third-order correctio
is also calculated in a solvable symmetric two-level mod
(M52) and the results will be given in Sec. IV. In this
model two levels with the samej containing total number of
particlesn5V5 j11/2 are separated by energye. In order
to give a flavor of the way this method works, we presen
below the first-order correction to BCS, obtained with th
above described method.h1(m) is given by

h1~m!5
1

2H ( j

V j

~xm2e j !
2

( j

V j

Ej~xm2e j !
2

2@~xm2l!21D2#1/2J .

~2.10!

In the particular case of the solvable symmetric two-lev
model we have

h1~m51!5
1

2
~gV2D!5gVF12A12S e

2gV D 2G .
~2.11!

Further results will be presented in Table I.

III. THE EXISTING REFINEMENTS TO THE BCS
SOLUTION OF THE NUCLEAR PAIRING MODEL

The well known BCS approximation for the schemati
nuclear pairing Hamiltonian is presented in several plac
@2#. Here, only the essential points of this approximation wi
be discussed. Using the quasiparticle operatorsajm andajm

†

the Hamiltonian~2.1! can be split up in the form

H5H001H111H201H021H221H311H131H401H04,
~3.1!

whereHmn is written in terms of (a†)n(a)m or (a)n(a†)m.
Assuming that the residual termsH311H131H401H04 can
be neglected and makingH201H0250, the well-known gap
equation is obtained. Physically, it means that the origin
system of interacting quasiparticles and thus the complicat
many-body problem is replaced by the simple one-bod
problem. However, one has to pay for this simplification
The new quasiparticle vacuum, which is the ground state
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TABLE I. Corrections to the BCS approximation in the symmetric two-level model in terms of a dim
sionless parameter,k5(e/2gV)2.

First order Order 1/N Order 1/N2

This work 2gV@22A12k# g

4F4A12k

12k
2
42k

12kG 2
g

8VF ~12224k!

~12k!2
2

~36139k243k2!

3~12k!5/2 G
QRPA @5# 2gV@22A12k# 2 2

PBCS@8# 2gV@11
1
2k] 2 2

Nogami @9# 2gV@11
1
2k]

2
g

4
k 2

g

8V
k

Nilsson @9# 2gV@11
1
2k]

2
g

4
@12k#

2

-

-

the approximate Hamiltonian, is no longer an eigenvector
the number operator (n̂); thus one has to introduce some
Lagrangian multiplier (l1) in order to keep at least the mean
value of the number of nucleons in the system fixed. Lipki
and Nogami @9# introduced a second factorl2n̂

2 in the
Hamiltonian~3.1! to obtain a smaller deviation in the num-
ber of particles. The following result is reported by Pradha
et al. @10#:

4l2

g
5

~( jV juj
3v j !~( jV jujv j

3!2( jV j~ujv j !
4

@( jV j~ujv j !
2#22( jV j~ujv j !

4 . ~3.2!

The uj and v j in the above formula are the well-known
Bogoliubov-Valatin coefficients slightly modified to

v j
25

1

2
@12g j

21~e j
02l!# uj

2512v j
2 , ~3.3!

where

e j
05e j1~4l22g!v j

2 , ~3.4!

l5l112l2~n11!, ~3.5!

g j5@~e j
02l!21D2#1/2. ~3.6!

In the above expressions,n is the average number of par-
ticles in the BCS ground state. Hence the correction to t
BCS ground-state energy due to the term2l2(^n̂

2&2n2) is
given by24l2(V j (ujv j )

2.
Using the same philosophy mentioned above, Nilsso

@11# considered the nuclear wave function written in terms o
wave functions with good particle numberp:

C~n!5(
p
Cp~n!wp~n!. ~3.7!

Let E(n,p) be defined as the energy associated with thep
component. Up to second order, the mean value ofE(n,p) is
given by
of

n

m

he

n
f

^E&5E~n,p!1
1

2
^~ p̂2n!2&F]2E~n,p!

]p2 G
p5n

. ~3.8!

Bang et al. @12# obtained the following expression for
@]2E(n,p)/]p2#p5n :

1

2
^~ p̂2n!2&@]2E~n,p!/]p2#p5n

5g
( j , j 8V j~V j 82d j j 8!ujv j

3uj 8
3 v j 8

( jV juj
2v j

2 , ~3.9!

which is very similar to the previous expression. We will use
it to obtain one of the refinements to the BCS model; the
result is shown in Sec. IV.

Another way to restore the number conservation, as sug
gested by Bayman@8#, is to introduce a gauge transformation
uBCS(u)& into the BCS wave function in such a way that the
ground state energy is given by

E5
*0
2pe2 iNu^BCSuĤuBCS~u!&du

*0
2pe2 iNu^BCSuBCS~u!du

[
I E
I o
, ~3.10!

whereu is the gauge angle. Transforming both overlaps into
polynomial forms it was possible to perform the above inte
grations analytically@13#, resulting in

I E5 (
l5N

H)
j
BjF(

j
2S e j2

g

2D l j2g(
i j

uiv j
ujv i

~V j2 l j !l i G J
~3.11!

and

I o5 (
l5N

S)
j
Bj D , ~3.12!

with

Bj5~uj
2!V j2 l j~v j

2! l j . ~3.13!
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Here l5( j l j and l j are integers. The last method consi
ered here to restore the number conservation is an exp
treatment of the neglected residual interaction in the B
approximation using the QRPA@4#. In this case the residua
termH res5H221H031H301H401H04 is rewritten as

H res5Hc1Ha , ~3.14!

where

Hc52g(
j

AV iAV j~ui
2
Ai

†2v i
2
Ai !~uj

2
A j2v j

2
A j

†!

~3.15!

and

Ha52g(
j

AV j~2uiv i !@N i~uj
2
A j2v j

2
A j

†!

1~uj
2
A j

†2v j
2
A j !N i #1g( ujv juiv iN iN j .

~3.16!

As before, quasiparticle pair operators can be defined
A j

†5 1/AV j (m(2) j2majm
† aj2m

† andN j5(majm
† ajm . It is

worthwhile to note that the self-energy term,2g(V jv j
4 , is

included inHc . From ~ 3.15! and~3.16! it is possible to see
thatHc is of the order ofgV, whileHa contains terms of the
order ofgAV andg. Within the quasiparticle scheme it i
reasonable to consider that the lowest state has few quas
ticles. If V j is large, then a consistent approximation is
consider onlyHc and neglect the Pauli principle for quas
particle pairs which therefore satisfy boson commutation
lations @Ai ,A j

†#5d i j . In the present work we are looking
for ground-state corrections due to this quasiboson appr
mation, resulting in the well-known correlated ground sta
given by

EQRPA2EBCS5
1

2 F(
j
2Ej2(

n
WnG , ~3.17!

whereEj is the single quasiparticle energy andWn is the
RPA eigenvalue given in Ref.@4#.

All the results presented in this section can be connec
with those obtained in a 1/N expansion discussed in Sec. I
In the next section, these approximations will be discusse
the framework of the symmetric two-level model.

IV. DISCUSSION AND CONCLUSIONS

In this section we are going to present a unified picture
the various existing refinements to the BCS theory using
d-
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1/N expansion of the dispersion-type energy equations. Th
picture can be made with the help of analytical expression
in the symmetric two-level model. Here, both number and
gap equations can be solved analytically, resulting in close
expressions written in terms ofV, g, and e for the BCS
ground state and its refinements.

At first, in the soluble symmetric two-level model,Wn is
obtained analytically and the correlated ground-state energ
is then given by

EQRPA5EBCS22gV1A~gV!22~e/2!2. ~4.1!

Other expressions mentioned in Secs. II and III can be ca
culated and are presented in Table I in terms of a dimensio
less parameterk5(e/2gV)2, which just gauges the validity
of the BCS approach. Fork>1, which would correspond to
nuclei near the closed shell, no superconducting solution e
ists, and therefore BCS is not valid anymore. Table I can b
read in two different, although not completely independen
ways. A given column contains information on the behavio
of different approximation methods at a fixed order in pow
ers of 1/N, being the strength of the pairing interaction, mea
sured byk, the relevant parameter for comparison amon
the different models. On the other hand, by comparing dif
ferent columns, we are able to assess the quality of ea
model regarding the amount of the correction, it exhausts
a given power of 1/N. By just glancing over this table, we
can notice some interesting connections. The first order
the 1/N expansion can be readily identified with the BCS1
QRPA approximation. Since the 1/N expansion provides ex-
act expressions for each order of the expansion, we can co
clude that the QRPA correction has exhausted the first ter
of the 1/N expansion. Thus, since the BCS1QRPA repre-
sents the lowest order of a quasiboson expansion, we c
expect that our 1/N expansion contains the various orders o
the quasiboson expansion. We can also test the other refin
ments listed in Sec. III by simply noting whether or not it has
exhausted the equivalent term of the 1/N expansion. Looking
again at Table I we note that the projection procedur
~PBCS! does not exhaust the term proportional togV, be-
cause it is only part of the Taylor expansion of the QRPA
correction given by

22gV1gVA12k.2gVF11
1

2
kG . ~4.2!

As a consequence it takes into account only part of thegV
contribution.

It is worthwhile to discuss here the analytically obtained
number projected ground-state energy in the symmetric two
level model given by
E5

(
l50

l5V

Bl
2X2e@V2 l #2gVH 11

u2

v2
l1F v2

u2
2

l

V
S u22v2

uv
D 2G ~V2 l !J C

(
l50

l5V

Bl
2

, ~4.3!
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where Bl is given in Eq. ~3.13!. As in Ref. @15# we can
transform this factor into the so-called Moivre-Laplace lim
for the binomial coefficient. Introducing the new variabl
l5Vv21d into this limit we get, after some calculations, th
simple Gaussian form

B~d!5
1

A2ps
expS 2

d2

2s2D , ~4.4!

wheres25Vuv. Replacing this new variable into the ex
pression~4.4! and transforming the summation into integra
through

(
l50

l5V

——→
l5Vv21d E

2Vv2

Vu2

dd ——→
V→` E

2`

`

dd, ~4.5!

we obtain the ground-state energy presented in Table I@18#.
The last two improvements shown in Table I are th

Lipkin-Nogami and Nilsson prescriptions. In the last case w
can notice the exclusive presence of terms of the order
1 and 1/N, while the Nogami correction contains terms up t
it
e
e

-
ls

e
e
of
o

the order of 1/N2. A Nilsson correction of the order of 1/N
does not give the correct behavior at the order of 1/N since it
does not go to zero in the limit of very strong pairing
(k→0). On the other hand, Nogami’s correction of the orde
of 1/N is identical to the exact one up to first order in powers
of k. This behavior clearly shows the advantages of th
Lipkin-Nogami method in restoring particle number conser
vation. As a matter of fact, it has been used very much in th
literature ~see for example Ref.@19#, where a thorough
analysis over different regions on the periodic table has bee
undertaken!.

As a final remark we would like to stress again that the
several scattered refinements to the BCS nuclear mod
found in the literature can be presented in a unified wa
through the use of 1/N expansion. Moreover, we can see in
Table I how the different improvements to the BCS mode
concatenate in a coherent way.
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