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Unified picture of the BCS nuclear model by use of the M expansion

Mauro Kyotoku
Departamento de Bica, Universidade Federal da Pdtzm, 58051-970 Jam Pessoa, Parda, Brazil

C. L. Lima
Nuclear Theory and Elementary Particle Phenomenology Group, Instituto sieaFiUniversidade de”®aPaulo, C.P. 66318, 05389-970
S@ Paulo, Sa Paulo, Brazil

Hsi-Tseng Chen
Department of Physics, Chung-Yuan Christian University, Chung-Li, Taiwan 320, Republic of China
(Received 18 July 1995

Several BCS-type approximations encountered in the literarature were correlated usingxpdrsion over
a set of dispersion type energy equations, which are the exact solution of a system of fermions interacting
through a pure pairing force. One of the interesting results obtained is that the BRBA approximation
coincides with the first order term of theNLexpansion.

PACS numbdps): 21.60—n, 21.30.Fe

I. INTRODUCTION solvable two-level model. We have found that the expression
to the first-order correction in this M/ expansion corre-
For nearly three decades the nuclear pairing model hasponds to the BCEquasiparticle random phase approxima-
played an important role in the description of nuclear spectréion (QRPA). The present paper is organized as follows. In
[1]. For many reasons discussed elsewligf¢he mean field Sec. Il we review the N expansion of the set of dispersion-
Bardeen-Cooper-SchrieffefBCS method [3] is the most type equations. In Sec. lll, the various existing refinements
useful approximation to solve this model. Since it is a mearf0 the BCS theory are presented. The comparison of the
field theory, it violates a symmetry of the system, namely thel/N expansion and the BCS-like theories are presented in
particle number conservation. Throughout the literatureSec. IV along with some conclusions and general remarks.
[4—15] there are many attempts to improve the BCS approxi-
mation. Reversing this procedure and starting with an exact 1. 1/N EXPANSION OVER THE DISPERSION TYPE
solution of the pairing Hamiltonian, we would be able to OF ENERGY EQUATION
derive and correlate the existing refinements to the BCS ap- ) ) ) ) )
proximation. As a consequence it is possible to present a A System ofN pairs of particles interacting with a stan-
unified picture of the various solutions of the BCS pairingdard pairing force is described by the Hamiltonian
model. A straightforward diagonalization of the pairing
Hamiltonian, either in the usual shell-model basis or in qua- - ofe 9 _yimme i’ -’
lamiltonia : H=2 €chntim—7 2 (=) 7"(-)
sispin basis, cannot serve our purpose since both methods are jm 4
essentially numerical. Alternatively, Richardson and Sher- vt
man[16] have derived a set of dispersion-type equations as XCirmrCir - €j—mCim, 2.9
an exact solution of the pairing Hamiltonian. Physically this
set of dispersion-type equations plays a similar role to thavherec/ (c;x) is the creatior{annihilation operator in the
gap equation in the BCS theory and contains all the relevargingle particle shell {;) orbit. g is the pairing strength. An
physics. Mathematically, these equations represent a twaxact solution for this Hamiltonian was obtained long ago by
dimensional problem describing an equilibrium distribution Richardson and Shermdri6] starting with the following
of a collection of parallel lines of charge. As the number ofwave function:
particles (N) tends to infinity, such a collection of parallel
lines of charge coalesce to form a sheet of chadgg. N \/ﬁJ s
On the other hand, the N/ expansion has been a popular |q’>=i1:[ ; EAJ |0). (22
tool in different branches of physics. In this paper this con-
cept will be used to present a unified view of several im'Here, the pair creation operator Aj’r:(l/

provements of the BCS nuclear model. Using complex vari—\/ﬁ)E (_)j_mcfr of s introduced with = (j +1/2) as
J m jm J

able analysis, Richardsofil7] was able to perform an j—m o .
expansion in powers of W of the total energy of the system, the half degeneracy of the level With these wave functions

obtained through a set of dispersion equations, where BCS IS r;?ep:r?;orrmlgg dst%Zinlgsg;agzi(r:;ﬁnf:rlgtls?gtséstg?egri(\)/:?\dt;

the zero-order expansion. This expansion allows a compari- 9y y 9 y

son among the different BCS refinements in the literature. To N

carry out this comparison, we have derived analytical expres- E= 221 e . 2.3
=

sions in a 1N expansion up to third order in a symmetric and

jm,j'm’
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The g; are the roots, in general complex, of the following In Eq. (2.7) eachh(m) is a term of an expansion of the
coupled system of equations: field H(j) produced by the free charges of unity strength
located at the positions of the fixed charges
N
N 1 1 O, N
——+> -=> —L —p, (2.9 1 1 [F@2
G Fie—¢e 27 eg—¢ j)= ==
L ! ! ! EJ H(J) i:EJ_Gj_ei 2i ej—Z

dz, (2.8

where the sum ovej extends over thevl single particle namely
states andl=1,2, . .. N. In the above expression, the pairing

strength is taken to bg=G/N. It is also assumed thd?; h(0) M-1 h(m)
are extensive quantities and therefore of odeilt is inter- H(j)= 3 + Ex—ec)’ (2.9
esting to note that all terms in E€R.4) are proportional to i m=1 EEmTE

N.
. . e : where thex,, are the real zeros d¥y(2).
Equation(2.4) represents a problem in two-dimensional Expanding h(m) in powers of 1IN gives the

electrostatlt_:s, i.e., the equilibrium distribution of a collection BCS ground-state energy and the different orders of im-
of parallel lines of charge. Therefore, the complex numbers

e; may be thought of as being the locationg\bfree lines of provemgnt. RichardsofL7] has presented expllcn formulas
; . .__for the first- and second-order energy correctidngm) and

charge of unit strength in the complex plane. These free Imers1 . . : .

of charge lay in a uniform external field: N/G, and in the -,(m), respectively. In this paper the third-order correction

field generated by a number of fixed lines of charge, with> also calculated in a solv_able sy_mme.trlc two-level mo_del
; (M=2) and the results will be given in Sec. IV. In this
strength—(};/2, located ak; on the real axis.

The electrostatic field generated by such a distribution aandel two levels with the samjecontaining total number of

" : > particlesn=Q =+ 1/2 are separated by energy In order
any positionz _in the complex plane is given by to give a flavor of the way this method works, we present
below the first-order correction to BCS, obtained with the

1 1 Q; N ) .
=N _- _ = P above described methotd,(m) is given by
F(2) 2.: Z— € 221-: z—¢ G’ (2.5
s —zﬂj
The solutions of Eq(2.4) can be sought through an ex- 1 J'(xm— €)
ion i hy(m)=5{ ———=———[(Xn—\)2+A2]Y2
pansion in powers of N. In order to perform such an ex- 1 2 Q; m
pansion it is necessary to choose some limiting form for the E]’W
JAm J

field whenN—o. Following Richardsor{17], we assume (2.10
that all the results already obtained by BCS theory come '

from the above function. The leading terfy(z) of a |n the particular case of the solvable symmetric two-level
1/N expansion represents the ground state, where the nurfgdel we have

ber of lines of charge increase and coalesce to form a sheet.

As a result, the poles d¥(z) arising from the first term of 1 e |2

(2.5 merge and form a branch cut. Further, it may be as- hy(m=1)= E(QQ—A):QQ[l— 1—<29—9) -

sumed that this branch cut extends from the pairto the (2.11)
point a*, since the roots of Eq2.4) occur always in com- '
plex conjugate pairs. Therefore it is suggested [} Further results will be presented in Table I.
1 Q; Ill. THE EXISTING REFINEMENTS TO THE BCS
___ _ * ot
Fo(2)=—3V(z—a)(z+a ); E(z-¢) (2.6 SOLUTION OF THE NUCLEAR PAIRING MODEL

The well known BCS approximation for the schematic
Here a=A+iAis yet to be determined and nuclear pairing Hamiltonian is presented in several places
E;=V(¢;—a)(e+a*). From the above function it is pos- [2]. Here, only the essential points of this approximation will
sible to obtain all BCS-theory equations, namely the gagbe discussed. Using the quasiparticle operatgrsand a;fm
equation, the number equation, and the ground-state energyie Hamiltonian(2.1) can be split up in the form
It is also possible to identify the real and imaginary parts of
a with the well-known parameters of the BCS theory H=Hgg+Hq3+Ho+tHpa+Hopt+ Ha+His+Hyot+ Hoy,
N\ (chemical potentialandA (energy gap respectively. Up (3.9

to here, only the basic equations of BCS were obtained. . . . NNy asm g tym
From the dispersion equations one can also geWhereHn, is written in terms of @')"(a)™ or (a)"(a’)™.

1/N corrections to the BCS approximation. This was ob-ASSuming that the residual terns; +His+Hyot Hos can
tained in Ref[17] providing the following expression for the P& neglected and makirtg,o+Hq,=0, the well-known gap

energy: equation is obtained. Physically, it means that the original
system of interacting quasiparticles and thus the complicated
M—1 many-body problem is replaced by the simple one-body
E=(2)\—G)N+G—22 h(m). 2.7) problem. Howgver,' one has to pay fqr this simplification.
m=1 The new quasiparticle vacuum, which is the ground state of
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TABLE I. Corrections to the BCS approximation in the symmetric two-level model in terms of a dimen-
sionless parametek,= (e/2gQ)2.

First order Order M Order 1N?
This work —90[2-V1-«]  g4ai-k 4—« g [(12-24k) (36+39x—43«?)
41—« 1-« 80 1-07 = 3(1-0)

QRPA[5] -gQ[2—V1—«] - -

PBCS[8] —gQ[1+3«] - -

Nogami[9] —gQ[1+ 3x] g g

2" 80"
Nilsson[9] —gQ[1+3«] g -
—=[1—«]
4

the approximate Hamiltonian, is no longer an eigenvector of 1 5 9?Z(n,p)
the number operatorj; thus one has to introduce some (£)=2(n,p)+ 5((p—n) ) “op? (3.9
Lagrangian multiplier X 1) in order to keep at least the mean p=n

value of the number of nucleons in the system fixed. Lipkin . : .
and Nogami[9] introduced a second factor,i? in the Bang et al. [12] obtained the following expression for

2 2 .
Hamiltonian(3.1) to obtain a smaller deviation in the num- Lo°2(n.p)/ 9P Tp=n:
ber of particles. The following result is reported by Pradham

et al.[10]: 1 .
[ ] §<(p_n)2>[‘92é§(nup)/‘9pz]p=n
O.udy QuvH=>0(un)*
4)\2:(EJQJUJUJ)(EJ(221LZIIUI) EI‘Q'J(u‘llvl) ) (32) Ej,j’Qi(‘Qj'_5jj,)ujvj3uj3’vj’
g [2Q(ujp)=]°=2;Q;(ujo;) =g SO : (3.9
j

MY
The u; and v; in the above formula are the well-known

Bogoliubov-Valatin coefficients slightly modified to which is very similar to the previous expression. We will use
it to obtain one of the refinements to the BCS model; the

result is shown in Sec. IV.

(3.3 Another way to restore the number conservation, as sug-
gested by Baymal8], is to introduce a gauge transformation
|BCS(#)) into the BCS wave function in such a way that the

1 -
vi=35[1=y (§-N] uf=1-v7,

where ground state energy is given by
0_ . 2 ) “
6j—6j+(4)\2 g)l)J , (3.9 fg”e"Ne(BCSHlBCS(t?))dﬁ_ le a1
~ J27e"N&(BCYBCY A)dO  |,’ (310
)\Z)\1+2)\2(n+1), (35)

whered is the gauge angle. Transforming both overlaps into
(- N)24 A2 _ pon.nom|aI forms it was pOSS|l_)Ie to perform the above inte-
Y=l =N 4% 3.6 grations analyticallyf13], resulting in

In the above expressiong, is the average number of par-
ticles in the BCS ground state. Hence the correction to the g Uiv;
BCS ground-state energy due to the term ,((i%)—n?) is |E:|ZN [H Bj| X 2( €~ 5)'1—92 To (=1l }
given by —4\,=Q;(ujv))2 Ul . SR

Using the same philosophy mentioned above, Nilsson (3.11
[11] considered the nuclear wave function written in terms ofgng
wave functions with good particle numbpr

lo= Bil, (3.12
wn):; Cp(Mep(n). 3.7 l—N(H ‘)

with
Let #£(n,p) be defined as the energy associated withghe
component. Up to second order, the mean valug(af,p) is 201 2l
given by Bj=(uj)™1 (v, (3.13
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Herel=ZX;l; andl; are integers. The last method consid- 1/N expansion of the dispersion-type energy equations. This
ered here to restore the number conservation is an explicicture can be made with the help of analytical expressions
treatment of the neglected residual interaction in the BC3n the symmetric two-level model. Here, both number and
approximation using the QRPRL]. In this case the residual gap equations can be solved analytically, resulting in closed

termH es= Hoot Hoz+ Hapt+ Hagt Hog is rewritten as expressions written in terms @@, g, and e for the BCS
ground state and its refinements.
Hres=Hct+Ha, 3.14 At first, in the soluble symmetric two-level modéN,, is

obtained analytically and the correlated ground-state energy
is then given by

Hc=—92 Vol A =l ) f 2= 0f 7)) Eorea=Escs—200+(00)2— (2% (4.0)

(3.19 Other expressions mentioned in Secs. Il and Ill can be cal-
and culated and are presented in Table | in terms of a dimension-
less parametex = (e/2gQ)?, which just gauges the validity
_ B 2 2t of the BCS approach. Far=1, which would correspond to
Ha= 9; VO (= Ul i(uf 4= of 7)) nuclei near the closed shell, no superconducting solution ex-
ists, and therefore BCS is not valid anymore. Table | can be
2 4t 2 - e read in two different, although not completely independent,
+(uj A —vj 7)) 1+9> Uity ways. A given column contains information on the behavior
31 of different approximation methods at a fixed order in pow-
(3.16 ers of 1N, being the strength of the pairing interaction, mea-
As before, quasiparticle pair operators can be defined bgured byx, the relevant parameter for comparison among
/J*r: 1/\/ﬁjzm(_)]—maj|’majf|'7m andl/f/',:Ema;rmajm. It is the different models. On the other hand, by comparing dif-
ferent columns, we are able to assess the quality of each
model regarding the amount of the correction, it exhausts at

thatH. is of the order ofy(2, while H, contains terms of the a given power of ]M By just glancmg over this _table, we
can notice some interesting connections. The first order of

order ofg\Q andg. Within the quasiparticle scheme it is : o o .
reasonable to consider that the lowest state has few quasip h_gpli\laexp;g)r:isr:] O;ligﬁn Sbiﬁcrg?ggﬁllgimalges?o\r:vn?c}c%eiisx-
ticles. If Q; is large, then a consistent approximation is to PP . P P

consider onlyH, and neglect the Pauli principle for quasi- act expressions for each order of the expansion, we can con-

particle pairs which therefore satisfy boson commutation red lude that the QRPA correction has exhausted the first term

lations[.7 ,.Z]1=&; . In the present work we are looking of the 1N expansion. Thus, since the BEQRPA repre-

\ . ; sents the lowest order of a quasiboson expansion, we can
for ground-state corrections due to this quasiboson approxiz

mation. resulting in the well-known correlated around stateeXpeCt that our N expansion contains the various orders of
giveln t;y uiting | w w grou the quasiboson expansion. We can also test the other refine-

ments listed in Sec. 1l by simply noting whether or not it has

exhausted the equivalent term of th&l¥xpansion. Looking
OWIEDS Wn}, (3.17  again at Table | we note that the projection procedure
! n (PBCS does not exhaust the term proportionalgf, be-
cause it is only part of the Taylor expansion of the QRPA
correction given by

where

worthwhile to note that the self-energy terngijf, is
included inH;. From( 3.195 and(3.16) it is possible to see

1
Eorra— EBcs=§

where E; is the single quasiparticle energy akd, is the
RPA eigenvalue given in Ref4].

All the results presented in this section can be connected
with those obtained in a I/ expansion discussed in Sec. Il. —2gQ+gQV1-xk=—-gQ
In the next section, these approximations will be discussed in
the framework of the symmetric two-level model.

1
1+ -«

5 K- 4.2

As a consequence it takes into account only part ofgfe

IV. DISCUSSION AND CONCLUSIONS contribution. . . .
It is worthwhile to discuss here the analytically obtained
In this section we are going to present a unified picture olhhumber projected ground-state energy in the symmetric two-
the various existing refinements to the BCS theory using théevel model given by

2 2

1=Q
u v |
> B2 Q—11-gO{ 1+ —I+|—— —
I=0 v? u? Q
E= — , (4.3

B
0
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where B, is given in EQ.(3.13. As in Ref.[15] we can
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the order of 1N2. A Nilsson correction of the order of NI/

transform this factor into the so-called Moivre-Laplace limit does not give the correct behavior at the order f dihce it
for the binomial coefficient. Introducing the new variable does not go to zero in the limit of very strong pairing
| =Qu2+ §into this limit we get, after some calculations, the (k—0). On the other hand, Nogami's correction of the order

simple Gaussian form

1 5
B( )= EEX% - T"Z ) (44)

of 1/N is identical to the exact one up to first order in powers
of k. This behavior clearly shows the advantages of the
Lipkin-Nogami method in restoring particle number conser-
vation. As a matter of fact, it has been used very much in the
literature (see for example Ref{19], where a thorough

where o?=Quv. Replacing this new variable into the ex- analysis over different regions on the periodic table has been
pression(4.4) and transforming the summation into integrals undertaken

through

1=Q 1 =0u?+5

Q—x ©

dé,

Qu?
dé ——
_QU —

_
=0

(4.9

we obtain the ground-state energy presented in TaplS]l

As a final remark we would like to stress again that the
several scattered refinements to the BCS nuclear model
found in the literature can be presented in a unified way
through the use of N expansion. Moreover, we can see in
Table | how the different improvements to the BCS model
concatenate in a coherent way.

The last two improvements shown in Table | are the

Lipkin-Nogami and Nilsson prescriptions. In the last case we
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