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Natural orbitals, overlap functions, and mean-field orbitals in an exactly solvableA-body system
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We consider a simple but nontrivial many-body system interacting through short-range forces, and confirm
a property of such systems that was recently proposed on general grounds, namely, that single-particle overlap
functions, spectroscopic factors, and separation energies of the béund){particle eigenstates can be
derived from the one-body density matrix of theparticle system in its ground state. The basis of natural
orbitals for the system is constructed and its properties are discussed. We also investigate the high-momentum
content of the bound-state overlap functions and momentum distribution. It is found that the mean field
provides a good approximation for the bound-state overlap functions even in the region of large momenta,
where the total momentum distribution is already enhanced by several orders of magnitude over the mean-field
result.

PACS numbd(s): 24.10.Cn, 21.60:n, 21.10.Pc

I. INTRODUCTION acting through forces of sufficiently short range. Essential in
the derivation of the theorem is the assumption that the con-

Correlations play a central role in the description of thevergence(to their exponential asymptotic regimef the
nuclear wave function for large momenta>kg. These overlap functions in the decomposition of the OBDM is uni-
high-momentum components are of interest as they involvgorm. Since this is not clea priori it is of some interest to
the short-range dynamics of a nucleon-nucleNiN} pair in  introduce a schematic model in which all single-particle
the nuclear medium. quantities can be calculated exactly.

In this context the influence &N correlations on single- An example of such a model, being both exactly solvable
particle quantities is of particular importance, since these argng containing the relevant many-body correlations, consists
the most easily accessible through experiment. One-nucleqgy 5 system of spinless particles in one dimension interacting
knockout reactions I|kee(,e’p),_ for example, are sensitive through delta function two-body potentidtsee, e.g., [5,6)).
to 'the 'one-bod.y spectral funcﬂg[ﬂ], "?"though the '”terp“?' It has been applied previously to the problem of nuclear form
tation is complicated by large distorting effects such as f'naITactors and momentum distributiofig—9]. The aim of this

state interactions and mesonic exchange currents. paper is then twofold. First, we want to check explicitly in

Ideally one could look for effects dN correlations in . . .
(e,e'p) reactions at missing energies beyond the thresholéhIS model the general resultg obtained4i To this end we
construct the full OBDM which, to the best of our knowl-

for two-nucleon emission, but in practice most experiments

up to now were limited to small missing energies, where theedge, has not been obtained before for this model. Second,

residual @—1) system is left in a discrete bound state. It W€ Study the contribution of the bound.{-1) eigenstates to

was shown recentlf2] that in a perturbative Green function the momentum distribution and discuss the high-momentum
approach for a finite system Iik&0 the overlap function bghaymr of this contribution and of the total momentum dis-
leading to a bound A—1) eigenstate has no appreciable tribution. _ . _
enhancement of high_momentum Compondatgeast up to The remainder of this paper i1s Orgar“Zed as follows. The
600 MeVb) when Compared to a typ|ca| mean-field Ca|cu|a-SChematiC model that we solve is outlined in Sec. Il. In Sec.
tion. In [3] we pointed out that the spectral function in the !l we construct the OBDM and study its asymptotic behav-
local density approximatiofLDA) is consistent with this ior in coordinate space and its relation to the overlap func-
result. In this paper we will demonstrate that an exactly solviions. In Sec. IV the high-momentum components in the mo-
able schematic model exhibits the same feature as found imentum distribution and the bound-state overlap functions
these calculations, namely, that at small values of the reare investigated. Section V contains a summary and conclu-
moval energy the spectral function is well approximated bysions. The definitions and conventions for the various single-
the mean-field result, even at large momentum. particle quantities are gathered in Appendix A.

In a previous paper by the authd# it has been shown
that some quantities related to thA-1)-particle system

[such as separation energies, spectroscopic factors, and over- Il. ONE-DIMENSIONAL MODEL
lap functions for the boundA—1) state$ are fully deter-
mined by the one-body density matrifOBDM) of the The model we will discuss involveA spinless bosons

A-particle system in its ground state. This surprising theorenmoving in one dimension and interacting through attractive
holds quite generally for quantum many-body systems interé-function potentials. The corresponding Hamiltonian is
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A g2 A \/)\\A 1
H=—oo > e Y 21 S(Xi=Xj), @) oa(X)= 2 coshAAX) " ©

with g>0 and in units#=1. We summarize briefly some The Hartree approximation for the one-body density is then

previous results that have been obtained for this system. pH(y)=Alea(y)|2. 7

For all A=2 there is just one bound state with energy . .
Subsequently Amado and Woloshyn rederiy&{l using

1 a diagrammatic method and singularity analysis, the form
Eom=— 2—4mng(A2— 1) @ factor
d with intrinsi function=mg/2) p a |3
and with intrinsic wave function\=m _ iqy _
F(a) fdyé p(y) Anﬂl 1+ znx(A—l)H '

A
\I'A(xl,...,xA)chexp(—)\‘z |xi—x]-|). (3 (8)
i<j=1 Using the same technique they also deri{8Hthe momen-
i . : tum distribution for this model. As was noted earlisee
In Eqg. (3) the normalization constant is given b ) !
CA:[%Z)\()/-gfl(A_1)!/A]l/2' We refer to Append?x A fory e.g.,[10], and references thergithe form factor of a bound
our normalization conventions. system has a[v(q)/q?]* ! asymptotic behavidr for

The above model was studied by Calogero and Degas;ﬂ_’m' On the other hand, the asymptotic behavior of the

iy i o i 272
eris[6], who obtained a closed-form expression for the onenomentum distributiori7] is given byn(q)—[v(d)/q°]".

body density{see Eq(A13)], This means that fog—o the momentum distribution is
dominated by two-particle correlations, whereas for the form
A1 factor only those configurations in which all particles take
p(y)=2\A(A—1) 21 nFAe=2mA-1ly| (4)  part in correlations are important.
n=

. . Ill. ONE-BODY DENSITY MATRIX
and hence alstby Fourier transformingfor the form factor.

The coefficient&= in Eq. (4) are given by the combinato- In this section we want to show that not only the density
rial expression and the momentum distribution but also the bound-state
) overlap function can be obtained from the full one-body den-

FM (1) [(A=1)!] 5 sity matrix [defined through Eq4A11), (A12)].
n (A—1-n)!(A—=1+n)!" The OBDM can be calculated exactly in the model of Sec.

I, by similar techniques as the ones used@r8]. Since it is
The mean-fieldHartreg approximation for this model was a function of two independent variables, the derivation is
also derived analytically by Calogero and Degaspgfils ~ more complicated than that of the form factor or momentum
The Hartree solution i€ o(Xy, . . . Xa) =TI ;@a(X;), with  distribution. As it is also quite lenghty we refer to Appendix
the single-particle wave function given by B for the used method and only state here the final result:

A-1 A-1 A-1

~ A A
N(y,a)=2r(A—1)e 2% Dlal| 3 g2mA-1lyl 3 ggmm-2nlain_mEA 4+ > g(mla]—2(A—1)|y|)
n=1 m=—(A-1) m=1,2
A-1

A
% 2 e2n}\(A71)|y\e§m(mfzn)la\(n_m)FgA) ) (9)
n=-(A-1)

In this expressio® denotes a summation over evesdd numbers ifA is odd (even. We checked that the diagonal of the
OBDM, N(ya,v¥a)=N(y,a=0), reduces to the expressiof) for the densityp(y).

In Ref.[4] it was shown that the overlap function of bound eigenstates inAhel()-particle system can be obtained by
examining the asymptotic behavior of the OBDM. This was based on the decompdgai#ionof the OBDM into the set of
overlap functions, and exploiting the fact that the overlap functions corresponding té thk){particle eigenstates with the
lowest energy have the weakest exponential désag Eq(A9)].

Specifying to the present model we have only one bouhe {)-particle eigenstate and its overlap functiég 1) is
given by

H i A_l ! H !
doa-1)(Ya)=C’ lim N(YA,YA)eXF{yA\/2mT(E0(A—1)_E0(A)) =C’ lim N(ya,ypa)exdA(A—1)yal. (10)

ya—t® Ya— +=

The Fourier transforny (q) of the two-body potential is just a constant in this schematic model.
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The constanC’ can be determined by considering also the ligijit> + in Eq. (10), leading to

|C’'|72=lim p(y)exd 2\ (A—1)y]. (11)

y—+o

In order to establish the asymptotic behavior of the OBDM in this model we take theylimit+« in Eq. (9). This means
we can substitutéa| =y,—y, and|y|=3(ya+Yy,) in (9). By inspection it is seen that in the first term of E@) the dominant
exponential iny, comes fromm= —(A—1). The argument of the step function in the second term of ®cecomes in the
limit

o(mlal—2(A-1)[y})=0([m—(A—1)]ya—[m+(A=1)]yp)— Sma-10(—Ya), (12)
and onlym=A-—1 survives. Therefore the asymptotic behavior of the OBDM is given by

A—-1
N(Ya,Ya)—2N(A—1)e MA“DYAl 3 @ MA-D@-Dypa A—1 4+ n)FA — g(—y1)
n=1

A-1

X > e MATDTVAA—14n)FWM |, (13)
n=-(A-1)

The right-hand side of Eq(13) is seen to be an even pecially for fairly largeA; see Eq(15)], the mean field is an
function iny,. This is expected since the ground-state toextremely good approximation to the density for all but the
ground-state overlap function should have even parity. Usingightest systems. As expected the contribution from the

Egs.(4,11) it follows that|C’|~*=(A—1)2\. bound-state overlap function reproduces the tail region of the
The final result for the overlap function obtained throughdensity. This means that the contribution of the continuum-
the OBDM with Eq.(10) is then given by state overlap functions, which represent the possibility of

n-particle emissionr{=2) from the target, is strongly local-
o B ized in the center and of shorter range than the density itself.
boa-1(¥) =2\ nzl e MATHEINI(A+n—1)F . On the whole it is virtually impossible to distinguish on the
(14) basis of the one-body density between the system subject to
the mean fieldone-body forcesand the full system inter-
A direct calculation of the overlap function starting from Eq. acting through two-body forces.
(A7) can also be performetsee Appendix B and yields We also obtained the natural orbitals of the system by
exactly the same result. This confirms the properties derivedirect numerical diagonalization of the OBDM, E@). As
in [4]. an example we discuss the natural basis for particle number
The spectroscopic factor of the bound-state overlap funcA=10. The nodeless orbital with even parity, which corre-
tion, sponds to the Bose condensate, has an occupation number
N=09.927. The remaining orbitals, of both even and odd par-
_ 2 ity, have much smaller occupation numbers which are
Soa-1)= j dyldoa-1I% (15 smoothly decreasing with the number of nodes of the orbital.
In Fig. 2 the largest occupation numbers are shown. In this
is a measure for the degree of correlation in the system; i.emodel the occupation numbers of odd and even parity orbit-
Soa-1)=A means no correlations. It is independenthof  als with the same number of nodes are rapidly converging to
The fact that the strength of the interaction does not influ-a common value.
enceSy(a-1) is a less realistic feature of this simple model in ~ The shapes of the natural orbitals are given in Fig. 3. In
which the wave functions contain only one dimensional pathe upper panel the mean field, overlap, and natural orbital of
rameter\. We find that the system is only weakly correlated, the condensate are compared. The overlap and natural orbital
with e.g., (1A)Sya-1)=0.938, 0.970, 0.997, foA=3, 10, are very similar, whereas the mean-field wave function is
100, respectively. more pronounced in the center and less in the tail region.
In Fig. 1 we compare the exact one-body density of theSome of the other natural orbitals are shown in the middle
system with two approximationghe Hartree approximation and lower panels. All natural orbitals are localized in the
and the contribution of the bound-state overlap fungtié&ts  same region as the densjtyy), and the increasing number
observed in[8], the spatial extent of the density decreasesof nodes is confined within this region. This is qualitatively
with 1/A for this nonsaturating system. Therefore it is con-the same behavior of the natural basis as was found in a
venient to plot the densitp(y) as a function ofA\y, in  variational Monte Carlo calculatiofiL1] of finite drops of
order to compare the results for different particle number. “He atoms.
It is seen that for alh the mean-field approximation gives  In Fig. 4 the asymptotic behavior of the natural orbitals in
too much central density and too little density in the tail. coordinate space is shown. In agreement with the results in
However, because the system is only weakly correlpgsd [4], all the even-parity natural orbitals have the same expo-

A-1
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FIG. 2. Occupation number of the most occupied natural orbit-
als of even(squareys and odd(circles parity, for particle number
A=10. The occupation number of the nodeless natural orbital
(N=9.927) is not shown in the figure.

p(y)/AA?

AL, m? omla?,
n(qQ)=— 77+ . 277
7N | m=12\ (Q/N)+ay  [(QIN)+an]
+25A od 0 16
5 OA 0dd a2 (16

with a,,=A?—1—m?. The last term ir(16) only contributes
for A odd. We have also checked that Efj6) agrees with
the expression for the momentum distribution &.

To establish the behavior of the momentum distribution
(16) for g—o we first note that the coefficier®, of the
asymptoticq 2 term,

p(y)/AA?

0.0
0.0 05 10 15 20 25 30 35 4.0 A-l

U ,o 1
ANy czzm:Em (am—m?)+ 5 8(A oddag, (17)

FIG. 1. One-body density for three values of the particle numbexanishes for allA, as can be easily verified. The coefficient
A. Solid line: total density(y) [see Eq(4)]. Dashed line: Hartree C, of the nextq* term,

approximationp"(y) [see Eq.(7)]. Dashed line with dots: contri-

bution of the bound-state overlap functid#o—1)(y)|? [see Eq. A1 L

(14)] to the density. 642 E (3m2aﬁ1— a%)_ Eﬁ(A odd)ag, (18)
m=1,2

nential decay as the bound-state overlap function, since they

have a nonvanishing overlap with the latter. The odd-parityjoes not vanish, however, and explicit calculation yields the

natural orbitals, on the other hand, have a faster decay, whichesired asymptotic behavior of the momentum distribution
also seems to be universal.

21
IV. MOMENTUM-SPACE REPRESENTATION n(a)— — §>\3A(A2— 1)q~ 4, (19

Here we will focus on the high-momentum behavior of
the momentum distribution, overlap functions, and naturaWwhich corresponds to the (q)/q?]? behavior, mentioned in
orbitals. Sec. Il.

The momentum distribution, defined through E415), The exact expression for the momentum distribution is to
can be easily extracted from the OBDM, by means of Eqbe compared with the mean-fieltHartreg approximation
(A14). We find [see Eq(6)].
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If this result is generalized to arbitrary many-body systems,
FIG. 3. Natural orbitals in coordinate space for particle numberone concludes that the asymptotic behavior of bound-state
A=10. All wave functions are normalized to unity. Upper panel: overlap functions is given bbw (a)/g*1*~*. This is not sur-
comparison of the condensate natural orkgalid line), the mean-  prising since, just as is the case with the form factor, a large
field single-particle wave functiodashed ling and the overlap momentum kick has to be distributed over all particles when
function (dashed line with dois Middle (lower) panel: the four the residual system remains bound.

most occupied noncondensate natural orbitals with dedd) par- For A=3, Eq.(23) agrees with the—co limit proposed
ity. in [12] for the spectral function of the three-nucleon system
at fixed energy. The model ifi12] also predicts for general
T 1 A an approximate decomposition of the spectral function as a
n"(q)= N 7q ) (200  sum over contributions of j-particle correlations
Cosﬁ(m) (j=2,... A). It is interesting to note that this can be ob-

tained from the product representation in Eg2) by ap-
proximating each factor
which has an exponential asymptotic behavior.

Finally we need the bound-state overlap function in mo- 1
mentum space. From Eg@7), (A14) we get (q/N)2+ 22
¢0(A71)(Q) by
_2(A-1) Az’:l ) (2k—1)(A+k—1) ’ 9((q/7\)2222) N 9(22_(2(1/7\)2).
=i & o a-nrak-n Y (a/\) z

In Fig. 5 the exact momentum distribution, the Hartree
It can be shown thaf21) can be rewritten in a similar form approximation, and the contribution of the bound-state over-
as the form factofsee Eq(8)], lap function are compared. It is convenient to plot these
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1077 - . - function (circles, and form factor(square} starts to deviate sub-
1078 L \'\\\\ _ stantially from the power-law asymptotic behaviour and from the
0% L \\\.\ | mean-field prediction. Solid symbols; value beyond which the
1o \\-\ exact expression deviates by less than 10% from the asymptotic
10 —t—t—t— behavior. Open symbols} value beyond which the exact expres-
107" L _ sion is enhanced by more than 10% over the mean-field prediction.
1077k 4
_3 A = 100 The contribution of the bound-state overlap function be-
10 B B haves quite differently. It falls off much faster than the total
=< 107" b N - momentum distribution, and although it is a rational function
g 107° | TUN . of g2, it follows the exponential decay of the mean-field
= 1078 L NN | distribution up to quite large momenta, well beyond the point
_5 K% at which the total momentum distribution starts to deviate
10 I BN 7 from the mean-field approximation. This means that the en-
1078 | \‘ . hancement of the total momentum distribution over the mean
107° L \\ _ field comes fronm-particle emission channelsa# 2) which
10-10 | L NG have a nonvanishing single-particle overlap with the ground
o 1 4 5 6 7 8 9 10 state of the correlated system. The neglect of the recoil of the
q/AX (A—1) system in the Hartree calculation is not important for

this enhancement.
The range in which the bound-state contribution is well

FIG. 5. Momentum distribution for three values of the particle approximated by the mean-field result rapidly increases with

numberA. Solid line: totaln(q) [see Eq.16)]. Dashed line: Har-
tree approximatiom"(q) [see Eq.(20)]. Dashed line with dots:
contribution of the bound-state overlap functiaya_1y(a)|* [see

A; this is also the case for the point at which the power-law
asymptotic regime of Eq19) is reached. One may observe
from Fig. 6 that the overlap function and the form factor

Eqg.(21)] to the momentum distribution. The short-dashed line is thepehave almost identically in this respect.

asymptotic expressiofl9) for the total momentum distribution.

guantities as a function of/AN, since the extent of this

The natural orbitals in momentum space are shown in Fig.
7 for the case of particle numb&r=10. In the upper panel

nonsaturating system in momentum space increases lineari)¢ natural orbital corresponding to the condensate is com-

with A. The range of validity of the Hartree approximation Pared with the overlap function and the mean-field single-
and of the asymptotic expressions is shown in Fig. 6. particle wave function; the natural orbital is closer to the
One observes from Fig. 5 that the Hartree solution proVverlap function. In the middle and lower panel§ some of the
vides a good approximation only for smafi as can be seen Other natural orbitals are shown. The orbitals in momentum
from Fig. 6 the range of validity is slowly increasing with space have the same number of nodes as in coordinate space.
A. At large momentum the two-body forces lead to an en-They extend to larger momenta as the occupation number
hancementby orders of magnitudeover the mean-field ap- decreasesor the number of nodes increases
proximation. The point at which the power-law asymptotic In Fig. 8 we show separately the contribution to the total
regime of Eq.(19) is reached also has a very welldepen- momentum distribution of the natural orbital of the conden-
dence. sate and of the most occupied other orbitals. The natural
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orbital of the condensate describes perfectly the sma#f-  the continuum-state overlap functions, which represent the
gion of the momentum distribution. At larggrthe momen-  possibility of n-particle emissionr{=2) from the correlated
tum distribution is dominated by the noncondensate naturah-particle ground state, are responsible for the enhancement
orbitals. In this model the natural orbitals of odd and evernof the momentum distribution over the mean-field approxi-
parity with the same number of nodes converge for largemation at large momenta.

momenta. Since their occupation numbers also converge to a In this enhancement region the contribution of the bound-
common value, the even and odd noncondensate natural astate overlap function to the momentum distribution is de-
bitals contribute equally to the momentum distribution atscribed accurately by the mean-field result for not too small

large momenta. A. Only at much larger momenta does the recoil of the
(A—1) system come into play and does the bound-state
V. SUMMARY AND CONCLUSION (r)]\alsir(l)a;p function reach its inverse-power-law asymptotic be-

In this paper we studied the single-particle properties of Although the model we discussed is quite schematic, it
an exactly solvable schematic model, consisting of a systeroontains the essential many-body correlations in a system
of spinless bosons interacting through delta-function poteninteracting through short-range forces, and many of its fea-
tials. tures should remain valid in the real world. Applied to the

We examined the role of the overlap functions corre-nuclear system, Fermi statistics would of course drastically
sponding to bound and to continuurA{ 1)-particle eigen- affect the smally region of the momentum distribution in the
states. Inr space the latter only contribute to the centralformation of a Fermi sea instead of the=0 condensate, but
density and fall of more quickly than the bound-state overlaghe separation in a smail+egion described by a mean field
functions, which describe the tail of the density.drspace and the high-momentum region induced by two-body corre-
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APPENDIX A: CONVENTIONS

Several conventions are possible for single-particle quan-
tities in self-bound many-body systems, when translational
invariance of the wave functions is taken into account.
Therefore we will state explicitly the definitions we have
adopted in this paper.

The coordinate space wave functions that describe
the relative motion are translationally invariant,
V(Xq1,... Xa)=V(X;+X,... Xa+X). Orthogonality and
completeness of the eigenstates of the intrinsic hamiltonian
can then be expressed’as

n(g)A

A 1A
J ]._[ dXi ’\P*(le LRC 1XA)\PV(X11 v 1XA)(s _2 Xj
=1 # A=1
=0, (A1)
FIG. 8. Contribution to the momentum distributioiig) (solid

line) of the natural orbital of the condensadtiashed lingand of the W (Xq, ... XA)‘I’*(Xi ] X,/A)

four most occupied noncondensate natural orbitals of even paritya) v

(solid circleg and odd parity(open circley for particle number A

A=10. = | axIT 8(x—x/+X). (A2)

i=1

lations should remain valid. Pauli blocking effects also lead

to a faster fall off of the nuclear wave functions for large Similarly the relative wave functions in momentum space
momenta, and in a three-dimensional system logarithmi®bey

corrections to the dominant inverse-power-law asymptotic

behavior appedr10,8]. Finally the high-momentum tail will .

be modulated by a realistidN interactionv (q), which has J .1;[1 do |W75(d1, ... .4V ,(A1, ... 0a)276

strong short-range repulsion and a tensor component. This
would lead to a stronger high-momentum enhancement.

The behavior of the bound-state overlap functionggin X
space is in agreement with many-body calculations using
Green function perturbation theof] or the local density
approximation[3]. On the other hand a recerg,&'p) ex- > v, (g,
periment on?%Pb, [13] in which the missing-momentum »@&) =
region 300—500 Me\ of the valence hole overlap functions A
was probed, showed a large enhancement of the momentum _ i dKH 5(q,_qf + 5
distribution over the standard Woods-Saxon one. It was sug- 2 i=1 A
gested if 3,13 that this may be due to the surface degrees of
freedom in a finite system if strongly collective surface vi- and momentum and coordinate space wave functions are re-
brational modes are present. Such surface effects were niatted by
taken into account ifi2] or in the pure LDA calculation in
[3], and are evidently absent in the one-dimensional model 1 A
discussed in this paper. Y(qg,....da)= Wﬁf H dx; | W (Xq, ... Xa)

The considered model is an example of a quantum many- =t
body system interacting through short-range forces. Such A 1A
systems have certain universal properties; e.g., it was shown X exp( —i Z qixi) 5( —E xi) . (Ab)
recently[4] that it is possible to derive the bound-state over- =1 =1

lap functions, spectroscopic factors, and separation energies )
from the one-body density matrix. In this paper we con- For the overlap functiong, between the ground state of

firmed this property by an explicit construction in an exactly the A-particle system and the\(- 1)-particle eigenstates we
solvable model. adopt the following definition in momentum space:

A
izl ql) :5;1,,111 (A3)

AP, ... 0p)

: (A4)

ACKNOWLEDGMENTS °The summation over eigenstates in EGs2), (A4), (A10) must
This work is part of the research program of the founda-be understood to include integrations over the unbound eigenstates
tion for Fundamental Research of Mati@OM), which is in the different continuum channels.



53 NATURAL ORBITALS, OVERLAP FUNCTIONS, AND MEAN- ... 2239

A-1 N ’
N(y,a)=N(ya,ya)
é,(da) = \/KJ IHl in)‘P:(A—l)(QL o 0a-1) A1
- a
A —Af(i]:[ldxi)‘PS(A)(le---,XA—1,—§)
XWoa)(dg, ... 1QA)2776( 21 Ch) . (A6) Al
a a 1
X¥ X1y Xa_1y5]0| Y+ — X |-
This corresponds to the amplitude for extracting a particle O(A)( ! A2 y 121 '
with momentung, from the ground statd ) of the target (A12)
in rest, ending up in the eigenstale, 5 1) of the residual
system, and as such the convention of EA6) is most The densityp(y) is defined as the diagonal of the OBDM,
closely related to the description of one-particle knockout _
reactions. p(Y)=N(y.y)=N(y,a=0)
The overlap function in coordinate space then follows by A1
Fourier transforming, )
= J |];[1 dx |‘1’0(A)(X1, coXam1,Y)|

1 .
?,(Xp) = —IEJ' dgae'I8ag,(ga)
_\/_J (H dx|) Wha-1) (X, -« Xa-1)

1 AL
XWoa)(Xis . Xa) 5<m 21 Xi|.

A-1
—12 xi), (A13)
—li=1

and represents the probability of finding a particle at distance
(A7) 'y of the center-of-mass of théd(- 1) other particles.
The momentum distributiom(q) can be obtained from
the OBDM with the relation

An equivalent expressiotwhich will be used in Appendix
B) reads as

A-1
d,(y)= \/Kj ( H dxi)\I’t(Al)(Xl. o Xao1) ) ) ) _
=1 A Using Eq.(A5) this can be rewritten in terms of the ground-
1 state wave function in momentum space as
Y+ T 2 X

(A8) n(q)=Af

If the forces between the particles are of sufficiently short
range, the asymptotic behavior of the overlap functions is
given by[14]

1 . —
n(g)= Ef da e*'an' dy N(y,a). (A14)

X\IIO(A)(X]_! e 1XA—1|0)5
A-1

il;[l in> |‘I’0(A)(Q1, ce ,CIA—17Q)|227T5

X q+i§l qi>, (A15)

dua-1(Y)— = o exp{ ly| \/2m (Eya-1)— EO(A))) ar_1d son(q) represents the probabili'_ty _of finding a particle
with momentumq if the total system is in rest.
(A9) In Egs.(A13), (A15) both p(y) andn(q) are normalized

Equation(A9) is the generalization of Eq10) in [4] when to the number of particles,

center-of-mass motion of the residual system is taken into
account. A=f dy p(y)=f dq n(q). (Al6)
The OBDM is decomposed in terms of the overlap func-
tions as
APPENDIX B: CALCULATION OF THE OBDM

N(YA YA = 2 b5 (YA bu(Ya)- (A10) AND OVERLAP FUNCTION
ot

Upon substitution of the expressi@8) for the many-body
Using the completeness relatioA2) this is equivalent to wave function into the defining relatiorid12) and (A8) we

Al get
N(yA,yA)=AJ iﬂl dXi)‘I’&A)(Xl, coeXas1,Ya) N A-1 A-1
A-1 N(y,a)=ACiJ' ( I1 dxi)ex;{—Z)\ > |Xi_Xj|)
1 i=1 i<j=1
XWoa(Xis ... Xa—1,Ya) O —> Xi)-

a

J’_
XiT5

A-1=3
(A11) Xexp( )\2 |

It is sometimes more convenient to introduce the relative
and center-of-mass coordinatea=y,—y, and y=3
(yatya), in terms of which the OBDM becomes

]

1 A-1
sl y+ _A—lizl xi), (B1)
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the x;. In order to resolve the absolute-value functions re-

) using the symmetry of the integrand under permutations of
lated to the external points we split the interval for the inter-

A-1 A-1
¢o(y)=JKcAcA,1J ( [[l dxi)exp( —2)\i<J§_:=l |%i—X]
A—1 1 AL nal x; integrations in Eqs(B1), (B2) into four distinct re-
xexd =\ X + x| B2 gions[—00,—_a/2],[—a/2,_0],[0,+a/2],[+a/2,+oo] for the
;{ 21 il y A_lizl ') B2) OBDM, and into two region§—,0],[ 0,+] for the over-
lap function. The total integration volume in E4B1), (B2)
The absolute-value functions containing differences of inis then obtained by summing over all the possible partitions
ternal integration variableg; can be simply evaluated by of (A—1) particles into the distinct integration regions;
considering one ordering-o<x;<---<xp_;<+o and e.g., forN(y,a) we have

o

A-1 o A-1
f (.Hl dxi)=(A—1)! <<)f_m ( .Hl dxi)
A-1 a2 Iy
=(A-D)! |1,|2,|23,|4:o (<)f_w (lﬂl dxi)

(I3+1pt+lg+1,=A—1)

o 1+, wa| 11+12+13 . A-1
x<<)f (_H dxi)<<>f ( 1 dxi)<<>J ( I dxi), B3
—a2\i=l+1 0 \i=ljtly+1 a2 \i=lyly+lg+1

where we have introduced the notation

b N b XN X
(<)J H dXi :J dXNJ’ dXN*l”’J‘ Xm. (B4)
a\i=1 a a a

Likewise, for ¢o(y) we make a partition

A-1 A-1 o [ 1 | AL
=1 1.12=0 —w\i=1 0 i=l;+1
(I3+1,=A-1)
|
Replacing the c.ms§ functions in the integrand by the ATl 1
Fourier expansion2m8(z)= [dT exp(T2)] it is now pos- ¢o(y)=C > EJ dT exd —2iTAN(A—-1)y]
sible to obtain an expression for EqB1)—(B2) in terms of R -ll—lIJiz\O—l)
generic integrals G(a,b,{C;}), which are defined as e
(a<b) XG(—2,0{Ci"})G(0,+,{C?}), (B8)
with C=2yA(A—1)!(A—1)CaCa_1A~“A"2. The sets of
b N coefficients{C{"}, with i=1,2 andj=1,... |; in Eq. (B8)
G(a,b,{Ci})= (<>fa dxy- - - dxyex 121 Cix; | are given by

(B6)

1
c,fl):z( —2j+A+§—iT),

The G integral can be worked out in a straightforward but

tedious way as . 1
y c}2>:2(—21+|2—|1+§—n). (B9)

exp(b B myn—m) EXP(AA mym) After working out the corresponding and B coefficients
(T-MB, ) (T A ) one can easily write down, using E@7), the contributions
k=1 =2(mk/A k=1 (m)k(B7) of eachG factor to theT integrand in Eq(B8). We have

N
G(a,b,{ci}>=m§O (—1)m

1
: K Kk G(==0{C{"h=— Iy L’
with A(m)k=Ej:1Cm_j+l and B(m)k:Ej:1Cm+j . |1|2 1Hk=1(A_k— 5 _IT)
For the overlap functionpy(y) this procedure leads to (B10)
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and G(0,+oo,{CJ(2)}) follows from Eq.(B10) by taking the done by complex contour integration. Because of the factor
complex conjugate and interchangihg-1,. exd —2iITA(A—1)y], the contour must be closed in the upper

The integrand in Eq(B8) is now seen to contain a prod- or lower half of the compleX plane depending on the sign
uct of (A—1) simple poles, and th& integration is easily of y. Fory<0 one finds

A-1 I2 (2A—2—k—1)!(— 1)I2+k e2MA-1)(A—k—(1/2))y

Poly)=6(=y)C |1,.22:0 AT 2A 2 (k=D (,— K (A-1)I2A T (B11)
(I1+1,=A-1)
One of the summations in E¢B11) can be eliminated using the combinatorial identity
A—k
A—k\ [ A+l
_1y —(_1\A-k
2 ( 1>( P G Y (812)
and the final result fogp is
~A71 —AMA-1)(2A-2k—1)]y|
— _1\A—k+1
¢O(y) Ck§=:1 ( l) (k_l)!(ZA_k_z)!zAfli (813)

which corresponds to Eq14) in the text.
For the OBDM the strategy is the same but the algebra gets more involved. The expression in téringegfals is

A-1
~ — 1
N(y,a)=C > —f dT e —iTA(A—1)ylexd — (I,+1g)\a]
l10yT3.,=0 27
(I 41+ 13+1,=A—1)
Aa Aa Aa Aa
XG| —o0,— 7,{0}”}) G( - 7,0,{c}2>}) G( 0,7,{c}3>}) G(T +oc,{C}‘”}) : (B14)
with C=Al(A—1)Cix~(A~2). The sets of coefficientiC("}, with i=1,...,4 andj=1,... |;, in Eq.(B14) are given by

CiV=2(=2j+A+1-iT), C{P=2(-2j-2I;+A~iT),

Ci¥=2(—2j+2l3+21,~A+2-iT),

(B15)
CiY=2(—2j+2l,—A+1-iT).
The contribution of eacle factor to theT integrand in Eq(B14) is given by
\a exg —I1AN(A=1;—iT)a
G(_w,__'{ql)} _ p[I ﬂf 1-al ©16
2 [!2101L  (A—k—iT)
[ .
\a 3 exd(Is—m)(2l,+13—A+1-m—iT)\a
G(—7,o,{0,<2>})=2 (—1)"— ms, ELEAS hal_
m=0 2Bml(l—m)HL2  (23+214,—A+1-2m—k—iT)
1
(B17)

X
IR (2l3+21,—A+1-2m+k—iT)’

whereasG(0 a/2 {C{¥}) and G(Aa/2,+=,{C{*)}) follow from Egs.(B17) and (B16) by complex conjugation and the
interchangel ;—1,4,l,—13. Again theT integral in Eq.(B14) can be worked out by contour integration. The resulting
complicated sum can be simplified considerably by using combinatorial identities such &812y.and leads finally to
expression(9) for the full OBDM.
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