
PHYSICAL REVIEW C MAY 1996VOLUME 53, NUMBER 5
Natural orbitals, overlap functions, and mean-field orbitals in an exactly solvableA-body system

D. Van Neck and A. E. L. Dieperink
Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen, The Netherlands

M. Waroquier
Laboratory for Theoretical Physics, Proeftuinstraat 86, B-9000 Gent, Belgium

~Received 30 November 1995!

We consider a simple but nontrivial many-body system interacting through short-range forces, and confirm
a property of such systems that was recently proposed on general grounds, namely, that single-particle overlap
functions, spectroscopic factors, and separation energies of the bound (A21)-particle eigenstates can be
derived from the one-body density matrix of theA-particle system in its ground state. The basis of natural
orbitals for the system is constructed and its properties are discussed. We also investigate the high-momentum
content of the bound-state overlap functions and momentum distribution. It is found that the mean field
provides a good approximation for the bound-state overlap functions even in the region of large momenta,
where the total momentum distribution is already enhanced by several orders of magnitude over the mean-field
result.

PACS number~s!: 24.10.Cn, 21.60.2n, 21.10.Pc
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I. INTRODUCTION

Correlations play a central role in the description of th
nuclear wave function for large momentak.kF . These
high-momentum components are of interest as they invo
the short-range dynamics of a nucleon-nucleon (NN) pair in
the nuclear medium.

In this context the influence ofNN correlations on single-
particle quantities is of particular importance, since these a
the most easily accessible through experiment. One-nucle
knockout reactions like (e,e8p), for example, are sensitive
to the one-body spectral function@1#, although the interpre-
tation is complicated by large distorting effects such as fin
state interactions and mesonic exchange currents.

Ideally one could look for effects ofNN correlations in
(e,e8p) reactions at missing energies beyond the thresh
for two-nucleon emission, but in practice most experimen
up to now were limited to small missing energies, where t
residual (A21) system is left in a discrete bound state.
was shown recently@2# that in a perturbative Green function
approach for a finite system like16O the overlap function
leading to a bound (A21) eigenstate has no appreciabl
enhancement of high-momentum components~at least up to
600 MeV/c) when compared to a typical mean-field calcula
tion. In @3# we pointed out that the spectral function in th
local density approximation~LDA ! is consistent with this
result. In this paper we will demonstrate that an exactly so
able schematic model exhibits the same feature as found
these calculations, namely, that at small values of the
moval energy the spectral function is well approximated b
the mean-field result, even at large momentum.

In a previous paper by the authors@4# it has been shown
that some quantities related to the (A21)-particle system
@such as separation energies, spectroscopic factors, and o
lap functions for the bound (A21) states# are fully deter-
mined by the one-body density matrix~OBDM! of the
A-particle system in its ground state. This surprising theore
holds quite generally for quantum many-body systems int
530556-2813/96/53~5!/2231~12!/$10.00
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acting through forces of sufficiently short range. Essentia
the derivation of the theorem is the assumption that the c
vergence~to their exponential asymptotic regime! of the
overlap functions in the decomposition of the OBDM is un
form. Since this is not cleara priori it is of some interest to
introduce a schematic model in which all single-partic
quantities can be calculated exactly.

An example of such a model, being both exactly solvab
and containing the relevant many-body correlations, cons
of a system of spinless particles in one dimension interact
through delta function two-body potentials~see, e.g., @5,6#!.
It has been applied previously to the problem of nuclear fo
factors and momentum distributions@7–9#. The aim of this
paper is then twofold. First, we want to check explicitly
this model the general results obtained in@4#. To this end we
construct the full OBDM which, to the best of our know
edge, has not been obtained before for this model. Sec
we study the contribution of the bound (A21) eigenstates to
the momentum distribution and discuss the high-moment
behavior of this contribution and of the total momentum d
tribution.

The remainder of this paper is organized as follows. T
schematic model that we solve is outlined in Sec. II. In S
III we construct the OBDM and study its asymptotic beha
ior in coordinate space and its relation to the overlap fun
tions. In Sec. IV the high-momentum components in the m
mentum distribution and the bound-state overlap functio
are investigated. Section V contains a summary and con
sions. The definitions and conventions for the various sing
particle quantities are gathered in Appendix A.

II. ONE-DIMENSIONAL MODEL

The model we will discuss involvesA spinless bosons
moving in one dimension and interacting through attract
d-function potentials. The corresponding Hamiltonian is
2231 © 1996 The American Physical Society
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H52
1

2m (
i51

A
]2

]xi
2 2g (

i, j51

A

d~xi2xj !, ~1!

with g.0 and in units\51. We summarize briefly some
previous results that have been obtained for this system.

For all A>2 there is just one bound state with energy

E0~A!52
1

24
mg2A~A221! ~2!

and with intrinsic wave function (l5mg/2)

CA~x1 , . . . ,xA!5CAexpS 2l (
i, j51

A

uxi2xj u D . ~3!

In Eq. ~3! the normalization constant is given by
CA5@(2l)A21(A21)!/A#1/2. We refer to Appendix A for
our normalization conventions.

The above model was studied by Calogero and Dega
eris @6#, who obtained a closed-form expression for the on
body density@see Eq.~A13!#,

r~y!52lA~A21! (
n51

A21

nFn
~A!e22nl~A21!uyu ~4!

and hence also~by Fourier transforming! for the form factor.
The coefficientsFn

(A) in Eq. ~4! are given by the combinato-
rial expression

Fn
~A!5~21!n11

@~A21!! #2

~A212n!! ~A211n!!
. ~5!

The mean-field~Hartree! approximation for this model was
also derived analytically by Calogero and Degasperis@6#.
The Hartree solution isCA(x1 , . . . ,xA)5) i51

A wA(xi), with
the single-particle wave function given by
sp-
e-

wA~x!5AlA

2

1

cosh~lAx!
. ~6!

The Hartree approximation for the one-body density is th

rH~y!5AuwA~y!u2. ~7!

Subsequently Amado and Woloshyn rederived@7#, using
a diagrammatic method and singularity analysis, the fo
factor

F~q!5E dy eiqyr~y!5A)
n51

A21 F11S q

2nl~A21! D
2G21

.

~8!

Using the same technique they also derived@8# the momen-
tum distribution for this model. As was noted earlier~see,
e.g.,@10#, and references therein! the form factor of a bound
system has a@v(q)/q2#A21 asymptotic behavior1 for
q→`. On the other hand, the asymptotic behavior of t
momentum distribution@7# is given byn(q)→@v(q)/q2#2.
This means that forq→` the momentum distribution is
dominated by two-particle correlations, whereas for the fo
factor only those configurations in which all particles ta
part in correlations are important.

III. ONE-BODY DENSITY MATRIX

In this section we want to show that not only the dens
and the momentum distribution but also the bound-st
overlap function can be obtained from the full one-body de
sity matrix @defined through Eqs.~A11!, ~A12!#.

The OBDM can be calculated exactly in the model of Se
II, by similar techniques as the ones used in@6–8#. Since it is
a function of two independent variables, the derivation
more complicated than that of the form factor or momentu
distribution. As it is also quite lenghty we refer to Append
B for the used method and only state here the final resul
Ñ~y,a!52l~A21!e2
l
2 ~A221!uauS (

n51

A21

e22nl~A21!uyu (
m52~A21!

A21

e
l
2 m~m22n!uau~n2m!Fn

~A!1 (
m51,2

A21

u„muau22~A21!uyu…

3 (
n52~A21!

A21

e2nl~A21!uyue
l
2 m~m22n!uau~n2m!Fn

~A!D . ~9!

In this expression( denotes a summation over even~odd! numbers ifA is odd ~even!. We checked that the diagonal of the
OBDM, N(yA ,yA)5Ñ(y,a50), reduces to the expression~4! for the densityr(y).

In Ref. @4# it was shown that the overlap function of bound eigenstates in the (A21)-particle system can be obtained by
examining the asymptotic behavior of the OBDM. This was based on the decomposition~A20! of the OBDM into the set of
overlap functions, and exploiting the fact that the overlap functions corresponding to the (A21)-particle eigenstates with the
lowest energy have the weakest exponential decay@see Eq.~A9!#.

Specifying to the present model we have only one bound (A21)-particle eigenstate and its overlap functionf0(A21) is
given by

f0~A21!~yA8 !5C8 lim
yA→1`

N~yA ,yA8 !expS yAA2m
A21

A
~E0~A21!2E0~A!! D 5C8 lim

yA→1`

N~yA ,yA8 !exp@l~A21!yA#. ~10!

1The Fourier transformv(q) of the two-body potential is just a constant in this schematic model.
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The constantC8 can be determined by considering also the limityA8→1` in Eq. ~10!, leading to

uC8u225 lim
y→1`

r~y!exp@2l~A21!y#. ~11!

In order to establish the asymptotic behavior of the OBDM in this model we take the limityA→1` in Eq. ~9!. This means
we can substituteuau5yA2yA8 anduyu5 1

2(yA1yA8 ) in ~9!. By inspection it is seen that in the first term of Eq.~9! the dominant
exponential inyA comes fromm52(A21). The argument of the step function in the second term of Eq.~9! becomes in the
limit

u„muau22~A21!uyu…5u„@m2~A21!#yA2@m1~A21!#yA8 …→dm,A21u~2yA8 !, ~12!

and onlym5A21 survives. Therefore the asymptotic behavior of the OBDM is given by

N~yA ,yA8 !→2l~A21!e2l~A21!yAS (
n51

A21

e2l~A21!~2n21!yA8~A211n!Fn
~A!2u~2yA8 !

3 (
n52~A21!

A21

e2l~A21!~2n21!yA8~A211n!Fn
~A!D . ~13!
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The right-hand side of Eq.~13! is seen to be an eve
function in yA8 . This is expected since the ground-state
ground-state overlap function should have even parity. Us
Eqs.~4,11! it follows that uC8u215(A21)A2l.

The final result for the overlap function obtained throu
the OBDM with Eq.~10! is then given by

f0~A21!~y!5A2l (
n51

A21

e2l~A21!~2n21!uyu~A1n21!Fn
~A! .

~14!

A direct calculation of the overlap function starting from E
~A7! can also be performed~see Appendix B!, and yields
exactly the same result. This confirms the properties deri
in @4#.

The spectroscopic factor of the bound-state overlap fu
tion,

S0~A21!5E dyuf0~A21!~y!u2, ~15!

is a measure for the degree of correlation in the system;
S0(A21)5A means no correlations. It is independent ofl.
The fact that the strength of the interaction does not in
enceS0(A21) is a less realistic feature of this simple model
which the wave functions contain only one dimensional
rameterl. We find that the system is only weakly correlate
with e.g., (1/A)S0(A21)50.938, 0.970, 0.997, forA53, 10,
100, respectively.

In Fig. 1 we compare the exact one-body density of
system with two approximations~the Hartree approximation
and the contribution of the bound-state overlap function!. As
observed in@8#, the spatial extent of the density decreas
with 1/A for this nonsaturating system. Therefore it is co
venient to plot the densityr(y) as a function ofAly, in
order to compare the results for different particle numbe

It is seen that for allA the mean-field approximation give
too much central density and too little density in the ta
However, because the system is only weakly correlated@es-
to
ing
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pecially for fairly largeA; see Eq.~15!#, the mean field is an
extremely good approximation to the density for all but the
lightest systems. As expected the contribution from th
bound-state overlap function reproduces the tail region of th
density. This means that the contribution of the continuum
state overlap functions, which represent the possibility o
n-particle emission (n>2) from the target, is strongly local-
ized in the center and of shorter range than the density itse
On the whole it is virtually impossible to distinguish on the
basis of the one-body density between the system subject
the mean field~one-body forces! and the full system inter-
acting through two-body forces.

We also obtained the natural orbitals of the system b
direct numerical diagonalization of the OBDM, Eq.~9!. As
an example we discuss the natural basis for particle numb
A510. The nodeless orbital with even parity, which corre
sponds to the Bose condensate, has an occupation num
N59.927. The remaining orbitals, of both even and odd pa
ity, have much smaller occupation numbers which ar
smoothly decreasing with the number of nodes of the orbita
In Fig. 2 the largest occupation numbers are shown. In th
model the occupation numbers of odd and even parity orbi
als with the same number of nodes are rapidly converging
a common value.

The shapes of the natural orbitals are given in Fig. 3. I
the upper panel the mean field, overlap, and natural orbital
the condensate are compared. The overlap and natural orb
are very similar, whereas the mean-field wave function i
more pronounced in the center and less in the tail regio
Some of the other natural orbitals are shown in the middl
and lower panels. All natural orbitals are localized in the
same region as the densityr(y), and the increasing number
of nodes is confined within this region. This is qualitatively
the same behavior of the natural basis as was found in
variational Monte Carlo calculation@11# of finite drops of
4He atoms.
In Fig. 4 the asymptotic behavior of the natural orbitals in

coordinate space is shown. In agreement with the results
@4#, all the even-parity natural orbitals have the same expo
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nential decay as the bound-state overlap function, since th
have a nonvanishing overlap with the latter. The odd-par
natural orbitals, on the other hand, have a faster decay, wh
also seems to be universal.

IV. MOMENTUM-SPACE REPRESENTATION

Here we will focus on the high-momentum behavior o
the momentum distribution, overlap functions, and natur
orbitals.

The momentum distribution, defined through Eq.~A15!,
can be easily extracted from the OBDM, by means of E
~A14!. We find

FIG. 1. One-body density for three values of the particle numb
A. Solid line: total densityr(y) @see Eq.~4!#. Dashed line: Hartree
approximationrH(y) @see Eq.~7!#. Dashed line with dots: contri-
bution of the bound-state overlap functionuf0(A21)(y)u2 @see Eq.
~14!# to the density.
ey
ty
ich

f
al

q.

n~q!5
2

pl F (
m51,2

A21 S am2m2

~q/l!21am
2 1

2m2am
2

@~q/l!21am
2 #2

D
1
1

2
d~A odd!

a0

~q/l!21a0
2G , ~16!

with am5A2212m2. The last term in~16! only contributes
for A odd. We have also checked that Eq.~16! agrees with
the expression for the momentum distribution in@8#.

To establish the behavior of the momentum distributio
~16! for q→` we first note that the coefficientC̃2 of the
asymptoticq22 term,

C̃25 (
m51,2

A21

~am2m2!1
1

2
d~A odd!a0 , ~17!

vanishes for allA, as can be easily verified. The coefficien
C̃4 of the nextq24 term,

C̃45 (
m51,2

A21

~3m2am
2 2am

3 !2
1

2
d~A odd!a0

3 , ~18!

does not vanish, however, and explicit calculation yields t
desired asymptotic behavior of the momentum distribution

n~q!→
2

p

1

3
l3A~A221!q24, ~19!

which corresponds to the@v(q)/q2#2 behavior, mentioned in
Sec. II.

The exact expression for the momentum distribution is
be compared with the mean-field~Hartree! approximation
@see Eq.~6!#.

er

FIG. 2. Occupation number of the most occupied natural orb
als of even~squares! and odd~circles! parity, for particle number
A510. The occupation number of the nodeless natural orbi
(N59.927) is not shown in the figure.
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nH~q!5
p

4l

1

cosh2S pq

2lAD , ~20!

which has an exponential asymptotic behavior.
Finally we need the bound-state overlap function in m

mentum space. From Eqs.~A7!, ~A14! we get

f0~A21!~q!

5
2~A21!

Apl
(
k51

A21

Fk
~A!

~2k21!~A1k21!

~q/l!21~A21!2~2k21!2
. ~21!

It can be shown that~21! can be rewritten in a similar form
as the form factor@see Eq.~8!#,

FIG. 3. Natural orbitals in coordinate space for particle numb
A510. All wave functions are normalized to unity. Upper pan
comparison of the condensate natural orbital~solid line!, the mean-
field single-particle wave function~dashed line!, and the overlap
function ~dashed line with dots!. Middle ~lower! panel: the four
most occupied noncondensate natural orbitals with even~odd! par-
ity.
o-

f0~A21!~q!

5
1

Apl

1

2~A21! )
k51

A21
@2k~A21!#2

~q/l!21~A21!2~2k21!2
, ~22!

leading to the asymptotic behavior

f0~A21!~q!→Al

p
@2l~A21!#2A23)@~A21!! #2q22~A21!.

~23!

If this result is generalized to arbitrary many-body systems,
one concludes that the asymptotic behavior of bound-state
overlap functions is given by@v(q)/q2#A21. This is not sur-
prising since, just as is the case with the form factor, a large
momentum kick has to be distributed over all particles when
the residual system remains bound.

For A53, Eq. ~23! agrees with theq→` limit proposed
in @12# for the spectral function of the three-nucleon system
at fixed energy. The model in@12# also predicts for general
A an approximate decomposition of the spectral function as a
sum over contributions of j -particle correlations
( j52, . . . ,A). It is interesting to note that this can be ob-
tained from the product representation in Eq.~22! by ap-
proximating each factor

1

~q/l!21z2

by

u„~q/l!22z2…

~q/l!2
1

u„z22~q/l!2…

z2
.

In Fig. 5 the exact momentum distribution, the Hartree
approximation, and the contribution of the bound-state over-
lap function are compared. It is convenient to plot these

er
l:

FIG. 4. Asymptotic behavior in coordinate space of the natural
orbitals shown in Fig. 3. Solid line: natural orbital of the conden-
sate. Solid~open! symbols: noncondensate natural orbitals with
even~odd! parity. Dashed line: overlap function.
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quantities as a function ofq/Al, since the extent of this
nonsaturating system in momentum space increases line
with A. The range of validity of the Hartree approximatio
and of the asymptotic expressions is shown in Fig. 6.

One observes from Fig. 5 that the Hartree solution p
vides a good approximation only for smallq; as can be seen
from Fig. 6 the range of validity is slowly increasing wit
A. At large momentum the two-body forces lead to an e
hancement~by orders of magnitude! over the mean-field ap-
proximation. The point at which the power-law asympto
regime of Eq.~19! is reached also has a very weakA depen-
dence.

FIG. 5. Momentum distribution for three values of the partic
numberA. Solid line: totaln(q) @see Eq.~16!#. Dashed line: Har-
tree approximationnH(q) @see Eq.~20!#. Dashed line with dots:
contribution of the bound-state overlap functionuf0(A21)(q)u2 @see
Eq. ~21!# to the momentum distribution. The short-dashed line is
asymptotic expression~19! for the total momentum distribution.
arly

o-

n-

c

The contribution of the bound-state overlap function b
haves quite differently. It falls off much faster than the tot
momentum distribution, and although it is a rational functio
of q2, it follows the exponential decay of the mean-fiel
distribution up to quite large momenta, well beyond the poi
at which the total momentum distribution starts to devia
from the mean-field approximation. This means that the e
hancement of the total momentum distribution over the me
field comes fromn-particle emission channels (n>2) which
have a nonvanishing single-particle overlap with the grou
state of the correlated system. The neglect of the recoil of
(A21) system in the Hartree calculation is not important fo
this enhancement.

The range in which the bound-state contribution is we
approximated by the mean-field result rapidly increases w
A; this is also the case for the point at which the power-la
asymptotic regime of Eq.~19! is reached. One may observ
from Fig. 6 that the overlap function and the form facto
behave almost identically in this respect.

The natural orbitals in momentum space are shown in F
7 for the case of particle numberA510. In the upper panel
the natural orbital corresponding to the condensate is co
pared with the overlap function and the mean-field singl
particle wave function; the natural orbital is closer to th
overlap function. In the middle and lower panels some of t
other natural orbitals are shown. The orbitals in momentu
space have the same number of nodes as in coordinate sp
They extend to larger momenta as the occupation num
decreases~or the number of nodes increases!.

In Fig. 8 we show separately the contribution to the tot
momentum distribution of the natural orbital of the conde
sate and of the most occupied other orbitals. The natu

e

e

FIG. 6. TheA dependence of the momentum value at which th
exact expression for the momentum distribution~triangles!, overlap
function ~circles!, and form factor~squares! starts to deviate sub-
stantially from the power-law asymptotic behaviour and from th
mean-field prediction. Solid symbols:q value beyond which the
exact expression deviates by less than 10% from the asympt
behavior. Open symbols:q value beyond which the exact expres
sion is enhanced by more than 10% over the mean-field predicti
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FIG. 7. Natural orbitals in momentum space
for particle numberA510. All wave functions
are normalized to unity. Upper panel: comparison
of the condensate natural orbital~solid line!, the
mean-field single-particle wave function~dashed
line!, and the overlap function~dashed line with
dots!. Middle ~lower! panel: the four most occu-
pied noncondensate natural orbitals with eve
~odd! parity.
e
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orbital of the condensate describes perfectly the small-q re-
gion of the momentum distribution. At largerq the momen-
tum distribution is dominated by the noncondensate natu
orbitals. In this model the natural orbitals of odd and ev
parity with the same number of nodes converge for lar
momenta. Since their occupation numbers also converge
common value, the even and odd noncondensate natura
bitals contribute equally to the momentum distribution
large momenta.

V. SUMMARY AND CONCLUSION

In this paper we studied the single-particle properties
an exactly solvable schematic model, consisting of a syst
of spinless bosons interacting through delta-function pote
tials.

We examined the role of the overlap functions corr
sponding to bound and to continuum (A21)-particle eigen-
states. Inr space the latter only contribute to the centr
density and fall of more quickly than the bound-state overl
functions, which describe the tail of the density. Inq space
ral
n
ge
to a
or-
at

of
em
n-

e-

al
ap

the continuum-state overlap functions, which represent t
possibility ofn-particle emission (n>2) from the correlated
A-particle ground state, are responsible for the enhancem
of the momentum distribution over the mean-field approx
mation at large momenta.

In this enhancement region the contribution of the boun
state overlap function to the momentum distribution is de
scribed accurately by the mean-field result for not too sma
A. Only at much larger momenta does the recoil of th
(A21) system come into play and does the bound-sta
overlap function reach its inverse-power-law asymptotic b
havior.

Although the model we discussed is quite schematic,
contains the essential many-body correlations in a syste
interacting through short-range forces, and many of its fe
tures should remain valid in the real world. Applied to th
nuclear system, Fermi statistics would of course drastica
affect the small-q region of the momentum distribution in the
formation of a Fermi sea instead of theq50 condensate, but
the separation in a small-q region described by a mean field
and the high-momentum region induced by two-body corr
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2238 53D. VAN NECK, A. E. L. DIEPERINK, AND M. WAROQUIER
lations should remain valid. Pauli blocking effects also le
to a faster fall off of the nuclear wave functions for larg
momenta, and in a three-dimensional system logarithm
corrections to the dominant inverse-power-law asympto
behavior appear@10,8#. Finally the high-momentum tail will
be modulated by a realisticNN interactionv(q), which has
strong short-range repulsion and a tensor component. T
would lead to a stronger high-momentum enhancement.

The behavior of the bound-state overlap functions inq
space is in agreement with many-body calculations us
Green function perturbation theory@2# or the local density
approximation@3#. On the other hand a recent (e,e8p) ex-
periment on208Pb, @13# in which the missing-momentum
region 300–500 MeV/c of the valence hole overlap functions
was probed, showed a large enhancement of the momen
distribution over the standard Woods-Saxon one. It was s
gested in@3,13# that this may be due to the surface degrees
freedom in a finite system if strongly collective surface v
brational modes are present. Such surface effects were
taken into account in@2# or in the pure LDA calculation in
@3#, and are evidently absent in the one-dimensional mo
discussed in this paper.

The considered model is an example of a quantum ma
body system interacting through short-range forces. Su
systems have certain universal properties; e.g., it was sho
recently@4# that it is possible to derive the bound-state ove
lap functions, spectroscopic factors, and separation ener
from the one-body density matrix. In this paper we co
firmed this property by an explicit construction in an exact
solvable model.
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APPENDIX A: CONVENTIONS

Several conventions are possible for single-particle qua
tities in self-bound many-body systems, when translation
invariance of the wave functions is taken into accoun
Therefore we will state explicitly the definitions we hav
adopted in this paper.

The coordinate space wave functions that descri
the relative motion are translationally invarian
C(x1 , . . . ,xA)5C(x11X, . . . ,xA1X). Orthogonality and
completeness of the eigenstates of the intrinsic hamilton
can then be expressed as2

E S )
i51

A

dxi DCm* ~x1 , . . . ,xA!Cn~x1 , . . . ,xA!dS 1A(
i51

A

xi D
5dm,n , ~A1!

(
n~A!

Cn~x1 , . . . ,xA!Cn* ~x18 , . . . ,xA8 !

5E dX)
i51

A

d~xi2xi81X!. ~A2!

Similarly the relative wave functions in momentum spac
obey

E S )
i51

A

dqi DCm* ~q1 , . . . ,qA!Cn~q1 , . . . ,qA!2pd

3S (
i51

A

qi D 5dm,n , ~A3!

(
n~A!

Cn~q1 , . . . ,qA!Cn* ~q18 , . . . ,qA8 !

5
1

2pE dK)
i51

A

dS qi2qi81
K

AD , ~A4!

and momentum and coordinate space wave functions are
lated by

C~q1 , . . . ,qA!5
1

~2p!A/2
E S )

i51

A

dxi DC~x1 , . . . ,xA!

3expS 2 i(
i51

A

qixi D dS 1A(
i51

A

xi D . ~A5!

For the overlap functionsfn between the ground state o
theA-particle system and the (A21)-particle eigenstates we
adopt the following definition in momentum space:

2The summation over eigenstates in Eqs.~A2!, ~A4!, ~A10! must
be understood to include integrations over the unbound eigenst
in the different continuum channels.
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fn~qA!5AAE S )
i51

A21

dqi DCn~A21!
* ~q1 , . . . ,qA21!

3C0~A!~q1 , . . . ,qA!2pdS (
i51

A

qi D . ~A6!

This corresponds to the amplitude for extracting a partic
with momentumqA from the ground stateC0(A) of the target
in rest, ending up in the eigenstateCn(A21) of the residual
system, and as such the convention of Eq.~A6! is most
closely related to the description of one-particle knocko
reactions.

The overlap function in coordinate space then follows b
Fourier transforming,

fn~xA!5
1

~2p!1/2
E dqAe

iqAxAfn~qA!

5AAE S )
i51

A21

dxi DCn~A21!
* ~x1 , . . . ,xA21!

3C0~A!~x1 , . . . ,xA!dS 1

A21 (
i51

A21

xi D . ~A7!

An equivalent expression~which will be used in Appendix
B! reads as

fn~y!5AAE S )
i51

A21

dxi DCn~A21!
* ~x1 , . . . ,xA21!

3C0~A!~x1 , . . . ,xA21,0!dS y1
1

A21(
i51

A21

xi D .
~A8!

If the forces between the particles are of sufficiently sho
range, the asymptotic behavior of the overlap functions
given by @14#

fn~A21!~y!→
1

C8
expS 2uyuA2m

A21

A
~En~A21!2E0~A!! D .

~A9!

Equation~A9! is the generalization of Eq.~10! in @4# when
center-of-mass motion of the residual system is taken in
account.

The OBDM is decomposed in terms of the overlap func
tions as

N~yA ,yA8 !5 (
n~A21!

fn* ~yA8 !fn~yA!. ~A10!

Using the completeness relation~A2! this is equivalent to

N~yA ,yA8 !5AE S )
i51

A21

dxi DC0~A!
* ~x1 , . . . ,xA21 ,yA8 !

3C0~A!~x1 , . . . ,xA21 ,yA!dS 1

A21(
i51

A21

xi D .
~A11!

It is sometimes more convenient to introduce the relativ
and center-of-mass coordinatesa5yA2yA8 and y5 1

2

(yA1yA8 ), in terms of which the OBDM becomes
le

ut

y

rt
is

to

-

e

Ñ~y,a!5N~yA ,yA8 !

5AE S )
i51

A21

dxi DC0~A!
* S x1 , . . . ,xA21 ,2

a

2D
3C0~A!S x1 , . . . ,xA21 ,

a

2D dS y1
1

A21(
i51

A21

xi D .
~A12!

The densityr(y) is defined as the diagonal of the OBDM

r~y!5N~y,y!5Ñ~y,a50!

5AE S )
i51

A21

dxi D uC0~A!~x1 , . . . ,xA21 ,y!u2

3dS 1

A21(
i51

A21

xi D , ~A13!

and represents the probability of finding a particle at distan
y of the center-of-mass of the (A21) other particles.

The momentum distributionn(q) can be obtained from
the OBDM with the relation

n~q!5
1

2pE da e2 iqaE dy Ñ~y,a!. ~A14!

Using Eq.~A5! this can be rewritten in terms of the ground
state wave function in momentum space as

n~q!5AE S )
i51

A21

dqi D uC0~A!~q1 , . . . ,qA21 ,q!u22pd

3S q1 (
i51

A21

qi D , ~A15!

and son(q) represents the probability of finding a particle
with momentumq if the total system is in rest.

In Eqs.~A13!, ~A15! both r(y) andn(q) are normalized
to the number of particles,

A5E dy r~y!5E dq n~q!. ~A16!

APPENDIX B: CALCULATION OF THE OBDM
AND OVERLAP FUNCTION

Upon substitution of the expression~3! for the many-body
wave function into the defining relations~A12! and~A8! we
get

Ñ~y,a!5ACA
2E S )

i51

A21

dxi D expS 22l (
i, j51

A21

uxi2xj u D
3expS 2l (

i51

A21 H Uxi2 a

2U1Uxi1 a

2UJ D
3dS y1

1

A21(
i51

A21

xi D , ~B1!
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f0~y!5AACACA21E S )
i51

A21

dxi D expS 22l (
i, j51

A21

uxi2xj u D
3expS 2l (

i51

A21

uxi u D dS y1
1

A21(
i51

A21

xi D . ~B2!

The absolute-value functions containing differences of
ternal integration variablesxi can be simply evaluated by
considering one ordering2`,x1,•••,xA21,1` and
n-

using the symmetry of the integrand under permutations
the xi . In order to resolve the absolute-value functions re
lated to the external points we split the interval for the inte
nal xi integrations in Eqs.~B1!, ~B2! into four distinct re-
gions @2`,2a/2#,@2a/2,0#,@0,1a/2#,@1a/2,1`# for the
OBDM, and into two regions@2`,0#,@0,1`# for the over-
lap function. The total integration volume in Eqs.~B1!, ~B2!
is then obtained by summing over all the possible partition
of (A21) particles into the distinct integration regions
e.g., forÑ(y,a) we have
E S )
i51

A21

dxi D 5~A21!! ~, !E
2`

1`S )
i51

A21

dxi D
5~A21!! (

l1 ,l2 ,l3 ,l450
~ l11 l21 l31 l45A21!

A21

~, !E
2`

2 a/2S )
i51

l1

dxi D
3 ~, !E

2 a/2

0 S )
i5 l111

l11 l2

dxi D ~, !E
0

a/2S )
i5 l11 l211

l11 l21 l3

dxi D ~, !E
a/2

1`S )
i5 l11 l21 l311

A21

dxi D , ~B3!

where we have introduced the notation

~, !E
a

bS )
i51

N

dxi D 5E
a

b

dxNE
a

xN
dxN21•••E

a

x2
dx1 . ~B4!

Likewise, forf0(y) we make a partition

E S )
i51

A21

dxi D 5~A21!! (
l1 ,l250

~ l11 l25A21!

A21

~, !E
2`

0 S )
i51

l1

dxi D ~, !E
0

1`S )
i5 l111

A21

dxi D . ~B5!
Replacing the c.m.d functions in the integrand by the
Fourier expansion@2pd(z)5*dT exp(iTz)# it is now pos-
sible to obtain an expression for Eqs.~B1!–~B2! in terms of
generic integralsG(a,b,$Ci%), which are defined as
(a,b)

G~a,b,$Cj%!5 ~, !E
a

b

dx1•••dxNexpS (
j51

N

Cjxj D .
~B6!

TheG integral can be worked out in a straightforward bu
tedious way as

G~a,b,$Ci%!5 (
m50

N

~21!m
exp~bB~m!N2m!exp~aA~m!m!

~Pk51
N2mB~m!k!~Pk51

m A~m!k!
,

~B7!

with A(m)k5( j51
k Cm2 j11 andB(m)k5( j51

k Cm1 j .
For the overlap functionf0(y) this procedure leads to
t

f0~y!5C̃ (
l1 ,l250

~ l11 l25A21!

A21
1

2pE dT exp@22iTl~A21!y#

3G~2`,0,$Cj
~1!% !G~0,1`,$Cj

~2!% !, ~B8!

with C̃52AA(A21)!(A21)CACA21l
2(A22). The sets of

coefficients$Cj
( i )%, with i51,2 andj51, . . . ,l i in Eq. ~B8!

are given by

Cj
~1!52S 22 j1A1

1

2
2 iT D ,

Cj
~2!52S 22 j1 l 22 l 11

1

2
2 iT D . ~B9!

After working out the correspondingA and B coefficients
one can easily write down, using Eq.~B7!, the contributions
of eachG factor to theT integrand in Eq.~B8!. We have

G~2`,0,$Cj
~1!% !5

1

l 1!2
l1Pk51

l1 ~A2k2 1
2 2 iT !

,

~B10!
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andG(0,1`,$Cj
(2)%) follows from Eq. ~B10! by taking the

complex conjugate and interchangingl 1↔ l 2 .
The integrand in Eq.~B8! is now seen to contain a prod

uct of (A21) simple poles, and theT integration is easily

-

done by complex contour integration. Because of the facto
exp@22iTl(A21)y#, the contour must be closed in the upper
or lower half of the complexT plane depending on the sign
of y. For y,0 one finds
ng
f0~y!5u~2y!C̃ (
l1 ,l250

~ l11 l25A21!

A21

(
k51

l2 ~2A222k2 l 1!! ~21! l21k e2l~A21!„A2k2~1/2!…y

~2A222k!! ~k21!! ~ l 22k!! ~A21!!2A21 . ~B11!

One of the summations in Eq.~B11! can be eliminated using the combinatorial identity

(
l50

A2k

~21! l SA2k

l D S A1 l

A2kD 5~21!A2k, ~B12!

and the final result forf0 is

f0~y!5C̃(
k51

A21

~21!A2k11
e2l~A21!~2A22k21!uyu

~k21!! ~2A2k22!!2A21 , ~B13!

which corresponds to Eq.~14! in the text.
For the OBDM the strategy is the same but the algebra gets more involved. The expression in terms ofG integrals is

Ñ~y,a!5C̃ (
l1 ,l2 ,l3 ,l450

~ l11 l21 l31 l45A21!

A21
1

2pE dT exp@2 iTl~A21!y#exp@2~ l 21 l 3!la#

3GS 2`,2
la

2
,$Cj

~1!% DGS 2
la

2
,0,$Cj

~2!% DGS 0,la2 ,$Cj
~3!% DGS la

2
,1`,$Cj

~4!% D , ~B14!

with C̃5A!(A21)CA
2l2(A22). The sets of coefficients$Cj

( i )%, with i51, . . . ,4 andj51, . . . ,l i , in Eq. ~B14! are given by

Cj
~1!52~22 j1A112 iT !, Cj

~2!52~22 j22l 11A2 iT !,

Cj
~3!52~22 j12l 312l 42A122 iT !,

Cj
~4!52~22 j12l 42A112 iT !.

~B15!

The contribution of eachG factor to theT integrand in Eq.~B14! is given by

GS 2`,2
la

2
,$Cj

~1!% D5
exp@2 l 1l~A2 l 12 iT !a#

l 1!2
l1Pk51

l1 ~A2k2 iT !
, ~B16!

GS 2
la

2
,0,$Cj

~2!% D5 (
m50

l3

~21!m
exp@~ l 32m!~2l 41 l 32A112m2 iT !la#

2l3m! ~ l 32m!!Pk51
l32m

~2l 312l 42A1122m2k2 iT !

3
1

Pk51
m ~2l 312l 42A1122m1k2 iT !

, ~B17!

whereasG(0,la/2 ,$Cj
(3)%) andG(la/2 ,1`,$Cj

(4)%) follow from Eqs. ~B17! and ~B16! by complex conjugation and the
interchangel 1↔ l 4 ,l 2↔ l 3 . Again theT integral in Eq. ~B14! can be worked out by contour integration. The resulti
complicated sum can be simplified considerably by using combinatorial identities such as Eq.~B12!, and leads finally to
expression~9! for the full OBDM.
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