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Microscopic structure of high-spin vibrational excitations in superdeformed 19%:192.19q
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Microscopic calculations based on the cranked shell model extended by the random-phase-approximation
are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in
90Hg, 19Hg, and*®Hg. TheK =2 octupole vibrations are predicted to be the lowest excitation modes at zero
rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces
different effects depending on neutron number: The lowest octupole phonon is rotationally aligfidginis
crossed by the aligned two-quasiparticle band¥fhig, and retains thi& =2 octupole vibrational character up
to the highest frequency it?*Hg. They vibrations are predicted to be higher in energy and less collective than
the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new inter-
pretation of the observed excited bands invoking khre2 octupole vibrations is proposed, which suggests
those octupole vibrations may be prevalent in superdeformed Hg n[8556-281®6)05705-9

PACS numbses): 21.10.Re, 21.60.Jz, 27.860w

[. INTRODUCTION rotational frequency, for example, froB|~0.7 to 0.3 MeV
asfiw,, goes from 0.25 to 0.35 MeV; therefore to compare
Theoretical and experimental studies of collective vibra-the theoretical Routhians directly with the experimental
tional states built on the superdeformgD) yrast band are ones, we need to calculate them at finite rotational frequency.
open topics of interest in the field of high-spin nuclear strucFor this purpose, the cranked shell model extended by the
ture. Since the large deformation and rapid rotation of SDrandom-phase approximati¢éRPA) provides us with a pow-
bands may produce a novel shell structure, we expect thairful tool to investigate collective excitations at high angular
surface vibrations will exhibit quite different features from momentum.
those found in spherical and normal-deformed nuclei. Ac- A great advantage of this model is its ability to take into
cording to our previous workl-5], low-lying octupole vi-  account effects of the Coriolis coupling on the collective
brations are more important than quadrupole vibrations whegibrational motions in a rapidly rotating system. Since in the
the nuclear shape is superdeformed. Strong octupole correlgormal-deformed nuclei it is known that Coriolis coupling
tions in SD states have been also suggested theoretically #ffects are important even for the 3octupole state$20],
Refs. [6-13]. Experimentally, octupole correlations in SD one may expect strong Coriolis mixing for high-spin octu-
states have been suggested fofDy [14], **Hg [15], and  pole states built on the SD yrast band. On the other hand, our
19%Hg[16,17). We have reported theoretical calculations cor-previous calculations suggested weak Coriolis mixing for the
responding to these data féf*Hg [3] and **Dy [5]. In this  |owest octupole state if%Hg [3] and 1*Dy [5]. This may
paper, we discuss the quadrupole and octupole correlationse because the angular momentum of the octupole phonon is
for ***Hg (which have been partially reported in Ref87—  strongly coupled to the symmetry axis due to the large de-
19]) and for the neighboring SD nucléf?**Hg. formation of the SD shape. Generally speaking, Coriolis
We have predicted the low-lying{=2 octupole vibra- mixing is expected to occur more easily in nuclei with
tions for SD Hg isotopes®1921%g (E,~1 MeV) [3,4].  smaller deformation. However, this expectation may not hold
These predictions differ from the results of generator-for octupole bands in all SD nuclei because Coriolis mixing
coordinate-methodGCM) calculations[13] in which the  depends on the shell structure. In this paper we find a sig-
K=0 octupole state is predicted to be the lowest in SDnificant difference in the Coriolis mixing between an octu-
192Hg and the excitation energies are significantly highemole band in'®Hg and the other bands.
(Ex~2 MeV) than in our predictions. Experimentall\L7], Another advantage of this model is that it gives us a uni-
the Routhians of the lowest octupole state decrease with thiied microscopic description of collective states, weakly col-
lective states, and noncollective two-quasiparticle excita-
tions. A transition of the octupole vibrations into aligned
“Electronic address: nakatsukasat@crl.aecl.ca two-quasiparticle bands at high spin in normal-deformed nu-
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clei has been predicted by Vogg21]. In Ref. [19], this  where hyjsson IS @ standard Nilsson potential defined in
transition is discussed in the context of experimental data osingle-stretched  coordinates r! = (w;/wo)Y%; and
rare-earth and actinide nuclei, and a damping of octupolg/ = (wq/w;)¥?p; (i=X,y,2),

collectivity at high spin was suggested. Since similar phe-

nomena may happen to octupole vibrations in SD states, it is w\[p! 2 wg
important that our model describe the interplay between col- hyjsson= > (—') (ﬁ-i— 5 r 2 o, (12=(1"2)y)
lective and noncollective excitations. i=xy.z | @o
Recent experimental studies reveal a number of interest- +ud’-s 2.2
Is h .

ing features of excited SD bands in even-even Hg isotopes.
In %Hg, almost constant dynamic moments of inertia,
7(2) have been observed by Crowel al. [16]. Reference
[17] has established the relative excitation energy of this
band and confirmed the dipole character of the decay transi- B +
tions into the yrast SD band. This band has been interpreted Tpair= _T;p AP+ PT)_Tgp AN,
as an octupole vibrational band. Two more excited bands in
19%Hg have been observed recently by Wilssiral.[18], one
of which shows a sharp rise of(? at low frequency. In
192Hg, Fallon et al. [22] have reported two excited bands
which exhibit peaks in7t? at high frequency. In contrast
with these atypical 74?) behaviors, two excited bands in
1999 originally observed by Rilet al.[23] and extended
by Cederwallet al. [24] show a smooth increase with rota-
tional frequency. We show in this paper that thig?) be-
havior can be explained with a single theoretical model
which microscopically takes into account shape vibration
and the Coriolis force.

The purpose of this paper is to present the RPA metho
based on the cranked shell model and its ability to describe g . <. & as for a rigid-body rotati¢80]. However, in the

?/arietyd 0; nuc[{gar prodpir'ti(re]s in'clu?/i\?g shape Vibratlions.balltcranked Nilsson potential, this isotropy of the velocity distri-
arge deformation and high sSpin. WWe propose a plausibigy g, jg significantly broken due to tHé term. Thus the

interpr?t%g(??nggﬂthe microscopic structure of excited SDCoriolis force introduces a spurious flow in the rotating co-
bands in“"""*"Hg, and show that octupole bands may be rdinate system, proportional to the rotational frequency.

more prevalent thar_1 expected in thes_e SD_nucIei. Section his spurious effect can be compensated by an additional
presents a description of the model, in which we stress ouy,

! ts 1o th ked Nil tential and to th erm that restores the local Galilean invariance. This addi-
Improvements 1o the cranked INiisson potential and 10 g, term js obtained by substitutinghe local Galilean

coupled RPA method in a rotating system. Section llI pre'transformatiom

sents details of the calculation in which the pairing and ef-
fective interactions are discussed. The results for the excited

wherel’=r"Xxp’. The pairing fieldl'p,; is defined by
2.3

where P,=Z,_,=oCkCk and NTZEkETCle are the
monopole-pairing and number operators, respectively. In
Sec. lll A, we discuss the details of the pairing field used in
the calculations.

A standard cranked Nilsson potential has the disadvantage
that it overestimates the moments of inertia compared to a
Woods-Saxon potential. This problem comes from the spu-
rious velocity dependence associated with Itheerm in the
Nilsson potential which is absent for Woods-Saxon potential.
3f the mean-field potential is velocity independent, the local
elocity distribution in the rotating nucleus remains isotropic

velocity space, which means that the flow pattern becomes

SD g, 9Hg, and 1%Hg are presented in Sec. IV, and P—p—M(@Xr), 2.4
compared with the experimental data in Sec. V. The conclu-
sions are summarized in Sec. VI. in thels and|? terms of the Nilsson potential. This prescrip-

tion was suggested by Bohr and Motteld@9], and devel-
oped by Kinouchi[31]. For a momentum-dependent poten-

Il. THEORETICAL FRAMEWORK tial V(r,p),

The theory of the cranked shell model extended by th _ B
random-phase approximatidRPA) was first developed by VA, p)+ haga=V(r P~ M(@oXT)) (2.9
Marshalek[25] and has been applied to high-sgnand y
vibrational band§26—28 and to octupole band®9,1-5.
Since this theory is suitable for describing the collective vi- ~V(r,p) — oM Yop, “op, v(r.p)
brations built on deformed high-spin states, it is very useful Y (2.6)
for investigating vibrational motion built on the SD yrast
band. i

=V(r1p)+ ga)rotM(y[Z,V]_Z[y,V]),
A. Cranked Nilsson potential with the local Galilean (2.7
invariance

We start with a rotating mean field with a rotational fre- Where we assume uniform rotation around tkeaxis,

quencyw,, described by o o= (w01,0,0). Following this prescription, the additional

term h,yq in EqQ. (2.2) is obtained for the Nilsson potential
hs.p.: Pitssont I‘pair_ ®rordxt Nadas 2.0 (2.2,
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— T whereA 7),qis is difference between the Inglis moments of
inertia with and without theAN,,=2 contributions[32].

A Zingis(w) turned out to be approximately constant against
frequencyw and this was used in the last step of E2.9).
The 7V and 74?) values calculated with the additional term

120

100t _ are very close to the rigid-body value at low frequency,
> - . .

2 B which means that the spurious effects of theerm have
N R been removed. Note that the abscissa of Fig. 1 corresponds
p= “E‘izimnmuumy@) to the “bare” rotational frequency without renormalization.
‘S 80f I The drastic reduction ofZ¥) and 7(?) at high frequency is

corrected by the additional term, and this is seen to be im-
portant in reproducing the experimen{tﬁiz) behavior of the

— yrast SD band.

60 ---- §@ B2y
—
o1 03 05 0.7 B. RPA in the rotating frame
fiw, o [ MeV ] The residual interactions are assumed to be in a separable

form
FIG. 1. Kinematic(solid lineg and dynamiddashed linesmo-
ments of inertia for SD*?Dy calculated in the cranked Nilsson Ho— 1 SRR (2.12
Hamiltonian with (thick lines and without(thin lines the addi- L o XpRpTp '
tional termh,yqin Eq. (2.8). The rigid-body and the Inglis moments

of inertia are shown by dash-dotted and dotted lines, respectively. o .
The parameters used in the calculation are the same as those used'\mereRp are one-body Hermitian operators, gpgare cou-

Ref. [5] and pairing correlations are neglected. Symbols are experiPling strengths. The indices !ndicate the signature quantum
mental 72 taken from Ref[14]. numbers &¢=0,1) andp specifies other modes. In this paper,

we take asRZ the monopole pairing and the quadrupole op-

© 3 erators for positive-parity states, and the octupole and the
hog= — i‘[ u“[ZM woer_ﬁ< Nosct > I isovector dipole operators for negative-parity stdtee Eq.
Vwyw; (3.9)]. Since theK guantum number is not conserved at finite

rotational frequency, it is more convenient to make the mul-
+v,sM wo[r’zsx—r)’((r’~s)]]. (2.8)  tipole operators have good signature quantum numbers. In
general, the Hermitian multipoléspin-independentopera-

) . tors with good signature quantum numbers are constructed
Note that the term proportional tdN(s+3/2) in Eq. (2.8 by

comes from the velocity dependence(tf)y in Eq. (2.2).

This result, Eq.(2.8), has been applied to the SD bands in
152Dy [5] where the single-particle Routhians were found to~. _
be very similar to those obtained by using the Woods-Saxon-*K V2(1+ 8ko)
potential. In Fig. 1, moments of inertia for SB?Dy calcu-

lated with and without the additional terf2.8) are dis- . : . .
played. Since the effects of the mixing srao)ng the majorW|th K=0, where the spherical-harmonic functiovig, are

oscillator shells N, are neglected in calculating our defined with respect to the symmetig) (axis. All multipole

Routhians, kinematic £)) and dynamic (*?)) moments operators  are defined in doubly stretched coordinates

of inertia are obtained by adding the contributions of thel"i =(@i/@o)ri], which can be regarded as an improved ver-

N,scMmixing effects to the values calculated without them: sion of the conventional multipole interaction. Sakamoto and
S Kishimoto[33] have shown that at the limit of the harmonic-

(J) 1 (on oscillator potential(at w,;=0), it guarantees nuclear self-
FV=""1 —f A Zingiis(w)dw consistency{ 30|, restoration of the symmetry broken in the
@rot @rot/0 mean field, and separation of the spurious solutions. The
coupling strengthsy, should be determined by the self-
% +A Zingi 2.9 consistency condition between the density distribution and
Wy 7 Mdlis ' the single-particle potentidbee Sec. Ill B for details
To describe vibrational excitations in the RPA theory, we

i}\+a+K

[Pk (MY gl (2.13

~2) d{J,) must define theguasiparticle vacuunon which the vibra-
7 = dor, +A Zingis (210 tions are built. The observed moments of inertid?), of the
yrast SD bands smoothly increase in tAe=190 region,
. ) SAN= which suggests that the internal structure also smoothl
AL]‘Inins:)/Zlnglis_ %ﬁgliso 99 y

changes as a function of the frequensy,;. Therefore the
5 adiabatic representatignin which the quasiparticle opera-
=2 [(n|3,0)] (2.11) tors are always defined with respect to the yrast state
nAN=2) En—Eo ' |wror), is considered to be appropriate in this work.
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In terms of quasiparticles, the Hamiltonian of EG.1) N et "
can be diagonalizetby the general Bogoliubov transforma- tp(n):z, XpS,, ()t (n). (2.22
tion) as P
RPA solutions(eigenenergiesfi(},, are obtained by solving
hep=const- >, (E,ala,)+2 (Ealal), (214  the equation
w w

with de( (Q)— i Spp | =0, (2.23

Xp
a =a =0, 2.1 ) .
uloro) = ator) 219 which corresponds to the condition that §g.22 have a
where @/, a—) represent the quasiparticles with signaturenontrivial solutiont7(n)# 0]. Each RPA eigenstate is char-
a=(1/2,~1/2), respectively. The excitation operators of theacterized by the corresponding forward and backward ampli-

RPA normal modeX¢' («=0,1) are defined by tudes which are calculated as
2 Xpta (RS (79)
J— J— a _“p
Xi'=2 (dn(ua,ateunaa,), (219 (9=~ E e, (224

R ARGWLACON
1t _ 1 T 4T 1 a p
Xi'= 2 {n(unajalten(ur)a,a,) en(r0=—gSE ha, @2

P — and satisfies the normalization conditih19. The transi-
+%7{’pn(“”)aﬁ# en(pviaay), (210 yion matrix elements w,,{Q|n) of any one-body operator
Q can be expressed in terms of these amplituggsand
where indices n specify excited states andy;(uv) ©n:
[¢i(nv)] are the RPA forward[backward amplitudes.

Quasiparticle-scattering terms suchai;u,, are regarded as tn[ Q]=(wrod QIN)

higher-order terms in the boson-expansion theory and are

neglected in the RPA. =2 QYO (¥~ Qyd) en(¥9)}.

The equation of motion and the normalization condition 70

in the RPA theory, (2.26

[hsp+Hint, X3 Trpa= 1 QEXET, (2.18  The phase relation between the matrix elemédtsys) and
the amplitudeg#,(y3),¢n(y9)) is very important, because
[Xn ,Xﬁ,T]RPA= St s (2.19 it determines whether the transition matrix elemghQ] is

coherently enhanced or canceled out after the summation in
are solved with the following multidimensional responseEq. (2.26). For instance, a collective quadrupole vibrational

functions: state has a favorable phase relation for the quadrupole opera-
N N tors. Therefore, it gives large matrix elements for th2
& (@)= RI(y0)*R(y0) RI(yOR(yo)* operators, while for thé11 operators, the contributions are
oo (1) = < E,+Es;—:Q E,+Es;+4Q |’ normally canceled out after the summation.
(2.20 Finally we obtain a diagonal form of the total Hamil-

tonian in the rotating frame by means of the RPA theory,
where (y8)=(uv) for «=0 states, and xJ)
=(u<v),(u<v) for a=1 states. The two-quasiparticle
matrix elements R7(yd) are defined by R(yd)
=(wrolasa,Ry| oy Let us denote the transition matrix el-
ements between the RPA excited stafes and the yrast whereE, corresponds to the Routhians for the yrast configu-
state as ration. Since we are interested in the relative excitation en-
ergy between excited states and the yrast stajeyeed not
ty(N=t[Ry1=(wdRy[N) be explicitly calculated. It is worth noting that since the ef-
B @ vat fect of the cranking term on the quasiparticles depends on
=(wof[Ry X7 ]| @ro) rotational frequency, the effects of Coriolis coupling on the
=[R% X% rpa. (2.21)  RPA eigenstates are automatically taken into account.

=hgp+ H,m~Eo+2 RQEXITXY (2,27

Then, the equation of motiof2.18 is equivalent to Ill. DETAILS OF CALCULATIONS

A. Mean-field parameters

In the following, the notatio A,B]rps Mmeans that we neglect and the improved quasiparticle Routhians

these higher-order terms in calculating the commutator between  We adopt standard values for the parametgrsanduv
andB. [34] and use different values of the oscillator frequengy
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for neutrons and protons in the Nilsson potenfial2) in

order to ensure equal root-mean-square rg8i: osk
2N 1/3
(T) wy for neutrons, o4r i
Neutrons protons
wo— 27 1/3 (31) 00 without h 7| without Ay,
| @o for protons, I i )
wheref wy=41A"1° MeV. o
The quadrupole deformationis determined by minimiz- .
ing the total Routhian surfad@RS), and the strength for the 2,
monopole pairing interactio® is taken from the prescrip- -
tion of Ref.[36] with the average pairing gag=12A"1? > 04
MeV and the cutoff parameter of the pairing model space 2
A=1.2hwy. In principle the pairing gapsA(,,Ap) and the g 00
chemical potentials X,,,Ap) should be calculated self- 20
consistently satisfying the usual BCS conditions at each ro- ’g
tational frequency: ‘B-0;
3J
S
Gr<wr0t|PT|wr0t>:AT! (32)
<wl’0'[| NT| wr0t> = N(Z)! (33) 04 :
with 7 =(n,p). However, the mean-field treatment of the 00 I
pairing interaction predicts a sudden collapse of the proton
pairing gap athw,,w~0.3 MeV and of the neutron gap at —04r
fhw,=0.5 MeV. This transition causes a singular behavior
in the moments of inertia which is inconsistent with experi- [ ; - , ‘
mental observations. It arises from the poor treatment of 0 o 0.3 o1 0.3 05
number conservation, and such sudden transitions should not Fiw, o [ MeV ] i,y [ MeV ]

occur in a finite system like the nucleus. In this paper we
have therefore adopted the following phenomenological pre- FIG. 2. Quasiparticle Routhians for neutroffsft) and protons

scription for the pairing correlations at finite frequeri@y]:  (right) in ***Hg. The top parts show the Routhians in the Nilsson
potential without the additional terim,yy, the middle for those with

1/ w\? haqe, @nd the bottom for those in the Woods-Saxon potential with
A(0)|1- FiP for w<we, the “universal” parameters. Solid, dashed, dotted, and dash-dotted
A(w)= 1 o2 ¢ (3.9 lines correspond to quasiparticles .Withﬂ',@):(-i-,— 1/2),.
EAT(O) ZC) for w> .. (+,1/2), (—,—1/2), and ,1/2), respectively. See text for details.

Woods-Saxon calculatiorf88] and results from a crossing
between the yrast band and the alignggl;s,,)2 band; how-
ever, the predicted crossing frequency was lower
common for 190:192194g. (hw=0.3 MeV) than in the experiment. Our Nilsson po-
The quadrupole deformatics=0.44 is used in the calcu- te_ntial without the additional tern2.8) indicates the same
lations. For S|mp||c|ty' we assume the deformation to be Condlsagreement. In order to demonstrate the effects of the term
stant with rotational frequency, and neglect hexadecapolBadaOn the Routhians, we present in Fig. 2 the quasiparticle
deformatior? The equilibrium deformation and pairing gaps Routhians for**Hg with h.qq, without h,qq, and for the
have been determined at.=0, with the truncated pairing standard Woods-Saxon potentigB,= 0.465, 8,=0.055).
model space\ =1.24w,. Then, the pairing force strengths By including h,qq, the correct frequency is reproduced. This
G, are adjusted so as to reproduce the pairing gap of Ederm affects the proton Routhians: For example, the align-
(3.4) in the whole model space. ment of the intruderrj 15( @ = — 1/2) orbit is predicted to be
The experiment§16,17 have reported a sharp rise of i~6.5 without h,4q and this orbit becomes the lowest at
742 moments of inertia for the yrast SD band #Hg at 7 w,=0.37 MeV. The alignment is significantly reduced
hw=0.4 MeV. This rise was reproduced in the cranked(i~4#%) with h,4y. The behavior of highN intruder orbits in
the proton Routhians is similar to that in the Woods-Saxon
potential. It is worth noting that the conventional renormal-
2Possible errors caused by this simplification will not affect ourization in the Nilsson potential scales the rotational fre-
conclusion because the property of collective RPA solutions undeguency for all orbits, while E¢(2.8) renormalizes alignment
consideration may be insensitive to such detélse also discus- in a different way depending on the spurious effect on each
sions in Sec. IV A orbit.

The chemical potentials are calculated with E3}3) at each
rotational frequency. The parametex$0)=0.8 (0.6) MeV
andzw.=0.5 (0.3 MeV for neutrons(protons are used in
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B. Residual interactions and the RPA

We adopt the following operators & in the residual
interactions(2.12):

P, P. Qx Q% Q3 form=-+,

1 - 1 o~
Q30 le ng Qgg T3Q10 T3Qf1 for m=—,

(3.5

where7;= 53— (N—2Z)/A which is needed to guarantee the
translational invariance. Here, the operatQ¥ are defined
by Eqg.(2.13 in the doubly stretched coordinates, dhd are
defined by

P —i(p+ PT) (3.6)
i \E , .
p —i_(p_p‘r) (3.7
- 2 , .

kl

whereP =P —(wy|P|w,y. Note that theK =0 quadrupole
(octupole operatorQ,, (Q30) has a unique signature=0
(a=1), which corresponds to the fact tHat=0 bands have
no signature partners.

Since we use the different oscillator frequeney for
neutrons and protons in the Nilsson potenfsde Eq(3.1)],
we use the following modified doubly stretched multipole
operators for the isoscalar channels:

2N 2/3
(T Qs for neutrons,

Q\k— 27\2/3 (3.9
(K) Qyx for protons.

This was originally proposed by Baranger and Kuri]
for quadrupole operators. Recently Sakam@8| has gen-

NAKATSUKASA, MATSUYANAGI, MIZUTORI, AND SHIMIZU

2
Ho_ 4ATMwj

XZK_Wv (3.10

4
XER= - MBA((r)") + & (4-KIA((rP,)")

+ 5 [K2(TK2=67)+ 72]A((r*P,)")} 1,
(3.12)

with
oN| 23 N
A((rnp|)>5(f) <; (rk)”P|>O

+

Z 213 Z
N <2 (rk>“P.> . (312
K 0

A large model space has been used for solving the
coupled RPA equations, including seven major shells with
Nos= 3—9(2-8) for neutrongprotons in the calculations of
positive-parity states, and nine major shells with
Nos=2—-10(1-9) for the negative-parity states. The mesh of
the rotational frequency for the calculations has been chosen
asA7iw,=0.01 MeV which is enough to discuss the prop-
erties of band crossing and Coriolis couplings.

Since our mean-field potential is not the simple harmonic
oscillator, we use scaling factofg as

Xk = FaxiK (3.13

for the isoscalar interactions with=2 and 3. These factors
are determined by the theoretical and experimental require-
ments: As for the octupole interactions, we have the experi-
mental Routhians for the lowest octupole vibrational state in
SD g [17]. We assume the common factby for all K
values and fix it so as to reproduce these experimental data.
In this casefz=1 can nicely reproduce the experimental
Routhianss and we use the same value fdfHg and

eralized it for an arbitrary multipole operator and proved that'®**Hg. For the quadrupole interactions, we determine it so as
by means of this scaling the translational symmetry is reto reproduce the zero-frequenéilambu-Goldstonemode
stored in the limit of the harmonic-oscillator potential. In for K=1 atw,,;=0 and use the same value #r=0 and 2.
addition, for the collective RPA solutions this treatmentf,=1.007, 1.005, and 1.005 are obtained f8MHg, °*Hg,
makes the transition amplitudes of the electric operators apand %Hg, respectively, by using the adopted model space.
proximatelyZ/A of those of the mass operators, in the sameThe fact that these values 6f are close to unity indicates
way as in the case of the static quadrupole momg2gts that the size of the adopted model space is large enough.
We use the pairing force strengtlia. reproducing the According to systematic RPA calculations for the low-
pairing gaps of Eq(3.4). For the isovector dipole coupling frequencyB, v, and octupole states in medium-heavy de-
strengths, we adopt the standard values in R3], formed nuclei, we have found that the valued pfeproduc-
ing the experimental data are very close to unity for the
Nambu-Goldstone mode, the and octupole vibrational
states. On the other hand, those values are quite different
from unity for the 8 vibrational states. This may be associ-
ated with the simplicity of the monopole pairing interaction.

7TV1

XK= A7y, (3.9

with A((r3)")o=(28(r2)")o and V;=130 MeV. The self-

consistent values for the coupling strengihs of the iso-

scalar gquadrupole and octupole interactions can be obtainedThis value depends on the treatment of the pairing gaps at finite
for the case of the anisotropic harmonic-oscillator potentiafrequency. If we use constant pairing gaps against, we get the
[33,39: best valuef ;=1.05.
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The calculations show the strong interaction strength be-
tween thew([642 5/7)? configuration(for simplicity we de-
note these orbits byr6, and 76, in the following and the
yrast configuration which may contribute to the smooth in-
crease of the yrasp? moments of inertia. On the other
hand, the interaction of [761 3/3 orbits (v7, and v7, in
the following strongly depends on the chemical potential
(neutron numbeér The interaction is strongest it?*Hg, and
weakest in®Hg. This is qualitatively consistent with the
experimental observation of the yrq;@fz) moments of iner-
tia and the experimental quasiparticle Routhians in
191,19:Hg [40,411
— The characteristic features of the hilyhintruder orbits
[ eI === are similar to those of the Woods-Saxon potential, except the
- R i alignments ofv7, and v7, orbits which are, respectively,
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Hs25/2) i~3% and 2 in ours whilei~4% and 3 in the Woods-

r T Saxon potential. This results in the different crossing fre-
05 i quency between the ground band and #(g,s,)? band, as
g discussed in Sec. Il A. The observed crossing3Hg and

the quasiparticle Routhians i*1*®Hg seem to favor our
results. There are some other minor differences concerning
the position of each orbit in the Nilsson and in the Woods-
Saxon potential. However, these differences do not seriously
affect our main conclusions because the collective RPA so-
lutions are not sensitive to the details of each orbit.

0 ! 1

Quasi—neutron routhians [ MeV ]

o

L <o ] B. Octupole vibrations

05 L \‘\\1 ] Here, we discuss the negative-parity excitations in SD
[ e T 1901921914 We have solved the RPA dispersion equation
[ | (2.23 and have obtained all low-lying solutionE(<2
05 o s - s s MeV). The excitation energies and tB¢E3) values calcu-

lated atw,,;=0 are listed in Table I. This result shows that
K=2 octupole states are the lowest for these Hg isotopes,
which is consistent with our previous result8,4]. The
FIG. 3. Neutron quasiparticle Routhians in the Nilsson potentialB(E3;0* —3~,K) are calculated by using the strong cou-
with h,gq for SD 1019219%g. See text and caption to Fig. 2 for pling scheme[30] neglecting effects of the Coriolis force.
details. Absolute values oB(E3)’s cannot be taken seriously be-

) ] o cause they depend on the adopted model space and are very
Since we cannot flnd the realistic force Stren.gﬂa for SD sensitive to the octupole Coup“ng Strengw&: For in-
states, we do not discuss the property of gheibrations in  stance, if we usé;=1.05 instead of ;=1 in Eq.(3.13, the

03
fiw, o [ MeV ]

this paper. B(E3) increase by about factor of 2 while the reduction of
their excitation energy is about 15%. In addition, the effects
IV. RESULTS OF NUMERICAL CALCULATIONS of the Coriolis coupling tend to concentrate tiB{E3)

strengths onto the lowest octupole stdt2g|.

At w,= 0, the lowesK =2 octupole states exhibit almost

In this section we present calculated quasiparticleidentical properties if°%1921%g. However, they show dif-
Routhians in the improved cranked Nilsson potential and disferent behavior as functions @f,,; as shown in Figs. 4, 5,
cuss their characteristic feature. In Fig. 3 we compare thand 6, respectively. All RPA solutions, including noncollec-
neutron quasiparticle Routhians f61°1921°Hg. The proton  tive solutions as well as collective vibrational ones, are pre-
Routhians of**Hg are shown above in Fig. 2 and are almostsented in these figures. The size of the circle on the plot
identical for 1Hg and *%Hg. indicates the magnitude of tH&3 transition amplitudes be-

A. Quasiparticle Routhians

TABLE I. Calculated excitation energies of octupole vibrations BfE3;0*—37,K) values estimated
using the strong coupling scheme for S§919219g.

1904 1924 194y
K=0 K=1 K=2 K=3 K=0 K=1 K=2 K=3 K=0 K=1 K=2 K=3

E [MeV] 1.37 145 120 152 155 158 1.18 153 183 1.62 1.14 153
B(E3)/B(E3),,, 6.6 119 100 10 76 101 101 08 115 112 102 07
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E [ MeV ]

F o Oosa=0 A

F Ooca=0
oe. =1
0.2 ©=oBand 2 (exp)

° A @e: =1
’ o2} .

A Octupole routhians for *Hg
Octupole routhians for *Hge o3 ‘ o3

01 03 fiw., [ MeV ]
fiw, , [ MeV ]

FIG. 6. The same as Fig. 4, but f6*Hg.

FIG. 4. Calculated RPA eigenenergies of negative-parity states
for SD *™g, plotted as functions of rotational frequency. Open strengths, the agreement over the whole frequency region is
(solid) circles indicate states with signature=0 (e=1). Large, not trivial.
medium, and small circles indicate RPA solutions w8 transi- Since there is ndK=0 octupole state in the signature
tion amplitudes E|(n| QS| wr)|?) * larger than 208fm?, larger  «=0 sector, the Coriolis mixing is much weaker for the
than 10@ fm®, and less than 1@0fm?, respectively. Note that |owest (K,a)=(2,0) octupole state. The calculation predicts
Routhians for the yrast SD band correspond to the horizontal axighat this state is crossed by the negative-parity two-

(E;=0). The observed Routhians for band 27] are shown by quasiparticle bandw(7,8[642 3/3),-, at fw,~0.27

open squares. MeV.

. In 1%Hg, the same kind of crossing is seen for both sig-

tween a RPA_squUon and the yrast rfg}o?je- o nature partners of th&=2 octupole bands. We can clearly
The (K,@)=(2,1) octupole state i~ Hg has significant gee for the lowest excited state in each signature sector, the

Coriolis mixing and the octupole phonon is aligned along the 5 nsition of the internal structure from collective octupole

rotat_lonal axis at higher frequency. This is caused by thgates (large circles in Fig. 5 to noncollective two-

relatively close energy spacing between We2 and the g asineutron stategsmall circles. The two-quasineutron

K=0,1 octupole states in this nucleus. These Kwnem- configurations which cross the octupole vibrational bands
bers of the octupole multiplet are calculated to lie muchg,q 7,0[642 3A(a=—1/2) for =1 and 7%

higher in *2Hg and 1%*Hg, which reduces the Coriolis mix- ©[642 3/3(a=1/2) for a=0. The crossing frequency is

ing in these nuclei. As a result of these phonon alignmentsy ver for thea=1 band due to signature splitting of the
the experimental Routhians for band 2 ##Hg are nicely [642 3/2 orbits.

reproduced by the lowest=1 octupole state. It should be = |, contrast to 19019344 the K=2 octupole bands in
emphasized that although the excitation energy at one frewa,q jngicate neither the signature splitting nor the cross-
guency point can be obtained by adjusting the octupole-forc%gs_ The Routhians are very smooth up to the highest fre-

quency. This is because the neutron orbifsaiid 7, have a
“hole” character and their interaction strengths with the
negative-energy orbits become larger with increasing neu-
tron numbergsee Fig. 3 Therefore these orbits go to higher
energy and the energies of the two-quasiparticle bands
v(7,®[642 3/2) never become lower than thé=2 octu-
pole bands even at the highest frequency.
Socsqeretit These properties of thK=2 octupole vibrations come
O from the effects of the Coriolis force and from the chemical-
< 06 L potential dependence of the aligned two-quasiparticle bands.
' . In order to reproduce these rich properties of the collective
L ooraco ‘_ vibrations at finite frequency, a microscopic model, which
0. 0= can describe the interplay between the Coriolis force and the
ozl _ correlations of shape fluctuations, is needed.

[ MeV ]

El

Octupole routhians for ¥2Hg
01 ‘ 03
fiw, o [ MeV ] In this section we present results for thevibrational

states built on the SD yrast band. As mentioned in Sec. Il B,
FIG. 5. The same as Fig. 4, but f&¥?Hg. we do not discuss the property of th& band since it is

C. y vibrations
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TABLE II. Calculated excitation energies of vibrations and
B(E2;0"—2" ,K=2) values estimated using the strong coupling
scheme for SDH0192.19¢g,

19q_|g 192Hg 194Hg
E [MeV] 1.39 1.50 1.45
B(E2)/B(E2)sp. 2.7 3.0 3.8

difficult to determine a reliable value of the coupling strength
X20 for the K=0 channel of the quadrupole interaction.

The properties ofy bands atw,,;=0 are listed in Table II.
The excitation energies of vibrations are predicted to be
higher than thé& =2 octupole vibrations by 200—-350 keV. It
is known that calculations using the full model space consid-
erably overestimate thB(E2) values. In Ref[28], it has
been shown that the thréés;s-shell calculation reproduces
the experimental values very well. If we use the model space
Nos= 5—7 (4—6) for neutrongprotong, then theB(E2) val-
ues in the table decrease by about factor of 1/3. The collec-
tivity of the y vibrations turns out to be very weak in these
SD nuclei.

Figures 7, 8, and 9 illustrate the excitation energyyof
vibrations as functions of the rotational frequency for
190Hg, %%Hg, and**Hg, respectively. The unperturbed two-
quasiparticle Routhians are also depicted by s@ieltron$
and dashedprotong lines. Since the&k quantum number is
not a conserved quantity at finite rotational frequency, w
have defined the solutions with the large=2 E2 transition
amplitude as the vibrations. As seen in the figure, they lose

E [ MeV]

2221

17

10

o=1 states

a=0 states

192Hg

0

0.1

02

0.3

A, [ MeV ]

0.4

FIG. 8. The same as Fig. 7, but f¥?Hg.

their vibrational character by successive crossings with many
two-quasiparticle bands and become the dominant two-
quasiparticle states at high frequency. The reduction of col-
ejectivity is more rapid for thexr=0 v vibrations, because the
two-quasiparticle states come down more quickly in the
a=0 sector. Similar crossings occur for tKe=2 octupole
bands in*®*Hg (see Fig. 5 however, the crossing frequency

is much higher than that of thg bands. This is because the

: o=1 states

E, [ MeV]

190Hg

o=0 states

0 0.1 0.2 0.3 04
fiw, o, [ MeV ]

FIG. 7. Calculated RPA eigenenergies fprvibrational states
for SD ®™Hg, plotted as functions of rotational frequency. The
lower part is for the signature=0 Routhians and the upper for the
a=1. Large solid, small solid, and small open circles indicate the
v vibrational states whosk=2 E2 amplituded(n|Q3, w,| are
larger than 28 fm?, larger than 16 fm?, and less than fm?,
respectively. The unperturbed two-quasineut(two-quasiprotoh
Routhians are also shown by solidashedl lines.

E' [ MeV ]

excitation energies of the octupole bands are relatively lower
than those of they bands. The predicted properties ¢f
vibrations are different from those in R¢#2)].

In the frequency region (0.35% w,<0.4 MeV) where
the excited SD bands are observed in experiments,ythe

o=1 states

o=0 states

194-H 9

0

01

02

0.3

fiw, o [ MeV ]

04

FIG. 9. The same as Fig. 7, but f&"Hg.
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TABLE Ill. The lowest and the second lowest configurationg: at,,=0.4 MeV in each parity sector.
The proposed assignments of the observed excited SD bands are also shown. The excitation energies of the
negative-parity two-quasineutron states, 256 keV ¥8Hg and 441 and 632 keV fot®*Hg, contain very
weak octupole correlations. The corresponding unperturbed two-quasineutron energies are 261, 460, and 635
keV, respectively.

T=+ T=—
Lowest Second Lowest Second

1%%4g E, [keV] 113 389 ~0 256

Config. (71072) w0 v(7,®[505 11/3) 401  (OCt. Vib.)y—y v(7,0[642 3/2) .-

Expt. Band 3 Band 2 Band 4
¥2Hg E; [keV] 611 611 441 632

Config. v(7,®[512 5/2) =1 v(71©[512 5/2) e v(710[642 3/2),—1 v(7,2[642 3/2),_,

Expt. Band 2 Band 3
Y49 E, [keV] 857 892 738 759

Config.  »([514 7/2)2_, m([530 1/2)%_, (oct. vib.),_o (oct. vib.),_,

Expt. Band 2 Band 3

bands are predicted to be higher than bothKhe2 octupole The lower the excitation energy of an excited band rela-

bands and the lowest two-quasiparticle states. Therefore exive to the yrast SD band, the more strongly will it be popu-
perimental observation of the vibrations is expected to be lated. In experiments, the SD bands are populated at high

more difficult than that of the octupole bands. frequency; thus, it is the excitation energy in the feeding
region at high frequency that is relevant in this problem. We
V. COMPARISON WITH EXPERIMENTAL DATA list in Table Il the calculated excitation energies of the low-

In this section, we compare the results obtained in théy Ing positive- and negative-parity statesfiab,o=0.4 MeV.

19 H
previous section with the available experimental data for th In *%*Hg three excited SD bandbands 2, 3, a}nd)mave
excited SD bands if%1921%g. The Routhians relative to een observed16-18. Band 2 has been assigned as the
the yrast SD band have been observed only for band 2 ifPWest octupole bandl16,17 because of its strong decays
19045 and the comparison with our calculated Routhians hal't©_the yrast SD band. According to our calculations, in
been done in the Sec. IV B. The excitation energies of th@ddition to this octupole banda=1), the aligned two-
other bands are not known. Therefore, in order to compargu@sineutron bands come down at high frequency. We assign

our theory with experimental data, we have calculated th&@nd 4 at high frequency as thg7,®[642 3/2) .o be-
dynamic moments of inertiaZ*®, cause this negative-parity two-quasineutron state is crossed

It is known that the effects oRl,e. mixing, pairing fluc- Py the @=0 octupole band atiw~0.26 MeV Wh'g)h
tuations, and higher-multipole pairing are important in repro-may correspond to the observed sharp rise ﬁf
ducing absolute magnitude of the moments of inertia. On th&! _#@=0.23 MeV (Fig. 4. The positive-parity
other hand, our model aims at describing relative quantitie®(71® 72)4-o State is also relatively low lying at high fre-
(excitation energy, alignment, etdetween the excited and duency. Since this band does not show any crossing at
yrast bands. Thus, instead of directly calculatigg? in fhiw>0.12 MeV in the calculations, this may be a good

terms of Eq.(2.10, we decompose the”® of the excited ~candidate for band &ig. 7).
bands as a.2.10 P 4 In ®Hg, two excited SD bandébands 2 and Bhave

been observe[22] and both bands exhibit a bump i#?) at
di 2! fw~0.3 MeV (band 2 and 0.33 MeV(band 3. We as-
‘,}’Z(Z)(w):,%z)(w)"'d—w?%z)(w)—d—wz{, (5.1 sume these bands correspond i/ ,®[642 3/2),_, at
high frequency. This two-quasineutron configuration for
where 7{?) denotes the dynamic moments of inertia for theband 2 is the same as that suggested in B2l However,
yrast SD band$RPA vacuur, andi andE are the calcu- OUr theory predicts a different scenario at low spin: This
lated alignments and Routhians relative to the yrast ban@nd is crossed by the octupole bang<1) atfw~0.3

respectively. TheZ® values of the yrast SD bands are taken™M€V- Thus, band 2 is interpreted as am1 octupole vibra-

from the experiments and approximated by the Harris exparF—ional band in the low-frequency regior ,:<0.3 MeV).

In the same way, the bump i® in band 3 is interpreted as

sion, :
a crossing between(7,®[642 3/2),-o and thea=0 oc-
72 (w)=Jp+ 310>+ 50" (5.2)  tupole vibrational bandFig. 5.
For high frequencies, the positive-parity

The expressiorn(5.1) phenomenologically takes account of »(7,®[512 5/2) state is calculated to lie almost at the
the effects mentioned above. Those effects are included isame energy as the lowast=0 negative-parity state. How-
the experimental7{?) of Eq. (5.2). ever, no crossing is predicted for the=1 state at
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190Hg 192Hg 194Hg

220} Band 1 ¢ Band 1 + Band1

J,=826 Jy=917 t  J=835
BOF  J=T3 J=88.2 T J=N3
J=0 J=0 T =195

140
100

| o=y 30eP B g M@ee M

220

180}
FIG. 10. Calculatedsolid lineg and experi-

mental(symbolg dynamic moments of inertia for
excited SD bands in®™Hg (left), 1%Hg (middle),
and **Hg (right). 7(? for the yrast SD bands are
also displayed at the top. Dotted lines indicate the
yrast 72, which are approximated by the Harris
formula (5.2). The parameterd,, J,, and J,
used in the formula are shown in units of
fi2MeV 1, 24 MeV 3, and#® MeV ~5, respec-
tively.
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hw>0.15 MeV but many crossings are predicted for thethose of the yrast SD band(ii) The configuration
a=0 state(Fig. 8. Both properties are incompatible with »([512 5/2®[624 9/2) suggested in Ref23] has a prob-
the observed features. lem with its magnetic property, which has been recently
In *¥Hg, two excited SD bandébands 2 and Bhave pointed out in Ref.[43]. If this configuration is the
been observedi23,24. In contrast to'%Hg, the observed K7=7", then strongM1 transitions between the signature
dynamic moments of inertia7\?), do not show any singular partners should have been observed. The energy of the
behavior and are more or less similar to those of the yrad™=2" configuration is certainly lowered by octupole cor-
band. Bands 2 and 3 have been interpreted as signature parlations. In our calculations, however, this configuration ac-
ners because thgray energies of band 3 are observed to liecounts for only 20% of all components constituting the oc-
midway between those of band 2 and furthermore the bandsipole vibration(iv). The y vibrations are calculated to be
have similar intensity23]. From these observations and the much higher and crossed by several two-quasiparticle bands
excitation energies listed in Table Ill, we assume that both{Fig. 9. Therefore, we believe the octupole vibration is the
bands correspond t&=2 octupole vibrations =0, 1),  best candidaté.
which are calculated to be the lowest excited stéfég. 6). Assuming the above configurations, the dynamic mo-
Any other assignment faces serious difficultigsy The  ments of inertia, 74?), are calculated with Eq(5.1), and
positive-parity two-quasiparticle configurations listed in compared with the experimental ddfig. 10. In *Hg, the
Table Il have no signature partnefs) The other low-lying  characteristic features are well reproduced for bands 2 and 4;
two-quasiparticle states occupy’; or w6, orbits. Now the  the constantZ?) of band 2(the =1 octupole vibratioh
increase in7(?) for the yrast SD band is partially attributed and the bump of band 4the crossing between the=0
to the alignment of these highintruder orbits and, since the
blocking effect of the quasiparticles prevents any alignment—
due to band crossings involving these orbits, the lack of “The signature for bands 2 and 3 is determined by following the
alignment should produce aa® curve quite different from  spin assignment in Ref23].
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octupole vibration and the aligned two-quasineutron pand
are reproduced although the crossing frequency is smaller in
the experiment. For band 3, the high?) values at low spin 25¢
are well accounted for by the alignment gain of the two- sl
guasineutron state. However, the calculation predicts the lack
of alignment due to the blocking oN=7 orbits at

135

105 F

h wo>0.25 MeV, which makes theZt?) smaller than those g BT
of the yrast band. 2 85)

In 1%%Hg, the bumps of7? are nicely reproduced in the E sl
calculations, which correspond to the crossings between o
K =2 octupole vibrations and the aligned two-quasineutron =120
bands in each signature partner. The alignment daibe- L=k

fore and after crossing for band 2 A8~ 2% which is com- 05}
parable to the experimental valdé,,~2.62 [22].
The agreement is less satisfactory i#fHg. The calcu-

95F

lated 7(?) are lower than the experimental data for & .
0.2<%w,,=0.35 MeV (similar disagreement can be seen for ol 02 03 04
W, o [ MeV/1 ]

band 3 in1%Hg). This effect comes from the blocking effect
mentioned above, associated with theé,, v7,, w6,, and
76, orbits. In the RPA(Tamm-Dancoff theory (neglecting
the backward amplitudgésthe octupole vibrations are de-
scribed by superposition of two-quasiparticle excitations,

FIG. 11. Calculatedsolid lineg and experimentalsymbolg
dynamic moments of inertia for excited SD bands'#Hg. Thin
solid lines are the same as in Fig. 10, while thick lines indicate the
results obtained by using the slightly stronger coupling strengths
(f3=1.05) for the octupole interactions. Dotted lines indicate the

) 7 for the yrast SD bandsee caption to Fig. 20
oct vib)= )| vd), 5.3 7
| ) % W(y3)|yd) (5.3

collectivity of these octupole vibrations was underestimated

where |yd)=ala}w). Some of these componentyd)  in the calculations wittf 5= 1.
associated with the particular orbit¢{,, v7,, w64, and Finally we should mention the decays from the octupole
w6,) show significant lack of alignment. However, if the bands to the yrast SD band. We have assigned all observed
octupole vibrations are collective enough, the amplitudesxcited SD bandgexcept band 3 in**®Hg) as octupole vi-
Y(yS) are distributed over many two-quasiparticle excita-brational bandgat least in the low-spin regignHowever,
tions|yd). Thus, each amplitude becomes small and blockstrong dipole decays into the yrast band have been observed
ing effects may be canceled. only for band 2 in®*®Hg. Although this seems to contradict

In order to demonstrate this “smearing” effect of collec- our proposals, in fact our calculations provide us with a
tive states, we use a slightly stronger octupole forcegualitative answer.
f3=1.05 in Eqg.(3.13, and carry out the same calculations  Let us discuss the relati8(E1;oct—yrast) values. Us-
for 1%Hg. The results are shown in Fig. 11. The higher cou-ing theE1 recoil charge £ Ze/A for neutrons andNe/A for
pling strengths make the octupole vibrations more collectivgprotong, then theB(E1) values atfiw,,;=0.25 MeV are
and the experimental data are better reproduced. Perhaps tta&lculated to be small for all th€ =2 octupole bands except

190Hg 192Hg 194Hg

Band 3

Band 2

— Band 2
250r

50 F . . .
! FIG. 12. ElectricE3 transition amplitudes,

[t[1/2(1+ 73) Q]| =[{ @il Q3kIM)|,  for  the
lowest RPA solutions with the signature=0
(lowen and thea=1 (upped for °*Hg (left),
¥92Hg (middle), and ***Hg (right). K=0, 1, 2,
and 3 components are denoted by solid, dashed,
dotted, and dash-dotted lines, respectively. Total
values (thick solid lineg are defined by

(Zkl{ @rod Q3] n>|2)1/2-

501

Q%] [ efm® ]

130

50t
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for the =1 (band 2 in ®Hg: With the scaling factors due to the relatively low excitation energy of the=0
f3=1~1.08 in Eq. (3.13, the calculation suggests (a=1) octupole state it°®Hg, in which the close spacing in
B(E1)~10 7 Weisskopf unitsW.u,) for the (K,a)=(2,0)  energy of the octupole multiplet makes the Coriolis mixing
octupole bands, and3(E1)~10 8-10"6 W.u. for the easier. This aligned octupole phonon'itHg reproduces the
(K,a)=(2,1) bands. Th&(E1) for band 2 in'®Hg is pre-  observed behavior for band 2.
dicted to be larger than these values by one to two orders of Our interpretation for the excited SD bands in
magnitude B(E1)~10 6-10“ W.u. Although the absolute °Hg solves a puzzle mentioned in RE22] in which band
values are very sensitive to the parameters used in the calcB- was assigned as the two-quasineutron excitation
lation, theE1 strengths of band 2 in®*Hg are always much v(7;®[642 3/2). The bump in theZ?) curve was consid-
larger than those for the other bands. ered to be associated with a crossing betweenvtheand
To clarify the reason for thi€1 enhancement in this » [512 5/ orbits. According to this assignment, we expect
particular band, we display the3 amplitudes K=0, 1, 2,  similar properties for the observed crossing i*fHg and
and 3 of these octupole states as functions of frequency in‘%Hg, and the difference of crossing frequencies and align-
Fig. 12. As mentioned in Sec. IV B, the Coriolis mixing is ment gains was a puzzle. This is no longer a puzzle in our
completely different between band 2 ##"Hg and the others: interpretation because the microscopic structure of band 2 is
The former has significant Coriolis mixing at finite fre- the octupole vibratior{before the crossirg Because of the
guency while the latter retains the domind&t2 character correlation-energy gains, the excitation energies of the octu-
up to very high spin. Since th€=2 octupole components pole vibrations should be lower than the unperturbed two-
cannot carry anyel strength, the stron§1 transition am- quasiparticle states. Therefore it is natural that the observed
plitudes come from Coriolis coupling, namely, the mixing of crossing frequency is larger than the one predicted by the
the K=0 and 1 octupole components. Therefore, the obguasiparticle Routhians without the octupole correlations.
served decay property does not contradict our interpretation. Our interpretation also solves some difficulties'itfHg:
The smoothZ7(? behavior of bands 2 and 3 can be explained
by the “smearing” effect of the collective states. The non-
VI. CONCLUSIONS observation of the expected stroMyl transitions between
. . . bands 2 and 343] is solved by substituting th& =2 octu-
The microscopic structure of thg and the octupole vi- pole vibrations for the two-quasineutron states

. . 190,192,19
brations built on the SD yrast bands i} Hg were y([512 5/3®[624 9/2), because the octupole correlations
investigated with the RPA based on the cranked shell mode|,or thek =2 configurations and the summation of many

The K=2 octupole V|bra_t|0_ns are predicted to lie I_owest. Totwo-quasiparticle 1) matrix elements may be destructive
reproduce the characteristic features of the experimental da 8ce discussion below E@.26)].

it was essential to include octupole correlations and the ef-
fect of rapid rotation explicitly. From the calculations, we
assigned the following configurations to the observed excited

EnhancedEl transitions from the octupole states to the
rast SD band are expected only for band 2'#Hg. This
omes about because the other octupole states do not have

bands: strong Coriolis mixing and keep thefr=2 character even at
10 . . . B high frequency. This agrees with experimental observations.
*Hg Band 2:  The rotationally aligned=1 octupole Although most of the observed properties are explained
vibration. by our calculations, there remain some unsolved problems in

Band 3:  the two-quasineutron bam{7,®7,). 19%g and '%Hg. For *™Hg, according to the calculations

Band 4:  the K,a)=(2,0) octupole vibration at  with constant pairing gaps reported in REE9], it is sug-
low spin, the two-quasineutron band  gested that band 4 may correspond to tKea) =(1,0) oc-
v(7,®[642 3/3),-, at high spin. tupole band which is predicted to be crossed by the two-

¥%4g Band 2: the K,a)=(2,1) octupole vibration at quasineutron bandv(7,®[642 3/2),_, at hw~0.21
low spin, the two-quasineutron band  MeV. Because of the phenomenological treatment for the
v(7,®[642 3/2),-, at high spin. pairing gaps at finite frequency, it is difficult to deny this

Band 3: the K,a)=(2,0) octupole vibration at possibility. The experimental intensity of band 3 raises an-
low spin, the two-quasineutron band  other ambiguity: Since it is much weaker than bands 2 and 4,
v(7,2[642 3/2),-¢ at high spin. it might be associated with a higher-lying configurations

19449 Band 2: the K,a)=(2,0) octupole vibration.  [18]. For ***Hg, our calculations predict no signature split-

Band 3: the K,a)=(2,1) octupole vibration. ting for the lowest octupole bands at_wm§0._25 MeV.

Therefore one may expecg-ray energies typical of the
signature-partner pair for bands 2 and 3 similar to that in
19449, which is different from what is observd@2]. Im-
With these assignments, most of the experimentally observegrovement of the pairing interactiorfuctuations, quadru-
features were well accounted for in our theoretical calculapole pairing might solve these problems as well as enable us
tions. to perform reliable RPA calculations fg vibrations.
The Coriolis force makes the lowest octupole state in Theoretical study of octupole vibrations carrying large
%%Hg align along the rotational axis, while this effect is E1 strengths would be of great interest, because this could
predicted to be very weak for other octupole states. This i®ffer direct experimental evidence. An improved version of
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calculations forE1 strengths of high-spin octupole bands is ACKNOWLEDGMENTS
in progress, taking into account the restoration of transla-
tional and Galilean invariance. Thé=0 octupole vibration
. 15 . . . .

n :Dg hz;shbeer;)predmted m(lzgiﬁ] g?d Its gic‘?y 'nt.(t). the also thanks B. Crowell, P. Fallon, J.F. Sharpey-Schafer, J.
yras an as been sugges - >trong ransition Skalski, and A.N. Wilson for valuable discussions. Three of
probabilities have been suggested by Skalgk] for K=0 ;5T N, K.M., and Y.R.S. thank the Institute for Nuclear
octupole states in tha=190 region. Therefore, the search- Theory at the University of Washington for its hospitality
for low-lying low-K octupole vibrations is an important sub- and the U.S. Department of Energy for partial support during
ject for the future. the completion of this work.

We would like to acknowledge W. Nazarewicz for discus-
sions and suggestions for this paper. One of autkib.)
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