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Nucleon spectral function at finite temperature and the onset of superfluidity in nuclear matter
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Nucleon self-energies and spectral functions are calculated at the saturation density of symmetric nuclear
matter at finite temperatures. In particular, the behavior of these quantities at temperatures above and close to
the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the
singularity in the thermodynami® matrix at the critical temperature for superfluidiffhouless criterion
reflects in the self-energy and correspondingly in the spectral function. The real part of the on-shell self-energy
(optical potential shows an anomalous behavior for momenta near the Fermi momentum and temperatures
close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the
self-energy derived from thi€¢ matrix of Brueckner theory is also calculated. It is found that there is no pairing
singularity in the imaginary part of the self-energy in this case, which is due to the neglect of hole-hole
scattering in thek matrix. From the self-energy the spectral function and the occupation numbers for finite
temperatures are calculatd®0556-28186)02305-9

PACS numbgs): 21.65:+f, 21.10.Pc, 21.30.Fe

[. INTRODUCTION ergy. In general, the spectral function has a considerable
width indicating that the one-particle states are strongly
Heavy-ion reactions at intermediate energies probe théamped at the saturation density. Baktaal. [3] calculated

nuclear equation of state in a broad temperature and densitpe on- and off-shell properties of the nucleon mass operator

#nd the nucleon spectral function. They stressed the impor-
cluster formation, multifragmentation or the liquid-gas phasetance to retain the fu_II frequency dependen_ce__of the self-
transition. The theoretical description of such phenomena dez "< 9 for the calculation of the spectral function ik [4]

' P o such p o compared the nucleon spectral function calculated within
mands to go beyond the usual quasiparticle description f

h b ) ) ¢ £O I Oreen-function theory with a calculation done in Brueckner
the equilibrium propgrt!eéequanon o stat¢EOS)] as we theory. He pointed out the near equivalence between the two
as for the nonequilibrium propertied@oltzmann-Uehling- _ theories at zero temperature. Vonderfeettal. [5] used

Uhlenback simulations The need to go beyond the quasi- Green-function theory to calculate the nucleon self-energy
particle approximation in the description of nuclear matter isyithin the ladder approximation at zero temperature. They
further advocated by the electron-scattering experimentamphasized the need to correctly treat the pairing correla-
from heavy nuclei. These experiments give a clear evidencgons contained in this approximation if hole-hole propaga-
that the one-nucleon spectral function shows pronounced deion is included in the kernel of the vertex functi@hermo-
viations from mean-field estimates, which are due todynamic T matrix). Benhar et al. [6] calculated spectral
nucleon-nucleor(NN) correlations[1]. The effect of these functions for nuclear matter using the hypernetted chain
correlations can most accurately be studied for nuclear matethod. The spectral function and the nucleon momentum
ter[2]. distribution in nuclear matter were calculated by Benhar
A systematic quantum statistical approach for the descripet al.[7] at densities below the saturation density within or-
tion of dense nuclear matter can be given using Greenthogonal correlated basis functions theory. As a result, they
function theory. For the description of phenomena like thefind that with decreasing density the discontinuity at the
formation of clustersbound statesin the medium or the Fermi surface decreases. This means that the momentum dis-
onset of a superfluid phase, one has to allow for a finitdribution does not approach the noninteracting response with
lifetime (damping of the one particle states. Such a treat-decreasing density. This was interpreted as being due to the
ment can be based on the nucleon spectral function, which igttraction in the NN interaction leading to the formation of
defined in terms of the real and imaginary parts of the self<bound pairs” of nucleons. Van Neckt al. [8] use corre-
energy. Having the nucleon spectral function at the disposalated basis functions theory with the Urbang, interaction
one is able to determine the momentum distribution, the reto calculate the nuclear matter spectral function and momen-
sponse function as well as the nuclear equation of state irtum distribution belowny. In agreement with the previous
cluding correlations beyond the mean-field level. authors they found that the momentum distribution does not
Most of the existing calculations of the nucleon spectralreach the noninteracting one with decreasing density. De
function have been done for zero temperature nuclear mattdionget al.[9] calculated the nucleon spectral function based
at the saturation density,. In Refs.[3-5] it is shown that on an extension of the relativistic Dirac-Brueckner scheme.
the quasiparticle description is only valid near the Fermi en- Finite temperature calculations of the nucleon self-energy
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were carried out by Granget al. [10], Ropke et al.[11] (in  the retarded nucleon self-energy and the nucleon spectral
connection with the EOSand Kdnler[12]. The latter author function at finite temperature within the framework of Mat-
found a pronounced temperature dependence of the spectmlbara Green functions. In Sec. Il the differences to the
function at the saturation density. Using the extended quasiisual Brueckner theory generalized to finite temperatures are
particle approximation for the nucleon spectral functionpointed out. Section IV contains results for fhenatrix and
Schmidtet al. [13] included the formation of two-nucleon the K matrix and the corresponding self-energies including
correlations(in particular bound statgsn the equation of the optical potential at finitdl. Within Sec. V the corre-
state of nuclear matter. The finite temperature nucleon spesponding spectral functions and occupation numbers are pre-
tral function in the low-density region of nuclear matter wassented.

calculated by Almet al. [14] demonstrating the necessity to

include the contribution of two-nucleon bound states to the Il. GREEN-FUNCTION EORMALISM

one-nucleon spectral function at low density. These authors AND APPROXIMATIONS

find that genuine bound state formation in nuclear matter is

only possible at extremely low densitiesn<0.05,, For the derivation of the self-energy and the spectral func-

T=10 MeV). With increasing density the bound states aretion we use the Matsubara Green-function technique as out-
dissolved in the mediurtMott effec). However, the forma- lined in Ref.[22]. We put?,kg=1 throughout the paper.
tion of two-nucleon pairs in the continuum as well as theirFrom the definition of the one-particle spectral function
possible Bose condensatidqi5] can take place at these A(l,w)=i[G(lLw+i0)-G(lw—i0)] and from the re-
higher densities as well. The necessity to include the deutarded self-energ®. the spectral function according to the
teron singularity in the two-particld matrix into the de- Dyson equation reads

scription of nucleon-nucleus scattering at low energies

within the folding model was demonstrated by Arellano A(Lw)= 21m2(1,0)
et al.[16]. : [w—p3/2m—Re>(1,0)]1?+[ Im3(1,0)]?’
Within this paper we would like to discuss the nucleon (@h)

self-energy, spectral function, and momentum distribution at
the saturation density and at finite temperatures. In particuvhere 1={p;,o;,7;} denotes momentum, spin, and isospin
lar, we will concentrate on low temperatures near the criticaPf @ single particle. The one-particle spectral functidn
temperature for the superfluid phase transition in symmetriulfills the sum rule
nuclear matter, which has a maximum ef5—6 MeV at
densities belowng [15]. This phase transition has recently J d—wA(lw)=1 )
been discussed by some authors in particular with respect to 2@ ’ '
the possible formation of a condensate of neutron-proton- ] . ]
pairs in the3S,—3D; channel[17] and the relation to the It determines the macroscopic properties of t_he system such
Bose condensation of deuterons in low-density nuclear ma@S the occupation, of single-particle states given by
ter [18]. Moreover, Baldcet al. [19] suggest that this could do
be a _possmlg mechamsm of deuteron formation in heavy—lop ny(p,T)= f — f(w)A(Lw), @)
reactions at intermediate energy. The onset of the superfluid 2w
phase is contained in the thermodynariicmatrix in the
ladder approximatiofil5]. It manifests itself as a pole defin- Wheref(w)={exf(w—w)/T]+1}*is the Fermi distribution.
ing the Critica' temperature for the thermodynaﬁh’imatrix The equation of state of nuclear matter, where the nucleon
[20]. It could be shown that already above the critical tem-densityn is a function of the chemical potentiad and the
perature thél matrix shows a resonancelike behavior whichtemperaturel, reads
could be understood as a precursor effect of the superfluid 1
phase transitiorj21]. Consequently, near the critical tem- _ =
perature the self-energy and correspondingly the spectral n(M’T)_QZ Na(p, ), @
function should reflect this resonancelike behavior of The
matrix. In this paper we will demonstrate how tliematrix,  with Q being the normalization volume.
the nucleon self-energy and spectral function are changed For the evaluation of the self-energyin Eq. (1) approxi-
when approaching the critical temperature for the superfluidnations have to be made. We start from a cluster decompo-
phase transition from above. sition of the self-energy23], which is given by the follow-

In Sec. Il we derive a set of self-consistent expressions foing set of diagrams:

A~
= T, + T, + Im'ed (5)
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wherez, is the fermionic Matsubara frequency. The cluster 1

decomposition is appropriate for the consideration of ReX(lw)= 52 (f(fz)ReT X 12126+ o)
n-particle correlations via the-particleT matrix T,,. Within 2

this paper we restrict tm=2, i.e., to two-particle correla- dE g(E)ImT ¢ 1212F)

tions represented by the first diagram in E5). Within the —Pf - Sp— ) (12

ladder approximation the two-particle matrix is given by
1 where P denotes the Cauchy principal valug,, is calcu-
T(1212',2)=V(121'2') + — z V(1234 Iated_ in the quasiparticle appr_oximation. Rather tfE®) we _
03756 use in the numerical calculation the real part from the dis-
persion relationKramers-Kronig-relationin the form

X G,(34567)T(561'2',2), (6)
. . . HE do’' IM2(1,0)
where the quantityG, is defined as the product of two full R&(1lw)=2""(1)+P| — ———, (13
one-particle Green functions given in spectral representation T e
as whereXHF(1) denotes the Hartree-Fock shift. This was nu-
merically checked to be equivalent with the explicit formula
b gt (12).
G,(121'2,2)= J' do diM The bare nucleon-nucleon interaction was approximated
27) 27 wtw' -z by a separable ansatz
XA(l,w)A(Z,w’)énr 522!. (7) rank
VEL (p,p") = D) whi(p)A ijwhi(p!). 14
Using the spectral representation for the one-particle Green « (P.P7) i,j2=1 ai(P)X i Wej (P') 4

function as well as for th& matrix [23] the first diagram in _ . .
(5) yields The T matrix then can be given algebraically as

o 1 do’ ) ,
210+i0= 53 [ GrAze )(f(“’ Well212 1l (p o' pE)= S wh (P13, (P.E));
i

3 f dE [f(w’)+g(E)]|mTex(1212E))

p E—w —0—i0 XN gl Wai(P), (15)

) d°p
Jo(PE); = f G320 Wan(P)\ainWe(P)
where f(w) is the Fermi distribution and nt
g(E) ={exd(E—2u)/T]—1}"* the Bose distribution function (1—f(P2+p)— f(PI2—p))

for the two-nucleon stateg§.., and V., denote matrix ele- (16)

ments of the retarde@ matrix and of the potential including

exchange. _ _ where(- - -) denotes the usual angle averaging in the Pauli
The ladderT matrix equation(6,7) as well as the self- gperator. Having the self-energy at our disposal the spectral
energy(8) contain the one-particle spectral functitt) and  function follows from Eq.(1). The quasiparticle energies

thus form a self-consistent set of equations. A solution of the:, a5 defined by(10) were determined in Hartree-Fock ap-
complicated set of Eqgl), (6,7), and(8) can be achieved by Proximation

iteration. In the first step of iteration we replace the spectral
function in Eq.(8) by a quasiparticle spectral function

E—e(P/2+p)—e(P2—p) ’

1
o 3= G2 fleVe(1,212. (17
A(1lw)=278(w—€,), 9

With the T matrix (15) one is able to calculate the critical

where the quasiparticle energy is defined as temperature for superfluidity using the Thouless criterion

p2 [20]. It has been demonstrated in R|g&0] that this coincides
el=2—+Re2(1,w)|w:€l. (100  with the critical temperature found in BCS theory. For the
m separable ansatd4) it reads
Inserting the quasiparticle spectral functi@® in Eq. (7) def1-J,(P=0E=2u,T=T];=0. (18)

results in the quasiparticle approximation for the two-particle

T matrix (6). Within these approximations the following ex- The Thouless criterion for nuclear matter has already been
pressions for the imaginary and real part of the self-energgvaluated in Ref[15].

(8) are obtained:

Ill. SELF-ENERGY IN BRUECKNER THEORY

1
Im2(1w)= ﬁ; [f(e2) +9(e2t @) [IMTe (121265 + w) Brueckner theory is only applicable to zero-temperature
(11)  Systems. The near equivalence to Green-function results has
been demonstrated in this case as already pointed out above.
and A T>0 extension of Brueckner theory was formulated by
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Bloch and De Dominicig24]. An obvious difference be- 1

tween the two approachéBrueckner and Green functipis ImX%(1,w) =tan|'(§ﬂ(w—,u)) ImX(Lw). (29
that the former only includes particle ladders, while the latter

also includes hole ladders in defining the effective interacin our notations here, this says, far>0, one can obtain
tion. It is of some interest to numerically study the effect of |3, ; from

this difference. We therefore define a BrueckKematrix as

in Eq. (6) with T replaced byK. The propagato(7) is how- ImVg
ever modified by the replacement Img= 1 (26)
tan’{—ﬁ(w—u)}
1-f(w)—f(o)—[1-f(o)[1-f(e)]. (19 2

Now Egs.(23) and(24) also give a simple relation between

The self-ener in Brueckner theory is given by25
9ye) Y9 b23) the two terms contributing to I (1,w):

1
Vg(l,w)= 6; f(€)Kex(1212,+ ) IMV3(1,w)=—e A" PImVi(1,e). (27)

1 It is then obvious that the division by the tanh function, in
+ 52 |Ke(1234£3+ €4)|? obtaining IrTEBZfrom ImVg, is equivalent to just switching
34 the sign of InVg(1,w):

L fle)]f(eg)f(en) IMSg(1w)=(1+e Ao ) imVi(lw), (28
0+ e, —€e3—€,—im PrTP2PsTRLl”
as stated in Eq21) above.
(20 An equivalent way of expressing the foregoing correspon-

For the discussion below, let us denote the two terms in Ecflénce between IM(1,w) and Green-function quantities is
(20) by Vi andV3. The second termV2, is often referred !dentifying 2ImVg and ImVg with, respectively 2= and
to as the Brueckner second-order rearrangement potential. At » the nonequilibrium extensions of which govern the loss
a temperaturéT=0 it is zero for states above the Fermi @nd gain collision terms in a transport equati@8]. The
surface and negative for states below, while the first term i@n-Shell version of this correspondence was pointed out by
positive for states above and zero below the Fermi surfacéugnonet al. [29].
As explained below, the retarded self-energy (finite-

temperaturgBrueckner theory, denoted B, is given by IV. RESULTS FOR THE T MATRIX (K MATRIX )
AND THE NUCLEON SELF-ENERGY

Im3g(1,0)=IMV5(1,0)—ImV3(1w), 21 , .
*s(Le) 5(1) 5(1w) @1 In this exploratory calculation we used a rank one sepa-
R 1.0)=ReVa(1,w)=ReVi(1, rable approximatiorfYamaguchi potentigl30]) as well as a
Sp(lw) s(1) 5(1w) rank two parametrization of Mongd®1]. The form factors
do’ ImVZB( lw') of the barely attractive Yamaguchi potential are of the fol-
Pl (22 lowing form:
au w—w
This quantity is to be compared to the Green functibn w,(p)= % (29)
defined in the previous section. pety

While X is calculated numerically according to Egs. _ . .
(20), (21), and (22), rewriting these expressions to parallel where the coupling constant and the effective range are given

those in the last section would facilitate comparisons be®Y

tween_ the two f(_)rmal_isms. To this end, one can, invoking 12.3178MeV fm 12 =15,

unitarity on the imaginary part of the second term of Eq. A= 1 e s

(20), write ImVg as[25] 14.6988MeV fm™ )= a=°§,
y=1.4488 fm 1. (30

1 _
IMVg(1w)= 52 [f(e2)~g(er,0)]IMKex(1212¢,+ w),
2 The form factors for the rank two Mongan potential, which

23 contains in addition to a long-range attractive a short-range
with repulsive term, have the same form as given in@8). The
corresponding parametrization is given in R&1]. For nu-
— [1-f(€r)]g(€ext w) — Blo—p) merical convenience we restricted only t8 waves
9(er,0)= 9lext @)+ 1 =f(e)e Pl m. (1sy,3S;) which give the dominant contribution to tHE

(24) ~ matrix at low energies.
As we are concerned within this paper with the modifica-
Notice that at Zt=e€,+ » whereg has a singularityg is  tion of the self-energy near the critical temperature for the
finite. It was argued in Ref[27] that the BrueckneNgy superfluid phase transition in symmetric nuclear matter, we
should be identified with the chronological potent®F  first study the onset of superfluidity in the temperature-
which is related ta [26, 27] by density plane of nuclear matter. In Fig. 1 the critical tem-
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6.0 ' r p and total momentunP=0 as well as at a fixed chemical
potential . The imaginary part shows a zero, which is lo-
cated atw=2u independent on the temperature. This is due
to the fact that the imaginary part of tHematrix (15,16 is
proportional to

\ 1-2f(e(p))=9 '2e(p))f(e(p)f(e(p)), (3D

which is obviously zero at & p)=2u for any temperature.
With decreasing temperature the slope of the imaginary part
of the T matrix at w=2u increases; at temperatures near
\ T, (T,=4.02 MeV in our caskgit has a characteristic princi-
\ pal value structure. The real part develops the corresponding
\ peak atw=2u, while approaching the critical temperature
from above. Finally aff =T the real part of thél matrix
diverges in accordance with the Thouless critefid).
n [fm°) ‘ The results of Fig. 2 can be compared with the=0
results by Ramost al. [32]. They also find a pairing insta-
FIG. 1. The critical temperature for superfluidity in symmetric bility at T=0 and w=2¢e¢ which is most pronounced for
nuclear matterS; channe) according to Eq(18) as a function of ~ small total momenta. The difference compared to our results
density for the Yamaguchi and the Mongan potential. The saturalies in the fact that although their imaginary part goes to zero
tion densityny is indicated. at w=2eg as well, it does not change sign at this energy as
o o it does in our calculations. This is due to the fact that in Ref.
perature for superfluidity18) (a=°S,) is given as a func- [32] the Galitski form of the two-particle propagator in the
tion of the density. The solid curve refers to the Yamaguchiernel of the T matrix is used[22] whereas we use the
potential whereas the dashed curve is for the Mongan imerKadanoff-Baym form[33], which results in the retarded
action. Due to the repulsive component present in the MoNmatrix instead of the chronological one used in B82]. In
gan interaction the critical temperature is reduced compareghe |imit T—0 both differ only in the sign of the imaginary
to the barely attractive Yamaguchi potential. These curvesar forw>2e, . Consequently both definitions differ also in
are in qualitative agreement with the calculations done i sign of the corresponding self-energied at0. At finite
Ref.[15]. In the following calculations we fix the density t0 T the retarded self-energy discussed so far and the chrono-
n=n, (dotted line in Fig. 1and vary the temperature. logical self-energy as derived from the Feynman-Galifki
_The key quantity for the calculation of the self-energy mayix [26] are related by Eq(25). However, with this dif-
within the ladder approximation is the thermodynafMima-  ference in mind we can conclude that the pairing instability

trix. In Fig. 2 the imaginary and the real part of the diagonal—atT:-l—C is in qualitative agreement with the corresponding
matrix elements of the thermodynamit matrix (triplet  jhgiapility atT=0 observed in Ref:32]. However, a proper
channel of the Green-function theorylS) are given as @ yeatment of the pairing correlations beldy demands the
function of the energy argument at fixed relative momentump|usion of a finite gap in the single-particle propagators.
This has to be determined consistently from a combination of
b 05 " o 10" the BCS theory with theT-matrix approximation. Such a
150 : treatment known as quasiparticle-random-phase approxima-
tion [34] has recently been applied to the one-dimensional
Fermi gag35].

To compare with the Brueckner theory the respective key
quantity is theK matrix. In Fig. 3 theK-matrix elements of
the Brueckner theory are given for the same set of param-
eters. The imaginary part of the matrix does not change
sign in contrast to th&-matrix elementgFig. 2). This is due
to the fact that in this case the Pauli blockifi®) is positive

—— Yamaguchi
---- Mongan
40

T, [MeV]

2.0

0.0 L e L

75

Im T [MeV fm’]
o

-75

-150

Ly
£ 00 in contrast to the Pauli-blocking ter§81), which changes
2 sign at 2(p)=2u. For low temperatures the imaginary part
200 et is effectively zero for energies below this particular energy.
o = . . .
For energies above this value a pronounced maximum devel-
-300 — T ops. This gives the corresponding maximum in the real part
00 0 u,[ﬁev] %0 00 ©[MeV] ° of the K matrix. However, no critical temperature can be

found where th& matrix diverges as found for the matrix
FIG. 2. Real and imaginary part of the diagonal elements of thd Thouless criterion Thus, the different Pauli operat6t9)
thermodynamicT matrix (15) in the 3S, channel as a function of 1N the K matrix leads to considerable deviations from the
energy for temperatures far above and close to the critical temperad--matrix case in particular in the limit of low temperatures.
ture T,=4.02 MeV and for zero total momentum at the saturation In order to calculate the spectral function it is necessary to
density. The relative momenta were setpte 0.5 and 1.0 fm1, evaluate the off-shell self-energy, which itself has some in-
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p=1.0fm" 125 T T T
--=-- T=4MeV
< 100 F —-——-T=2MeV b
hy o — T=1MeV
Q 4
=2
zé = 5 75
10 g
W
-20
E 50t
-20
& -
3
g Y/ 25
¥ ---- T=10 MeV
& —— T=5MeV \
0 N
} -200 -100
-100 -50 0 50 -100 -50 0 50 100
o [MeV] o [MeV]

FIG. 5. The same quantity as in Fig. 4 for temperatures below
FIG. 3. Real and imaginary part of the diagonal elements of thehe critical temperatur@,=4.02 MeV. Again the chemical poten-
thermodynamid matrix (°S;) from Brueckner theory plotted for tjal u=—222 MeV (T=1 MeV) is indicated.
the same parameters as in Fig. 2.

This particular behavior can be traced back to the behav-
teresting feature;. In Fig. 4 the imaginary part of the retardeghy of the T matrix (15) at low temperatures. It has been
self-energy(11) is given as a function oto at p;=0 and  gemonstrated in Ref21] that ImiT has a zero at the particu-
n=np. The results are plotted for various temperatures. Ajgr energy value= 2y for pairs with zero total momentum
the highest temperatuie=20 MeV (dotted curvg the self-  (compare also Fig.)2 This compensates for the Bose singu-
energy is rather smooth. It gives a nonzero cc_Jntrlbutlon fO'Iarity in the imaginary part of the self-energ¥1) rendering
energies w>—-200 MeV, develops a maximum near |m 3 at this energy finite. However, in addition a critical
w=—100 MeV and then starts decreasing slowly. In thetemperature can be found such that the real part ofTthe
T=10 MeV case we find two additional extrema: a mini- matrix becomes Singuiar at the same ene(rg'g_ 2) As has
mum at the the chemical potential=u~—23 MeV and a  peen shown in Ref[21] this critical temperature coincides
second maximum ab,=2u— €(p;)~35 MeV. Decreasing ith the one for the superfluid phase transition in agreement
the temperature further this behavior gets still more proyith the BCS theory. In fact, the singularity in tRematrix
nounced. At the minimum the value of the imaginary part isis nothing but the well-known Thouless criteri¢@0] for
drastically reduced; however, it still has a finite value andsyperfluidity. If this critical temperature is reached the
will reach zero only in the limiff —0 (see discussion of Fig. ahove-mentioned compensation does no longer fistk
5). The second maximum gets more pronounced as well. Ajjso Ref[21]) and the singularity in th& matrix leads to a
a temperaturé'=4.1 MeV, close to the critical temperature Corresponding Singuiarity in the imaginary part of the self-

T.=4.02 MeV, one observes a pronounced peak. energy. The singularity is located at an energy
wo=2u— €1. This is readily to be seen if one restricts to the
125 . . . pole part of thel matrix with total momentunP=0. Then
the integration ovep, in (11) can be carried out directly
e T = 20 MoV yielding aé peak in Im3, at the energysy. This shows that
100 ‘_‘_‘:ijéOM"gs‘/ 1 the singularity in the imaginary part of the self-energy,

which occurs forT— T, is a direct consequence of the pole
in the T matrix atT=T_, indicating the onset of superfluid-
ity.
In Fig. 5 we continued the evaluation of the imaginary
part of the self-energy for temperatures beldw disregard-
ing for the moment the pairing instability. This allows us to
demonstrate that fof — 0 indeed the value of the imaginary
part of 3 at the minimum @=u=—23 MeV) approaches
zero, in accordance with zero-temperature calculations of
0 v v L various author§s, 36]. This zero of the imaginary part of the
200 -100 RS 100 200 .
©[MeV] self-energy atw= u is a wellknown property at zero tem-
perature leading to the fact that particles at the Fermi surface
FIG. 4. Imaginary part of the nucleon self-energhl) at the have_ infinite lifetime, i.e., they are good quasiparticles. Ac—
saturation densityny, as a function of energy for momentum COfd'”Q to t.he.HugenhoItz—vqn-Hove theorem the chemical
p,=0. The self-energy is given for several temperatures above theotential coincides with the binding energy per nucleon. The

critical temperature for superfluidityT(=4.02 Me\). The chemi- er(i1pirical value for this quantity at saturation is
cal potentialy = —23.5 MeV (T=4.1 MeV) and the location of the Eg/A=—16 MeV. The quadratic dependence ofdraround

pairing peak atw,=2u— e;=35.6 MeV are indicated. w=pu at T=0 demonstrated in Ref37] is also found in our

Im X [MeV]
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125 T T T

100 e T = 20 MeV 1
---- T=10MeV
——-T=5MeV
—— T=4.1MeV
75 } : -
3
=
o
E

-200 -100 w0 100 200

FIG. 6. The imaginary part of the nucleon self-energy at the
saturation density calculated in Brueckner theldtys.(21)] for the o [MeV]
same parameters as in Fig. 4.

FIG. 7. Direct comparison of the imaginary part of the self-
numerical calculations. With increasing temperature a nonenergy in Brueckner theorydashed curvgsand Green-function
zero value for IX is obtained atw=u, however up to theory(solid curves for temperature§ =20 andT=4.1 MeV.
temperaturesT <20 MeV (see Fig. 4 a pronounced mini- _ ) o o )
mum is reminiscent of the zero-temperature property. At all !N Fig. 8 the same quantity as in Fig. 4 is given using the
temperaturesT<T, the pairing instability shows up at Mongan potential instead of the Yamaguchi pqtenual used
wo=2u— €,=35 MeV. This pairing instability indicates the throughout .the rest of the paper. The purpose is to demon-
breakdown of thel-matrix approximation in the vicinity of ~Straté the influence of the repulsive part of the nucleon-
wo at temperatures beloW.. A consistent treatment re- nucleon mtgracﬂon on the self-energy. The repulsion leads to
quires the inclusion of the BCS gap for temperatures belov lower critical temperatureTc=1.58 Me\) as compared to
T.. Such a complicated calculation has not yet been carrieff'e barely attractive casd (=4.02 Me\). The temperature
out. TheT=1 MeV curve in Fig. 5 is in qualitative agree- depgndence of Iln does not change quahtauvely compared
ment with the calculation of Refl4] except at energies to Fig. 4. Thus, we suppose .th_at_the be.haV|or discussed
aroundw~35 MeV. There we find the additional peak due abo_ve also holds for more reallstlc interactions, such as the
to the pairing singularity in thd matrix discussed above. ~Faris potentia[38] as used, e.g,, in Ref21].

In Fig. 6 the imaginary part of the self-energy3m (21) In addmon_to t_he imaginary part Fhe r.eal part of the self-
is given as a function of energy for the same parameters as f'€r9y contains important information, its on-shell part de-
Fig. 4. ForT=20 MeV Im3g is in qualitative agreement
with the corresponding curve in Fig. 4. With decreasing tem- 125 y y T

perature the qualitative behavior is similar to the Green func- *
tion case given in Fig. 4 except in the energy range around T=16Mev

. oo 97 100 | e T=20 MeV 50
wg. Whereas a strong singularity is seen in Fig. 4 for tem- . e T=10MeV
peratures close td. only a small maximum is found in the ——=T=5MeV w©

. — T=1.6 MeV

Brueckner case for the same temperature. As dlscussed; 75 b .
above this singularity is due to the pairing singularity in the 2 3
T matrix and occurs at the critical temperature defined by the “

Thouless criterion. This behavior does not show up in the 50 |
Brueckner theory.
Figure 7 gives a direct comparison between the imaginary | 2/ \_ /-
parts of the self-energy, calculated in thiematrix and the %
Brueckner approximations, respectively. The upper curves
show the case al=20 MeV. While for energies below 0 - . . —t
=—100 MeV and aboves=100 MeV the two curves al- -200 100 0x @ 100 200
w
most coincide, the imaginary part of the Brueckner self-
energy lies below the one from thematrix calculation in FIG. 8. The imaginary part of the nucleon self-energy at the
the energy range between100 and 100 MeV. An analo-  qayyration density for the Mongan NN interaction. The critical tem-
gous result has been found in the zero-temperature case B¥ature in this case has a smaller vallig< 1.58 Me\) than for
Kohler[4]. In theT=4.1 MeV case(slightly aboveT;) We  the yYamaguchi potential. Like in Fig. 4 the self-energy is given for
observe a similar relation between the two approximationsseveral temperatures above and close to the critical temperature for
However, at energies around, the Green-function self- superfluidity. The chemical potential=14.68 MeV and the energy
energy shows the pairing singularity, which is absent in thes,=82.46 MeV is indicated. The inset shows the region around
Brueckner calculation. w, in detail.
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FIG. 9. The real part of the off-shell nucleon self-energy calcu-

ALM, ROPKE, SCHNELL, KWONG, AND KQHLER 53

——-T=20MeV

---- T=10MeV
o T = 6 MoV

100 200

lated from the imaginary part according to Ef3) as a function of
energy forn=n, and the same temperatures as in Fig. 4.

fines the optical potential for the nucleon in nuclear matter.
In Fig. 9 the energy dependence of the real part of the selfx

>

[}

2 -0 f -
-3 %

& el 4 e T=30MeV ]
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s 5 ——- T=10MeV

o -80Ff g — T=41MeV 1

-100 } t + t

Re Zg(p.g,) [MeV]
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FIG. 11. The real part of the on-shell nucleon self-energy cal-
ulated with the Bruecknef matrix. The parameters are the same

energy as calculated from E@L3) is shown for the same 55 Fig. 10. While the upper figure shows the results only with the

parameters as used in Fig. 4. Again there is a relativelirst term of Eq.(22) denoted as R&} the lower part shows the
smooth behavior for th& =20 MeV case. With decreasing results of the full calculation.

temperature a second minimum is found for energies below
wq. Please note that fof =4.1 MeV (close toT.=4.02
MeV) a principle-value-like behavior around=w, is

found. This a direct consequence of the corresponding pai

ing peak in the imaginary part of the self-energyust wg

(see Fig.

In Fig. 10 the real part of the on-shell self energy, i.e., the
real part of the optical potential, is given as a function of th
momentump. The upper curve shows a calculation using
only the first term in Eq(12). This is a standard approxima-

-20

-40

-60

Re Z'(p.e,) [MeV]

-100

Re ):(p,ep) [MeV]

4

~—— T =30 MeV
--== T=20MeV
——-T=10MeV
— T=4.1MeV b

e

tion often used to calculate the optical potential in nuclear

Imatter[l?;,39,4(}. With decreasing temperature one observes

a pronounced minimum near the Fermi energy, which has
been observed in Ref13] and related to the inclusion of
hole-hole scattering in the Pauli operator. However, using
the full expression of Eq(12) for the evaluation of the op-
tical potential the behavior at low temperatures is changed. A
particular structure is found around momeptapg which is
enhanced with decreasing temperature. If one studies the be-
havior of the real part in detail, one finds, that tf® chan-
nel of theT matrix is responsible for this anomalous behav-
ior. We suppose, that the pairing peak in the imaginary part
Im2 (p,w) at temperature$— T, present also at finite mo-
mentap, leads to a corresponding principal-value-like struc-
ture in the real part of the optical potential. Restricting to the
pole part of theT matrix this behavior can be shown using
the dispersion relation between the real and imaginary parts
of the self-energy. Consequently for the on-shell self-energy
Re>, this leads to the wiggle gi=p.

Figure 11 shows the same quantity calculated from the
Brueckner theory. The upper plot denoted a§§eshows
the temparature behavior of the first-order Brueckner term
[Eq. (22)]. For the lowest temperaturelT €4.1 MeV) one
observes a plateaulike behavior around the Fermi momen-
tum. Using the full expressiondower ploy the repulsive
second-order contribution leads to a different behavior at low
temperatures, which is characterized by a strong enhance-
ment for low momenta and a corresponding minimum for
momentap> pg .

FIG. 10. The real part of the on-shell nucleon self-energy as a A particular behavior of the optical potential for momenta

function of the momentunp for n=n, and different temperatures aroundp=pe has also been found in Ref89, 41]. In Ref.
according to Eq(12). The upper figure was a calculation using only [41] a plateaulike behavior was related to the behavior of the

the first term of Eq(12) denoted as R&'. The lower plot shows

effective mass at the Fermi surface[89] it was shown that

the result of the full expression. The Fermi momentum is indicated® nonmonotonous behavior aroupd (anomaly was en-

aspe.

tirely due to the strong attraction in th&s, — 3D, channel
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FIG. 12. The real part of the on-shell nucleon self-energy cal- FIG. 13. The same figure as Fig. 12 for temperatlire10
culated inT matrix and Brueckner approximations, respectively, for MeV.

temperaturel =30 MeV.

) ) ) fm ~! leading to a decrease with temperature towards a mini-
and that it was enhanced if the density was decreased beloj{ym neamp=py. The lower graph displays the full contri-
n=no. According to our understanding the anomaly ob-pytion for the imaginary partl1). Again, one notes a strong

instability [42] discussed above. . around the Fermi momentum a pronounced minimum is ex-
In Figs. 12—14 we give a direct comparison between théyipited with decreasing temperature. The value oflmt
Green-function theory and Brueckner theory with respect = p; tends to zero fof —0. In Fig. 16 the imaginary part
the real part of the on-shell self-energy for different temperays the on-shell self-energy calculated in Brueckner theory
tures. The upper curves correspond to the first term in qumEB is given as a function of momentum for the same
(12) and(22), respectively. As the form of these eXpreSSiO”Sparameters as in Fig. 15. The upper plot displays the first
coincides, the differences between Green-function angsrm of Eq.(21). Again, we observe a strong decrease with
Brueckner theory in this case are entirely due to the differe”femperature for momenta belop=2 fm~! as in Fig. 15.
Pauli operators in th@ matrix andK matrix, respectively  However, due to the use of the different Pauli operator in the
[compare Eq(19)]. The lower curves show the result of the  4trix ImEé is basically zero for momenta<pg in the
full expressiong12) and(22). In Fig. 12 we give the results it of 1w temperatures. No minimum can be observed. In

for temperatureT=30 MeV. The diiferences bet\_/veen the he lower graph the full contribution of IBg (21) is shown.
two approaches are not very pronounced for this tempera-

ture, except for low momenta. With respect to3Rethe
Green-function curve is slightly enhanced compared to the 0 T T y T
Brueckner curve for momentp=pg and slightly reduced

below. This behavior is reversed for the lower curves. In Fig.

-20 T=4.1 MeV

>
13 (T=10 MeV) the differences between the two theories 2 40 -
are much more pronounced. The different form of the Pauli '{f - === Brueckner
operator results in a nonmonotonous behavior for the Green-+ 60 — Green
function curve showing a pronounced minimum around & g ]
p=pg. In contrast the Brueckner curve is monotonously de- | __.-"
creasing. A behavior like this has been observed in Ré&j. -100 pe==t—ri t t t
For the full expressions the differences between both theories
are less pronounced showing an enhancement of the Green<
function curve with respect to the Brueckner curve for mo- 2
mentap<pg. In Fig. 14 the temperatureT&4.1 MeV) is E‘
close to the critical temperaturé,;=4.02 MeV. One ob- 5
serves basically the same behavior as in Fig. 13, although the®

differences are still more enhanced.

In Fig. 15 the imaginary part of the on-shell self-energy -100 , L > 3 ” 5
(optical potentigl is given as a function of momentum for p [fm™]
various temperatures. The upper graph shows the contribu-
tion of the first term in Eq(11) only. One observes a pro- FIG. 14. The same figure as Fig. 12 for temperatlire4.1

nounced temperature dependence for momenta bple®  MeV.
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FIG. 17. The nucleon spectral function at the saturation density
as a function of energy for momentym=_0. The temperatures are

§ -1
Plim ] the same as in Fig. 4.

FIG. 15. The imaginary part of the on-shell self-energy as N .
function of p atn, for thJne s;/mpe temperatures as in Fig. 10,%}::cord?[10]' Taking into account the relat|0n. be_tweenElm and
ing to Eq.(L1). The upper figure was a calculation using only the IMVe (see Sec. 1l one notes the qualitative agreement of
first term of Eq.(11) denoted as I®™. The lower plot shows the the two calculations.
result of the full expression. The Fermi momentum is indicated as Summarizing, one observes pronounced differences be-
PE . tween the optical potential at low temperatures calculated in

Green-function theory and Brueckner theory, respectively.

One notes, that the temperature dependence for momentd'ese show up at momenta below the Fermi momentum. For
around pe is in qualitative agreement with the Green- the fuII expreSS|on$Iovv_er curveg these dlf_ferences are dl_Je
function result(lower curve of Fig. 15 However, for mo- 0 h_|gher-ord_er terms in the Green-function approximation,
mentap<1 fm ! the temperature behavior is reversed com-Not included in the second-order Brueckner calculatsee
pared to the Green-function case. Please note, that it is in tHdso Ref.[25]).
same momentum range, where one notes pronounced devia-
tions in the real part of the optical potential at low tempera- V. SPECTRAL FUNCTION
tures(compare lower part of Fig. 24The Brueckner results AND MOMENTUM DISTRIBUTIONS

can be compared with the calculation of\fig(1,e;) in Ref.
From the off-shell self-energy the nucleon spectral func-

tion is calculated using Edq1). In Fig. 17 the nucleon spec-
tral function is plotted as a function of energy for zero
momentump,;=0 at a densityn=ng and for the same tem-
peratures as given in Fig. 4. Fo=20 MeV one observes a
quasiparticle peak at energias= —150 MeV and a back-
ground contribution extending up to energies-200 MeV.
With decreasing temperature the quasiparticle peak is
slightly shifted towards higher energies and its width is re-
duced. This reduction is due to the fact that with decreasing
temperature the imaginary part reaches zero at higher ener-
gies(compare Fig. # In addition a second maximum forms
e T = 30 MV | ; : ;
———= T=20MeV at lower energies. This can be compared with the zero-
——-T=10MeV temperature results in Ref4] for the spectral function at
— T=41Mev p=0. Using Green-function theory they also arrive at a spec-
tral function with two peaks of comparable size which are
located at approximately the same energies as given in Fig.
17 in theT=4.1 MeV case.
o T 1 > 3 4 5 The temperature dependence of the spectral function is
p [fim™] not as drastic as one could expect from the change in the
self-energy with temperatur@ig. 4). Near the critical tem-
FIG. 16. The imaginary part of the on-shell nucleon self-energyPerature the tail of the spectral function at higher energies
calculated with the Bruecknef matrix. The parameters are the Shows additional smaller maxima, which result from the pro-
same as in Fig. 15. The upper figure shows the results only with theounced structures in the real part of the self-energy. These
first term of Eq.(21) denoted as 1B . The lower part shows the in turn are due to the singular behavior of the imaginary part
results of the full calculation21). atw=2u—¢€;.

20 + 4

Im Z;'(p.g,) MeV]

-40 t + t t
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o
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0.16 | FIG. 18. The nucleon spectral function at
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In Fig. 18 the energy and momentum dependence of then(p=0)=0.85] compared to(p=0)=0.82 atn=n,. The
spectral function is given ab=ny and T=10 MeV. One same tendency has also been observed in[R8f, although
observes that the double-peak structure foung=ad van- at a higher temperatur®0 MeV). Going to lower densities
ishes with increasing momentum. A single maximum re-(n/ny=0.61) we find the astonishing result that the depletion
mains forp;>0.7 fm~! which can be identified with the at low p is further enhancefin(p=0)=0.78]. On the other
quasiparticle peak. The width of this peak is reduced ahand this corresponds to the zero-temperature results of Refs.
p=pg due to the minimum in I at the chemical potential. [7,8] indicating that the momentum distribution does not ap-
For larger momenta the peaks are broadened again until f@roach the noninteracting one in the limit of zero density. In
very high momenta the width is reduced again. The latteRef.[8] the depletion al =0 andp=0 stays rather constant
behavior is due to the fact that for very high momenta thefor densities betweenn, and ng/2 at a value of
influence of the medium represented by the self-energy bea(p=0)=0.86. The authors of Ref8] interpret this result
comes negligible. Please note, that for our choice of thexs being due to the attractive part of the nucleon-nucleon
nucleon-nucleon interaction there is no high-momentum tailnteraction leading to the formation of bound pairs at low
of the spectral function because it is barely attractive. densities.

In order to demonstrate the influence of correlations on
the nucleon occupation numbers, the spectral function can be
used to determine this quantity. In Fig. 19 the temperature
dependence of the nucleon momentum distributimecupa- Using the Matsubara Green-function approach, self-
tion numbers n(p) (3) is given at a fixed densitp=n,. consistent expressions for the nucleon self-energy and the
The correlated occupation numb@ull line) is compared to  nucleon spectral function for nuclear matter at finite tempera-
the corresponding Fermi distribution functigdashed ling  ture were derived. The self-energy and the nucleon spectral
In the T=5 MeV case we observe a strong depletion forfunction at the saturation density were calculated in first it-
momenta below the Fermi momentum with a value oferation starting from the quasiparticle spectral function. The
n(p=0)=0.78 compared to 1 for the noninteracting case.variation of these quantities with temperature was studied for
Above the Fermi surface we find a corresponding enhancdemperatures close to the critical temperattigefor the su-
ment of the interacting occupation numbers compared to thperfluid phase transition in symmetric nuclear matter. We
noninteracting up to aboyt=2 fm~. ForT=10 MeV the  found that approaching the critical temperature from above a
depletion is less pronouncdd(0)=0.82]. This tendency singularity develops in the imaginary part of the self-energy.
towards the noninteracting occupation numbers is continuett was shown that this singularity is a direct consequence of
is the case off =30 MeV. With further increasing tempera- a corresponding pole in thE matrix at the energfe=2pu,
ture the interacting response approaches the noninteractinghich indicates the onset of a superfluid phasé=afl . [20].
one. Using the Bruecknef matrix in Ref.[43] the finite  Thus, the modification of the self-energy neBy can be
temperature occupation numbers are evaluated which are imderstood as a precursor effect of the superfluid phase tran-
reasonable agreement with our results as well with the calsition in nuclear matter. Another effect which was discussed
culations of Ref[10]. as being related to the pairing instability in tH&;-°D,

In Fig. 20 the density dependencerdfp) at fixedT (10  channel is the occurrence of a wiggle aroymd pg in the
MeV) is shown. For the sake of a better comparability thereal part of the on-shell self-energy, especially pronounced
curves are normalized tp/pg. When going to densities when approaching from above. A similar effect although
above ny (n/ng=1.32) one observes a lower depletion less pronounced was also found in the Brueckner calculation.

VI. SUMMARY AND CONCLUSIONS
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FIG. 19. Occupation numbers at saturation density for different FIG. 20. Occupation numbers &t=10 MeV for density values

temperatures. The dashed curves represent the uncorrelated occuggsund the saturation density. Again the dashed curves represent the
tion numbers, i.e., the corresponding Fermi distribution. noninteracting case.

The temperature dependence of the spectral function has The third question concerns a consistent description of the
been investigated for temperatures above the critical temsystem belowl ., where the consistent inclusion of a finite
perature. Despite the strong modification of the self-energgap is necessary for the evaluation of the spectral function.
there is no such drastic modification of the spectral functiorin principle, our calculation is restricted to temperatures
when approaching . from above. This is consistent with the above the critical temperature for superfluidity. The Thouless
fact that belowT, the condensate part of thE matrix is  criterion indicates the instability of the normal quasiparticle
proportional to the square of the gap and consequently varstate with respect to the onset of superfluidity. A consistent
ishes at the critical temperature. treatment belowl ; has to be based, e.g., on a BCS quasipar-

The momentum dependence of the spectral functiorticle basis with a finite gap. Up to now such a calculation has
shows considerable deviations from the quasiparticle behawot been carried out for nuclear matter. Instead, in most of
ior at small momenta, whereas the quasiparticle picture holdthe approaches at zero temperature the implications of the
approximately for momenta aroung=pg as well as for pairing singularity for the self-energy were neglected. How-
largep. ever, in a series of papers Vonderfeehl. [5] stressed the

The occupation numbers were calculated from the spemieed to properly take into account tfiematrix singularity,
tral function at some finite temperature and density. It coulddiscussed above, which is present at temperatures below
be shown that with increasing temperature the noninteracting .
occupation number is approached. The depletion of the oc- In conclusion we evaluated the nucleon self-energy and
cupation numbers is enhanced with decreasing density at fspectral function for finite temperature. We compared the
nite temperature. calculations within the Green-function approach with a

We would like to mention some open questions related tdinite-temperature generalization of the Brueckner theory.
our calculation of the nucleon spectral function: The firstSpecial emphasis was put on the behavior of these quantities
guestion is related to the model interaction we used in ounear the critical temperature for the onset of superfluidity in
exploratory calculation of the self-energy and spectral funchuclear matter. Within the Green-function approach the pair-
tion. For the energy and momentum range investigated ifng singularity in theT matrix at the critical temperature
this paper the important features of the self-energy obtainedenerates a corresponding singularity in the imaginary part
using the simple model interaction of Yamaguchi type wereof the self-energy. The nonmonotonous behavartomaly
also found using a rank two Mongan interaction. It is sup-of the real part of the optical potential for momemta pr
posed that these features remain of relevance also for mommuld also be related to the pairing singularity. The spectral
realistic potential$38]. function at finite temperature shows a complex energy de-

The second question is related to the problem of selfpendence, which cannot be generated from an energy-
consistency. In principle, the spectral functions have to beéndependent width.
iterated until self-consistency is reached. It remains to be All the features discussed above cannot be incorperated
seen, to what extent the features of the first iteration obtainemhto a simple quasiparticle description. Thus, the nucleon
in this calculation will also be found in a fully self-consistent spectral function should be the appropriate quantity for the
calculation. description of hot and dense nuclear matter.
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