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Nucleon spectral function at finite temperature and the onset of superfluidity in nuclear matter
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Nucleon self-energies and spectral functions are calculated at the saturation density of symmetric nuclear
matter at finite temperatures. In particular, the behavior of these quantities at temperatures above and close to
the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the
singularity in the thermodynamicT matrix at the critical temperature for superfluidity~Thouless criterion!
reflects in the self-energy and correspondingly in the spectral function. The real part of the on-shell self-energy
~optical potential! shows an anomalous behavior for momenta near the Fermi momentum and temperatures
close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the
self-energy derived from theK matrix of Brueckner theory is also calculated. It is found that there is no pairing
singularity in the imaginary part of the self-energy in this case, which is due to the neglect of hole-hole
scattering in theK matrix. From the self-energy the spectral function and the occupation numbers for finite
temperatures are calculated.@S0556-2813~96!02305-9#

PACS number~s!: 21.65.1f, 21.10.Pc, 21.30.Fe
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I. INTRODUCTION

Heavy-ion reactions at intermediate energies probe
nuclear equation of state in a broad temperature and den
range. One tries to extract from the observables signals
cluster formation, multifragmentation or the liquid-gas pha
transition. The theoretical description of such phenomena
mands to go beyond the usual quasiparticle description
the equilibrium properties@equation of state~EOS!# as well
as for the nonequilibrium properties~Boltzmann-Uehling-
Uhlenback simulations!. The need to go beyond the quas
particle approximation in the description of nuclear matter
further advocated by the electron-scattering experime
from heavy nuclei. These experiments give a clear eviden
that the one-nucleon spectral function shows pronounced
viations from mean-field estimates, which are due
nucleon-nucleon~NN! correlations@1#. The effect of these
correlations can most accurately be studied for nuclear m
ter @2#.

A systematic quantum statistical approach for the descr
tion of dense nuclear matter can be given using Gree
function theory. For the description of phenomena like t
formation of clusters~bound states! in the medium or the
onset of a superfluid phase, one has to allow for a fin
lifetime ~damping! of the one particle states. Such a trea
ment can be based on the nucleon spectral function, whic
defined in terms of the real and imaginary parts of the se
energy. Having the nucleon spectral function at the dispos
one is able to determine the momentum distribution, the
sponse function as well as the nuclear equation of state
cluding correlations beyond the mean-field level.

Most of the existing calculations of the nucleon spectr
function have been done for zero temperature nuclear ma
at the saturation densityn0 . In Refs.@3–5# it is shown that
the quasiparticle description is only valid near the Fermi e
530556-2813/96/53~5!/2181~13!/$10.00
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ergy. In general, the spectral function has a considera
width indicating that the one-particle states are strong
damped at the saturation density. Baldoet al. @3# calculated
the on- and off-shell properties of the nucleon mass opera
and the nucleon spectral function. They stressed the imp
tance to retain the full frequency dependence of the se
energy for the calculation of the spectral function. Ko¨hler @4#
compared the nucleon spectral function calculated with
Green-function theory with a calculation done in Brueckn
theory. He pointed out the near equivalence between the
theories at zero temperature. Vonderfechtet al. @5# used
Green-function theory to calculate the nucleon self-ener
within the ladder approximation at zero temperature. Th
emphasized the need to correctly treat the pairing corre
tions contained in this approximation if hole-hole propag
tion is included in the kernel of the vertex function~thermo-
dynamic T matrix!. Benhar et al. @6# calculated spectral
functions for nuclear matter using the hypernetted cha
method. The spectral function and the nucleon moment
distribution in nuclear matter were calculated by Benh
et al. @7# at densities below the saturation density within o
thogonal correlated basis functions theory. As a result, th
find that with decreasing density the discontinuity at th
Fermi surface decreases. This means that the momentum
tribution does not approach the noninteracting response w
decreasing density. This was interpreted as being due to
attraction in the NN interaction leading to the formation o
‘‘bound pairs’’ of nucleons. Van Necket al. @8# use corre-
lated basis functions theory with the Urbanav14 interaction
to calculate the nuclear matter spectral function and mom
tum distribution belown0 . In agreement with the previous
authors they found that the momentum distribution does n
reach the noninteracting one with decreasing density.
Jonget al. @9# calculated the nucleon spectral function base
on an extension of the relativistic Dirac-Brueckner schem

Finite temperature calculations of the nucleon self-ener
2181 © 1996 The American Physical Society
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2182 53ALM, RÖPKE, SCHNELL, KWONG, AND KÖHLER
were carried out by Grange´ et al. @10#, Röpkeet al. @11# ~in
connection with the EOS! and Köhler @12#. The latter author
found a pronounced temperature dependence of the spec
function at the saturation density. Using the extended qua
particle approximation for the nucleon spectral functio
Schmidtet al. @13# included the formation of two-nucleon
correlations~in particular bound states! in the equation of
state of nuclear matter. The finite temperature nucleon sp
tral function in the low-density region of nuclear matter wa
calculated by Almet al. @14# demonstrating the necessity to
include the contribution of two-nucleon bound states to th
one-nucleon spectral function at low density. These autho
find that genuine bound state formation in nuclear matter
only possible at extremely low densities (n<0.05n0 ,
T510 MeV!. With increasing density the bound states ar
dissolved in the medium~Mott effect!. However, the forma-
tion of two-nucleon pairs in the continuum as well as the
possible Bose condensation@15# can take place at these
higher densities as well. The necessity to include the de
teron singularity in the two-particleT matrix into the de-
scription of nucleon-nucleus scattering at low energie
within the folding model was demonstrated by Arellan
et al. @16#.

Within this paper we would like to discuss the nucleo
self-energy, spectral function, and momentum distribution
the saturation density and at finite temperatures. In partic
lar, we will concentrate on low temperatures near the critic
temperature for the superfluid phase transition in symmet
nuclear matter, which has a maximum of;526 MeV at
densities belown0 @15#. This phase transition has recently
been discussed by some authors in particular with respec
the possible formation of a condensate of neutron-proto
pairs in the 3S12

3D1 channel@17# and the relation to the
Bose condensation of deuterons in low-density nuclear m
ter @18#. Moreover, Baldoet al. @19# suggest that this could
be a possible mechanism of deuteron formation in heavy-i
reactions at intermediate energy. The onset of the superfl
phase is contained in the thermodynamicT matrix in the
ladder approximation@15#. It manifests itself as a pole defin-
ing the critical temperature for the thermodynamicT matrix
@20#. It could be shown that already above the critical tem
perature theT matrix shows a resonancelike behavior whic
could be understood as a precursor effect of the superfl
phase transition@21#. Consequently, near the critical tem
perature the self-energy and correspondingly the spec
function should reflect this resonancelike behavior of theT
matrix. In this paper we will demonstrate how theT matrix,
the nucleon self-energy and spectral function are chang
when approaching the critical temperature for the superflu
phase transition from above.

In Sec. II we derive a set of self-consistent expressions f
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the retarded nucleon self-energy and the nucleon spectr
function at finite temperature within the framework of Mat-
subara Green functions. In Sec. III the differences to th
usual Brueckner theory generalized to finite temperatures a
pointed out. Section IV contains results for theT matrix and
the K matrix and the corresponding self-energies including
the optical potential at finiteT. Within Sec. V the corre-
sponding spectral functions and occupation numbers are pr
sented.

II. GREEN-FUNCTION FORMALISM
AND APPROXIMATIONS

For the derivation of the self-energy and the spectral func
tion we use the Matsubara Green-function technique as ou
lined in Ref. @22#. We put \,kB51 throughout the paper.
From the definition of the one-particle spectral function
A(1,v)5 i @G(1,v1 i0)2G(1,v2 i0)# and from the re-
tarded self-energyS the spectral function according to the
Dyson equation reads

A~1,v!5
2 ImS~1,v!

@v2p1
2/2m2ReS~1,v!#21@ ImS~1,v!#2

,

~1!

where 15$p1 ,s1 ,t1% denotes momentum, spin, and isospin
of a single particle. The one-particle spectral function~1!
fulfills the sum rule

E dv

2p
A~1,v!51. ~2!

It determines the macroscopic properties of the system su
as the occupationn1 of single-particle states given by

n1~m,T!5E dv

2p
f ~v!A~1,v!, ~3!

wheref (v)5$exp@(v2m)/T#11%21 is the Fermi distribution.
The equation of state of nuclear matter, where the nucleo
densityn is a function of the chemical potentialm and the
temperatureT, reads

n~m,T!5
1

V(
1

n1~m,T!, ~4!

with V being the normalization volume.
For the evaluation of the self-energyS in Eq. ~1! approxi-

mations have to be made. We start from a cluster decomp
sition of the self-energy@23#, which is given by the follow-
ing set of diagrams:
(5)
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53 2183NUCLEON SPECTRAL FUNCTION AT FINITE TEMPERATURE . . .
wherezn is the fermionic Matsubara frequency. The clus
decomposition is appropriate for the consideration
n-particle correlations via then-particleT matrixTn . Within
this paper we restrict ton52, i.e., to two-particle correla
tions represented by the first diagram in Eq.~5!. Within the
ladder approximation the two-particleT matrix is given by

T~121828,z!5V~121828!1
1

V (
3,4,5,6

V~1234!

3G2~3456,z!T~561828,z!, ~6!

where the quantityG2 is defined as the product of two fu
one-particle Green functions given in spectral representa
as

G2~121828,z!5E dv

2pE dv8

2p

12 f ~v!2 f ~v8!

v1v82z

3A~1,v!A~2,v8!d118d228. ~7!

Using the spectral representation for the one-particle Gr
function as well as for theT matrix @23# the first diagram in
~5! yields

S~1,v1 i0!5
1

V(
2
E dv8

2p
A~2,v8!S f ~v8!Vex~1212!

2E dE

p

@ f ~v8!1g~E!#ImTex~1212,E!

E2v82v2 i0 D ,
~8!

where f (v) is the Fermi distribution and
g(E)5$exp@(E22m)/T#21%21 the Bose distribution function
for the two-nucleon states.Tex and Vex denote matrix ele-
ments of the retardedT matrix and of the potential including
exchange.

The ladderT matrix equation~6,7! as well as the self-
energy~8! contain the one-particle spectral function~1! and
thus form a self-consistent set of equations. A solution of
complicated set of Eqs.~1!, ~6,7!, and~8! can be achieved by
iteration. In the first step of iteration we replace the spec
function in Eq.~8! by a quasiparticle spectral function

AQP~1,v!52pd~v2e1!, ~9!

where the quasiparticle energye1 is defined as

e15
p1
2

2m
1ReS~1,v!uv5e1

. ~10!

Inserting the quasiparticle spectral function~9! in Eq. ~7!
results in the quasiparticle approximation for the two-parti
T matrix ~6!. Within these approximations the following ex
pressions for the imaginary and real part of the self-ene
~8! are obtained:

ImS~1,v!5
1

V(
2

@ f ~e2!1g~e21v!#ImTex~1212,e21v!

~11!
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ReS~1,v!5
1

V(
2

S f ~e2!ReT ex~1212,e21v!

2PE dE

p

g~E!ImT ex~1212,E!

E2e22v D , ~12!

whereP denotes the Cauchy principal value.Tex is calcu-
lated in the quasiparticle approximation. Rather than~12! we
use in the numerical calculation the real part from the dis
persion relation~Kramers-Kronig-relation! in the form

ReS~1,v!5SHF~1!1PE dv8

p

ImS~1,v8!

v2v8
, ~13!

whereSHF(1) denotes the Hartree-Fock shift. This was nu
merically checked to be equivalent with the explicit formula
~12!.

The bare nucleon-nucleon interaction was approximate
by a separable ansatz

Va
LL8~p,p8!5 (

i , j51

rank

wa i
L ~p!la i j wa j

L8~p8!. ~14!

TheT matrix then can be given algebraically as

Ta
LL8~p,p8,P,E!5(

i jk
wa i
L ~p!@12Ja~P,E!# i j

21

3la jkwak
L8~p8!, ~15!

Ja~P,E! i j5E d3p

~2p!3(nL wan
L ~p!la inwa j

L ~p!

3
^12 f ~P/21p!2 f ~P/22p!&
E2e~P/21p!2e~P/22p!

, ~16!

where^•••& denotes the usual angle averaging in the Pau
operator. Having the self-energy at our disposal the spect
function follows from Eq.~1!. The quasiparticle energies
e1 as defined by~10! were determined in Hartree-Fock ap-
proximation

SHF~1!5
1

V(
2

f ~e2!V ex~1,2,1,2!. ~17!

With the T matrix ~15! one is able to calculate the critical
temperature for superfluidity using the Thouless criterio
@20#. It has been demonstrated in Ref.@20# that this coincides
with the critical temperature found in BCS theory. For the
separable ansatz~14! it reads

det@12Ja~P50,E52m,T5Tc!# i j50. ~18!

The Thouless criterion for nuclear matter has already be
evaluated in Ref.@15#.

III. SELF-ENERGY IN BRUECKNER THEORY

Brueckner theory is only applicable to zero-temperatur
systems. The near equivalence to Green-function results h
been demonstrated in this case as already pointed out abo
A T.0 extension of Brueckner theory was formulated b
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2184 53ALM, RÖPKE, SCHNELL, KWONG, AND KÖHLER
Bloch and De Dominicis@24#. An obvious difference be-
tween the two approaches~Brueckner and Green function! is
that the former only includes particle ladders, while the latt
also includes hole ladders in defining the effective intera
tion. It is of some interest to numerically study the effect
this difference. We therefore define a BruecknerK matrix as
in Eq. ~6! with T replaced byK. The propagator~7! is how-
ever modified by the replacement

12 f ~v!2 f ~v8!→@12 f ~v!#@12 f ~v8!#. ~19!

The self-energy (VB) in Brueckner theory is given by@25#

VB~1,v!5
1

V(
2

S f ~e2!Kex~1212,e21v!

1
1

V(
3,4

uKex~1234,e31e4!u2

3
@12 f ~e2!# f ~e3! f ~e4!

v1e22e32e42 ih
dp11p2 ,p31p4D .

~20!

For the discussion below, let us denote the two terms in E
~20! by VB

1 andVB
2 . The second term,VB

2 , is often referred
to as the Brueckner second-order rearrangement potentia
a temperatureT50 it is zero for states above the Ferm
surface and negative for states below, while the first term
positive for states above and zero below the Fermi surfa
As explained below, the retarded self-energy in~finite-
temperature! Brueckner theory, denoted bySB , is given by

ImSB~1,v!5ImVB
1~1,v!2ImVB

2~1,v!, ~21!

ReSB~1,v!5ReVB~1,v!5ReVB
1~1,v!

2PE dv8

p

ImVB
2~1,v8!

v2v8
. ~22!

This quantity is to be compared to the Green functionS
defined in the previous section.

While SB is calculated numerically according to Eqs
~20!, ~21!, and ~22!, rewriting these expressions to paralle
those in the last section would facilitate comparisons b
tween the two formalisms. To this end, one can, invokin
unitarity on the imaginary part of the second term of E
~20!, write ImVB as @25#

ImVB~1,v!5
1

V(
2

@ f ~e2!2ḡ~e2 ,v!#ImKex~1212,e21v!,

~23!

with

ḡ~e2 ,v!5
@12 f ~e2!#g~e21v!

g~e21v!11
5 f ~e2!e

2b~v2m!.

~24!

Notice that at 2m5e21v where g has a singularityḡ is
finite. It was argued in Ref.@27# that the BruecknerVB
should be identified with the chronological potentialSc

which is related toS @26, 27# by
er
c-
of

q.
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.
l
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q.

ImSc~1,v!5tanhS 12b~v2m! D ImS~1,v!. ~25!

In our notations here, this says, forT.0, one can obtain
ImSB from

ImSB5
ImVB

tanhF12b~v2m!G . ~26!

Now Eqs.~23! and ~24! also give a simple relation between
the two terms contributing to ImVB(1,v):

ImVB
2~1,v!52e2b~v2m!ImVB

1~1,v!. ~27!

It is then obvious that the division by the tanh function, i
obtaining ImSB from ImVB , is equivalent to just switching
the sign of ImVB

2(1,v):

ImSB~1,v!5~11e2b~v2m!!ImVB
1~1,v!, ~28!

as stated in Eq.~21! above.
An equivalent way of expressing the foregoing correspo

dence between ImVB(1,v) and Green-function quantities is
identifying 2i ImVB

1 and 2i ImVB
2 with, respectively,S, and

S., the nonequilibrium extensions of which govern the los
and gain collision terms in a transport equation@28#. The
on-shell version of this correspondence was pointed out
Cugnonet al. @29#.

IV. RESULTS FOR THE T MATRIX „K MATRIX …

AND THE NUCLEON SELF-ENERGY

In this exploratory calculation we used a rank one sep
rable approximation~Yamaguchi potential@30#! as well as a
rank two parametrization of Mongan@31#. The form factors
of the barely attractive Yamaguchi potential are of the fo
lowing form:

wa~p!5
la

p21g2 , ~29!

where the coupling constant and the effective range are giv
by

la5H 12.3178~MeV fm21!1/2 a51S0

14.6988~MeV fm21!1/2 a53S1
,

g51.4488 fm21. ~30!

The form factors for the rank two Mongan potential, whic
contains in addition to a long-range attractive a short-ran
repulsive term, have the same form as given in Eq.~29!. The
corresponding parametrization is given in Ref.@31#. For nu-
merical convenience we restricted only toS waves
(1S0 ,

3S1) which give the dominant contribution to theT
matrix at low energies.

As we are concerned within this paper with the modifica
tion of the self-energy near the critical temperature for th
superfluid phase transition in symmetric nuclear matter, w
first study the onset of superfluidity in the temperatur
density plane of nuclear matter. In Fig. 1 the critical tem
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53 2185NUCLEON SPECTRAL FUNCTION AT FINITE TEMPERATURE . . .
perature for superfluidity~18! (a53S1) is given as a func-
tion of the density. The solid curve refers to the Yamagu
potential whereas the dashed curve is for the Mongan in
action. Due to the repulsive component present in the M
gan interaction the critical temperature is reduced compa
to the barely attractive Yamaguchi potential. These cur
are in qualitative agreement with the calculations done
Ref. @15#. In the following calculations we fix the density t
n5n0 ~dotted line in Fig. 1! and vary the temperature.

The key quantity for the calculation of the self-energ
within the ladder approximation is the thermodynamicT ma-
trix. In Fig. 2 the imaginary and the real part of the diagon
matrix elements of the thermodynamicT matrix ~triplet
channel! of the Green-function theory~15! are given as a
function of the energy argument at fixed relative moment

FIG. 1. The critical temperature for superfluidity in symmetr
nuclear matter (3S1 channel! according to Eq.~18! as a function of
density for the Yamaguchi and the Mongan potential. The satu
tion densityn0 is indicated.

FIG. 2. Real and imaginary part of the diagonal elements of
thermodynamicT matrix ~15! in the 3S1 channel as a function of
energy for temperatures far above and close to the critical temp
tureTc54.02 MeV and for zero total momentum at the saturati
density. The relative momenta were set top50.5 and 1.0 fm21.
hi
er-
n-
red
es
in

y

l-

m

p and total momentumP50 as well as at a fixed chemical
potentialm. The imaginary part shows a zero, which is lo
cated atv52m independent on the temperature. This is du
to the fact that the imaginary part of theT matrix ~15,16! is
proportional to

122 f „e~p!…5g21
„2e~p!…f „e~p!…f „e~p!…, ~31!

which is obviously zero at 2e(p)52m for any temperature.
With decreasing temperature the slope of the imaginary pa
of the T matrix at v52m increases; at temperatures nea
Tc (Tc54.02 MeV in our case! it has a characteristic princi-
pal value structure. The real part develops the correspond
peak atv52m, while approaching the critical temperature
from above. Finally atT5Tc the real part of theT matrix
diverges in accordance with the Thouless criterion@20#.

The results of Fig. 2 can be compared with theT50
results by Ramoset al. @32#. They also find a pairing insta-
bility at T50 andv52eF which is most pronounced for
small total momenta. The difference compared to our resu
lies in the fact that although their imaginary part goes to ze
at v52eF as well, it does not change sign at this energy a
it does in our calculations. This is due to the fact that in Re
@32# the Galitski form of the two-particle propagator in the
kernel of theT matrix is used@22# whereas we use the
Kadanoff-Baym form@33#, which results in the retardedT
matrix instead of the chronological one used in Ref.@32#. In
the limit T→0 both differ only in the sign of the imaginary
part forv.2eF . Consequently both definitions differ also in
the sign of the corresponding self-energies atT50. At finite
T the retarded self-energy discussed so far and the chron
logical self-energy as derived from the Feynman-GalitskiT
matrix @26# are related by Eq.~25!. However, with this dif-
ference in mind we can conclude that the pairing instabilit
at T5Tc is in qualitative agreement with the correspondin
instability atT50 observed in Ref.@32#. However, a proper
treatment of the pairing correlations belowTc demands the
inclusion of a finite gap in the single-particle propagators
This has to be determined consistently from a combination
the BCS theory with theT-matrix approximation. Such a
treatment known as quasiparticle-random-phase approxim
tion @34# has recently been applied to the one-dimension
Fermi gas@35#.

To compare with the Brueckner theory the respective ke
quantity is theK matrix. In Fig. 3 theK-matrix elements of
the Brueckner theory are given for the same set of param
eters. The imaginary part of theK matrix does not change
sign in contrast to theT-matrix elements~Fig. 2!. This is due
to the fact that in this case the Pauli blocking~19! is positive
in contrast to the Pauli-blocking term~31!, which changes
sign at 2e(p)52m. For low temperatures the imaginary par
is effectively zero for energies below this particular energy
For energies above this value a pronounced maximum dev
ops. This gives the corresponding maximum in the real pa
of the K matrix. However, no critical temperature can be
found where theK matrix diverges as found for theT matrix
~Thouless criterion!. Thus, the different Pauli operator~19!
in the K matrix leads to considerable deviations from th
T-matrix case in particular in the limit of low temperatures

In order to calculate the spectral function it is necessary
evaluate the off-shell self-energy, which itself has some in
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2186 53ALM, RÖPKE, SCHNELL, KWONG, AND KÖHLER
teresting features. In Fig. 4 the imaginary part of the retar
self-energy~11! is given as a function ofv at p150 and
n5n0 . The results are plotted for various temperatures.
the highest temperatureT520 MeV ~dotted curve! the self-
energy is rather smooth. It gives a nonzero contribution
energies v.2200 MeV, develops a maximum nea
v52100 MeV and then starts decreasing slowly. In t
T510 MeV case we find two additional extrema: a min
mum at the the chemical potentialv5m'223 MeV and a
second maximum atv052m2e(p1)'35 MeV. Decreasing
the temperature further this behavior gets still more p
nounced. At the minimum the value of the imaginary par
drastically reduced; however, it still has a finite value a
will reach zero only in the limitT→0 ~see discussion of Fig
5!. The second maximum gets more pronounced as well
a temperatureT54.1 MeV, close to the critical temperatur
Tc54.02 MeV, one observes a pronounced peak.

FIG. 3. Real and imaginary part of the diagonal elements of
thermodynamicK matrix (3S1) from Brueckner theory plotted fo
the same parameters as in Fig. 2.

FIG. 4. Imaginary part of the nucleon self-energy~11! at the
saturation densityn0 as a function of energy for momentum
p150. The self-energy is given for several temperatures above
critical temperature for superfluidity (Tc54.02 MeV!. The chemi-
cal potentialm5223.5 MeV (T54.1 MeV! and the location of the
pairing peak atv052m2e1535.6 MeV are indicated.
ed
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At

This particular behavior can be traced back to the beha
ior of the T matrix ~15! at low temperatures. It has been
demonstrated in Ref.@21# that ImT has a zero at the particu-
lar energy valuez52m for pairs with zero total momentum
~compare also Fig. 2!. This compensates for the Bose singu
larity in the imaginary part of the self-energy~11! rendering
Im S at this energy finite. However, in addition a critica
temperature can be found such that the real part of theT
matrix becomes singular at the same energy~Fig. 2!. As has
been shown in Ref.@21# this critical temperature coincides
with the one for the superfluid phase transition in agreeme
with the BCS theory. In fact, the singularity in theT matrix
is nothing but the well-known Thouless criterion@20# for
superfluidity. If this critical temperature is reached th
above-mentioned compensation does no longer hold~see
also Ref.@21#! and the singularity in theT matrix leads to a
corresponding singularity in the imaginary part of the sel
energy. The singularity is located at an energ
v052m2e1 . This is readily to be seen if one restricts to th
pole part of theT matrix with total momentumP50. Then
the integration overp2 in ~11! can be carried out directly
yielding ad peak in ImS at the energyv0 . This shows that
the singularity in the imaginary part of the self-energy
which occurs forT→Tc is a direct consequence of the pol
in theT matrix atT5Tc , indicating the onset of superfluid-
ity.

In Fig. 5 we continued the evaluation of the imaginar
part of the self-energy for temperatures belowTc , disregard-
ing for the moment the pairing instability. This allows us t
demonstrate that forT→0 indeed the value of the imaginary
part of S at the minimum (v5m5223 MeV! approaches
zero, in accordance with zero-temperature calculations
various authors@5, 36#. This zero of the imaginary part of the
self-energy atv5m is a wellknown property at zero tem-
perature leading to the fact that particles at the Fermi surfa
have infinite lifetime, i.e., they are good quasiparticles. A
cording to the Hugenholtz-van-Hove theorem the chemic
potential coincides with the binding energy per nucleon. Th
empirical value for this quantity at saturation is
EB
0/A5216 MeV. The quadratic dependence of ImS around

v5m atT50 demonstrated in Ref.@37# is also found in our

he

the

FIG. 5. The same quantity as in Fig. 4 for temperatures belo
the critical temperatureTc54.02 MeV. Again the chemical poten-
tial m5222.2 MeV (T51 MeV! is indicated.
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numerical calculations. With increasing temperature a no
zero value for ImS is obtained atv5m, however up to
temperaturesT<20 MeV ~see Fig. 4! a pronounced mini-
mum is reminiscent of the zero-temperature property. At a
temperaturesT,Tc the pairing instability shows up at
v052m2e1535 MeV. This pairing instability indicates the
breakdown of theT-matrix approximation in the vicinity of
v0 at temperatures belowTc . A consistent treatment re-
quires the inclusion of the BCS gap for temperatures belo
Tc . Such a complicated calculation has not yet been carri
out. TheT51 MeV curve in Fig. 5 is in qualitative agree-
ment with the calculation of Ref.@4# except at energies
aroundv'35 MeV. There we find the additional peak due
to the pairing singularity in theT matrix discussed above.

In Fig. 6 the imaginary part of the self-energy ImSB ~21!
is given as a function of energy for the same parameters as
Fig. 4. ForT520 MeV ImSB is in qualitative agreement
with the corresponding curve in Fig. 4. With decreasing tem
perature the qualitative behavior is similar to the Green fun
tion case given in Fig. 4 except in the energy range arou
v0 . Whereas a strong singularity is seen in Fig. 4 for tem
peratures close toTc only a small maximum is found in the
Brueckner case for the same temperature. As discus
above this singularity is due to the pairing singularity in th
T matrix and occurs at the critical temperature defined by t
Thouless criterion. This behavior does not show up in th
Brueckner theory.

Figure 7 gives a direct comparison between the imagina
parts of the self-energy, calculated in theT matrix and the
Brueckner approximations, respectively. The upper curv
show the case atT520 MeV. While for energies below
v52100 MeV and abovev5100 MeV the two curves al-
most coincide, the imaginary part of the Brueckner sel
energy lies below the one from theT-matrix calculation in
the energy range between2100 and 100 MeV. An analo-
gous result has been found in the zero-temperature case
Köhler @4#. In theT54.1 MeV case~slightly aboveTc) we
observe a similar relation between the two approximation
However, at energies aroundv0 the Green-function self-
energy shows the pairing singularity, which is absent in th
Brueckner calculation.

FIG. 6. The imaginary part of the nucleon self-energy at th
saturation density calculated in Brueckner theory@Eqs.~21!# for the
same parameters as in Fig. 4.
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In Fig. 8 the same quantity as in Fig. 4 is given using the
Mongan potential instead of the Yamaguchi potential use
throughout the rest of the paper. The purpose is to demo
strate the influence of the repulsive part of the nucleon
nucleon interaction on the self-energy. The repulsion leads
a lower critical temperature (Tc51.58 MeV! as compared to
the barely attractive case (Tc54.02 MeV!. The temperature
dependence of ImS does not change qualitatively compared
to Fig. 4. Thus, we suppose that the behavior discusse
above also holds for more realistic interactions, such as th
Paris potential@38# as used, e.g., in Ref.@21#.

In addition to the imaginary part the real part of the self-
energy contains important information, its on-shell part de

e

FIG. 7. Direct comparison of the imaginary part of the self-
energy in Brueckner theory~dashed curves! and Green-function
theory ~solid curves! for temperaturesT520 andT54.1 MeV.

FIG. 8. The imaginary part of the nucleon self-energy at the
saturation density for the Mongan NN interaction. The critical tem-
perature in this case has a smaller value (Tc51.58 MeV! than for
the Yamaguchi potential. Like in Fig. 4 the self-energy is given for
several temperatures above and close to the critical temperature
superfluidity. The chemical potentialm514.68 MeV and the energy
v0582.46 MeV is indicated. The inset shows the region around
v0 in detail.
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fines the optical potential for the nucleon in nuclear matt
In Fig. 9 the energy dependence of the real part of the s
energy as calculated from Eq.~13! is shown for the same
parameters as used in Fig. 4. Again there is a relativ
smooth behavior for theT520 MeV case. With decreasing
temperature a second minimum is found for energies be
v0 . Please note that forT54.1 MeV ~close toTc54.02
MeV! a principle-value-like behavior aroundv5v0 is
found. This a direct consequence of the corresponding p
ing peak in the imaginary part of the self-energy atv5v0
~see Fig. 4!.

In Fig. 10 the real part of the on-shell self energy, i.e., t
real part of the optical potential, is given as a function of t
momentump. The upper curve shows a calculation usin
only the first term in Eq.~12!. This is a standard approxima

FIG. 9. The real part of the off-shell nucleon self-energy calc
lated from the imaginary part according to Eq.~13! as a function of
energy forn5n0 and the same temperatures as in Fig. 4.

FIG. 10. The real part of the on-shell nucleon self-energy a
function of the momentump for n5n0 and different temperatures
according to Eq.~12!. The upper figure was a calculation using on
the first term of Eq.~12! denoted as ReS1. The lower plot shows
the result of the full expression. The Fermi momentum is indica
aspF .
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tion often used to calculate the optical potential in nuclea
matter@13,39,40#. With decreasing temperature one observe
a pronounced minimum near the Fermi energy, which ha
been observed in Ref.@13# and related to the inclusion of
hole-hole scattering in the Pauli operator. However, usin
the full expression of Eq.~12! for the evaluation of the op-
tical potential the behavior at low temperatures is changed.
particular structure is found around momentap5pF which is
enhanced with decreasing temperature. If one studies the b
havior of the real part in detail, one finds, that the3S1 chan-
nel of theT matrix is responsible for this anomalous behav-
ior. We suppose, that the pairing peak in the imaginary pa
ImS(p,v) at temperaturesT→Tc , present also at finite mo-
mentap, leads to a corresponding principal-value-like struc-
ture in the real part of the optical potential. Restricting to the
pole part of theT matrix this behavior can be shown using
the dispersion relation between the real and imaginary par
of the self-energy. Consequently for the on-shell self-energ
ReS this leads to the wiggle atp5pF .

Figure 11 shows the same quantity calculated from th
Brueckner theory. The upper plot denoted as ReSB

1 shows
the temparature behavior of the first-order Brueckner term
@Eq. ~22!#. For the lowest temperature (T54.1 MeV! one
observes a plateaulike behavior around the Fermi mome
tum. Using the full expressions~lower plot! the repulsive
second-order contribution leads to a different behavior at low
temperatures, which is characterized by a strong enhanc
ment for low momenta and a corresponding minimum for
momentap.pF .

A particular behavior of the optical potential for momenta
aroundp5pF has also been found in Refs.@39, 41#. In Ref.
@41# a plateaulike behavior was related to the behavior of th
effective mass at the Fermi surface. In@39# it was shown that
a nonmonotonous behavior aroundpF ~anomaly! was en-
tirely due to the strong attraction in the3S12

3D1 channel
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FIG. 11. The real part of the on-shell nucleon self-energy cal
culated with the BruecknerK matrix. The parameters are the same
as in Fig. 10. While the upper figure shows the results only with th
first term of Eq.~22! denoted as ReSB

1 the lower part shows the
results of the full calculation.
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and that it was enhanced if the density was decreased be
n5n0 . According to our understanding the anomaly ob
served in Ref.@39# is probably as well due to the pairing
instability @42# discussed above.

In Figs. 12–14 we give a direct comparison between t
Green-function theory and Brueckner theory with respect
the real part of the on-shell self-energy for different temper
tures. The upper curves correspond to the first term in E
~12! and~22!, respectively. As the form of these expression
coincides, the differences between Green-function a
Brueckner theory in this case are entirely due to the differe
Pauli operators in theT matrix andK matrix, respectively
@compare Eq.~19!#. The lower curves show the result of the
full expressions~12! and~22!. In Fig. 12 we give the results
for temperatureT530 MeV. The differences between the
two approaches are not very pronounced for this tempe
ture, except for low momenta. With respect to ReS1 the
Green-function curve is slightly enhanced compared to t
Brueckner curve for momentap.pF and slightly reduced
below. This behavior is reversed for the lower curves. In Fi
13 (T510 MeV! the differences between the two theorie
are much more pronounced. The different form of the Pa
operator results in a nonmonotonous behavior for the Gre
function curve showing a pronounced minimum aroun
p5pF . In contrast the Brueckner curve is monotonously d
creasing. A behavior like this has been observed in Ref.@13#.
For the full expressions the differences between both theor
are less pronounced showing an enhancement of the Gre
function curve with respect to the Brueckner curve for m
mentap,pF . In Fig. 14 the temperature (T54.1 MeV! is
close to the critical temperatureTc54.02 MeV. One ob-
serves basically the same behavior as in Fig. 13, although
differences are still more enhanced.

In Fig. 15 the imaginary part of the on-shell self-energ
~optical potential! is given as a function of momentum for
various temperatures. The upper graph shows the contri
tion of the first term in Eq.~11! only. One observes a pro-
nounced temperature dependence for momenta belowp52

FIG. 12. The real part of the on-shell nucleon self-energy ca
culated inT matrix and Brueckner approximations, respectively, fo
temperatureT530 MeV.
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fm21 leading to a decrease with temperature towards a m
mum nearp5pF . The lower graph displays the full contri
bution for the imaginary part~11!. Again, one notes a stron
temperature dependence belowp52 fm21. For momenta
around the Fermi momentum a pronounced minimum is
hibited with decreasing temperature. The value of ImS at
p5pF tends to zero forT→0. In Fig. 16 the imaginary par
of the on-shell self-energy calculated in Brueckner the
ImSB is given as a function of momentum for the sam
parameters as in Fig. 15. The upper plot displays the
term of Eq.~21!. Again, we observe a strong decrease w
temperature for momenta belowp52 fm21 as in Fig. 15.
However, due to the use of the different Pauli operator in
K matrix ImSB

1 is basically zero for momentap,pF in the
limit of low temperatures. No minimum can be observed.
the lower graph the full contribution of ImSB ~21! is shown.

FIG. 13. The same figure as Fig. 12 for temperatureT510
MeV.

FIG. 14. The same figure as Fig. 12 for temperatureT54.1
MeV.
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One notes, that the temperature dependence for mom
around pF is in qualitative agreement with the Green
function result~lower curve of Fig. 15!. However, for mo-
mentap<1 fm21 the temperature behavior is reversed co
pared to the Green-function case. Please note, that it is in
same momentum range, where one notes pronounced d
tions in the real part of the optical potential at low tempe
tures~compare lower part of Fig. 14!. The Brueckner results
can be compared with the calculation of ImVB(1,e1) in Ref.

FIG. 15. The imaginary part of the on-shell self-energy as
function ofp at n0 for the same temperatures as in Fig. 10, acco
ing to Eq. ~11!. The upper figure was a calculation using only th
first term of Eq.~11! denoted as ImS1. The lower plot shows the
result of the full expression. The Fermi momentum is indicated
pF .

FIG. 16. The imaginary part of the on-shell nucleon self-ene
calculated with the BruecknerK matrix. The parameters are th
same as in Fig. 15. The upper figure shows the results only with
first term of Eq.~21! denoted as ImSB

1 . The lower part shows the
results of the full calculation~21!.
enta
-

-
the
via-
a-

@10#. Taking into account the relation between ImSB and
ImVB ~see Sec. III! one notes the qualitative agreement o
the two calculations.

Summarizing, one observes pronounced differences
tween the optical potential at low temperatures calculated
Green-function theory and Brueckner theory, respective
These show up at momenta below the Fermi momentum.
the full expressions~lower curves! these differences are due
to higher-order terms in the Green-function approximatio
not included in the second-order Brueckner calculation~see
also Ref.@25#!.

V. SPECTRAL FUNCTION
AND MOMENTUM DISTRIBUTIONS

From the off-shell self-energy the nucleon spectral fun
tion is calculated using Eq.~1!. In Fig. 17 the nucleon spec-
tral function is plotted as a function of energyv for zero
momentump150 at a densityn5n0 and for the same tem-
peratures as given in Fig. 4. ForT520 MeV one observes a
quasiparticle peak at energiesv52150 MeV and a back-
ground contribution extending up to energiesv'200 MeV.
With decreasing temperature the quasiparticle peak
slightly shifted towards higher energies and its width is r
duced. This reduction is due to the fact that with decreas
temperature the imaginary part reaches zero at higher en
gies~compare Fig. 4!. In addition a second maximum forms
at lower energies. This can be compared with the ze
temperature results in Ref.@4# for the spectral function at
p50. Using Green-function theory they also arrive at a spe
tral function with two peaks of comparable size which a
located at approximately the same energies as given in F
17 in theT54.1 MeV case.

The temperature dependence of the spectral function
not as drastic as one could expect from the change in
self-energy with temperature~Fig. 4!. Near the critical tem-
perature the tail of the spectral function at higher energ
shows additional smaller maxima, which result from the pr
nounced structures in the real part of the self-energy. Th
in turn are due to the singular behavior of the imaginary pa
at v52m2e1 .
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FIG. 17. The nucleon spectral function at the saturation dens
as a function of energy for momentump150. The temperatures are
the same as in Fig. 4.
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FIG. 18. The nucleon spectral function
saturation density andT510 MeV in the energy-
momentum plane.
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In Fig. 18 the energy and momentum dependence of
spectral function is given atn5n0 and T510 MeV. One
observes that the double-peak structure found atp50 van-
ishes with increasing momentum. A single maximum r
mains for p1.0.7 fm21 which can be identified with the
quasiparticle peak. The width of this peak is reduced
p5pF due to the minimum in ImS at the chemical potential
For larger momenta the peaks are broadened again unti
very high momenta the width is reduced again. The la
behavior is due to the fact that for very high momenta t
influence of the medium represented by the self-energy
comes negligible. Please note, that for our choice of
nucleon-nucleon interaction there is no high-momentum
of the spectral function because it is barely attractive.

In order to demonstrate the influence of correlations
the nucleon occupation numbers, the spectral function ca
used to determine this quantity. In Fig. 19 the temperat
dependence of the nucleon momentum distribution~occupa-
tion numbers! n(p) ~3! is given at a fixed densityn5n0 .
The correlated occupation number~full line! is compared to
the corresponding Fermi distribution function~dashed line!.
In the T55 MeV case we observe a strong depletion f
momenta below the Fermi momentum with a value
n(p50)50.78 compared to 1 for the noninteracting cas
Above the Fermi surface we find a corresponding enhan
ment of the interacting occupation numbers compared to
noninteracting up to aboutp52 fm21. ForT510 MeV the
depletion is less pronounced@n(0)50.82#. This tendency
towards the noninteracting occupation numbers is contin
is the case ofT530 MeV. With further increasing tempera
ture the interacting response approaches the noninterac
one. Using the BruecknerK matrix in Ref. @43# the finite
temperature occupation numbers are evaluated which ar
reasonable agreement with our results as well with the
culations of Ref.@10#.

In Fig. 20 the density dependence ofn(p) at fixedT ~10
MeV! is shown. For the sake of a better comparability t
curves are normalized top/pF . When going to densities
above n0 (n/n051.32) one observes a lower depletio
the
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@n(p50)50.85# compared ton(p50)50.82 atn5n0 . The
same tendency has also been observed in Ref.@43#, although
at a higher temperature~30 MeV!. Going to lower densities
(n/n050.61) we find the astonishing result that the depletio
at low p is further enhanced@n(p50)50.78#. On the other
hand this corresponds to the zero-temperature results of R
@7,8# indicating that the momentum distribution does not a
proach the noninteracting one in the limit of zero density.
Ref. @8# the depletion atT50 andp50 stays rather constant
for densities betweenn0 and n0/2 at a value of
n(p50)50.86. The authors of Ref.@8# interpret this result
as being due to the attractive part of the nucleon-nucle
interaction leading to the formation of bound pairs at lo
densities.

VI. SUMMARY AND CONCLUSIONS

Using the Matsubara Green-function approach, se
consistent expressions for the nucleon self-energy and
nucleon spectral function for nuclear matter at finite tempe
ture were derived. The self-energy and the nucleon spec
function at the saturation density were calculated in first
eration starting from the quasiparticle spectral function. T
variation of these quantities with temperature was studied
temperatures close to the critical temperatureTc for the su-
perfluid phase transition in symmetric nuclear matter. W
found that approaching the critical temperature from above
singularity develops in the imaginary part of the self-energ
It was shown that this singularity is a direct consequence
a corresponding pole in theT matrix at the energyE52m,
which indicates the onset of a superfluid phase atT5Tc @20#.
Thus, the modification of the self-energy nearTc can be
understood as a precursor effect of the superfluid phase t
sition in nuclear matter. Another effect which was discuss
as being related to the pairing instability in the3S1-

3D1
channel is the occurrence of a wiggle aroundp5pF in the
real part of the on-shell self-energy, especially pronounc
when approachingTc from above. A similar effect although
less pronounced was also found in the Brueckner calculati
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The temperature dependence of the spectral function
been investigated for temperatures above the critical t
perature. Despite the strong modification of the self-ene
there is no such drastic modification of the spectral func
when approachingTc from above. This is consistent with th
fact that belowTc the condensate part of theT matrix is
proportional to the square of the gap and consequently
ishes at the critical temperature.

The momentum dependence of the spectral func
shows considerable deviations from the quasiparticle be
ior at small momenta, whereas the quasiparticle picture h
approximately for momenta aroundp5pF as well as for
largep.

The occupation numbers were calculated from the sp
tral function at some finite temperature and density. It co
be shown that with increasing temperature the noninterac
occupation number is approached. The depletion of the
cupation numbers is enhanced with decreasing density
nite temperature.

We would like to mention some open questions related
our calculation of the nucleon spectral function: The fi
question is related to the model interaction we used in
exploratory calculation of the self-energy and spectral fu
tion. For the energy and momentum range investigate
this paper the important features of the self-energy obta
using the simple model interaction of Yamaguchi type w
also found using a rank two Mongan interaction. It is su
posed that these features remain of relevance also for m
realistic potentials@38#.

The second question is related to the problem of s
consistency. In principle, the spectral functions have to
iterated until self-consistency is reached. It remains to
seen, to what extent the features of the first iteration obta
in this calculation will also be found in a fully self-consiste
calculation.

FIG. 19. Occupation numbers at saturation density for differ
temperatures. The dashed curves represent the uncorrelated o
tion numbers, i.e., the corresponding Fermi distribution.
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The third question concerns a consistent description of t
system belowTc , where the consistent inclusion of a finite
gap is necessary for the evaluation of the spectral functio
In principle, our calculation is restricted to temperature
above the critical temperature for superfluidity. The Thoule
criterion indicates the instability of the normal quasipartic
state with respect to the onset of superfluidity. A consiste
treatment belowTc has to be based, e.g., on a BCS quasipa
ticle basis with a finite gap. Up to now such a calculation h
not been carried out for nuclear matter. Instead, in most
the approaches at zero temperature the implications of
pairing singularity for the self-energy were neglected. How
ever, in a series of papers Vonderfechtet al. @5# stressed the
need to properly take into account theT-matrix singularity,
discussed above, which is present at temperatures be
Tc .

In conclusion we evaluated the nucleon self-energy a
spectral function for finite temperature. We compared th
calculations within the Green-function approach with
finite-temperature generalization of the Brueckner theor
Special emphasis was put on the behavior of these quanti
near the critical temperature for the onset of superfluidity
nuclear matter. Within the Green-function approach the pa
ing singularity in theT matrix at the critical temperature
generates a corresponding singularity in the imaginary p
of the self-energy. The nonmonotonous behavior~anomaly!
of the real part of the optical potential for momentap;pF
could also be related to the pairing singularity. The spect
function at finite temperature shows a complex energy d
pendence, which cannot be generated from an ener
independent width.

All the features discussed above cannot be incorpera
into a simple quasiparticle description. Thus, the nucle
spectral function should be the appropriate quantity for t
description of hot and dense nuclear matter.

ent
cupa-

FIG. 20. Occupation numbers atT510 MeV for density values
around the saturation density. Again the dashed curves represen
noninteracting case.
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